
Using Abstraction and Nondeterminism to Plan Reaction LoopsDavid J. MuslinerInstitute for Advanced Computer StudiesThe University of MarylandCollege Park, Maryland 20742musliner@umiacs.umd.eduAbstractBy looping over a set of behaviors, reactive systemsuse repetition and feedback to deal with errors and en-vironmental uncertainty. Their robust, fault-tolerantperformance makes reactive systems desirable for exe-cuting plans. However, most planning systems cannotreason about the loops that characterize reactive sys-tems. In this paper, we show how the structured ap-plication of abstraction and nondeterminism can mapcomplex planning problems requiring loop plans intoa simpler representation amenable to standard plan-ning technologies. In the process, we illustrate keyrecipes for automatically building predictable reactivesystems that are guaranteed to achieve their goals.IntroductionThe uncertainty inherent in real-world domains hasproven problematic for traditional AI planning tech-nologies that rely on complete, accurate, and deter-ministic world models. In response, reactive systems(e.g., Agre & Chapman 1987; Firby 1987) have becomepopular because they can deal with the uncertainties ofreal-world domains. The primary advantage of reactivesystems is that they do not make predictions based ona world model, and thus they avoid potential failuresdue to inadequate models. Instead, reactive systemsrely on repeatedly executing simple \persistent" be-haviors until feedback indicates that their goals havebeen achieved. Unlike traditional open-loop AI plans,these reactive systems address environmental uncer-tainty and the possibility of execution-time failuresby implementing repeated, feedback-based, closed-loopbehaviors.One major problem with most reactive systems isthat they are di�cult to design (and usually hand-coded), so that their behaviors are not necessarily log-ically correct or timely. There is no assurance thatthese systems will choose an appropriate action for agiven situation, or that the selected action will be ex-ecuted quickly enough to meet domain-imposed dead-This work was supported in part by the National ScienceFoundation under Grants IRI-9209031 and IRI-9158473,by a NSF Graduate Fellowship, and by the Arpa/RomeLaboratory Planning Initiative (F30602-93-C-0039). DavidMusliner is also a�liated with the UM Institute for SystemsResearch (NSF Grant NSFD CDR-88003012).

lines. Furthermore, because the design and construc-tion process is not automated, building new reactivesystems for di�erent domains requires lengthy humaninteractions. Several researchers have recognized thattraditional AI planning systems might be used to auto-mate the ad hoc process of designing reactive systems(e.g., Schoppers 1990), leading to signi�cant advancesin performance predictability and rapid system adap-tation. However, most AI planning systems are unableto plan in domains that involve the type of repetition(looping) characteristic of reactive systems. Further-more, planners do not usually create reactions, butrather they generate plans as a �xed sequential (or par-tially ordered) set of distinct actions.In this paper we describe the use of abstraction andnondeterminism to allow planners to generate loopingreactive plans, thus addressing a critical problem forhybrid planning/reaction systems. Essentially, we givecookbook recipes for transforming the complexities ofa domain into an abstract form so that reactive plansare suitable and classical planners are useful. Someof the abstraction techniques are novel, some are not:our primary contribution is in showing how they canbe combined in routine ways to make planners han-dle loops and generate reactive behaviors that can beguaranteed to operate in a logical and timely fashion.We begin by introducing a simple, intuitive exampleto illustrate the �rst abstraction technique and howit can be useful in the automatic planning of loops.We then present a brief overview of the CooperativeIntelligent Real-Time Control Architecture (CIRCA)(Musliner, Durfee, & Shin 1993), a system designedto automatically plan and execute reactive behaviors.We then provide a more detailed example showing howCIRCA uses abstraction, nondeterminism, and an \ab-stract" time representation to plan reactive loops. De-spite the extensive domain abstractions used to makeplanning feasible, CIRCA's automatically-constructedreactive systems are guaranteed to accomplish theirgoals and preserve the system's safety. Thus CIRCAcombines the positive potential of both planning sys-tems (knowledge-based deliberation, provably logicalbehavior) and reactive systems (rapid, fault-tolerantfeedback loops).

OPERATOR precise-hammer-blowPRECONDS: ((arm-raised T) (nail-height ?X))POSTCONDS: ((arm-raised nil)(nail-height (max 0 (- ?X 1.2))))
precise-
hammer-blow

ARM-RAISED T

NAIL-HEIGHT 4.3

precise-
hammer-blow ARM-RAISED NIL

NAIL-HEIGHT 3.1

ARM-RAISED T

NAIL-HEIGHT 3.1

raise-arm

ARM-RAISED NIL

NAIL-HEIGHT 1.9Figure 1: A �ctitious hammering operator and theplan that might result.A Simple ExampleIn his early work on representing plan loops, Drum-mond (1985) illustrates a plan for hammering a nail byrepeatedly raising and lowering a hammer, never ter-minating. In this section, we introduce our approachto planning loops using this same example, with twosigni�cant di�erences: �rst, our hammering plan is au-tomatically generated, and second, the plan will termi-nate when the nail is driven
ush.Consider �rst the way in which a (hypothetical) tra-ditional planning system might address the hammeringproblem, as illustrated in Figure 1. Here the precise-hammer-blow operator must specify exactly how fardown it drives the nail, and the �nal plan yields a worldmodel that enumerates all the possible heights the nailmay protrude.The hammering domain illustrates several criticalaspects of looping plans that make them di�cult forplanners. First, uncertainty may make it impossibleto specify an operator's e�ects so precisely, and henceimpossible to predict exactly how many loop iterationswill be necessary to achieve the goal. In such uncer-tain domains, the termination conditions of the loopcan only be determined during the actual executionof the loop. However, traditional planning operatorrepresentations (e.g., STRIPS add/delete lists (Nils-son 1980)) cannot represent an operator whose e�ectsare not fully deterministic1. Another major problemis that, even if we could predict how many iterationsare necessary, a classical planning system would needto enumerate at least one state (and probably many)for each of the iterations. This is obviously undesir-able, since it exacerbates the state-space explosion al-ready experienced by classical planners. To addressthese problems and allow a planner to derive a com-pact plan without considering innumerable states, weapply two forms of abstraction2.1A deterministic operator implements a �xed mappingof an input to a unique corresponding output. A nondeter-ministic operator implements a completely uncertain (orrandom) mapping from an input to one of a set of possibleoutputs.2We use \abstraction" in a general sense to mean theomission of detail. This usage conforms nicely with in-

ACTION hammer-blowPRECONDS: ((arm-raised T))POSTCONDS: (((arm-raised nil) (nail-flush T))((arm-raised nil) (nail-flush nil)))
NAIL-FLUSH NIL

ARM-RAISED T

hammer-blowraise-arm
ARM-RAISED NIL

NAIL-FLUSH NIL

ARM-RAISED NIL

NAIL-FLUSH T

A B CFigure 2: A nondeterministic transition, and the re-sulting dynamically-terminated loop.First, we must abstract away the details in thedomain representation that cause problems with thestate-space explosion. In the hammering domain, theheight of the nail is the domain feature that changes oneach loop of the plan, so it is the culprit, the \counting"variable. We remove this counting e�ect by abstract-ing the height feature to two critical values: either thenail is
ush or it is not.Since the height of the nail has been abstracted awayto a binary value, the e�ects of the hammer-blowoperator must be similarly abstracted. In the process,the excessive precision associated with the continuous-valued operator is abstracted away, and nondetermin-ism is used to represent the resulting uncertainty. Fig-ure 2 shows the abstracted operator, whose e�ects arenow represented as a nondeterministic transition eitherto (nail-
ush T) or back to (nail-
ush nil).So now we have the world model shown in Figure 2,which more accurately re
ects the uncertainty of thereal world: the nail is initially sticking out above thesurface, and we can keep hitting it until it is �nally
ush with the surface, at which time we will move outof the loop and into state C. Summarizing the tech-niques used thus far, we have the following recipe:Recipe 1: Eliminating Counting Variables1. Create a binary variable with T and nil states cor-responding to the critical \some or none" transitionof the counting variable.2. Modify the increment operator to lead to the T stateof the binary variable.3. Modify the decrement operator to be nondetermin-istic, leading to either of the binary variable's states.With the abstract nail-
ush feature and the corre-sponding operator, the state-space problem has beenaddressed and the model in Figure 2 represents theneed for a loop which repeats until a dynamic termi-nation condition holds. Note that the hammer-blowaction is not su�cient by itself, because we do not wantto hit the nail every time we are holding up the ham-mer. To build a reaction that would yield the state-space behavior shown in Figure 2, we still need a plan-ner to decide which of the various applicable operatorsshould actually be executed in any particular worldtuition, as well as with (Wilkins 1988), in that our ab-stract models match larger sets of possible worlds than less-abstract models.

sensor data

Environment

control
signals

Real-Time Subsystem
reaction schedules

feedback data

Scheduler

World Model

selected
reactions

reaction
schedules

AI SubsystemFigure 3: Overview of CIRCA.state. The planner must decide that we should invokethe hammer-blow action only when the nail is notyet
ush (i.e., in state B only, not in state C). In thenext section, we brie
y describe how CIRCA is ableto perform this type of planning (despite the result-ing state-space loops), and how the system addressesthe �nal problem of the hammering domain: actuallyrepresenting a looping plan.Overview of CIRCAAs illustrated in Figure 3, CIRCA consists of threesubsystems operating in parallel (Musliner, Durfee, &Shin 1993). The AI Subsystem (AIS) acts as a planningsystem, reasoning about a model of the domain and de-riving appropriate reaction plans. These plans are sentto the Scheduler module, along with timing constraintsexpressing how frequently each reaction must be exe-cuted. The Scheduler tries to build a cyclic scheduleof reactions that will meet all the timing constraints.If a schedule is found, the planned reactions can besent to the Real-Time Subsystem (RTS) for execution.The RTS executes previously-derived plans while theAIS and Scheduler are cooperatively developing a newplan; each reaction plan is designed to keep the systemsafe (avoiding failures), so that the search-based plan-ning performed by the AIS is isolated from the ongoingreal-time deadlines of the environment.CIRCA's reactive plans are built as schedules ofTest-Action Pairs (TAPs). As shown in Figure 4, eachTAP is an annotated production rule consisting of atest expression, an action, and a timing constraint onhow frequently the TAP must be executed. When ex-ecuting a TAP, the RTS evaluates the test expressionand, if it returns true, the RTS executes the corre-sponding action. TAPs di�er from other reactive mech-anisms such as RAPs (Firby 1987) in two fundamen-tal ways: �rst, TAPs are automatically generated byCIRCA's planning system, and second, TAPs specifyhow frequently they must be executed in order to meetdomain deadlines. CIRCA's Scheduler module uses theTAP timing requirements when it builds TAP sched-ules that are themselves loops; Figure 4 shows a simpleschedule for the hammering domain, which oscillatesbetween the raise-arm and hammer-blow TAPs.The world model and planning algorithm thatthe AIS uses to develop TAP plans are detailed in(Musliner, Durfee, & Shin 1994). For our purposes, itis su�cient to understand that the model is a modi�edstate/transition graph in which states correspond tocomplete descriptions of the world (modulo some level

TAP hammer-blowTEST: (and (nail-flush nil) (arm-raised T))ACTION: hammer-blowMAX-PERIOD: 2 secondsSCHEDULE: (raise-arm hammer-blow) repeatFigure 4: A trivial example TAP & TAP schedulefor the hammering domain.of abstraction), and three types of transitions representthe ways the world can change. Temporal transitionsrepresent time and ongoing processes. The timing be-havior of a temporal transition is related to the rateof the process it represents: for example, the processof consuming a jar of salsa will take some minimumamount of time to complete, depending on the rate ofconsumption. Event transitions represent occurrencesoutside the agent's control, while action transitionsrepresent the intentional actions of TAPs. CIRCA cancontrol the timing behavior of action transitions bysetting the timing constraints of TAPs. For example,CIRCA can build a TAP that executes at least once ev-ery minute, to ensure that a new jar of salsa is openedwithin two minutes after the last jar is �nished.To build plans, CIRCA begins with a set of goal de-scriptions, a set of initial world states, and a set oftransition descriptions that detail the types of events,actions, and processes possible in the world. The plan-ning algorithm pushes the initial states onto a stackand then performs a modi�ed STRIPS-like depth-�rst search for a plan that satis�es all the system'sgoals. On each planning loop iteration, the top stateis popped o� the stack and all applicable event andtemporal transitions are applied, generating new reach-able states that are pushed onto the stack. The planneruses a multi-step lookahead heuristic to choose the bestaction for the current state, generates the states thatresult from the selected action, and then repeats theplanning loop. Chronological backtracking is initiatedif the planner cannot �nd a good plan (e.g., if it cannotavoid a catastrophic failure state).To illustrate the planning process, consider again thenailing domain example in Figure 2. If state A is theinitial condition given to the planner, it will chooseto apply the raise-arm action, generating state B. Instate B, when the hammer-blow action transition isapplicable, the planner will project forward both ofthe action's possible postconditions, and will recognizethat it may lead to the desired state C, where (nail-
ush T) holds. Thus the hammer-blow action willbe chosen correctly to accomplish the task. Projectingforward along the other branch of the nondeterminis-tic postconditions, the planner will also realize that theaction transition may loop back onto state A. Since anaction has already been selected for that state, no fur-ther planning is necessary. Thus the nondeterminismposes no di�culty, and CIRCA can easily plan loopingbehaviors with dynamic termination conditions.

The repetition itself is inherent in all of CIRCA'splans, because they are implemented not as traditionalsequential plans but as reactive TAP plans. The RTScontinually loops over the schedule of TAPs, repeat-edly testing their applicability conditions and execut-ing their actions whenever appropriate. Thus, if theworld model contains a loop (i.e., the planner thinksthe world may re-enter a state it has been in before),the TAP form of the control plan already ensures thatthe state will be recognized and appropriate actiontaken, as many times as necessary. The planner doesnot need to perform any additional reasoning to ac-commodate repeated behaviors.A More Complex ExampleSeveral aspects of the hammering domain make it par-ticularly simple, including the lack of events and tem-poral transitions (processes), the lack of timing re-quirements such as deadlines, and the simple goal ofachievement. To extend beyond those limitations, weintroduce the \grocery stocking" domain, in which anagent must never run out of a particular grocery item(say, salsa). The agent must develop a plan that co-ordinates opening new jars of salsa, putting salsa onthe shopping list when stock runs low, and going gro-cery shopping to replenish the stock. There are severaltough problems hidden in this seemingly simple do-main, including plan loops, a counting variable, and aspecial type of goal.However, before we address these problems with theabstraction techniques described above, we must �rstutilize a di�erent form of abstraction called indexicalfeatures (Agre & Chapman 1987). This technique isused to avoid the enumeration problems that resultfrom individuating speci�c objects in the environment.For example, if the planner distinguished between indi-vidual salsa jars (e.g., jar21 and jar22) it would haveto know all the possible jar names ahead of time, orelse it would need the ability to generate new names,and the state space would be in�nite.To avoid this problem, we encode the environmentusing indexical features, which refer to objects by theirrelationship to our agent. For example, we can use afeature have-open-salsa to indicate that a jar of salsais currently being consumed, but the speci�c identityof that jar need never be established. Indexical fea-tures thus abstract away from the identity of objects,but they do so in a slightly unusual fashion. The map-ping of individual objects to their \classi�cation" by in-dexical features is dynamic, changing as objects movethrough the world. So the salsa jar that is open atone time may be di�erent than the jar open at anothertime, but the agent's representation will not indicateany di�erence.Many reactive systems use indexical features to avoidthe di�culties of establishing symbol grounding and\object permanence" through sensing (e.g., determin-ing that the jar you leave in the refrigerator is jar21,and that it is the same one you �nd there the next

ACTION open-new-jarPRECONDS: ((have-salsa-in-stock T))POSTCONDS: (((have-open-salsa T)(have-salsa-in-stock T))((have-open-salsa T)(have-salsa-in-stock nil)))MAX-DELAY: 5 minutesACTION put-salsa-on-listPRECONDS: ()POSTCONDS: ((salsa-on-list T))MAX-DELAY: 1 minuteACTION go-shopping-and-get-salsaPRECONDS: ((salsa-on-list T))POSTCONDS: ((have-salsa-in-stock T)(salsa-on-list nil))MAX-DELAY: 1 hourTEMPORAL finish-salsa-jarPRECONDS: ((have-open-salsa T))POSTCONDS: ((have-open-salsa nil))MIN-DELAY: 2 daysTEMPORAL starve-without-salsaPRECONDS: ((have-open-salsa nil))POSTCONDS: ((failure T))MIN-DELAY: 8 hoursGOALS: ((failure nil))INITIAL STATE: ((salsa-on-list nil)(have-open-salsa T)(have-salsa-in-stock T))Figure 5: Example domain description for the salsa-stocking problem.day). Although common among reactive systems, in-dexicality is rare among traditional planning systems,which usually name objects individually.Recipe 2: Eliminating Named Objects1. Replace non-indexical state features with indexical,agent-oriented features.2. Modify related operators.Because the agent may stock up on salsa, a com-pletely accurate model of the problem would have toinclude a variable indicating exactly how many jars arein stock at any time. We have already seen how suchcounting variables can cause problems with state-spaceenumeration and overly-precise operators. Therefore,we apply Recipe 1 to convert the counting variable intoa binary feature.The salsa domain also introduces a di�erent type ofgoal: a goal of avoidance (never run out of salsa), ratherthan a goal of achievement (make the nail
ush)3.Along with the new type of goal comes the complex-ity of representing time and ongoing processes in the3Goals of avoidance (e.g., avoid (out-of-salsa T))might also be thought of as goals of negated maintenance(e.g., maintain (not (out-of-salsa T))).

world. To make sure that the agent does not starvefrom lack of salsa, the planner must reason about therelative speeds and frequencies of shopping trips, salsaconsumption, and other activities.While there have been many forays into temporalrepresentations for planners (e.g., Allen 1983), nonehave focused on the sort of repeated, long-term behav-iors we are interested in producing. Instead, most tem-poral logic systems focus on maintaining partial order-ing constraints among time intervals, for non-loopingplans. Plan loops would pose severe problems for theseapproaches, in part because the duration of a loop maynot be determined until runtime. Instead, we introducean abstracted form of time information that is simple tomanipulate, yet allows CIRCA to build reactive plansthat are guaranteed to meet domain deadlines.Figure 5 shows a sample set of CIRCA transition de-scriptions for the salsa domain. We have applied thepreviously-described abstraction techniques to elimi-nate the stock-counting variable, instead using the bi-nary variablehave-salsa-in-stock. The action of buy-ing more stock now simply sets have-salsa-in-stockto T, and removing a jar from stock has a nondeter-ministic outcome, either leaving some stock, or not.The process of salsa consumption is represented by thetemporal transition �nish-salsa-jar, indicating thatthe agent takes at least two days to consume a jar. Thegoal of avoidance is expressed by the starve-without-salsa temporal transition, which indicates catastrophicfailure will occur if the agent has no open jar of salsafor eight hours.These latter temporal transitions embody our recipefor temporal abstraction: rather than representing de-tailed information about the rate at which a processproceeds (which may vary with domain features (e.g.,menus, time of day)), we abstract that information toa single worst-case number. For temporal transitions,this is the shortest possible time until the transition toa new state might occur. For action transitions, theworst case is the longest possible time until the actionwill occur. These worst-case values can then be usedto derive the rates at which various reactions must beexecuted in order to achieve their goals. In the salsa do-main, we must ensure that the starve-without-salsatransition to failure is never allowed to happen. Thebasic idea is to build a TAP that executes frequentlyenough that some action will de�nitely be taken beforethat temporal transition to failure occurs, preemptingfailure and leading instead to a more desirable state.For example, CIRCA may decide that it must executea TAP implementing the open-new-jar action at leastonce every 7 hours, to avoid starving from lack of salsa.Note that this does not mean that a new jar will beopened that frequently, but rather that the system willcheck to see if a new jar should be opened.Because CIRCA only deals with a single worst-casetiming value for each action and temporal transition,the process of manipulating this timing information isfairly simple. However, by retaining enough informa-

tion to plan preempting reactions that deal with the do-main's worst-case situations, this abstraction methodstill allows CIRCA to build TAP plans with guaranteedbehavior. Summarizing, we have:Recipe 3: Simplifying Time1. Encode temporal transitions (external processes)with a minimum time to completion.2. Encode action transitions (desired activities) with amaximum time to completion.3. The only useful relation between these timed transi-tions is preemption.In Figure 5, we have expressed the goal of avoidancevia the starve-without-salsa temporal transition tofailure. We can vary the precise meaning of the goal byaltering the transition's timing parameter. For exam-ple, if the goal is \absolutely never run out of salsa,"we can set the transition's timing delay to zero, so thatas soon as there is no more salsa, failure occurs. Al-ternatively, if the goal is \never run out of salsa formore than eight hours," then the transition delay willbe eight hours, and the agent will have a somewhateasier time dealing with the problem. Figure 6 showsa domain model for the latter case, in which the plan-ner has reasoned about the rate of salsa consumptionand the time until \salsa starvation" sets in, and ithas decided when it must go shopping. In this case,the planner has found that it is acceptable to allow theagent to empty its stock of salsa entirely, even �nish-ing o� the last open jar before going shopping to avoid\salsa starvation." If the TAPs built for this reactionplan are approved by the Scheduler, the plan is feasi-ble, and CIRCA can guarantee to avoid failure throughstarvation.Thus CIRCA illustrates two of the desirable featuresof a hybrid planning/reacting system: �rst, CIRCA'sreactive plans are automatically generated, so they areprovably logical and timely; and second, the systemcan adapt to new domains using its planner. For ex-ample, suppose that the starvation transition's delay isshorter, and the agent can not be sure that it could goshopping quickly enough after all the salsa is consumedto avoid starvation. In that case, CIRCA's plannerwould �nd that the former plan is untenable, and itwould backtrack to try a di�erent approach. As shownin Figure 7, the planner could decide to go shopping assoon as the last jar of salsa is opened, rather than wait-ing until it has been consumed. In this way, CIRCA canreason about the timing constraints on its behavior andbuild goal-oriented reaction plans despite uncertainty,abstraction, and the loops in the domain model.ConclusionWe have illustrated the use of several forms of abstrac-tion to simplify complex planning domains, and maketheir looping behavior amenable to classical planningtechniques. Using nondeterministic operators, index-ical features, and worst-case timing values, CIRCAis able to automatically build reaction plans that are

HAVE-OPEN-SALSA T

HAVE-SALSA-IN-STOCK T

SALSA-ON-LIST NIL

HAVE-OPEN-SALSA T

SALSA-ON-LIST NIL

HAVE-SALSA-IN-STOCK NIL

SALSA-ON-LIST NIL

HAVE-SALSA-IN-STOCK NIL

HAVE-OPEN-SALSA NIL

FAILURE FAILURE

put-salsa-
on-list

starve-without-
salsastarve-without-

salsa

HAVE-SALSA-IN-STOCK T

SALSA-ON-LIST NIL

HAVE-OPEN-SALSA NIL

HAVE-SALSA-IN-STOCK NIL

SALSA-ON-LIST T

HAVE-OPEN-SALSA NILgo-shopping

KEY:

transition is
preempted

temporal transition
action transition

finish-salsa-jar open-new-jar finish-salsa-jarFigure 6: One possible world model of the salsa domain, after the planner has derived actions to avoid failure.In this case, the shopping need only be done after all the salsa has been consumed.
HAVE-OPEN-SALSA T

HAVE-SALSA-IN-STOCK T

SALSA-ON-LIST NIL

put-salsa-
on-list

FAILURE

starve-without-
salsa

HAVE-SALSA-IN-STOCK T

SALSA-ON-LIST NIL

HAVE-OPEN-SALSA NIL HAVE-OPEN-SALSA T

SALSA-ON-LIST NIL

HAVE-SALSA-IN-STOCK NIL

HAVE-OPEN-SALSA T

HAVE-SALSA-IN-STOCK NIL

SALSA-ON-LIST T

finish-salsa-jar

finish-salsa-jar

finish-salsa-jar open-new-jar

go-shopping

Figure 7: Another possible domain model, in which the agent must put salsa on the shopping list as soon as thestockpile is empty.guaranteed to \do the right thing, by the right time."These aspects of provably logical and timely behaviormake CIRCA's hybrid approach to planning and reac-tion more
exible and rigorous than previous systems.There are several obvious extensions to the abstrac-tion techniques we have described. For example, thereplacement of counting variables with binary featurescan be generalized to the use of �nite-range abstractfeatures with a larger set of operators. In the salsadomain, if the time to �nish a jar and starve was lessthan the shopping time, a useful encoding of the do-main would have a trinary feature that could representwhen only one jar remains, at which time the systemwould need to go shopping.Currently, CIRCA requires the human system de-signer to make its representation decisions, such as howto map a counting variable into an abstract feature.However, given mapping patterns of the sort describedhere, and an ability to recognize critical state distinc-tions, it seems clear that an automated system shouldbe able to derive useful and appropriate abstract rep-resentations for complex domains. Future work, then,might focus on developing additional recipes for ab-straction, and extracting rules for when the recipes areuseful and appropriate.
ReferencesAgre, P. E., and Chapman, D. 1987. Pengi: An imple-mentation of a theory of activity. In Proc. National Conf.on Arti�cial Intelligence, 268{272.Allen, J. F. 1983. Maintaining knowledge about temporalintervals. Communications of the ACM 26(11):832{843.Drummond, M. 1985. Re�ning and extending the proce-dural net. In Proc. Int'l Joint Conf. on Arti�cial Intelli-gence, 528{531.Firby, R. J. 1987. An investigation into reactive planningin complex domains. In Proc. National Conf. on Arti�cialIntelligence, 202{206.Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1993.CIRCA: A cooperative intelligent real-time control archi-tecture. IEEE Trans. Systems, Man, and Cybernetics23(6):1561{1574.Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1994.World modeling for the dynamic construction of real-timecontrol plans. To appear in Arti�cial Intelligence.Nilsson, N. J. 1980. Principles of Arti�cial Intelligence.Tioga Press, Palo Alto, CA.Schoppers, M. 1990. Automatic synthesis of perceptiondriven discrete event control laws. In Proc. 5th IEEE Int'lSymposium on Intelligent Control, 410{416.Wilkins, D. E. 1988. Practical Planning: Extending theClassical AI Planning Paradigm. Morgan Kaufmann.

