
Scheduling Issues Arising from Automated Real-Time SystemDesignDavid J. MuslinerInstitute for Advanced Computer StudiesThe University of MarylandCollege Park, MD 20742musliner@umiacs.umd.edu(301) 405{6761FAX: (301) 405{6707Revision : 4:1ABSTRACTWe have developed CIRCA, the Cooperative Intelligent Real-time Control Architecture, as amechanism for automating the on-line, adaptive design of real-time systems. The real-time controltasks generated by CIRCA do not meet many of the simplifying assumptions made to developtraditional scheduling algorithms. We examine several problematic issues that arise in schedulingthese automatically-generated real-time monitoring tasks, and describe two solution approaches.In the �rst approach, a drastic reformulation of the scheduling problem leads to a new, highlye�ective scheduling algorithm, at the cost of synchronous periodic behavior in scheduled tasks.In the second approach, measured alterations are made to task periods by a band-limited searchalgorithm, seeking to �nd nearby periods with a tractable LCM, so that traditional schedulersmay be applied. We compare and contrast these approaches using experimental results from bothrandomly-generated task sets and task sets generated automatically by CIRCA. Our results revealsigni�cant advantages for the modi�ed scheduling algorithm, which is based on specifying invocationseparations (or \distance constraints") rather than periods.Available as Technical Report CS-TR-3364, UMIACS-TR-94-118University of Maryland Department of Computer Science
The work reported in this paper was supported in part by the National Science Foundation under Grants IRI-9209031and IRI-9158473, by a NSF Graduate Fellowship, and by the Arpa/Rome Laboratory Planning Initiative (F30602-93-C-0039). The opinions, �ndings, and recommendations expressed in this publication are those of the author, anddo not necessarily re
ect the views of the funding agencies. David Musliner is also a�liated with the UM Institutefor Systems Research (NSF Grant NSFD CDR-88003012).

1 IntroductionTraditional real-time scheduling is based on the assumption that task speci�cations will includeat least two numbers: the worst-case execution time (WCET) of the task and the period with whichthe task must be executed. Recently, researchers have been
exing these requirements in a numberof ways to accommodate the complexity, uncertainty, and dynamicity of real-world problems. Forexample, the requirement of a known WCET has been relaxed for imprecise computations [6].In this paper, we focus new attention on the second numeric task speci�cation, the task period.We show how, for a large class of real-world tasks, periods are not optimal speci�cations, and can bereplaced with a less-constraining maximum invocation separation (or \distance constraint" [2]). Weexplore this observation in the context of the Cooperative Intelligent Real-time Control Architecture[7, 8]. CIRCA is a real-time AI architecture that combines positive aspects of both search-based AIplanning technologies and hard-real-time scheduling and execution methods. In the next section, wepresent a brief overview of CIRCA, viewing the system as a mechanism for automating the processof designing real-time reactive systems. We then focus on the scheduling di�culties presented byCIRCA's automatically-generated control plans (Section 3), and discuss the techniques we havedeveloped to address these problems. In addition to designing novel scheduling methods for thesetasks (Section 4), we have also built tools that automatically adapt the tasks to work with existingschedulers (Section 5). In Section 6, we present experimental results showing that, even with theseadaptations, traditional scheduling methods are signi�cantly less e�ective on the tasks generatedby CIRCA.2 Overview of CIRCAThe increasing complexity of real-time computer control systems has motivated a growing inter-est in applying mature AI techniques to the control of real-time systems, in an e�ort to develop moreintelligent,
exible automated systems [3, 9, 10]. One way to achieve intelligent real-time control isto use AI methods to automatically design real-time control methods on-line, dynamically alteringthe executing control system in response to changes in the system's goals or its environment [8].Illustrated in Figure 1, CIRCA automates the entire process of building a real-time system, fromplanning tasks, to deriving their constraints, to scheduling them, and �nally to executing them pre-dictably. By automating the design and implementation process, CIRCA can be \intelligent aboutreal-time." That is, CIRCA uses AI methods to dynamically and
exibly develop and modify itsreal-time behavior in the face of changing goals, capabilities, and/or domains.CIRCA is initially given a speci�cation of the system to be controlled, including: a set of initialworld states, a set of state transitions that describe how the world can change, and a set of agentcapabilities, describing how the agent can change the world. CIRCA is also given a description ofthe desired system behavior, which may include both goals of avoidance and goals of achievement.Given these speci�cations, CIRCA's AI subsystem builds a reactive control plan using lookaheadRTSS'94 submission Revision : 4:1 1 11:54 January 6, 1995

Real-Time Subsystem

Environment Scheduler

AI Subsystem

control sensor data

World Modelfeedback data

signals reactions
selected

reaction schedules

schedules
reactionFigure 1: CIRCA, the Cooperative Intelligent Real-Time Control Architecture.planning methods described fully in [8]. The planned reactions are cast in the form of simple Test-Action Pairs (TAPs) that specify the appropriate control actions for various possible future statesof the world. Deadlines de�ned by the transitions in the world model are translated into response-time requirements for each TAP that is critical to system safety. Thus a TAP that responds to anemergency situation would have to be tested (and possibly activated) frequently enough to ensurethat the emergency is recognized and dealt with before failure can occur. The Scheduler modulethen veri�es that the planned TAPs can be executed successfully by the RTS, meeting all the timingrequirements. Assuming that the Scheduler is able to produce a feasible schedule that meets allthe timing requirements, the AIS can send the schedule to the RTS, which will then execute theTAPs in a fully predictable manner, enforcing the safety guarantees and behaviors speci�ed by theplanning system. It is also possible for the TAP design or scheduling phase to fail, indicating thatresources are overconstrained, and some modi�cations must be made to the initial design or thespeci�cations. Such modi�cations are essential to automating the overall design process and havingCIRCA adapt to dynamic, unpredictable environments.Space limitations preclude detailed descriptions of CIRCA's application domains, which haveincluded an autonomous mobile robot and a simulated Puma arm [7]. This paper focuses on thescheduling phase: in what order should the RTS execute a set of automatically-generated TAPs?3 The Scheduling ProblemCIRCA's AI planning system generates a set of non-interruptible TAPs which must be executedsequentially on a single processor. Each TAP has a known worst-case execution time requirement.All TAPs are known at the start of the scheduling session. TAPs fall into two classes; critical andnot. All critical TAPs are responsible for meeting hard deadlines, so they must be included in anyfeasible schedule. Non-critical TAPs are considered optional, and may be executed periodically,sporadically, or not at all. The RTS can run these non-critical TAPs in an \if-time" manner,executing them only when slack time becomes available because some scheduled task has used lessthan its allotted time.The CIRCA scheduling problem is not as complex as the problems addressed by some modernscheduling systems, but it has two unique aspects. First and foremost, the tasks being scheduledRTSS'94 submission Revision : 4:1 2 11:54 January 6, 1995

P P

E E
b)

S = 2P-E

P P

E E
a)

S < PFigure 2: Possible relationships between task period (P) and invocation separation (S).are automatically generated, so they are not as well-organized and optimized as human-generatedtasks might be. One simple but confounding result is that TAP timing speci�cations do not fall onsimple harmonic frequencies, so the least common multiple (LCM) of the TAP periods is generallyextremely large. As a result, traditional schedulers that attempt to schedule calendars of taskexecutions out to the LCM of the task periods (such as the Maruti scheduler [4]) will often becompletely unable to deal with TAPs.For example, suppose we have a set of �ve TAPs with speci�ed periods of 1866, 617, 541, 411,and 250 time units respectively. The LCM of these periods is 10666566584250, meaning that atleast 4 � 1010 invocations of the highest-frequency task would need to be enumerated to build aschedule out to the LCM. Clearly, this simple approach will not succeed.To understand the second unique aspect of TAP scheduling, it will be helpful to make a distinc-tion between a task's \period" and its \invocation separation"1. In the traditional interpretationof a task period P , future time is divided into a series of intervals, each P long. The task mustbe executed exactly once in each of these intervals. As a result, the separation between two taskinvocations may be much smaller or much larger than P , as illustrated in Figure 2. The maximumpossible time between any two invocations of the task (S) is 2P �E, where E is the execution timeof the task.The second special aspect of CIRCA's scheduling problem is that, instead of a period speci�ca-tion, each TAP is given to the Scheduler with a speci�cation of the maximum acceptable invocationseparation. Initially this may seem isomorphic with a period speci�cation, di�ering only by simplelinear factors of 2 and E. However, there are more subtle di�erences.One of the primary di�erences relates to synchronization; when using a traditional periodspeci�cation and scheduling one invocation per period, the invocations remain synchronized with1A concept developed independently from, but essentially isomorphic with, the \distance constraint" of [2].RTSS'94 submission Revision : 4:1 3 11:54 January 6, 1995

external clocks. That is, the tenth invocation of a task with a period of P = K seconds will occurbetween 9K and 10K seconds after the schedule begins executing. This information can be usefulif the task is communicating with or controlling an external process that has a similar periodicconstraint: the respective invocations of each process will remain within some bounded distance ofeach other.If the task is instead speci�ed with a maximum invocation separation of S = K seconds, thenthe only constraint on the tenth invocation of the task is that it occur before 10K seconds afterthe schedule begins executing. The invocations of the task may \skew" with respect to externalclocks, so that synchronization is not possible. Lacking the lower bound, the invocation separationmethod provides less information but more
exibility in scheduling. As we shall see, this can leadto more e�ective scheduling algorithms, if the corresponding loss of synchronization is acceptable.CIRCA speci�es invocation separations because synchronous behavior is not necessary for themonitoring tasks it plans. Consider a monitoring system that must detect and react to some criticalcondition in the world. Obviously that condition must persist for some minimum amount of timein order to ensure that it can be detected. What constraints must be placed on a monitoring taskto ensure that it detects a condition with minimum duration of C seconds? Simple: the monitoringtask must be executed at least once every C seconds. Note, however, that there is no need torestrict the task to executing exactly once every C seconds; if the task executes more frequently, nopenalty is incurred (except perhaps wasted computation). Thus a maximum invocation separationis the ideal speci�cation for this type of monitoring task.The reactive TAP plans built by CIRCA �t nicely into this model of monitoring. Because TAPsonly invoke their actions in appropriate situations, there is no need to ensure that a TAP is notrunning faster than some rate; all TAPs may be executed repeatedly, as frequently as possible, andthe system will continue to operate correctly. Thus there is no need for a lower bound on TAPinvocation separation.Because CIRCA's tasks have di�erent timing speci�cations and, when converted to periods,these speci�cations have intractable LCMs, traditional scheduling mechanisms are not directlyapplicable. We have taken two approaches to addressing this inadequacy. In the �rst approach,we have developed a unique scheduling mechanism designed to take advantage of the increasedscheduling
exibility associated with TAPs and their invocation separations.4 Modifying Traditional SchedulingThe prototype Scheduler uses a modi�ed deadline-driven scheduling algorithm [5, 11] to builda TAP schedule. Normally, this algorithm is used in the context of period-based scheduling, sothat tasks are only considered \ready" for one invocation per period. However, the motivation fordeadline-driven scheduling is not dependent on this aspect. As described in [11], Jackson's theoremjusti�es deadline-driven scheduling by noting that, if two tasks T1; T2 have respective executionRTSS'94 submission Revision : 4:1 4 11:54 January 6, 1995

times E1; E2 and deadlines D1; D2, where (without loss of generality) D1 � D2, then there are twocases of interest:1. E1 +E2 � D1 : In this case, the tasks may be scheduled in either order.2. E1 +E2 > D1 : In this case, T1 must be executed �rst in order to meet its deadline.Thus if we simply adopt the rule of executing the task with the earliest deadline (T1 here), we willalways �nd a feasible schedule if one is possible. Jackson's theorem is applicable to our schedulingproblem because deadlines for each task are de�ned by the speci�ed invocation separation and theprevious task invocation.To derive a cyclic schedule with this mechanism for choosing the next TAP to run, the Schedulersimulates the operation of a dynamic scheduler, incrementing a time counter and deciding whichTAPs to run as simulated time passes. After the simulation has progressed far enough that all ofthe TAPs that must be scheduled have been invoked at least once, the Scheduler begins scanningthe trace of the simulation, attempting to extract a loop of TAP invocations which meets all TAPtiming requirements.4.1 Modi�ed Deadline-Driven SchedulingThe simple deadline-driven criterion for selecting the next TAP to run is optimal in the sensethat, if any schedule is possible, this method will produce one. However, given the schedulingproblem posed to CIRCA's Scheduler, the deadline-driven algorithm does not produce particularlye�cient schedules. As a simple example, consider the problem of scheduling two TAPs, A and B,illustrated in Figure 3. If we use the trivial deadline-driven algorithm, the schedule of TAPs will have11 invocations of TAP A, followed by one invocation of TAP B, and then repeat that pattern. Thisschedule is perfectly acceptable because it meets the frequency requirements for both of the TAPs.However, it is clearly not the shortest schedule that meets those requirements. In fact, the verysimple schedule composed of alternating invocations of A and B also meets the requirements, andit is much shorter. This short schedule length is a major advantage from the CIRCA perspective,because the Scheduler is simulating this scheduling process forward to generate the appropriateloop of TAPs. The longer the loop, the longer it takes to generate, and the more resources thatcomputation consumes. Therefore, we have modi�ed the basic deadline-driven algorithm so that itwill tend to produce shorter, more compact schedules.The primary change to the scheduling algorithm is the addition of a second \level" of schedulingpriorities, used to schedule TAPs that would not necessarily be chosen by the deadline-drivencriterion, when slack time is available. Slack time is de�ned as the time between the currentinstant in the simulated schedule, and the latest possible start time of the TAP TDD chosen by thedeadline-driven criterion. If other TAPs can be found which �t within this slack time, they canbe scheduled to run before TDD. In terms of Jackson's theorem, this criterion detects when theRTSS'94 submission Revision : 4:1 5 11:54 January 6, 1995

A

runtime = 4
max invocation separation = 10

B

runtime = 5
max invocation separation = 50

Modified DD schedule:

Time:

Deadline-driven schedule:

0 44 499

A BA A A A A A A A A A

B A

5Figure 3: A simple example of how pure deadline-driven scheduling can produce undesirable,lengthy schedules.�rst case (E1 +E2 � D1) is occurring, and the tasks may be run in either order to still meet theirdeadlines. To take advantage of this situation, the Scheduler �rst �nds TDD, then �nds the set of\feasible" TAPs whose runtimes will �t in the consequent slack time. If none are available, TDD ischosen to run next. Otherwise, to maintain a \fair" distribution of invocations of the TAPs, theScheduler chooses to run the feasible TAP which was least-recently invoked in the schedule so far.This has the e�ect of producing a modi�ed round-robin e�ect, rotating the privilege of a slack-timeinvocation among the feasible TAPs.With these modi�cations to the TAP selection criterion, the Scheduler is able to produce thesecond schedule shown in Figure 3. At time 0, the simple deadline-driven criterion indicates thatTDD is TAP A, because its deadline is 10, while TAP B has a deadline of 50. However, becauseA's runtime is 4, there are 6 units of slack time before it must be invoked. Since B's runtime of 5�ts in that slack time, the system selects B to run �rst. At the next scheduling point, time 5, TDDis A again, but this time only 1 unit of slack time remains, B will not �t, and A is selected2. Atthis point, since both A and B have been scheduled, the system will begin scanning for acceptableloops in the schedule so far, and the simple loop BA meets all constraints.4.2 The No-Holes ProblemConsidered in isolation, this modi�ed deadline-driven algorithm is quite successful at producingshort schedules of guaranteed, critical tasks. However, it has one signi�cant disadvantage whencompared with traditional, period-based schedulers. Because a traditional scheduler only runs atask once per period, holes are left in the schedule, into which optional, if-time tasks (or evenlate-arriving critical tasks) may be �t on a dynamic basis. Our separation-based scheduler, onthe other hand, leaves no unscheduled holes in the timeline; whenever the processor is available,2Actually, even if B did �t it would not be selected here; the TDD TAP is included in the least-recently-runround-robin, so A would be selected.RTSS'94 submission Revision : 4:1 6 11:54 January 6, 1995

a critical TAP is selected to run. In systems where utilization levels are low and critical TAPsare being run more frequently than needed to meet their deadlines, it would be preferable to spacetheir invocations out more and leave time for non-critical tasks. To address this concern, we furthermodi�ed the Scheduler's operations to include non-critical TAPs.4.3 The If-time Server TAPIf the Scheduler is able to produce a TAP schedule that includes all of the TAPs that must beguaranteed, it is possible that there are enough slack resources in the RTS to also guarantee someof the if-time TAPs, potentially speeding CIRCA's reactions. We have implemented an \if-timeserver" TAP, which tries to distribute the available slack time fairly amongst all of the if-timeTAPs. When executed by the RTS, the if-time server TAP performs its own round-robin over theif-time TAPs. The server TAP is able to invoke any of the if-time TAPs because the server isspeci�ed with a WCET equal to the maximum of the WCETs of all the if-time TAPs. Deciding ona maximum invocation separation to assign to the server TAP is somewhat more di�cult. Ideally,the if-time server TAP would be speci�ed with an invocation separation that would cause it to beinvoked frequently enough to use the slack resources, but not so frequently as to make a scheduleimpossible. Since it is not possible to directly determine this value, we have implemented a simpleiterative heuristic to optimize the invocation separation assigned to the if-time server TAP.As a starting point, the server TAP is assigned a separation equal to the length of the �rstschedule produced. If the Scheduler is able to produce a successful schedule with these constraints,the AIS then decreases the server TAP's invocation separation by some amount (currently by 25%),and repeats the scheduling process. This iteration terminates when the Scheduler fails, and the lastsuccessful schedule is restored and used. If the separation initially assigned to the server TAP doesnot result in a feasible schedule, the AIS can also increase the value iteratively for a few cycles,until a successful schedule is produced.4.4 DiscussionWe have shown how the prototype CIRCA Scheduler is able to produce cyclic schedules ofTAPs that can be shorter than those built by simple deadline-driven scheduling, and how the if-time server TAP can allow the system to make guaranteed utilization of slack time. It is importantto note that our modi�cations to the deadline-driven algorithm take e�ect only when the scheduleutilization is fairly low; when the utilization is high, slack time is minimized and the second levelof scheduling is never possible. As a result, our modi�cations alter the Scheduler performance forlow-utilization domains, but in worst-case, high-utilization domains they have no e�ect, and thesystem defaults to pure deadline-driven scheduling (albeit not period-based).Experiments using these mechanisms on hundreds of variations of the Puma domain have shownthat the Scheduler produces e�cient, short schedules very quickly, or else rapidly recognizes that aparticular set of TAPs is not schedulable. Most Puma-domain schedules consist of between 10 andRTSS'94 submission Revision : 4:1 7 11:54 January 6, 1995

35 TAP invocations, and are generated in a few seconds by an unoptimized Lisp implementation.Experimental results will be described in Section 6.5 Adapting to Traditional SchedulingA great deal of research e�ort has been invested in developing powerful scheduling meth-ods based on the traditional interpretation of task periods. Therefore, although our invocation-separation scheduling methods are e�ective for the relatively simple tasks CIRCA derives, we arealso interested in adapting these task speci�cations to be used with period-based schedulers. Asdescribed in the Introduction, the problem revolves around the task periods and their intractableLCMs.To address this problem and allow CIRCA to use existing period-based schedulers, we haveinvestigated several approaches to making small changes to the task periods in order to arrive atperiods with a tractable LCM. There are two major constraints on these task period modi�cations.First, it is critical that the reactions planned by CIRCA are executed at least as frequently asthe system originally speci�es, since those speci�cations give maximum invocation separations thatare needed to guarantee detection of (and reaction to) critical environmental events. Therefore,task periods (separations) may only be reduced, never increased, as an increase would make itpossible for the system to miss critical events or violate deadlines. Second, when task periodsare reduced, the overall load on the system is increased, because the given tasks must be executedmore frequently. Thus it is important to minimize the changes to the task speci�cations, lest systemutilization rise above the schedulable level.5.1 Two-Factor Specialization for LCM ReductionThe problem of scheduling TAPs is closely related to recent research on scheduling for \pin-wheel" [1] and \distance-constrained" tasks [2]. Two major di�erences are that TAPs have non-unitWCETs and are not preemptible. However, both Han & Lin [2] and Chan & Chin [1] have inves-tigated \specialization" methods that can convert inconvenient task speci�cations into tractableones. We can use these methods to modify TAP invocation separations to achieve more convenientLCMs3.Han & Lin describe specializations into a \two-factor" form where all distance constraints arereduced to values that can be factored into two numbers, one shared by all the specialized values(R) and one that is a power of two (i.e., 2j). This yields specialized problem instances which �tnicely into the theory of pinwheel scheduling and the lower utilization (\density") bounds that havebeen derived for the schedulability of such problems.However, this approach to specialization can lead to relatively large increases in the overallutilization of a task set. Although Han and Lin develop a method for �nding optimal two-factor3Although this is not the original purpose of their specialization methods.RTSS'94 submission Revision : 4:1 8 11:54 January 6, 1995

α 2
LCM

α 2

β

Sort &
TruncateX

X LCM
β γ β γ

β

Sort &
Truncate Done?

Generate
Alternatives

ε γ

ε α

Generate
Alternatives

ε α

Generate
Alternatives

α

α

β

γ

β

β

No

P1

P2

Pi

YesFigure 4: Flowchart of the LCM-reduction search. Line labels indicate the number of alter-natives under consideration at each step.specializations that minimize the resulting increase in utilization, the two-factor form itself is over-constraining. For example, our example tasks with separation speci�cations of f1866, 617, 541,411, 250g are reduced to an optimal two-factor form of f1644, 411, 411, 411, 205.5g, requiring overa 33% decrease in the 617 speci�cation.5.2 Searching for the Least LCMFollowing a more heuristic approach to addressing the LCM problem, we have developed anincremental band-limited search algorithm, illustrated by the
owchart in Figure 4, that can rapidlyidentify specializations that result in much smaller density increases than two-factor specializations.The search algorithm operates by generating sets of alternative values for task speci�cations,using several input parameters to control this potentially explosive process. The � value placesa proportional limit on how much the system will modify the original speci�cation, and � and
limit the maximum number of alternatives generated. The system then computes the LCMs of allpossible combinations of these speci�cations, discarding all but those with the � smallest LCMs.This process iteratively includes additional task speci�cations until all of the original ones havebeen considered.While this brute-force approach may initially seem primitive and unlikely to succeed, in practiceit is extremely e�ective at reducing the LCM for arbitrary sets of input periods. Given the periodsof our running example and the parameters � = :05; � = 30; � = 10;
 = 100, this search algorithmvery quickly produces the set f1845, 615, 540, 410, 246g with maximum separation decrease of only1.6%, and a tractable LCM of 22140. If � is increased to 70, the search will take slightly longerand will result in the even better set f1800, 600, 540, 400, 240g, which has an LCM of only 10800with only 4% separation decrease.Inserting this relatively simple search for a suitable LCM reduction allows CIRCA to invokeexisting period-based schedulers on its automatically-generated sets of reactive tasks. In our ex-RTSS'94 submission Revision : 4:1 9 11:54 January 6, 1995

periments, we have used the scheduler built into the Maruti hard real-time operating system [4]to test these concepts and provide performance results for comparison with our separation-basedscheduler.6 Performance ComparisonTo illustrate the comparative performance of these two approaches to scheduling, we will presentresults from tests run on large numbers of \arti�cial" task sets. In all of these experiments, theprimary metric of concern is the percentage of task sets successfully scheduled by each method.We are also interested in the length of the schedules being produced, since this has an e�ect on thetime needed to generate the schedule, the space needed to store the schedule, and the bandwidthneeded to transmit the schedule to the RTS.We are not particularly concerned with the relative speed of the di�erent scheduling methods,for several reasons. Primarily, it is important to remember that CIRCA is designed to isolate thesearch-based reasoning processes of the AI planning system (and the Scheduler) from the hardreal-time environmental interactions controlled by the RTS. As a result, even if the Schedulerand search-based LCM reduction algorithms require several seconds to �nd a schedule, this doesnot pose a threat to millisecond-scale reactions running on the RTS. Furthermore, compared to thesearch times required by the AIS to derive appropriate TAP plans, the scheduling time is negligible.6.1 Random Task Set ExperimentsTo generate each arti�cial task set, a series of random values from 1 to 100 were generated todetermine both task separation speci�cations and WCETs in accordance with a desired level ofsystem utilization. These values were then scaled up by a factor of 10000, for compatibility withthe minimum granularity of the Maruti scheduler.Before the random task sets were passed to the Maruti scheduler, their periods were also reducedby as much as 5% (�) using the search-based LCM-reduction method described above. Withoutthat LCM reduction, virtually none of the random task sets could have been scheduled by Maruti,because their LCMs were all larger than the 32-bit integer range used by that system4.Figure 5 illustrates the performance results of the two schedulers on over 800 sets of �verandomly-generated tasks with total system utilization levels ranging from 20% to 90%. CIRCA'sseparation-based scheduler is able to schedule a signi�cantly larger percentage of these randomtask sets than the Maruti scheduler, even at higher utilization levels5. This result shows that theCIRCA scheduler is successfully taking advantage of the increased
exibility of separation-basedtask speci�cations.4It is interesting to note that the problem of large LCMs has been so thoroughly ignored by real-time systemsresearchers that, in the original Maruti scheduler, there were no checks to make sure the LCM computation did notover
ow its 32-bit integer representations.5Note that there is no assurance that all of the task sets generated were theoretically schedulable| a 100% successrate is not necessarily possible on these task sets.RTSS'94 submission Revision : 4:1 10 11:54 January 6, 1995

 Separation-based scheduler

 Period-based scheduler

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 Utilization (%)

 T
as

k
se

ts
 s

ch
ed

ul
ed

 (
A

ve
ra

ge
 %

)

20 30 40 50 60 70 80 90Figure 5: Scheduling results for randomly-generated sets of 5 tasks each.Figure 6 shows an example �ve-task set with 80% utilization, for which both CIRCA and Marutiwere able to produce schedules. The CIRCA schedule (without an if-time TAP server added) isonly 7 task invocations long, while the Maruti schedule contains 275 invocations.Figure 7 shows a similar �ve-task, 80% utilization set on which CIRCA's scheduler succeededbut Maruti's failed. In this case, even though the LCM was successfully reduced to a reasonable sizewith only a 2% increase in utilization, the Maruti scheduler was still unable to develop a successfulinterleaving. Close examination of a number of such cases seemed to indicate that the Marutischeduler had the most trouble with task sets in which there was a wide variation in task periods.Presumably, the system would schedule many invocations of the higher-frequency tasks and then�nd that it could no longer �t in some lower-frequency task.To test this theory that variance in task periods was causing trouble for the Maruti scheduler,we developed a second arti�cial task generation algorithm which is prone to choosing widely vary-ing task periods. Rather than choosing utilization levels for each task in proportion to a set ofpreviously-chosen random numbers, the algorithm instead assigns portions of the total remainingutilization sequentially, according to random percentages. As a result, if one of the �rst few tasksis generated with a high utilization percentage, the remaining tasks will all have small utilizations,usually growing smaller as each new task leaves less remaining utilization for consumption by thenext.RTSS'94 submission Revision : 4:1 11 11:54 January 6, 1995

Worst-case MaximumExecution Invocation ReducedTask Time Separation Period Period1 150000 14710000 7430000 71400002 610000 4970000 2790000 26600003 210000 1870000 1040000 10200004 620000 4720000 2670000 26600005 840000 12300000 6570000 6460000CIRCA schedule: (5, 1, 3, 2, 4, 1, 3)Original LCM: 1400680953360000Reduced LCM: 135660000Maruti schedule length: 275 task invocationsFigure 6: An example task set with 80% utilization.
Worst-case MaximumExecution Invocation ReducedTask Time Separation Period Period1 970000 9190000 5080000 50700002 590000 4050000 2320000 22100003 440000 117260000 58850000 574600004 440000 2360000 1400000 13600005 300000 17520000 8910000 8840000CIRCA schedule: (2, 4, 3, 5, 1, 4)Original LCM: 983153278800000Reduced LCM: 689520000Maruti scheduler failed.Figure 7: Another example task set with 80% utilization.RTSS'94 submission Revision : 4:1 12 11:54 January 6, 1995

 Separation-based scheduler

 Period-based scheduler

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 Utilization (%)

 T
as

k
se

ts
 s

ch
ed

ul
ed

 (
A

ve
ra

ge
, %

)

50 65 80 90Figure 8: Scheduling results for randomly-generated sets of 5 tasks each, with widely varyingtask periods.Figure 8 shows that the task sets produced by this di�erent generator were much more di�cultfor the Maruti scheduler, resulting in as much an 80% decrease in performance, or a 30% drop in theabsolute number of task sets scheduled. CIRCA's scheduler, on the other hand, was able to retainits excellent performance, su�ering only a 30% decrease in performance at the 90% utilization level,and actually showing improved results on 50% utilization sets.Experimental results on larger task sets also show that the CIRCA scheduler is more successfulthan the Maruti scheduler. Figure 9 shows the results for ten-task sets generated using the �rstrandom-number method. Comparing Figure 9 with Figure 5, we see that CIRCA's performance issimilar, while the Maruti scheduler is uniformly less successful on the larger task sets. In fact, whenthe Maruti scheduler was run on ten-task sets from the second, high-variance random generator, itso rarely found a feasible schedule that the data is not worth plotting. The CIRCA scheduler, onthe other hand, continued to display performance similar to the other graphs.The MARUTI scheduler's performance degradation when faced with disparate periods andlarger numbers of tasks is of particular interest because CIRCA tends to generate task sets withthese characteristics. Scheduling experiments performed using task sets generated automatically byCIRCA showed even more clearly that traditional scheduling methods were inappropriate. CIRCA'sscheduler was able to generate successful schedules in domains with 560% faster response-timeRTSS'94 submission Revision : 4:1 13 11:54 January 6, 1995

 Separation-based scheduler

 Period-based scheduler

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 Utilization (%)

 T
as

k
se

ts
 s

ch
ed

ul
ed

 (
A

ve
ra

ge
 %

)

20 30 40 50 60 70 80 90Figure 9: Scheduling results for randomly-generated sets of 10 tasks each.requirements than Maruti (corresponding to higher system utilization).7 SummaryOur experiences with CIRCA's automatically-generated real-time tasks bring into question somecommon assumptions of current RT research. In particular, we have seen that:1. The speci�cation of a task period is frequently overconstraining. Instead, maximum invoca-tion separation speci�cations are well-suited to describing the timing constraints of reactivemonitoring tasks.2. Task timing speci�cations do not fall naturally on harmonic boundaries, and hence the LCM ofa set of task periods is rarely tractable. As a result, scheduling methods that build \calendars"out to the major cycle (LCM) of the task set are impractical. We have developed an alternativecalendar-building scheduler that avoids this problem.3. Converting intractable task periods to values with a tractable LCM using existing \special-ization" methods may yield very large increases in system utilization. We have developeda simple search-based algorithm that can rapidly generate high-quality specializations withmuch smaller utilization increases, hence improving schedulability.RTSS'94 submission Revision : 4:1 14 11:54 January 6, 1995

The excellent experimental results to date are strong indications that our scheduling methodscan provide signi�cant performance improvements for real-time systems that do not require periodsynchronization conditions. Future work will involve developing the analytical basis for our modi�eddeadline-driven scheduling algorithm based on maximum invocation separation speci�cations.References[1] M. Y. Chan and F. Y. L. Chin, \General Schedulers for the Pinwheel Problem Based onDouble-Integer Reduction," IEEE Trans. Computers, vol. 41, no. 6, pp. 755{768, June 1992.[2] C.-C. Han and K.-J. Lin, \Scheduling Distance-Constrained Real-Time Tasks," in Proc. Real-Time Systems Symposium, pp. 300{308, 1992.[3] T. J. La�ey, P. A. Cox, J. L. Schmidt, S. M. Kao, and J. Y. Read, \Real-Time Knowledge-Based Systems," AI Magazine, vol. 9, no. 1, pp. 27{45, 1988.[4] S. T. Levi, S. K. Tripathi, S. D. Carson, and A. K. Agrawala, \The MARUTI Hard Real-TimeOperating System," ACM Operating System Review, vol. 23, no. 3, , June 1989.[5] C. L. Liu and J. W. Layland, \Scheduling Algorithms for Multiprogramming in a Hard Real-Time Environment," Journal of the ACM, vol. 20, no. 1, pp. 46{61, January 1973.[6] J. W.-S. Liu, K.-J. Lin, and S. Natarajan, \Scheduling Real-Time, Periodic Jobs Using Im-precise Results," in Proc. Real-Time Systems Symposium, pp. 252{260, December 1987.[7] D. J. Musliner, E. H. Durfee, and K. G. Shin, \CIRCA: A Cooperative Intelligent Real-TimeControl Architecture," IEEE Trans. Systems, Man, and Cybernetics, vol. 23, no. 6, pp. 1561{1574, 1993.[8] D. J. Musliner, E. H. Durfee, and K. G. Shin, \World Modeling for the Dynamic Constructionof Real-Time Control Plans," to appear in Arti�cial Intelligence, 1995.[9] D. J. Musliner, J. A. Hendler, A. K. Agrawala, E. H. Durfee, and J. K. Strosnider, \TheChallenges of Real-Time AI," to appear in IEEE Computer, 1995.[10] K. G. Shin and P. Ramanathan, \Real-Time Computing: A New Discipline of ComputerScience and Engineering," Proceedings of the IEEE, vol. 82, no. 1, pp. 6{24, January 1994.[11] E. Walden and C. V. Ravishankar, \Algorithms for Real-Time Scheduling Problems," TechnicalReport CSE{TR{92{91, University of Michigan, Computer Science and Engineering, April1991.RTSS'94 submission Revision : 4:1 15 11:54 January 6, 1995

