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Abstract. Self-adaptive systems must reconfigure themselves, at run-
time, to compensate for changing environments, objectives, and system
capabilities. This paper discusses how the SA-CIRCA architecture for
intelligent autonomous systems can automatically synthesize customized
control software on the fly, and how that synthesis process itself can be
managed to conform to real-time deadlines that may constrain the time
available for reconfiguration. By restricting the scope of the problems it
is trying to solve, by using incremental improvement algorithms, and by
trading off solution quality against computation time, SA-CIRCA op-
erates as a self-aware, self-adaptive system responding in real-time to
perceived changes.

1 Introduction

Self-adaptive systems must reconfigure themselves, at runtime, to compensate
for changing environments, objectives, and system capabilities. At first glance,
this concept poses the major problem that the self-adaptive system must be able
to understand its own objectives, capabilities, and environment in order to both
detect changes and reconfigure itself. Upon further consideration, it becomes
clear that this raw self-adaptation ability alone is not enough: the self-adaptive
system must actually perform its self-adaptation online, as the deployed system
is operating. Hence the real-time demands of the world are also applicable to the
reconfiguration process itself! Clearly, it will be extremely challenging to deploy
self-adaptive software into mission-critical applications, where any violation of
real-time deadlines can have catastrophic consequences.

The Self-Adaptive Cooperative Intelligent Real-time Control Architecture
(SA-CIRCA) can automatically synthesize customized controllers for autonomous
systems, on the fly. This paper discusses how that synthesis process itself can
be brought under soft real-time control, so that the synthesis of new controllers
is accomplished within real-time deadlines (i.e., the time available for reconfigu-
ration). The key to this control of deliberation is SA-CIRCA’s ability to reason
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about resource restrictions and modify the control problems for which it synthe-
sizes controllers. Because SA-CIRCA is able to explicitly and accurately reason
about its own predictable performance, it can not only recognize overconstrain-
ing domains, it can also analyze the potential effects of various changes to its
goals or plans. By restricting the scope of the problems it is trying to solve, by
using incremental improvement algorithms, and by trading off solution quality
against computation time, SA-CIRCA 1s designed to operate as a self-aware,
self-adaptive system responding in real-time to perceived changes.

In the next section, we present a brief overview of the SA-CIRCA architecture
and outline how its controller-synthesis algorithms work. We then discuss the
various means available to control the complexity and resource usage of the
controller synthesis algorithms, describing the performance tradeoffs that result.
To demonstrate these effects, we present several implemented examples showing
the tradeoffs that can be made to meet real-time restrictions.

2 Self-Adaptation via Automatic Synthesis of Controllers

Building on the proven CIRCA architecture for intelligent real-time systems [12,
13], SA-CIRCA is an architecture for intelligent self-adaptive systems that must
meet real-time deadlines [14]. Many intelligent agent architectures (e.g., RAPs [4],
PRS [7], 3T [3]) essentially provide customized programming environments that
make 1t easier for humans to write complex programs that behave appropriately.
In contrast, SA-CIRCA automatically synthesizes its control programs (or plans)
from primitive descriptions of the system it is controlling, the system objectives,
and the environment in which the system operates.

2.1 The Example Domain

To help the reader understand this distinction clearly, and to set the stage for
later examples, consider the domain illustrated in Fig. 1. The Puma robot arm is
assigned the task of packing parts arriving on the conveyor belt into the nearby
box. The conveyor moves at a fixed rate and the parts are spaced apart on the
belt so that they arrive with some maximum frequency. Once at the end of the
belt, each part remains motionless until the next part arrives, at which time it
will be pushed off the end of the belt (unless the robot picks it up first). If a
part falls off the belt because the robot does not pick it up in time, the system is
considered to have failed. Thus, the arriving parts impose hard deadlines on the
robot’s responses; it must always pick up parts before they fall off the conveyor.

The parts can have several shapes (e.g., square, rectangle, triangle), each of
which requires a different packing strategy. The control system may not know
a priori how to pack all of the possible types of parts. If parts of a new shape
arrive, the system can stack those parts on the nearby table until it has derived
an appropriate box-packing strategy. The derivation of the packing method may
involve search algorithms with potentially unbounded complexity. This aspect of



Fig. 1. The example Puma domain, in which the robot packs objects from the conveyor
into the box.

the domain is used to exercise CIRCA’s ability to combine arbitrary Al methods
with real-time response guarantees.

The robot arm 1s also responsible for reacting to an emergency alert light.
If the light goes on, the system has only a limited time to push the button
next to the light, or it fails. This portion of the domain represents a completely
asynchronous interrupt with a hard deadline on its service time.

To cope with this domain properly, the robot control system must be able to
provide real-time responses to unsynchronized domain events (part arrivals and
emergency alerts) while also performing complex search algorithms (deriving
packing methods and reaction plans in general). To complicate matters further,
the speed of the Puma robot and the domain sensors are limited. Variations
of the domain can be set up with different part arrival rates, emergency alert
rates, robot speeds, etc. To be truly intelligent and real-time in this domain, the
control system will need to be able to evaluate its capabilities, its goals, and
the domain behavior restrictions. With that information, an intelligent system
should provide some measure of useful performance, possibly involving trade-



offs that sacrifice aspects of the system behavior as necessitated by resource
restrictions.

Applying a reactive control architecture such as PRS, RAPs, or 3T to this
domain would require a human to write complex control rules specifying what
the Puma should do in the many different situations that may arise. The human
would have to build a control program (or plan, or set of concurrent behaviors)
that manages the asynchrony of the environment. Even if the control program
was written perfectly, however, none of these systems could provide guarantees
that all the domain’s real-time deadlines would be met. While PRS and the
Rex/Gapps system [15, 8] can provide bounded response times on reactive exe-
cution, they have no way to reason about the timing characteristics of a domain
to understand whether that bounded response time will be fast enough.

In contrast, applying SA-CIRCA to this domain requires the human to de-
scribe the robot capabilities, the environment processes, and the overall system
goals. Rather than telling the system when «t should pick up a part, the human
simply tells the system that it can pick up a part, and that if it does not pick up
a part quickly enough, 1t may fail. SA-CIRCA then automatically synthesizes a
set of reactive rules and performs formal verification processes to guarantee that
the domain’s real-time deadlines are all satisfied by the new reactive controller.

2.2 Architecture Overview

Figure 2 presents a highly abstract view of the SA-CIRCA architecture, showing
how the Adaptive Mission Planner (AMP), Controller Synthesis Module (CSM),
and Real-Time Subsystem (RTS) interact to provide intelligent, adaptive, real-
time control. All of the SA-CIRCA subsystems operate in parallel. At the top,
the AMP reasons about long-term goals, problem structures, and approaching
deadlines to decide what the near-term goals should be, and what problems the
near-term reasoning should be focused on. For example, in the Puma domain the
AMP is responsible for reasoning about what part-packing algorithms should
be developed for different part types, and what new robot control plans are
necessary to implement those part-packing algorithms.

The AMP sends subgoals and problem configurations to the CSM, which
develops real-time controllers to accomplish near-term goals. The controllers are
in the form of a set of reactive rules that specify what actions the system should
take in all of the possible different world situations. Each reaction that is critical
to avoiding a potential failure includes a timing constraint. For example, in the
Puma domain, the control plan might say what to do if the emergency alert light
goes on and the robot is not holding a block (push the button!), and how quickly
that action must be taken (before the emergency results in failure!).

The CSM sends these control plans to the RTS, which reactively executes the
automatically-generated plans and enforces guaranteed response times. Mean-
while, the AMP and CSM continue to reason ahead about future contingencies
and phases of the problem. In the Puma domain, the AMP might try to pre-
dict what new types of parts will arrive, and generate suitable control plans in
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Fig.2. The SA-CIRCA architecture includes three major components operating at
different levels of abstraction and responsiveness.

advance. The RTS contains a plan cache mechanism that allows it to store ad-
ditional reactive plans that are not currently executing, and switch to executing
one of those plans with a (very fast) constant time operation.

Thus SA-CIRCA is designed to adapt its runtime behavior through both on-
line, runtime planning and runtime selection of pre-built plans. In essence, if the
AMP and CSM can build a plan ahead of time to handle a particular contingency,
they will cache it in the RTS. If a contingency occurs for which no cached plan
exists, the system will invoke its best available plan and the AMP will direct
the CSM to synthesize a new, customized plan as quickly as possible. To the
degree that a domain is accurately modeled and can be successfully controlled
by the available execution resources, SA-CIRCA will provide safety guarantees
and high-quality performance. When the real world diverges from the domain
model, or the execution resources prove insufficient to control the domain, SA-
CIRCA is designed to monitor its own performance, detect these problems, and
gracefully degrade its plans to adapt.

The controller synthesis algorithms are extremely complex and potentially
undecidable. Thus one of the keys to making CIRCA’s safety guarantees is that
each controller executed on the RTS must keep the system safe while waiting for



the CSM to generate the next controller. Some nicely-structured domains make
it possible to build reactive controllers that preserve safety indefinitely while
waiting for the CSM. For example, in some formulations of the Puma domain,
the robot can respond to all types of arriving parts (by simply putting them
down on the table) and all emergency alerts for an essentially unlimited amount
of time. The only practical limitation is the number of parts the table can hold,
and 1f this is made infinite, the domain allows perfect “holding patterns.” Of
course, real worlds do not offer infinite tables (or infinite amounts of fuel for
aircraft to circle in holding patterns).

Practical applications of the SA-CIRCA architecture will require the CSM
to provide some level of predictable response, so that the RTS only needs to
remain safe and stable for a limited time horizon. In this paper, our focus is on
bringing the controller-synthesis activities of the CSM under this type of soft
real-time control. When faced with limited time to reconfigure the RTS with a
new reactive control plan, how can SA-CIRCA control its deliberation processes
and ensure that it will synthesize a new controller in time?

3 Controlling the Synthesis Process

As illustrated in Fig. 2, the CSM includes a State Space Planner (SSP) and
a Scheduler component. The SSP builds control plans based on a world model
and a set of formally-defined safety conditions that must be satisfied by feasible
plans [13, 6]. To describe a domain to SA-CTRCA, the user inputs a set of tran-
sition descriptions that implicitly define the set of reachable states. For example,
Fig. 3 illustrates several transitions used in the Puma domain.

EVENT emergency-alert ;3 Emergency light goes on.
PRECONDS: ((emergency F))
POSTCONDS: ((emergency T))

TEMPORAL emergency-failure ;3 Fail if don’t attend to
PRECONDS: ((emergency T)) ;3 light by deadline.
POSTCONDS: ((failure T))

MIN-DELAY: 30 [seconds]

ACTION push-emergency-button ;3 Pushing button cancels emerg.
PRECONDS: ((part-in-gripper F)) ;3 Requires empty gripper.
POSTCONDS: ((emergency F))

WORST-CASE-EXEC-TIME: 2.0 [seconds]

Fig. 3. Example transition descriptions given to SA-CIRCA.

The SSP builds plans by generating a nondeterministic finite automaton
(NFA) from these transition descriptions. The SSP assigns an action to each



reachable state. These actions are selected to drive the system towards states
that satisfy as many goal propositions as possible and to preempt transitions
that lead to failure. For example, Fig. 4 shows graphically how a planned action
can preempt a temporal transition to failure, if the action i1s constrained to
definitely occur before the temporal transition could possibly occur. System safety
is guaranteed by planning action transitions that preempt all transitions to
failure [13]. Action assignments determine the topology of the NFA (and so the
set of reachable states): preemption of temporal transitions removes edges, and
assignment of actions adds them.

FAILURE

Q/ 9ergency—fajlure

(emergency F) emergency et (emergency T)
(part-in-gripper F) (part-in-gripper F)

push-emergency-button

Y
(emergency F)
(part-in-gripper F)

Fig. 4. Preemptive actions are planned to keep the system safe.

The control plan for the RTS is extracted from the set of planned actions in
the NFA and cast in the form of Test Action Pairs (TAPs). Each TAP has a test
expression that recognizes a subset of the NFA (world) states, and a single action
that has been planned for those states. TAPs that preempt failures have timing
constraints, and the Scheduler builds them into a fixed, looping schedule to be
executed by the RTS. TAPs that do not preempt failures, but are planned only
to achieve other non-safety-critical goals, are executed in a best-effort, “if-time”
fashion.

3.1 Control Inputs

There are currently two different versions of the SA-CIRCA SSP: the evolved
original SSP that reasons about nondeterministic worlds without explicitly rep-
resenting quantitative uncertainty, and the Probabilistic State Space Planner
(PSSP) from CIRCA-IT [1, 2], that reasons explicitly about the probabilities of
different transitions and states [10]. In both cases, the controller synthesis ac-
tivity can be controlled by adjusting aspects of the SSP inputs: the problem
configuration it is required to solve, and the parameters that describe precisely
the nature of an acceptable solution.



For the non-probabilistic SSP, the problem configuration consists of :

Action Transitions — representing potential actions that the SSP can plan
to invoke, with guaranteed results after some maximum amount of time.

Event Transitions — representing uncontrollable, instantaneous events.

Temporal Transitions — representing uncontrollable environmental processes
that take at least some minimum amount of time.

Reliable Temporal Transitions — representing processes that are guaran-
teed to occur, given a certain amount of time.

Start States — describing possible states in which the system may start, or
“wake up.”

Goals — describing desirable state features.

The Probabilistic State Space Planner (PSSP) uses additional input informa-
tion, including probability rate functions associated with each transition, and a
single probability threshold parameter that controls how conservative the PSSP
should be in worrying about low-probability states.

3.2 Triggering Tradeoffs

SA-CIRCA has several ways of recognizing that the domain is overconstrained,
and that the system cannot build a plan that accomplishes all of its goals and
guarantees system safety. During the controller-synthesis process, the SSP may
finish a complete search of the space of possible reaction plans and find that
there are no suitable plans that can prevent failure. Or, if the SSP spends too
much time trying to build a controller, it may time-out and be alerted by a timer
interrupt. Finally, the SSP may come up with a set of desired reactions which
are then rejected as unschedulable by the Scheduler. This is the most common
way of recognizing an overconstrained domain: a suitable reaction plan exists,
but its execution cannot be guaranteed with the limited resources of the RTS.
At this point, the SSP would backtrack by default to make a different choice
and produce a modified reaction plan. Alternatively, the AMP might decide to
make a tradeoff instead, simplifying some aspects of the control problem so that
the CSM can generate a feasible controller.

We have designed several experiments to illustrate and evaluate this tradeoff
capability. Note that these tradeoff methods are not heuristics themselves; they
can be implemented by simple procedures making bounded changes to the SA-
CIRCA data structures describing the world model, the current control plan,
etc. Furthermore, the effects of those changes are well-understood; SA-CIRCA
can explicitly reason about the impact of applying its various tradeoff methods
on the system’s performance. However, choosing which tradeoff method to apply
in a particular situation remains a heuristic decision we have not yet addressed.

3.3 Ignoring a Temporal Transition to Failure

One of the most obvious and powerful tradeoffs is to simply delete or ignore
one or more temporal transitions that lead to failure in the world model. This



corresponds to the SSP not even considering that some ongoing process will ever
lead to failure. As a result, the TAP that was planned to preempt that temporal
transition to failure (TTF) may be affected in several ways. In the following
material, we will examine in detail one example of the types of performance
tradeoffs that result from simply ignoring a TTF. We then outline several other
possible outcomes, but do not investigate them in depth because they represent
minor variations.

One Result of Ignoring a TTF If the SSP is not told about a TTF from a
particular state, 1t is possible that the SSP will still choose the same action for
that state, but that the action will no longer be preventing a failure. Because the
action is not preempting a TTF, it will be implemented by an if-time TAP (see
Sect. 3) that does not need to be scheduled, so the scheduling problem will be
easier. However, performance will suffer because the system no longer guarantees
to execute the affected TAP and prevent one particular type of failure.

In the Puma domain, for example, the AMP might decide to ignore the
possibility of a part falling off the conveyor, perhaps because it is highly unlikely
that the part will really fall. As a result, when examining a state in which a part
is waiting on the conveyor, the SSP will no longer be required to plan a pickup-
part-from-conveyor action to avoid failure. However, the action will still be
planned because it is useful in achieving the system’s goals: the robot must pick
up the part in order to pack it in the box, which satisfies the goal (part-in-
box T). Note that the system can still make guarantees about other types of
failures. For example, it can guarantee that it will avoid failures resulting from
the emergency alert, because the actions preempting the emergency-failure
TTF are still guaranteed.

Schedulability Effects of Ignoring a TTF To quantify the effects of this
type of tradeoff method, we make the CSM try to build controllers for parametric
variations of the Puma domain. Figure 5 shows the effect on schedulability over
a range of arrival rates for emergency alerts and parts. If the arrival rates match
a point below the lower, “normal plan” curve, then the system can build a
schedule that will guarantee to both avoid emergency failures and prevent parts
from falling off the conveyor. The form of this curve illustrates the tradeoff that
the scheduling mechanism can make between tasks; when the emergency rate
is relatively high, the system will still build a schedule, as long as the part
arrival rate is sufficiently low that the Scheduler can allocate more resources
to the tasks that respond to the alert. Conversely, when the emergency rate is
lower, the system can deal with a faster rate of arriving parts. If the arrival
rates match a point above the lower curve, then the system cannot build a
schedule that will guarantee to avoid both emergency failures and dropping
parts. However, if the system ignores the part-falls-off-conveyor TTF, then it
can build guaranteed schedules for all of the instances below the upper line, the
maximum rate of emergency alert arrivals that can be handled with the given
primitives. The part arrival rate is no longer critical to the scheduling problem,



because the pickup-part-from-conveyor TAP, with a period determined by
the part-falls-off-conveyor TTF, is no longer being scheduled and guaranteed.
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Fig. 5. The improved schedulability achieved by ignoring a TTF.

Performance Effects of Ignoring a TTF To illustrate the non-guaranteed
nature of the resulting behavior, we implemented this tradeoff method in the
Puma domain, increasing the rate of emergency alerts and part arrivals so that
the original plan of actions is not schedulable. The SSP was told that the worst-
case rate was 2.4 alerts/minute, well above the limit of schedulability for the
entire problem, as shown in Fig. 5. The AMP then removes the part-falls-off-
conveyor TTF from the SSP’s world model, re-plans, and builds a new TAP
plan in which the pickup-part-from-conveyor action is implemented by an
if-time TAP rather than a guaranteed TAP. Figure 6 illustrates the results from
several hundred trials on the Puma simulator, with emergency alerts arriving
with random delays uniformly distributed in the range of 25 to 30 seconds (2
to 2.4 alerts/minute). As we expected, when parts arrived more frequently, the
number of parts falling off the conveyor would increase, as the system had less
and less free time to apply to if-time behaviors.



Interestingly, the if-time TAP that implemented the pickup-part-from-
conveyor action was always executed frequently enough to prevent failures when
the parts arrived no more frequently than two parts/minute. Referring back to
Fig. 5, we can see that the actual simulated execution was more robust than
the Scheduler predicted; the “normal plan” plot in the graph indicates that even
with the pickup-part-from-conveyor TAP in the schedule, the system could
not be guaranteed to handle part arrivals faster than about 1.65 parts/minute.
This result may indicate that the worst-case situations the SSP considered never
occurred in the tests, or that the Scheduling or SSP algorithms were overly
conservative. We plan to investigate further.
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Fig.6. The system behavior after ignoring the part-falls-off-conveyor TTF, with
the emergency light frequency between 2 and 2.4 alerts/minute.

Alternative Results of Ignoring a TTF Several other outcomes are possible
when the AMP chooses to ignore a TTF. For example, it is possible that, by
ignoring one TTF from a state, a different temporal transition becomes dominant
and still causes the planned action for that state to meet a deadline. In general
this will mean that the deadline for the planned reaction will be longer, but the



TAP will still need to be scheduled. The resulting tradeoffs are similar to those
above, in that the system can no longer guarantee to avoid all types of failures.
In this case, however, no TAPs are moved out of the guaranteed list: instead,
the reaction deadline of one of the TAPs will be increased, thus decreasing the
desired utilization, and making the scheduling problem easier.

In the extreme case, ignoring a TTF may cause the planner to completely
eliminate one or more planned actions, thus removing TAPs from the list to
be scheduled. If an action was only planned originally to preempt failure (or as
a “precursor” to that preemption), and was not instrumental in achieving any
other system goals, then the action may be removed entirely. For example, if
SA-CIRCA ignores the emergency-failure transition in the Puma domain, it
will completely alter the world model and avoid planning the push-emergency-
button action. Depending on the frequency of part arrivals, it may also eliminate
the need to put parts on the table temporarily, and thus ignoring this one TTF
could also remove the stop-moving and place-part-on-table actions from
the plan. These latter actions are precursors that were included in the plan
to establish the preconditions of the action that was planned to preempt the
emergency-failure TTF, and thus they are also unnecessary.

While moving a TAP to the if-time list means that, in non-worst-case situa-
tions 1t may be still executed quickly enough, deleting a TAP altogether provides
no such potential. Since if-time TAPs do not use any resources when the RTS
is pressed for time, avoiding building if-time TAPs does not save any significant
RTS execution-time resources. However, this tradeoff can significantly reduce the
complexity of the controller synthesis problem, and thus it provides a powerful
method for managing the CSM’s responsiveness.

An important feature of this tradeoff method, and of the SA-CIRCA ap-
proach in general, is that the system can introspectively examine the predicted
effects of a particular tradeoff. In other words, SA-CIRCA might evaluate the
worth of various tradeoff methods by examining the expected results in the world
model. If the AMP considers ignoring a TTF| it can immediately recognize that
the failure resulting from that TTF will be possible with the modified TAP plan.
In addition, the AMP can examine the new world model and TAP plan to rec-
ognize more detailed aspects of the tradeoff. For example, if the new plan still
includes all the same guaranteed TAPs as the original plan, then the AMP can
conclude that the reaction previously planned to preempt the TTF is still being
enforced, but at a lower rate. If the AMP knows that the worst-case rate of
the ignored TTF is rarely achieved, this tradeoff option may be very attractive,
because it has exchanged a decrease in one TAP’s response rate for the ability
to schedule and guarantee the entire reactive plan.

3.4 Ignoring an Event Transition

Just as the AMP may decide to alter its treatment of temporal transitions, it
may also choose to change how it considers event transitions. Ignoring an event
transition may have many of the effects described above for temporal transitions:
it may cut off parts of the world model state space, possibly making some goals



unreachable. Ignoring an event transition can thus reduce the planning time and
decrease the number of TAPs planned, allowing the system to make guarantees
for some subset of desired behaviors which were not previously schedulable.

For example, in the Puma domain, ignoring the emergency-alert event
transition provides a large reduction in the planning time, because many states
are eliminated from the model— in fact, the state space for our running example
is reduced from 330 enumerated states and 158 reachable states to 106 enumer-
ated and a mere 58 reachable states. Furthermore, a large number of contingency
reactions are eliminated from the plan, and thus the complexity of the TAPs is
reduced, and the scheduling problem is eased. Because the emergency alert is
no longer of concern, the system is able to react to parts on the conveyor belt
even more quickly than if the predicted alert rate is very slow (as in the extreme
right edge of Fig. 5). While the example of Fig. 5 could handle parts arriving at
most every 36 seconds, the plan built by ignoring the emergency-alert tran-
sition can handle parts arriving every 27 seconds, a significant improvement in
capacity. Of course, the tradeoff is that the system is no longer monitoring the
emergency light, and it will not react to an alert. If the AMP thinks that an alert
is unlikely, or finds that the cost of failing to respond to an alert is sufficiently
low, it may judge that the reduced planning time and improved part-packing
reaction time are worth the risk involved in ignoring alerts.

More generally, we can see that ignoring an event transition can have the de-
sirable effects of reducing the SSP’s planning time and simplifying the schedul-
ing problem. The disadvantage, of course, is that this tradeoff method removes
planned contingency actions entirely, as opposed to just moving the relevant
TAPs to the if-time list (as ignoring a TTF can do). Because event transitions
represent instantaneous events in the world, as opposed to the ongoing processes
represented by temporal transitions, it seems plausible that the AMP could have
knowledge of event probabilities that would be helpful in guiding the use of this
tradeoff method. Ignoring highly improbable event transitions would obviously
be a good approach, in order to ensure that the system is least likely to encounter
world situations for which it is not prepared. The PSSP takes this idea one step
further, using probabilistic information to provide uniform, unified pruning of
the SSP model when necessary.

3.5 The Probabilistic State Space Planner

At the University of Michigan, colleagues have been working on a new version
of the SSP that uses probabilistic information to guide the system in consider-
ing the most-probable states first [10]. The Probabilistic State Space Planner
(PSSP) builds partial plans that are only probabilistically safe, because they
only consider those states whose likelihood is above a given threshold. By ex-
plicitly pruning least-probable areas of the state space, the PSSP approach allows
SA-CIRCA to optimize its allocation of controller-synthesis effort and runtime
reactive resources against the most-probable types of failure. The AMP can ad-
just the probability threshold to alter the complexity of the controller synthesis
problem. Moreover, if additional planning-time resources are available and the



RTS capabilities are actually the limiting factor, the system can build contin-
gency plans to handle pruned areas of the state space and swap those plans in
when the pruned, less-likely situations arise.

The PSSP techniques resemble work on developing policies for Markov Deci-
sion Processes, with the added complexity of a non-Markovian temporal model
and the resulting looping automata. This problem formulation leads to more
compact world models, but complex reasoning.

The probabilistic approach 1is less coarse and “heavy-handed” than simply ig-
noring an entire TTF. For example, the PSSP may realize that in one world state
a TTF is highly unlikely (and thus can be ignored), but that same TTF is more
likely in a different state (and should be handled). Furthermore, this approach
retains the advantages of the general CIRCA approach, in that the system can
introspectively examine the predicted effects of a particular tradeoff. We have
not yet implemented any experiments in the Puma domain to demonstrate and
evaluate this approach. However, tests in related domains (e.g., controlling sim-
plified autonomous aircraft) show promise for this approach.

3.6 Modifying Action Transitions (Method Selection)

The AMP can also make changes to the action transitions that are available to
the CSM for use in synthesizing controllers. The AMP may have several different
methods for performing an action (or a test), and it can choose amongst them
according to the resources available. For example, suppose that the Puma con-
trol system provides the RTS with two different implementations of the place-
part-in-box operator: a slow, high-accuracy, “fine-motion” version; and a faster,
lower-accuracy, “coarse-motion” version. Using the fine-motion operator allows
the system to place the parts very close together, thus yielding densely-packed
boxes. But the fine-motion operator needs four seconds to finish the placement
operation. Using the coarse-motion operator requires the system to leave more
space between the parts, since the placement is less-certain. As a result, the
system will produce less-densely packed boxes, but it can produce them more
quickly, because the coarse-motion operator only needs 2.5 seconds. Thus, in
this example, selecting different operators will allow the system to trade off the
quality of its results (the packing density) for the timeliness of its long-term and
short-term behaviors (the speed of packing whole boxes and individual parts).
This tradeoff method is equivalent in many ways to the “configuration selection”
[9], “version selection” [11], and “design-to-time” [5] approaches. Given the faster
coarse-motion operator, the system may be able to guarantee to respond in time
to a higher frequency of emergency alerts than with the slower operator.

Experimental Results of Method Selection To provide a more quantitative
demonstration of this tradeoff, we ran experiments using the coarse/fine opera-
tors described above. The fine-motion operator was defined to require no space at
all surrounding parts being placed in the box: essentially, it could achieve 100%
packing density with a fortuitous series of part arrivals. The coarse-motion op-
erator, on the other hand, required one inch of clearance on all sides of the parts



in order to place them in the box. Naturally, the achievable packing density is
lower with this operator, since parts necessarily occupy spaces larger than their
actual size.

Figure 7 shows the improvement in response-time achieved by using the
coarse-motion operator, displayed here by the increased rate of emergency alerts
and part arrivals that can be handled. The lower curve shows the performance for
the fine-motion operator used in the earlier examples (and previously graphed in
Fig. 5). The upper curve shows the larger range of domains that can be handled
using the faster, coarse-motion packing operator. The coarse-motion operator
reduces the time allocated to the place-part-in-box TAP, and therefore the
system can respond in time to more frequent part arrivals, emergency alerts; or

both.
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141+

Emergency Arrival Frequency (alerts/minute)

1.0 | | ! ! | | ! | ! |
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Part Arrival Frequency (parts/minute)

Fig. 7. Schedulability variations using different TAP implementations.

However, Fig. 8 shows the corresponding decrease in performance quality
that resulted from the coarse-motion operator, when applied to 100 trials using
randomly ordered arrivals of four different part shapes. On average, the density
of the packed box was reduced from 70% using the fine-motion operator to 59%
with the coarse-motion operator. In these experiments, simulations of the box-
packing algorithm were continued until the first arrival of a part that did not
fit in the box. The fine-motion version was able to pack an average of 45 parts
in the box, while the coarse-motion version packed an average of only 26 parts.



Thus we can see that the improved schedulability and response time illustrated
in Fig. 7 are only achieved at the cost of stiff performance degradation.
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Fig. 8. Performance variations using different TAP implementations.

Generalizing Method Selection To use the method selection approach, the
system obviously must have alternative methods for implementing feature tests
and actions on the RTS. In addition, to make intelligent decisions about method
selection, the system would require performance information describing the out-
put quality and resource requirements of each method. This information could
be relatively simple, or could be as complex as a full performance profile. In any
case, because method selection retains the consideration of all world model states
and does not remove any TAPs from the schedule, it is one of the more subtle
tradeoff techniques, capable of altering the resource needs of the system with-
out drastic effects on its performance guarantees. Depending on the assortment
of different methods available, the method-selection approach can alter almost
any quality measure of the reactive system’s performance, including precision,
accuracy, etc.

4 Summary and Future Directions

The ability to make performance tradeoffs in the face of resource limitations is a
fundamental requirement for intelligent real-time systems, since the very nature
of real-time domains includes resource constraints. We have presented a variety



of ways in which SA-CIRCA can make such performance tradeoffs, actively man-
aging its allocation of deliberation and reaction resources. Our experiments in
the Puma domain have demonstrated several different strategic tradeoff meth-
ods that the AMP can use to modify the problems it poses to the SSP, adjusting
the difficulty of the controller synthesis problem, and thus the performance of
the SSP itself.

In the probabilistic version of the SSP, the fundamental technique for con-
trolling the search process is adjusting the threshold of state probabilities below
which the SSP ignores states. An alternative or supplemental approach, which
has not yet been implemented, is to impose a time horizon limit on the SSP’s
projective search as well. An explicit time horizon would tell the SSP that it only
needs to build a reactive controller that can keep the system safe for a limited
amount of future time, and this could be used to truncate the SSP search for-
ward through the space of possible future worlds. In fact, if the AMP could tell
for sure what would be an appropriate and feasible time horizon for a particular
SSP problem configuration, these horizon limits would be a feasible simplifica-
tion, not reducing the completeness or performance guarantees of an SSP’s plan.
As such, time horizon control could be even preferable to probability threshold
adjustments for domains in which the expected progress through a mission plan
can be sufficiently predicted.

References

[1] E. Atkins, R. H. Miller, T. Van Pelt, K. D. Shaw, W. B. Ribbens, P. D.
Washabaugh, and D. S. Bernstein, “Solus: An Autonomous Aircraft for Flight
Control and Trajectory Planning Research,” in Proc. American Control Confer-
ence, volume 2, pp. 689-693, June 1998.

[2] E. M. Atkins, Plan Generation and Hard Real-Time Ezecution with Application
to Safe, Autonomous Flight, PhD thesis, University of Michigan, 1999.

[3] R. P. Bonasso, D. Kortenkamp, D. Miller, and M. Slack, “Experiences with an
Architecture for Intelligent, Reactive Agents,” in Journal of Fzperimental and
Theoretical A, 1996.

[4] R. J. Firby, “An Investigation into Reactive Planning in Complex Domains,” in
Proc. National Conf. on Artificial Intelligence, pp. 202-206, 1987.

[5] A. Garvey and V. Lesser, “Design-to-time Real-Time Scheduling,” IEEFE Trans.
Systems, Man, and Cybernetics, vol. 23, no. 6, , 1993.

[6] R. P. Goldman, D. J. Musliner, K. D. Krebsbach, and M. S. Boddy, “Dynamic
Abstraction Planning,” in Proc. National Conf. on Artificial Intelligence, pp. 680—
686, 1997.

[7] F. F. Ingrand, M. P. Georgeff, and A. S. Rao, “An Architecture for Real-Time
Reasoning and System Control,” IEEE FEzxpert, pp. 34-44, December 1992.

[8] L. P. Kaelbling and S. J. Rosenschein, “Action and Planning in Embedded
Agents,” in Robotics and Autonomous Systems 6, pp. 35-48, 1990.

[9] T.-W. Kuo and A. K. Mok, “Load Adjustment in Adaptive Real-Time Systems,”
in Proc. Real-Time Systems Symposium, pp. 160-170, December 1991.

[10] H. Li, E. Atkins, E. Durfee, and K. Shin, “Resource Allocation for a Limited Real-
Time Agent Using a Temporal Probabilistic World Model,” in Working Notes of
the 2000 AAAT Spring Symposium on Real-Time Autonomous Systems, 2000.



[11]

[12]

[13]

[14]

[15]

N. Malcolm and W. Zhao, “Version Selection Schemes for Hard Real-Time Com-
munications,” in Proc. Real- Time Systems Symposium, pp. 12-21, December 1991.
D. J. Mushner, E. H. Durfee, and K. G. Shin, “CIRCA: A Cooperative Intelligent
Real-Time Control Architecture,” IEFE Trans. Systems, Man, and Cybernetics,
vol. 23, no. 6, pp. 1561-1574, 1993.

D. J. Musliner, E. H. Durfee, and K. G. Shin, “World Modeling for the Dynamic
Construction of Real-Time Control Plans,” Artificial Intelligence, vol. 74, no. 1,
pp. 83-127, March 1995.

D. J. Musliner, R. P. Goldman, M. J. Pelican, and K. D. Krebsbach, “Self-
Adaptive Software for Hard Real-Time Environments,” ITEFE Intelligent Systems,
vol. 14, no. 4, pp. 23-29, July/August 1999.

S. J. Rosenschein and L. P. Kaelbling, “The Synthesis of Digital Machines with
Provable Epistemic Properties,” in Proc. Conf. Theoretical Aspects of Reasoning
About Knowledge, pp. 83-98, 1986.



