Using Abstraction and Nondeterminism to Plan Reaction Loops

David J. Musliner
Institute for Advanced Computer Studies
The University of Maryland
College Park, Maryland 20742

musliner@umiacs.umd.edu

Abstract

By looping over a set of behaviors, reactive systems
use repetition and feedback to deal with errors and en-
vironmental uncertainty. Their robust, fault-tolerant
performance makes reactive systems desirable for exe-
cuting plans. However, most planning systems cannot
reason about the loops that characterize reactive sys-
tems. In this paper, we show how the structured ap-
plication of abstraction and nondeterminism can map
complex planning problems requiring loop plans into
a simpler representation amenable to standard plan-
ning technologies. In the process, we illustrate key
recipes for automatically building predictable reactive
systems that are guaranteed to achieve their goals.

Introduction

The uncertainty inherent in real-world domains has
proven problematic for traditional Al planning tech-
nologies that rely on complete, accurate, and deter-
ministic world models. In response, reactive systems
(e.g., Agre & Chapman 1987; Firby 1987) have become
popular because they can deal with the uncertainties of
real-world domains. The primary advantage of reactive
systems is that they do not make predictions based on
a world model, and thus they avoid potential failures
due to inadequate models. Instead, reactive systems
rely on repeatedly executing simple “persistent” be-
haviors until feedback indicates that their goals have
been achieved. Unlike traditional open-loop Al plans,
these reactive systems address environmental uncer-
tainty and the possibility of execution-time failures
by implementing repeated, feedback-based, closed-loop
behaviors.

One major problem with most reactive systems is
that they are difficult to design (and usually hand-
coded), so that their behaviors are not necessarily log-
ically correct or timely. There 1s no assurance that
these systems will choose an appropriate action for a
given situation, or that the selected action will be ex-
ecuted quickly enough to meet domain-imposed dead-

This work was supported in part by the National Science
Foundation under Grants ITRI-9209031 and IRI-9158473,
by a NSF Graduate Fellowship, and by the Arpa/Rome
Laboratory Planning Initiative (F30602-93-C-0039). David
Musliner is also affiliated with the UM Institute for Systems
Research (NSF Grant NSFD CDR-88003012).

lines. Furthermore, because the design and construc-
tion process is not automated, building new reactive
systems for different domains requires lengthy human
interactions. Several researchers have recognized that
traditional Al planning systems might be used to auto-
mate the ad hoc process of designing reactive systems
(e.g., Schoppers 1990), leading to significant advances
in performance predictability and rapid system adap-
tation. However, most Al planning systems are unable
to plan in domains that involve the type of repetition
(looping) characteristic of reactive systems. Further-
more, planners do not usually create reactions, but
rather they generate plans as a fixed sequential (or par-
tially ordered) set of distinct actions.

In this paper we describe the use of abstraction and
nondeterminism to allow planners to generate looping
reactive plans, thus addressing a critical problem for
hybrid planning/reaction systems. Essentially, we give
cookbook recipes for transforming the complexities of
a domain into an abstract form so that reactive plans
are suitable and classical planners are useful. Some
of the abstraction techniques are novel, some are not:
our primary contribution is in showing how they can
be combined in routine ways to make planners han-
dle loops and generate reactive behaviors that can be
guaranteed to operate in a logical and timely fashion.

We begin by introducing a simple, intuitive example
to illustrate the first abstraction technique and how
it can be useful in the automatic planning of loops.
We then present a brief overview of the Cooperative
Intelligent Real-Time Control Architecture (CIRCA)
(Musliner, Durfee, & Shin 1993), a system designed
to automatically plan and execute reactive behaviors.
We then provide a more detailed example showing how
CIRCA uses abstraction, nondeterminism, and an “ab-
stract” time representation to plan reactive loops. De-
spite the extensive domain abstractions used to make
planning feasible, CIRCA’s automatically-constructed
reactive systems are guaranteed to accomplish their
goals and preserve the system’s safety. Thus CIRCA
combines the positive potential of both planning sys-
tems (knowledge-based deliberation, provably logical
behavior) and reactive systems (rapid, fault-tolerant

feedback loops).

OPERATOR precise-hammer-blow
PRECONDS: ((arm-raised T) (nail-height 7X))
POSTCONDS: ((arm-raised nil)
(nail-height (max 0 (- ?X 1.2))))

p

recise-
ARM-RAISED T | hammer-blow| ApM-RAISED NIL
NAIL-HEIGHT 43 NAIL-HEIGHT 3.1

raise-arm !

y precise-
ARM-RAISED T |hammer-blow ARM-RAISED NIL| __
NAIL-HEIGHT 3.1 NAIL-HEIGHT 1.9
Figure 1: A fictitious hammering operator and the
plan that might result.

A Simple Example

In his early work on representing plan loops, Drum-
mond (1985) illustrates a plan for hammering a nail by
repeatedly raising and lowering a hammer, never ter-
minating. In this section, we introduce our approach
to planning loops using this same example, with two
significant differences: first, our hammering plan is au-
tomatically generated, and second, the plan will termi-
nate when the nail is driven flush.

Consider first the way in which a (hypothetical) tra-
ditional planning system might address the hammering
problem, as illustrated in Figure 1. Here the precise-
hammer-blow operator must specify exactly how far
down it drives the nail, and the final plan yields a world
model that enumerates all the possible heights the nail
may protrude.

The hammering domain illustrates several critical
aspects of looping plans that make them difficult for
planners. First, uncertainty may make it impossible
to specify an operator’s effects so precisely, and hence
impossible to predict exactly how many loop iterations
will be necessary to achieve the goal. In such uncer-
tain domains, the termination conditions of the loop
can only be determined during the actual execution
of the loop. However, traditional planning operator
representations (e.g., STRIPS add/delete lists (Nils-
son 1980)) cannot represent an operator whose effects
are not fully deterministic'. Another major problem
is that, even if we could predict how many iterations
are necessary, a classical planning system would need
to enumerate at least one state (and probably many)
for each of the iterations. This is obviously undesir-
able, since 1t exacerbates the state-space explosion al-
ready experienced by classical planners. To address
these problems and allow a planner to derive a com-
pact plan without considering innumerable states, we
apply two forms of abstraction?.

' A deterministic operator implements a fixed mapping
of an input to a unique corresponding output. A nondeter-
ministic operator implements a completely uncertain (or
random) mapping from an input to one of a set of possible
outputs.

2We use “abstraction” in a general sense to mean the
omission of detail. This usage conforms nicely with in-

ACTION hammer-blow
PRECONDS: ((arm-raised T))
POSTCONDS: (((arm-raised nil) (mail-flush T))
((arm-raised nil) (nail-flush nil)))

.

A e B N c
N

ARM-RAISED NIL | _|ARM-RAISED T | > _|ARM-RAISED NIL

NAIL-FLUSH NIL |raise-arm |NAIL-FLUSH NIL | hammer-blow | NAIL-FLUSH T

Figure 2: A nondeterministic transition, and the re-
sulting dynamically-terminated loop.

First, we must abstract away the details in the
domain representation that cause problems with the
state-space explosion. In the hammering domain, the
height of the nail is the domain feature that changes on
each loop of the plan, so it is the culprit, the “counting”
variable. We remove this counting effect by abstract-
ing the height feature to two critical values: either the
nail is flush or it is not.

Since the height of the nail has been abstracted away
to a binary value, the effects of the hammer-blow
operator must be similarly abstracted. In the process,
the excessive precision associated with the continuous-
valued operator is abstracted away, and nondetermin-
ism 18 used to represent the resulting uncertainty. Fig-
ure 2 shows the abstracted operator, whose effects are
now represented as a nondeterministic transition either
to (nail-flush T) or back to (nail-flush nil).

So now we have the world model shown in Figure 2,
which more accurately reflects the uncertainty of the
real world: the nail is initially sticking out above the
surface, and we can keep hitting it until it is finally
flush with the surface, at which time we will move out
of the loop and into state C. Summarizing the tech-
niques used thus far, we have the following recipe:

Recipe 1: Eliminating Counting Variables

1. Create a binary variable with T and nil states cor-

responding to the critical “some or none” transition
of the counting variable.

2. Modify the increment operator to lead to the T state

of the binary variable.

3. Modify the decrement operator to be nondetermin-

istic, leading to either of the binary variable’s states.

With the abstract nail-flush feature and the corre-
sponding operator, the state-space problem has been
addressed and the model in Figure 2 represents the
need for a loop which repeats until a dynamic termi-
nation condition holds. Note that the hammer-blow
action is not sufficient by itself, because we do not want
to hit the nail every time we are holding up the ham-
mer. To build a reaction that would yield the state-
space behavior shown in Figure 2, we still need a plan-
ner to decide which of the various applicable operators
should actually be executed in any particular world

tuition, as well as with (Wilkins 1988), in that our ab-
stract models match larger sets of possible worlds than less-
abstract models.

@i roan Scheduler

selected reaction
control sensor data reactions schedules
Al Subsystem

Figure 3: Overview of CIRCA.

state. The planner must decide that we should invoke
the hammer-blow action only when the nail is not
yet flush (i.e., in state B only, not in state C). In the
next section, we briefly describe how CIRCA is able
to perform this type of planning (despite the result-
ing state-space loops), and how the system addresses
the final problem of the hammering domain: actually
representing a looping plan.

Overview of CIRCA

As illustrated in Figure 3, CIRCA consists of three
subsystems operating in parallel (Musliner, Durfee, &
Shin 1993). The AT Subsystem (AIS) acts as a planning
system, reasoning about a model of the domain and de-
riving appropriate reaction plans. These plans are sent
to the Scheduler module, along with timing constraints
expressing how frequently each reaction must be exe-
cuted. The Scheduler tries to build a cyclic schedule
of reactions that will meet all the timing constraints.
If a schedule 1s found, the planned reactions can be
sent to the Real-Time Subsystem (RTS) for execution.
The RTS executes previously-derived plans while the
AIS and Scheduler are cooperatively developing a new
plan; each reaction plan is designed to keep the system
safe (avoiding failures), so that the search-based plan-
ning performed by the AIS is isolated from the ongoing
real-time deadlines of the environment.

CIRCA’s reactive plans are built as schedules of
Test-Action Pairs (TAPs). As shown in Figure 4, each
TAP is an annotated production rule consisting of a
test expression, an action, and a timing constraint on
how frequently the TAP must be executed. When ex-
ecuting a TAP, the RTS evaluates the test expression
and, if 1t returns true, the RTS executes the corre-
sponding action. TAPs differ from other reactive mech-
anisms such as RAPs (Firby 1987) in two fundamen-
tal ways: first, TAPs are automatically generated by
CIRCA’s planning system, and second, TAPs specify
how frequently they must be executed in order to meet
domain deadlines. CIRCA’s Scheduler module uses the
TAP timing requirements when it builds TAP sched-
ules that are themselves loops; Figure 4 shows a simple
schedule for the hammering domain, which oscillates
between the raise-arm and hammer-blow TAPs.

The world model and planning algorithm that
the AIS uses to develop TAP plans are detailed in
(Musliner, Durfee, & Shin 1994). For our purposes, it
is sufficient to understand that the model is a modified
state/transition graph in which states correspond to
complete descriptions of the world (modulo some level

TAP hammer-blow
TEST: (and (nail-flush nil) (arm-raised T))
ACTION: hammer-blow
MAX-PERIOD: 2 seconds

SCHEDULE: (raise-arm hammer-blow) repeat

Figure 4: A trivial example TAP & TAP schedule
for the hammering domain.

of abstraction), and three types of transitions represent
the ways the world can change. Temporal transitions
represent time and ongoing processes. The timing be-
havior of a temporal transition is related to the rate
of the process 1t represents: for example, the process
of consuming a jar of salsa will take some minimum
amount of time to complete, depending on the rate of
consumption. Fwvent transitions represent occurrences
outside the agent’s control, while action transitions
represent the intentional actions of TAPs. CIRCA can
control the timing behavior of action transitions by
setting the timing constraints of TAPs. For example,
CIRCA can build a TAP that executes at least once ev-
ery minute, to ensure that a new jar of salsa is opened
within two minutes after the last jar is finished.

To build plans, CIRCA begins with a set of goal de-
scriptions, a set of initial world states, and a set of
transition descriptions that detail the types of events,
actions, and processes possible in the world. The plan-
ning algorithm pushes the initial states onto a stack
and then performs a modified STRIPS-like depth-
first search for a plan that satisfies all the system’s
goals. On each planning loop iteration, the top state
is popped off the stack and all applicable event and
temporal transitions are applied, generating new reach-
able states that are pushed onto the stack. The planner
uses a multi-step lookahead heuristic to choose the best
action for the current state, generates the states that
result from the selected action, and then repeats the
planning loop. Chronological backtracking is initiated
if the planner cannot find a good plan (e.g., if it cannot
avoid a catastrophic failure state).

To illustrate the planning process, consider again the
nailing domain example in Figure 2. If state A is the
initial condition given to the planner, it will choose
to apply the raise-arm action, generating state B. In
state B, when the hammer-blow action transition is
applicable, the planner will project forward both of
the action’s possible postconditions, and will recognize
that it may lead to the desired state C, where (nail-
flush T) holds. Thus the hammer-blow action will
be chosen correctly to accomplish the task. Projecting
forward along the other branch of the nondeterminis-
tic postconditions, the planner will also realize that the
action transition may loop back onto state A. Since an
action has already been selected for that state, no fur-
ther planning is necessary. Thus the nondeterminism
poses no difficulty, and CIRCA can easily plan looping
behaviors with dynamic termination conditions.

The repetition itself is inherent in all of CIRCA’s
plans, because they are implemented not as traditional
sequential plans but as reactive TAP plans. The RTS
continually loops over the schedule of TAPs, repeat-
edly testing their applicability conditions and execut-
ing their actions whenever appropriate. Thus, if the
world model contains a loop (i.e., the planner thinks
the world may re-enter a state it has been in before),
the TAP form of the control plan already ensures that
the state will be recognized and appropriate action
taken, as many times as necessary. The planner does
not need to perform any additional reasoning to ac-
commodate repeated behaviors.

A More Complex Example

Several aspects of the hammering domain make it par-
ticularly simple, including the lack of events and tem-
poral transitions (processes), the lack of timing re-
quirements such as deadlines, and the simple goal of
achievement. To extend beyond those limitations, we
introduce the “grocery stocking” domain, in which an
agent must never run out of a particular grocery item
(say, salsa). The agent must develop a plan that co-
ordinates opening new jars of salsa, putting salsa on
the shopping list when stock runs low, and going gro-
cery shopping to replenish the stock. There are several
tough problems hidden in this seemingly simple do-
main, including plan loops, a counting variable, and a
special type of goal.

However, before we address these problems with the
abstraction techniques described above, we must first
utilize a different form of abstraction called indezical
features (Agre & Chapman 1987). This technique is
used to avoid the enumeration problems that result
from individuating specific objects in the environment.
For example, if the planner distinguished between indi-
vidual salsa jars (e.g., jar21 and jar22) it would have
to know all the possible jar names ahead of time, or
else it would need the ability to generate new names,
and the state space would be infinite.

To avoid this problem, we encode the environment
using indexical features, which refer to objects by their
relationship to our agent. For example, we can use a
feature have-open-salsa to indicate that a jar of salsa
is currently being consumed, but the specific identity
of that jar need never be established. Indexical fea-
tures thus abstract away from the identity of objects,
but they do so in a slightly unusual fashion. The map-
ping of individual objects to their “classification” by in-
dexical features is dynamic, changing as objects move
through the world. So the salsa jar that is open at
one time may be different than the jar open at another
time, but the agent’s representation will not indicate
any difference.

Many reactive systems use indexical features to avoid
the difficulties of establishing symbol grounding and
“object permanence” through sensing (e.g., determin-
ing that the jar you leave in the refrigerator is jar21,
and that it 1s the same one you find there the next

ACTION open-new-jar
PRECONDS: ((have-salsa-in-stock T))
POSTCONDS: (((have-open-salsa T)
(have-salsa-in-stock T))
((have-open-salsa T)
(have-salsa-in-stock nil)))
MAX-DELAY: 5 minutes

ACTION put-salsa-on-list
PRECONDS: ()
POSTCONDS: ((salsa-on-list T))
MAX-DELAY: 1 minute

ACTION go-shopping-and-get-salsa
PRECONDS: ((salsa-on-list T))
POSTCONDS: ((have-salsa-in-stock T)

(salsa-on-list nil))
MAX-DELAY: 1 hour

TEMPORAL finish-salsa-jar
PRECONDS: ((have-open-salsa T))
POSTCONDS: ((have-open-salsa nil))
MIN-DELAY: 2 days

TEMPORAL starve-without-salsa
PRECONDS: ((have-open-salsa nil))
POSTCONDS: ((failure T))
MIN-DELAY: 8 hours

GOALS: ((failure nil))

INITIAL STATE: ((salsa-on-list nil)
(have-open-salsa T)
(have-salsa-in-stock T))

Figure 5: Example domain description for the salsa-
stocking problem.

day). Although common among reactive systems, in-
dexicality is rare among traditional planning systems,
which usually name objects individually.

Recipe 2: Eliminating Named Objects

1. Replace non-indexical state features with indexical,
agent-oriented features.
2. Modify related operators.

Because the agent may stock up on salsa, a com-
pletely accurate model of the problem would have to
include a variable indicating exactly how many jars are
in stock at any time. We have already seen how such
counting variables can cause problems with state-space
enumeration and overly-precise operators. Therefore,
we apply Recipe 1 to convert the counting variable into
a binary feature.

The salsa domain also introduces a different type of
goal: a goal of avoidance (never run out of salsa), rather
than a goal of achievement (make the nail flush)3.
Along with the new type of goal comes the complex-
ity of representing time and ongoing processes in the

®Goals of avoidance (e.g., avoid (out-of-salsa T))
might also be thought of as goals of negated maintenance
(e.g., maintain (not (out-of-salsa T))).

world. To make sure that the agent does not starve
from lack of salsa, the planner must reason about the
relative speeds and frequencies of shopping trips, salsa
consumption, and other activities.

While there have been many forays into temporal
representations for planners (e.g., Allen 1983), none
have focused on the sort of repeated, long-term behav-
iors we are interested in producing. Instead, most tem-
poral logic systems focus on maintaining partial order-
ing constraints among time intervals, for non-looping
plans. Plan loops would pose severe problems for these
approaches, in part because the duration of a loop may
not be determined until runtime. Instead, we introduce
an abstracted form of time information that is simple to
manipulate, yet allows CIRCA to build reactive plans
that are guaranteed to meet domain deadlines.

Figure 5 shows a sample set of CIRCA transition de-
scriptions for the salsa domain. We have applied the
previously-described abstraction techniques to elimi-
nate the stock-counting variable, instead using the bi-
nary variable have-salsa-in-stock. The action of buy-
ing more stock now simply sets have-salsa-in-stock
to T, and removing a jar from stock has a nondeter-
ministic outcome, either leaving some stock, or not.
The process of salsa consumption is represented by the
temporal transition finish-salsa-jar, indicating that
the agent takes at least two days to consume a jar. The
goal of avoidance is expressed by the starve-without-
salsa temporal transition, which indicates catastrophic
failure will occur if the agent has no open jar of salsa
for eight hours.

These latter temporal transitions embody our recipe
for temporal abstraction: rather than representing de-
tailed information about the rate at which a process
proceeds (which may vary with domain features (e.g.,
menus, time of day)), we abstract that information to
a single worst-case number. For temporal transitions,
this is the shortest possible time until the transition to
a new state might occur. For action transitions, the
worst case is the longest possible time until the action
will occur. These worst-case values can then be used
to derive the rates at which various reactions must be
executed in order to achieve their goals. In the salsa do-
main, we must ensure that the starve-without-salsa
transition to failure 1s never allowed to happen. The
basic idea is to build a TAP that executes frequently
enough that some action will definitely be taken before
that temporal transition to failure occurs, preempting
failure and leading instead to a more desirable state.
For example, CIRCA may decide that it must execute
a TAP implementing the open-new-jar action at least
once every 7 hours, to avoid starving from lack of salsa.
Note that this does not mean that a new jar will be
opened that frequently, but rather that the system will
check to see if a new jar should be opened.

Because CIRCA only deals with a single worst-case
timing value for each action and temporal transition,
the process of manipulating this timing information is
fairly simple. However, by retaining enough informa-

tion to plan preempting reactions that deal with the do-
main’s worst-case situations, this abstraction method
still allows CIRCA to build TAP plans with guaranteed
behavior. Summarizing, we have:

Recipe 3: Simplifying Time

1. Encode temporal transitions (external processes)

with a minimum time to completion.

2. Encode action transitions (desired activities) with a

maximum time to completion.

3. The only useful relation between these timed transi-

tions is preemption.

In Figure 5, we have expressed the goal of avoidance
via the starve-without-salsa temporal transition to
failure. We can vary the precise meaning of the goal by
altering the transition’s timing parameter. For exam-
ple, if the goal is “absolutely never run out of salsa,”
we can set the transition’s timing delay to zero, so that
as soon as there is no more salsa, failure occurs. Al-
ternatively, if the goal is “never run out of salsa for
more than eight hours,” then the transition delay will
be eight hours, and the agent will have a somewhat
easier time dealing with the problem. Figure 6 shows
a domain model for the latter case, in which the plan-
ner has reasoned about the rate of salsa consumption
and the time until “salsa starvation” sets in, and it
has decided when it must go shopping. In this case,
the planner has found that it 1s acceptable to allow the
agent to empty its stock of salsa entirely, even finish-
ing off the last open jar before going shopping to avoid
“salsa starvation.” If the TAPs built for this reaction
plan are approved by the Scheduler, the plan is feasi-
ble, and CIRCA can guarantee to avoid failure through
starvation.

Thus CIRCA illustrates two of the desirable features
of a hybrid planning/reacting system: first, CIRCA’s
reactive plans are automatically generated, so they are
provably logical and timely; and second, the system
can adapt to new domains using its planner. For ex-
ample, suppose that the starvation transition’s delay 1s
shorter, and the agent can not be sure that i1t could go
shopping quickly enough after all the salsa is consumed
to avoid starvation. In that case, CIRCA’s planner
would find that the former plan is untenable, and it
would backtrack to try a different approach. As shown
in Figure 7, the planner could decide to go shopping as
soon as the last jar of salsa is opened, rather than wait-
ing until it has been consumed. In this way, CIRCA can
reason about the timing constraints on its behavior and
build goal-oriented reaction plans despite uncertainty,
abstraction, and the loops in the domain model.

Conclusion

We have illustrated the use of several forms of abstrac-
tion to simplify complex planning domains, and make
their looping behavior amenable to classical planning
techniques. Using nondeterministic operators, index-
ical features, and worst-case timing values;, CIRCA
is able to automatically build reaction plans that are

go-shopping HAVE-OPEN-SALSA NIL

HAVE-OPEN-SALSA T
HAVE-SALSA-IN-STOCK T
SALSA-ON-LIST NIL

HAVE-OPEN-SALSA NIL
finish-sdlsarjar HAVE-SALSA-IN-STOCK T
SALSA-ON-LIST NIL

starve-without-
salsa

FAILURE

——= temporal transition

- - = action transition
transition is
preempted

KEY:

HAVE-SALSA-IN-STOCK NIL
SALSA-ON-LIST T
A

|
| put-salsar
, on-list

|

L

HAVE-OPEN-SALSA T
HAVE-SALSA-IN-STOCK NIL
SALSA-ON-LIST NIL

HAVE-OPEN-SALSA NIL
finish-sdsaja HAVE-SALSA-IN-STOCK NIL
SALSA-ON-LIST NIL

starve-without-
salsa

FAILURE

Figure 6: One possible world model of the salsa domain, after the planner has derived actions to avoid failure.
In this case, the shopping need only be done after all the salsa has been consumed.

go-shopping

HAVE-OPEN-SALSA T
HAVE-SALSA-IN-STOCK T
SALSA-ON-LIST NIL

finish-salsa-jar
SALSA-ON-LIST NIL

HAVE-OPEN-SALSA NIL
HAVE-SALSA-IN-STOCK T

starve-without-
sasa)

FAILURE

HAVE-SALSA-IN-STOCK NIL
SALSA-ON-LIST T
A

HAVE-OPEN-SALSA T L
finish-salsa-jar = -

:put-salsa-
! ron-list
I
L

% HAVE-OPEN-SALSA T

HAVE-SALSA-IN-STOCK NIL
SALSA-ON-LIST NIL

finish-salsajar = ™

Figure 7: Another possible domain model, in which the agent must put salsa on the shopping list as soon as the

stockpile is empty.

guaranteed to “do the right thing, by the right time.”
These aspects of provably logical and timely behavior
make CIRCA’s hybrid approach to planning and reac-
tion more flexible and rigorous than previous systems.

There are several obvious extensions to the abstrac-
tion techniques we have described. For example, the
replacement of counting variables with binary features
can be generalized to the use of finite-range abstract
features with a larger set of operators. In the salsa
domain, if the time to finish a jar and starve was less
than the shopping time, a useful encoding of the do-
main would have a trinary feature that could represent
when only one jar remains, at which time the system
would need to go shopping.

Currently, CIRCA requires the human system de-
signer to make its representation decisions, such as how
to map a counting variable into an abstract feature.
However, given mapping patterns of the sort described
here, and an ability to recognize critical state distinc-
tions, it seems clear that an automated system should
be able to derive useful and appropriate abstract rep-
resentations for complex domains. Future work, then,
might focus on developing additional recipes for ab-
straction, and extracting rules for when the recipes are
useful and appropriate.

References

Agre, P. E., and Chapman, D. 1987. Pengi: An imple-
mentation of a theory of activity. In Proc. National Conf.
on Artificial Intelligence, 268-272.

Allen, J. F. 1983. Maintaining knowledge about temporal
intervals. Communications of the ACM 26(11):832-843.

Drummond, M. 1985. Refining and extending the proce-
dural net. In Proc. Int’l Joint Conf. on Artificial Intells-
gence, 528-531.

Firby, R. J. 1987. An investigation into reactive planning
in complex domains. In Proc. National Conf. on Artificial
Intelligence, 202—-206.

Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1993.
CIRCA: A cooperative intelligent real-time control archi-
tecture. IEEFE Trans. Systems, Man, and Cybernetics
23(6):1561-1574.

Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1994.
World modeling for the dynamic construction of real-time
control plans. To appear in Artificial Intelligence.
Nilsson, N. J. 1980. Principles of Artificial Intelligence.
Tioga Press, Palo Alto, CA.

Schoppers, M. 1990. Automatic synthesis of perception
driven discrete event control laws. In Proc. 5th IFEFE Int’l
Symposium on Intelligent Control, 410-416.

Wilkins, D. E. 1988. Practical Planning: Fxtending the
Classical AT Planning Paradigm. Morgan Kaufmann.

