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about resource restrictions and modify the control problems for which it synthe-sizes controllers. Because SA-CIRCA is able to explicitly and accurately reasonabout its own predictable performance, it can not only recognize overconstrain-ing domains, it can also analyze the potential e�ects of various changes to itsgoals or plans. By restricting the scope of the problems it is trying to solve, byusing incremental improvement algorithms, and by trading o� solution qualityagainst computation time, SA-CIRCA is designed to operate as a self-aware,self-adaptive system responding in real-time to perceived changes.In the next section, we present a brief overview of the SA-CIRCA architectureand outline how its controller-synthesis algorithms work. We then discuss thevarious means available to control the complexity and resource usage of thecontroller synthesis algorithms, describing the performance tradeo�s that result.To demonstrate these e�ects, we present several implemented examples showingthe tradeo�s that can be made to meet real-time restrictions.2 Self-Adaptation via Automatic Synthesis of ControllersBuilding on the proven CIRCA architecture for intelligent real-time systems [12,13], SA-CIRCA is an architecture for intelligent self-adaptive systems that mustmeet real-time deadlines [14]. Many intelligent agent architectures (e.g., RAPs [4],PRS [7], 3T [3]) essentially provide customized programming environments thatmake it easier for humans to write complex programs that behave appropriately.In contrast, SA-CIRCA automatically synthesizes its control programs (or plans)from primitive descriptions of the system it is controlling, the system objectives,and the environment in which the system operates.2.1 The Example DomainTo help the reader understand this distinction clearly, and to set the stage forlater examples, consider the domain illustrated in Fig. 1. The Puma robot arm isassigned the task of packing parts arriving on the conveyor belt into the nearbybox. The conveyor moves at a �xed rate and the parts are spaced apart on thebelt so that they arrive with some maximum frequency. Once at the end of thebelt, each part remains motionless until the next part arrives, at which time itwill be pushed o� the end of the belt (unless the robot picks it up �rst). If apart falls o� the belt because the robot does not pick it up in time, the system isconsidered to have failed. Thus, the arriving parts impose hard deadlines on therobot's responses; it must always pick up parts before they fall o� the conveyor.The parts can have several shapes (e.g., square, rectangle, triangle), each ofwhich requires a di�erent packing strategy. The control system may not knowa priori how to pack all of the possible types of parts. If parts of a new shapearrive, the system can stack those parts on the nearby table until it has derivedan appropriate box-packing strategy. The derivation of the packing method mayinvolve search algorithms with potentially unbounded complexity. This aspect of



Fig. 1. The example Puma domain, in which the robot packs objects from the conveyorinto the box.the domain is used to exercise CIRCA's ability to combine arbitrary AI methodswith real-time response guarantees.The robot arm is also responsible for reacting to an emergency alert light.If the light goes on, the system has only a limited time to push the buttonnext to the light, or it fails. This portion of the domain represents a completelyasynchronous interrupt with a hard deadline on its service time.To cope with this domain properly, the robot control system must be able toprovide real-time responses to unsynchronized domain events (part arrivals andemergency alerts) while also performing complex search algorithms (derivingpacking methods and reaction plans in general). To complicate matters further,the speed of the Puma robot and the domain sensors are limited. Variationsof the domain can be set up with di�erent part arrival rates, emergency alertrates, robot speeds, etc. To be truly intelligent and real-time in this domain, thecontrol system will need to be able to evaluate its capabilities, its goals, andthe domain behavior restrictions. With that information, an intelligent systemshould provide some measure of useful performance, possibly involving trade-



o�s that sacri�ce aspects of the system behavior as necessitated by resourcerestrictions.Applying a reactive control architecture such as PRS, RAPs, or 3T to thisdomain would require a human to write complex control rules specifying whatthe Puma should do in the many di�erent situations that may arise. The humanwould have to build a control program (or plan, or set of concurrent behaviors)that manages the asynchrony of the environment. Even if the control programwas written perfectly, however, none of these systems could provide guaranteesthat all the domain's real-time deadlines would be met. While PRS and theRex/Gapps system [15, 8] can provide bounded response times on reactive exe-cution, they have no way to reason about the timing characteristics of a domainto understand whether that bounded response time will be fast enough.In contrast, applying SA-CIRCA to this domain requires the human to de-scribe the robot capabilities, the environment processes, and the overall systemgoals. Rather than telling the system when it should pick up a part, the humansimply tells the system that it can pick up a part, and that if it does not pick upa part quickly enough, it may fail. SA-CIRCA then automatically synthesizes aset of reactive rules and performs formal veri�cation processes to guarantee thatthe domain's real-time deadlines are all satis�ed by the new reactive controller.2.2 Architecture OverviewFigure 2 presents a highly abstract view of the SA-CIRCA architecture, showinghow the Adaptive Mission Planner (AMP), Controller Synthesis Module (CSM),and Real-Time Subsystem (RTS) interact to provide intelligent, adaptive, real-time control. All of the SA-CIRCA subsystems operate in parallel. At the top,the AMP reasons about long-term goals, problem structures, and approachingdeadlines to decide what the near-term goals should be, and what problems thenear-term reasoning should be focused on. For example, in the Puma domain theAMP is responsible for reasoning about what part-packing algorithms shouldbe developed for di�erent part types, and what new robot control plans arenecessary to implement those part-packing algorithms.The AMP sends subgoals and problem con�gurations to the CSM, whichdevelops real-time controllers to accomplish near-term goals. The controllers arein the form of a set of reactive rules that specify what actions the system shouldtake in all of the possible di�erent world situations. Each reaction that is criticalto avoiding a potential failure includes a timing constraint. For example, in thePuma domain, the control plan might say what to do if the emergency alert lightgoes on and the robot is not holding a block (push the button!), and how quicklythat action must be taken (before the emergency results in failure!).The CSM sends these control plans to the RTS, which reactively executes theautomatically-generated plans and enforces guaranteed response times. Mean-while, the AMP and CSM continue to reason ahead about future contingenciesand phases of the problem. In the Puma domain, the AMP might try to pre-dict what new types of parts will arrive, and generate suitable control plans in
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The WorldFig. 2. The SA-CIRCA architecture includes three major components operating atdi�erent levels of abstraction and responsiveness.advance. The RTS contains a plan cache mechanism that allows it to store ad-ditional reactive plans that are not currently executing, and switch to executingone of those plans with a (very fast) constant time operation.Thus SA-CIRCA is designed to adapt its runtime behavior through both on-line, runtime planning and runtime selection of pre-built plans. In essence, if theAMP and CSM can build a plan ahead of time to handle a particular contingency,they will cache it in the RTS. If a contingency occurs for which no cached planexists, the system will invoke its best available plan and the AMP will directthe CSM to synthesize a new, customized plan as quickly as possible. To thedegree that a domain is accurately modeled and can be successfully controlledby the available execution resources, SA-CIRCA will provide safety guaranteesand high-quality performance. When the real world diverges from the domainmodel, or the execution resources prove insu�cient to control the domain, SA-CIRCA is designed to monitor its own performance, detect these problems, andgracefully degrade its plans to adapt.The controller synthesis algorithms are extremely complex and potentiallyundecidable. Thus one of the keys to making CIRCA's safety guarantees is thateach controller executed on the RTS must keep the system safe while waiting for



the CSM to generate the next controller. Some nicely-structured domains makeit possible to build reactive controllers that preserve safety inde�nitely whilewaiting for the CSM. For example, in some formulations of the Puma domain,the robot can respond to all types of arriving parts (by simply putting themdown on the table) and all emergency alerts for an essentially unlimited amountof time. The only practical limitation is the number of parts the table can hold,and if this is made in�nite, the domain allows perfect \holding patterns." Ofcourse, real worlds do not o�er in�nite tables (or in�nite amounts of fuel foraircraft to circle in holding patterns).Practical applications of the SA-CIRCA architecture will require the CSMto provide some level of predictable response, so that the RTS only needs toremain safe and stable for a limited time horizon. In this paper, our focus is onbringing the controller-synthesis activities of the CSM under this type of softreal-time control. When faced with limited time to recon�gure the RTS with anew reactive control plan, how can SA-CIRCA control its deliberation processesand ensure that it will synthesize a new controller in time?3 Controlling the Synthesis ProcessAs illustrated in Fig. 2, the CSM includes a State Space Planner (SSP) anda Scheduler component. The SSP builds control plans based on a world modeland a set of formally-de�ned safety conditions that must be satis�ed by feasibleplans [13, 6]. To describe a domain to SA-CIRCA, the user inputs a set of tran-sition descriptions that implicitly de�ne the set of reachable states. For example,Fig. 3 illustrates several transitions used in the Puma domain.EVENT emergency-alert ;; Emergency light goes on.PRECONDS: ((emergency F))POSTCONDS: ((emergency T))TEMPORAL emergency-failure ;; Fail if don't attend toPRECONDS: ((emergency T)) ;; light by deadline.POSTCONDS: ((failure T))MIN-DELAY: 30 [seconds]ACTION push-emergency-button ;; Pushing button cancels emerg.PRECONDS: ((part-in-gripper F)) ;; Requires empty gripper.POSTCONDS: ((emergency F))WORST-CASE-EXEC-TIME: 2.0 [seconds]Fig. 3. Example transition descriptions given to SA-CIRCA.The SSP builds plans by generating a nondeterministic �nite automaton(NFA) from these transition descriptions. The SSP assigns an action to each



reachable state. These actions are selected to drive the system towards statesthat satisfy as many goal propositions as possible and to preempt transitionsthat lead to failure. For example, Fig. 4 shows graphically how a planned actioncan preempt a temporal transition to failure, if the action is constrained tode�nitely occur before the temporal transition could possibly occur. System safetyis guaranteed by planning action transitions that preempt all transitions tofailure [13]. Action assignments determine the topology of the NFA (and so theset of reachable states): preemption of temporal transitions removes edges, andassignment of actions adds them.
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(part-in-gripper F)(part-in-gripper F)Fig. 4. Preemptive actions are planned to keep the system safe.The control plan for the RTS is extracted from the set of planned actions inthe NFA and cast in the form of Test Action Pairs (TAPs). Each TAP has a testexpression that recognizes a subset of the NFA (world) states, and a single actionthat has been planned for those states. TAPs that preempt failures have timingconstraints, and the Scheduler builds them into a �xed, looping schedule to beexecuted by the RTS. TAPs that do not preempt failures, but are planned onlyto achieve other non-safety-critical goals, are executed in a best-e�ort, \if-time"fashion.3.1 Control InputsThere are currently two di�erent versions of the SA-CIRCA SSP: the evolvedoriginal SSP that reasons about nondeterministic worlds without explicitly rep-resenting quantitative uncertainty, and the Probabilistic State Space Planner(PSSP) from CIRCA-II [1, 2], that reasons explicitly about the probabilities ofdi�erent transitions and states [10]. In both cases, the controller synthesis ac-tivity can be controlled by adjusting aspects of the SSP inputs: the problemcon�guration it is required to solve, and the parameters that describe preciselythe nature of an acceptable solution.



For the non-probabilistic SSP, the problem con�guration consists of :Action Transitions | representing potential actions that the SSP can planto invoke, with guaranteed results after some maximum amount of time.Event Transitions | representing uncontrollable, instantaneous events.Temporal Transitions | representing uncontrollable environmental processesthat take at least some minimum amount of time.Reliable Temporal Transitions | representing processes that are guaran-teed to occur, given a certain amount of time.Start States | describing possible states in which the system may start, or\wake up."Goals | describing desirable state features.The Probabilistic State Space Planner (PSSP) uses additional input informa-tion, including probability rate functions associated with each transition, and asingle probability threshold parameter that controls how conservative the PSSPshould be in worrying about low-probability states.3.2 Triggering Tradeo�sSA-CIRCA has several ways of recognizing that the domain is overconstrained,and that the system cannot build a plan that accomplishes all of its goals andguarantees system safety. During the controller-synthesis process, the SSP may�nish a complete search of the space of possible reaction plans and �nd thatthere are no suitable plans that can prevent failure. Or, if the SSP spends toomuch time trying to build a controller, it may time-out and be alerted by a timerinterrupt. Finally, the SSP may come up with a set of desired reactions whichare then rejected as unschedulable by the Scheduler. This is the most commonway of recognizing an overconstrained domain: a suitable reaction plan exists,but its execution cannot be guaranteed with the limited resources of the RTS.At this point, the SSP would backtrack by default to make a di�erent choiceand produce a modi�ed reaction plan. Alternatively, the AMP might decide tomake a tradeo� instead, simplifying some aspects of the control problem so thatthe CSM can generate a feasible controller.We have designed several experiments to illustrate and evaluate this tradeo�capability. Note that these tradeo� methods are not heuristics themselves; theycan be implemented by simple procedures making bounded changes to the SA-CIRCA data structures describing the world model, the current control plan,etc. Furthermore, the e�ects of those changes are well-understood; SA-CIRCAcan explicitly reason about the impact of applying its various tradeo� methodson the system's performance. However, choosing which tradeo� method to applyin a particular situation remains a heuristic decision we have not yet addressed.3.3 Ignoring a Temporal Transition to FailureOne of the most obvious and powerful tradeo�s is to simply delete or ignoreone or more temporal transitions that lead to failure in the world model. This



corresponds to the SSP not even considering that some ongoing process will everlead to failure. As a result, the TAP that was planned to preempt that temporaltransition to failure (TTF) may be a�ected in several ways. In the followingmaterial, we will examine in detail one example of the types of performancetradeo�s that result from simply ignoring a TTF. We then outline several otherpossible outcomes, but do not investigate them in depth because they representminor variations.One Result of Ignoring a TTF If the SSP is not told about a TTF from aparticular state, it is possible that the SSP will still choose the same action forthat state, but that the action will no longer be preventing a failure. Because theaction is not preempting a TTF, it will be implemented by an if-time TAP (seeSect. 3) that does not need to be scheduled, so the scheduling problem will beeasier. However, performance will su�er because the system no longer guaranteesto execute the a�ected TAP and prevent one particular type of failure.In the Puma domain, for example, the AMP might decide to ignore thepossibility of a part falling o� the conveyor, perhaps because it is highly unlikelythat the part will really fall. As a result, when examining a state in which a partis waiting on the conveyor, the SSP will no longer be required to plan a pickup-part-from-conveyor action to avoid failure. However, the action will still beplanned because it is useful in achieving the system's goals: the robot must pickup the part in order to pack it in the box, which satis�es the goal (part-in-box T). Note that the system can still make guarantees about other types offailures. For example, it can guarantee that it will avoid failures resulting fromthe emergency alert, because the actions preempting the emergency-failureTTF are still guaranteed.Schedulability E�ects of Ignoring a TTF To quantify the e�ects of thistype of tradeo� method, we make the CSM try to build controllers for parametricvariations of the Puma domain. Figure 5 shows the e�ect on schedulability overa range of arrival rates for emergency alerts and parts. If the arrival rates matcha point below the lower, \normal plan" curve, then the system can build aschedule that will guarantee to both avoid emergency failures and prevent partsfrom falling o� the conveyor. The form of this curve illustrates the tradeo� thatthe scheduling mechanism can make between tasks; when the emergency rateis relatively high, the system will still build a schedule, as long as the partarrival rate is su�ciently low that the Scheduler can allocate more resourcesto the tasks that respond to the alert. Conversely, when the emergency rate islower, the system can deal with a faster rate of arriving parts. If the arrivalrates match a point above the lower curve, then the system cannot build aschedule that will guarantee to avoid both emergency failures and droppingparts. However, if the system ignores the part-falls-o�-conveyorTTF, then itcan build guaranteed schedules for all of the instances below the upper line, themaximum rate of emergency alert arrivals that can be handled with the givenprimitives. The part arrival rate is no longer critical to the scheduling problem,



because the pickup-part-from-conveyor TAP, with a period determined bythe part-falls-o�-conveyorTTF, is no longer being scheduled and guaranteed.
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� �Fig. 5. The improved schedulability achieved by ignoring a TTF.Performance E�ects of Ignoring a TTF To illustrate the non-guaranteednature of the resulting behavior, we implemented this tradeo� method in thePuma domain, increasing the rate of emergency alerts and part arrivals so thatthe original plan of actions is not schedulable. The SSP was told that the worst-case rate was 2.4 alerts/minute, well above the limit of schedulability for theentire problem, as shown in Fig. 5. The AMP then removes the part-falls-o�-conveyor TTF from the SSP's world model, re-plans, and builds a new TAPplan in which the pickup-part-from-conveyor action is implemented by anif-time TAP rather than a guaranteed TAP. Figure 6 illustrates the results fromseveral hundred trials on the Puma simulator, with emergency alerts arrivingwith random delays uniformly distributed in the range of 25 to 30 seconds (2to 2.4 alerts/minute). As we expected, when parts arrived more frequently, thenumber of parts falling o� the conveyor would increase, as the system had lessand less free time to apply to if-time behaviors.



Interestingly, the if-time TAP that implemented the pickup-part-from-conveyor action was always executed frequently enough to prevent failures whenthe parts arrived no more frequently than two parts/minute. Referring back toFig. 5, we can see that the actual simulated execution was more robust thanthe Scheduler predicted; the \normal plan" plot in the graph indicates that evenwith the pickup-part-from-conveyor TAP in the schedule, the system couldnot be guaranteed to handle part arrivals faster than about 1.65 parts/minute.This result may indicate that the worst-case situations the SSP considered neveroccurred in the tests, or that the Scheduling or SSP algorithms were overlyconservative. We plan to investigate further.
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Fig. 6. The system behavior after ignoring the part-falls-o�-conveyor TTF, withthe emergency light frequency between 2 and 2.4 alerts/minute.Alternative Results of Ignoring a TTF Several other outcomes are possiblewhen the AMP chooses to ignore a TTF. For example, it is possible that, byignoring one TTF from a state, a di�erent temporal transition becomes dominantand still causes the planned action for that state to meet a deadline. In generalthis will mean that the deadline for the planned reaction will be longer, but the



TAP will still need to be scheduled. The resulting tradeo�s are similar to thoseabove, in that the system can no longer guarantee to avoid all types of failures.In this case, however, no TAPs are moved out of the guaranteed list: instead,the reaction deadline of one of the TAPs will be increased, thus decreasing thedesired utilization, and making the scheduling problem easier.In the extreme case, ignoring a TTF may cause the planner to completelyeliminate one or more planned actions, thus removing TAPs from the list tobe scheduled. If an action was only planned originally to preempt failure (or asa \precursor" to that preemption), and was not instrumental in achieving anyother system goals, then the action may be removed entirely. For example, ifSA-CIRCA ignores the emergency-failure transition in the Puma domain, itwill completely alter the world model and avoid planning the push-emergency-button action. Depending on the frequency of part arrivals, it may also eliminatethe need to put parts on the table temporarily, and thus ignoring this one TTFcould also remove the stop-moving and place-part-on-table actions fromthe plan. These latter actions are precursors that were included in the planto establish the preconditions of the action that was planned to preempt theemergency-failure TTF, and thus they are also unnecessary.While moving a TAP to the if-time list means that, in non-worst-case situa-tions it may be still executed quickly enough, deleting a TAP altogether providesno such potential. Since if-time TAPs do not use any resources when the RTSis pressed for time, avoiding building if-time TAPs does not save any signi�cantRTS execution-time resources. However, this tradeo� can signi�cantly reduce thecomplexity of the controller synthesis problem, and thus it provides a powerfulmethod for managing the CSM's responsiveness.An important feature of this tradeo� method, and of the SA-CIRCA ap-proach in general, is that the system can introspectively examine the predictede�ects of a particular tradeo�. In other words, SA-CIRCA might evaluate theworth of various tradeo� methods by examining the expected results in the worldmodel. If the AMP considers ignoring a TTF, it can immediately recognize thatthe failure resulting from that TTF will be possible with the modi�ed TAP plan.In addition, the AMP can examine the new world model and TAP plan to rec-ognize more detailed aspects of the tradeo�. For example, if the new plan stillincludes all the same guaranteed TAPs as the original plan, then the AMP canconclude that the reaction previously planned to preempt the TTF is still beingenforced, but at a lower rate. If the AMP knows that the worst-case rate ofthe ignored TTF is rarely achieved, this tradeo� option may be very attractive,because it has exchanged a decrease in one TAP's response rate for the abilityto schedule and guarantee the entire reactive plan.3.4 Ignoring an Event TransitionJust as the AMP may decide to alter its treatment of temporal transitions, itmay also choose to change how it considers event transitions. Ignoring an eventtransition may have many of the e�ects described above for temporal transitions:it may cut o� parts of the world model state space, possibly making some goals



unreachable. Ignoring an event transition can thus reduce the planning time anddecrease the number of TAPs planned, allowing the system to make guaranteesfor some subset of desired behaviors which were not previously schedulable.For example, in the Puma domain, ignoring the emergency-alert eventtransition provides a large reduction in the planning time, because many statesare eliminated from the model| in fact, the state space for our running exampleis reduced from 330 enumerated states and 158 reachable states to 106 enumer-ated and a mere 58 reachable states. Furthermore, a large number of contingencyreactions are eliminated from the plan, and thus the complexity of the TAPs isreduced, and the scheduling problem is eased. Because the emergency alert isno longer of concern, the system is able to react to parts on the conveyor belteven more quickly than if the predicted alert rate is very slow (as in the extremeright edge of Fig. 5). While the example of Fig. 5 could handle parts arriving atmost every 36 seconds, the plan built by ignoring the emergency-alert tran-sition can handle parts arriving every 27 seconds, a signi�cant improvement incapacity. Of course, the tradeo� is that the system is no longer monitoring theemergency light, and it will not react to an alert. If the AMP thinks that an alertis unlikely, or �nds that the cost of failing to respond to an alert is su�cientlylow, it may judge that the reduced planning time and improved part-packingreaction time are worth the risk involved in ignoring alerts.More generally, we can see that ignoring an event transition can have the de-sirable e�ects of reducing the SSP's planning time and simplifying the schedul-ing problem. The disadvantage, of course, is that this tradeo� method removesplanned contingency actions entirely, as opposed to just moving the relevantTAPs to the if-time list (as ignoring a TTF can do). Because event transitionsrepresent instantaneous events in the world, as opposed to the ongoing processesrepresented by temporal transitions, it seems plausible that the AMP could haveknowledge of event probabilities that would be helpful in guiding the use of thistradeo� method. Ignoring highly improbable event transitions would obviouslybe a good approach, in order to ensure that the system is least likely to encounterworld situations for which it is not prepared. The PSSP takes this idea one stepfurther, using probabilistic information to provide uniform, uni�ed pruning ofthe SSP model when necessary.3.5 The Probabilistic State Space PlannerAt the University of Michigan, colleagues have been working on a new versionof the SSP that uses probabilistic information to guide the system in consider-ing the most-probable states �rst [10]. The Probabilistic State Space Planner(PSSP) builds partial plans that are only probabilistically safe, because theyonly consider those states whose likelihood is above a given threshold. By ex-plicitly pruning least-probable areas of the state space, the PSSP approach allowsSA-CIRCA to optimize its allocation of controller-synthesis e�ort and runtimereactive resources against the most-probable types of failure. The AMP can ad-just the probability threshold to alter the complexity of the controller synthesisproblem. Moreover, if additional planning-time resources are available and the



RTS capabilities are actually the limiting factor, the system can build contin-gency plans to handle pruned areas of the state space and swap those plans inwhen the pruned, less-likely situations arise.The PSSP techniques resemble work on developing policies for Markov Deci-sion Processes, with the added complexity of a non-Markovian temporal modeland the resulting looping automata. This problem formulation leads to morecompact world models, but complex reasoning.The probabilistic approach is less coarse and \heavy-handed" than simply ig-noring an entire TTF. For example, the PSSP may realize that in one world statea TTF is highly unlikely (and thus can be ignored), but that same TTF is morelikely in a di�erent state (and should be handled). Furthermore, this approachretains the advantages of the general CIRCA approach, in that the system canintrospectively examine the predicted e�ects of a particular tradeo�. We havenot yet implemented any experiments in the Puma domain to demonstrate andevaluate this approach. However, tests in related domains (e.g., controlling sim-pli�ed autonomous aircraft) show promise for this approach.3.6 Modifying Action Transitions (Method Selection)The AMP can also make changes to the action transitions that are available tothe CSM for use in synthesizing controllers. The AMP may have several di�erentmethods for performing an action (or a test), and it can choose amongst themaccording to the resources available. For example, suppose that the Puma con-trol system provides the RTS with two di�erent implementations of the place-part-in-box operator: a slow, high-accuracy, \�ne-motion" version; and a faster,lower-accuracy, \coarse-motion" version. Using the �ne-motion operator allowsthe system to place the parts very close together, thus yielding densely-packedboxes. But the �ne-motion operator needs four seconds to �nish the placementoperation. Using the coarse-motion operator requires the system to leave morespace between the parts, since the placement is less-certain. As a result, thesystem will produce less-densely packed boxes, but it can produce them morequickly, because the coarse-motion operator only needs 2.5 seconds. Thus, inthis example, selecting di�erent operators will allow the system to trade o� thequality of its results (the packing density) for the timeliness of its long-term andshort-term behaviors (the speed of packing whole boxes and individual parts).This tradeo� method is equivalent in many ways to the \con�guration selection"[9], \version selection" [11], and \design-to-time" [5] approaches. Given the fastercoarse-motion operator, the system may be able to guarantee to respond in timeto a higher frequency of emergency alerts than with the slower operator.ExperimentalResults of Method Selection To provide a more quantitativedemonstration of this tradeo�, we ran experiments using the coarse/�ne opera-tors described above. The �ne-motion operator was de�ned to require no space atall surrounding parts being placed in the box: essentially, it could achieve 100%packing density with a fortuitous series of part arrivals. The coarse-motion op-erator, on the other hand, required one inch of clearance on all sides of the parts



in order to place them in the box. Naturally, the achievable packing density islower with this operator, since parts necessarily occupy spaces larger than theiractual size.Figure 7 shows the improvement in response-time achieved by using thecoarse-motion operator, displayed here by the increased rate of emergency alertsand part arrivals that can be handled. The lower curve shows the performance forthe �ne-motion operator used in the earlier examples (and previously graphed inFig. 5). The upper curve shows the larger range of domains that can be handledusing the faster, coarse-motion packing operator. The coarse-motion operatorreduces the time allocated to the place-part-in-box TAP, and therefore thesystem can respond in time to more frequent part arrivals, emergency alerts, orboth.
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� �Fig. 7. Schedulability variations using di�erent TAP implementations.However, Fig. 8 shows the corresponding decrease in performance qualitythat resulted from the coarse-motion operator, when applied to 100 trials usingrandomly ordered arrivals of four di�erent part shapes. On average, the densityof the packed box was reduced from 70% using the �ne-motion operator to 59%with the coarse-motion operator. In these experiments, simulations of the box-packing algorithm were continued until the �rst arrival of a part that did not�t in the box. The �ne-motion version was able to pack an average of 45 partsin the box, while the coarse-motion version packed an average of only 26 parts.



Thus we can see that the improved schedulability and response time illustratedin Fig. 7 are only achieved at the cost of sti� performance degradation.
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�(a) Density of packed box. (b) Number of parts packed.Fig. 8. Performance variations using di�erent TAP implementations.Generalizing Method Selection To use the method selection approach, thesystem obviously must have alternative methods for implementing feature testsand actions on the RTS. In addition, to make intelligent decisions about methodselection, the system would require performance information describing the out-put quality and resource requirements of each method. This information couldbe relatively simple, or could be as complex as a full performance pro�le. In anycase, because method selection retains the consideration of all world model statesand does not remove any TAPs from the schedule, it is one of the more subtletradeo� techniques, capable of altering the resource needs of the system with-out drastic e�ects on its performance guarantees. Depending on the assortmentof di�erent methods available, the method-selection approach can alter almostany quality measure of the reactive system's performance, including precision,accuracy, etc.4 Summary and Future DirectionsThe ability to make performance tradeo�s in the face of resource limitations is afundamental requirement for intelligent real-time systems, since the very natureof real-time domains includes resource constraints. We have presented a variety
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