
Priority-Based Meta-Control within Hierarchical Task Network Planning

David J. Musliner and Robert P. Goldman

Smart Information Flow Technologies (SIFT)
Minneapolis, MN 55401

Email: {dmusliner, rpgoldman}@sift.info

ABSTRACT

We are developing real-time planning and control systems
that allow a single human operator to control a team of
unmanned aerial vehicles (UAVs). If the operator requests
more tasks than can be immediately addressed by the
available UAVs, our planning system must choose which
goals to try to achieve, and which to postpone for later
effort. To make this decision-making easily understandable
and controllable, we allow the user to assign strict priorities
to goals, ensuring that if a goal is assigned the highest
priority, the system will use every resource available to try
to build a successful plan to achieve that goal. In this paper
we show how unique features of the SHOP2 hierarchical
task network planner permit an elegant implementation of
this priority queue behavior. Although this paper is primarily
about the technique itself, rather than SHOP2’s performance,
we assess the scalability of this priority queue approach and
discuss potential directions for improvement, as well as more
general forms of meta-control within SHOP2 domains.

Keywords— meta-control; partial satisfaction planning; hi-
erarchical task networks; priority.

I. INTRODUCTION

We are developing real-time planning and control systems
that allow a single human operator to control a team of
unmanned aerial vehicles (UAVs). Our approach, based on
the PlaybookTM concept of high-level task delegation [1],
[2], allows the operator to assign goals to a team of UAVs
and then rely on the team (or really, our planner) to decide
how different UAVs perform different tasks. If the operator
requests more tasks than can be immediately addressed by
the available UAVs, the system must choose which goals to
try to achieve, and which to postpone for later effort. This
sort of planning problem, involving choosing which goals to
achieve in an over-constrained domain, has been called over-
subscription planning and also partial satisfaction planning.

Partial satisfaction planning can be viewed as a form of
meta-control— the challenge is to choose which goals to
plan to achieve when resources are limited. The limited
resources may be both domain-level resources that are used
to actually achieve the goal (e.g., assets, fuel, mission exe-
cution time) and deliberation resources that are used by the
planning process itself (e.g., memory, planning time). Many

approaches to partial satisfaction planning are based on the
idea that different goals will be assigned different reward
values, primitive actions will have some cost (negative
reward), and the objective is to maximize the net reward
by carefully choosing the set of goals to be achieved and
the overall plan to achieve them [10].

While this problem formulation is a straightforward sim-
plification of the more general probabilistic domain concept
of maximizing expected utility, in some situations it can
lead to non-intuitive results. Because the units of reward
are interchangeable, it is possible for the planner to decide
that achieving several lower-reward goals is preferable to
achieving a single higher-reward goal. Thus if a human
is assigning reward values to goals, it can be difficult to
understand exactly what tradeoffs the planning system might
make [3].

In our domain, UAV control, we need a more clearly-
understandable and controllable approach to planning, so
that the human operator remains confident that he knows
how the UAV team will treat his goals, and how he can adjust
the goal specifications to achieve his true intent. So, rather
than describing goals with interchangeable reward values,
we allow the user to assign strict priorities, which have
an easily-understood and highly controllable semantics. If
a goal is assigned the highest priority, the system will use
every resource available to try to build a successful plan
to achieve that goal. Only once a plan is available, or it
has been proven that no plan is possible, will the system
move on to try to plan for the next-lower priority goal.
The system will never “trade off” the higher-priority goal
to instead achieve a set of lower-priority goals.

This strict priority behavior makes the system easily
understood and controlled— if the system does not build
a plan for a particular goal, then the user knows that there
is either no way to achieve the goal at all, or some higher-
priority goals have consumed the necessary resources. If the
user decides the unplanned goal is required, he can adjust
the priorities to raise its place in the priority queue.

Note that the strict priorities do not eliminate the potential
for goal interactions and plan optimization. If planning time
is available, the system may search to find the best plan for
a higher-priority goal that also makes more lower-priority
goals achievable (e.g., by choosing resource bindings that

leave resources available for the lower-priority goals).
In this paper we show how this priority queue behavior

and optimized planning can be implemented by the SHOP2
hierarchical task network (HTN) planner [4]. While all HTN
planners are not necessarily capable of such meta-level
reasoning, the SHOP2 implementation includes several key
features that make this behavior relatively straightforward.
Although this paper is primarily about the technique itself,
rather than SHOP2’s performance, we assess the scalability
of this priority queue approach and discuss potential direc-
tions for performance improvement, as well as more general
forms of meta-control within SHOP2 domains.

II. THE SIMPLE HIERARCHICAL ORDERED PLANNER
(SHOP2)

SHOP2 is a modern HTN planner with a relatively clean
implementation that has performed well in past planning
competitions [4].Another advantage of the SHOP2 planning
system is that it is available under a generous open-source li-
cense, and is maintained at SourceForge1. We have discussed
elsewhere the application-based reasons for our preference
for HTN over first-principles planning [5], [2], in the context
of work on control of autonomous aerial vehicles.

Like other HTN planners, and unlike first-principles plan-
ners, SHOP2 searches top-down from a task or set of tasks,
rather than chaining together primitive actions. SHOP2 and
other HTN planners decompose complex tasks into more
primitive sub-tasks (methods), thus building a plan tree
that terminates at leaves corresponding to primitive actions
(operators). As in earlier action representation languages,
SHOP2 operators have separate add and delete lists, rather
than effects, and SHOP2’s variables are untyped. SHOP2
can also use more standard PDDL action representations,
but we do not use them in this paper.

In addition to actions, SHOP2’s language provides meth-
ods for describing how to perform complex tasks. A method
definition associates a task with a set of preconditions and a
task network. When the preconditions are satisfied,a task that
matches the task in the method definition can be decomposed
to the given task network. Task networks are lists of tasks
that may be constrained to be :ordered, or that can be
executed in any order (:unordered).

Figure 1 shows several operator and method definitions
that form part of our very simple example domain. The
example shows that to prosecute a target, we must build
a plan that first performs the !lase-target operator and
then the !strike-target operator.

In this encoding, we follow the convention that primitive
operator names begin with ‘!’ and, since SHOP2 does
not search over possible parameter bindings for operators,
we wrap each operator in a similarly-named method that
checks preconditions and supports search (in this case, over

1http://sourceforge.net/projects/shop

(:operator (!lase-target ?uav ?target-id)
((has-laser ?uav)) ;; preconditions
((has-laser ?uav)) ;; delete-list
()) ;; add-list

(:operator (!strike-target ?uav ?target-id)
((has-missile ?uav)) ;; preconditions
((has-missile ?uav)) ;; delete-list
()) ;; add-list

(:method (lase-target ?uav ?target-id)
((has-laser ?uav)) ;; precondition
(!lase-target ?uav ?target-id))

(:method (strike-target ?uav ?target-id)
((has-missile ?uav)) ;; precondition
(!strike-target ?uav ?target-id))

(:method (prosecute-target ?lasing-uav
?striking-uav ?target-id ?priority)

() ;; no preconditions
;; task network, :ordered by default

((lase-target ?lasing-uav ?target-id)
(strike-target ?striking-uav ?target-id)))

Figure 1: Simple methods that implement the domain-level
prosecute-target play.

which UAV will perform each task). Also, this very simple
encoding indicates that using the !lase-target operator
actually deletes the has-laser predicate for the chosen
UAV. While this is not very realistic, it effectively stops the
planner from planning to use that UAV’s laser for a different
task at the same time. When this task is completed (or
fails), we expect the planner to be re-run with a new/revised
initial state and planning problem (task priority queue), so
the system will re-consider how to use the UAV’s laser at
that time. We have used the same simplification for the
has-missile predicate, meaning that a single UAV can
only shoot at a single target at a time; a more complex
multi-missile model could be easily added.

The full SHOP2 language and planner are capable of
representing and reasoning about many other more compli-
cated domain aspects that have been omitted, such as action
durations, more complex resource models, conditional action
effects, etc. In this paper, we are concerned with a different
aspect: how can we give the planner a prioritized list of
prosecute-target tasks and cause it to search for
optimized solutions that respect the strict priority semantics?

SHOP2 does include a very limited form of optimization,
which minimizes the sum of a user-defined cost function
applied to each of the steps of a plan. This optimization is
performed using branch-and-bound, and can be time-limited.
The key to our strict priority planning is to exploit this
optimization behavior.

III. MAKING SHOP2 RESPECT PRIORITIES

The simplest way to get SHOP2 to plan for tasks while
respecting strict priority is to use a scaled cost function that

;; an internal primitive that just costs ?cost
(:operator (!!charge-cost ?cost)

((numberp ?cost))
()
()
?cost

;; the real method, with new priority argument
(:method (prosecute-target ?lasing-uav

?striking-uav ?target-id ?priority)
() ;; no preconditions

;; task network, :ordered by default
((lase-target ?lasing-uav ?target-id)
(strike-target ?striking-uav ?target-id)))

;; the skip method
(:method (prosecute-target ?lasing-uav

?striking-uav ?target-id ?priority)
;; pre: compute penalty based on priority

((assign ?cost (compute-cost ?priority)))
;; task network: charge penalty

((!!charge-cost ?cost)))

Figure 2: The most trivial approach to enforcing strict
priorities: each top-level method requires a “skip” method.

will tell the planner that skipping (not planning to achieve) a
higher-priority task is more costly than skipping any number
of lower-priority tasks. Since the priority queue is presented
to the planner all at once, it is easy to compute cost values
that enforce this criterion. We then tell SHOP2 that, for each
top-level task (play) that can be on the priority queue there
are one or more methods that really achieve the goal and
one “skip” method that does not. Choosing the skip method
will incur the priority-based cost.

Figure 2 illustrates this approach in simple form for our
running example. While workable, this approach has several
significant disadvantages. Most importantly, it requires that
every top-level task have a custom-built “skip” method
which has the same invocation conditions as the method(s)
that really accomplish the task. While the construction of
the skip methods could be easily automated, they still make
it somewhat more challenging to determine whether a plan
really achieves all of the goals or not; one must look one
level down in the plan decomposition to see whether the
chosen method results in an immediate !!charge-cost
call or not. Another minor annoyance is the need to include
the priority parameter in every top-level method, when that
value has no real meaning to the task itself, just to the
planner’s consideration of the task (and hence the parameter
is never referenced within the non-skip methods).

Figure 3 illustrates a more elegant approach to accom-
plishing the same strict-priority planning. Rather than repli-
cating skip methods for every top-level method at the domain
level, we instead have just two meta-level methods that apply
strict-priority planning semantics to all methods. Instead
of invoking a desired top-level task directly, the priority
queue will include invocations of the plan-for method,

;; Really plan for a prioritized task
(:method (plan-for ?priority ?taskspec)

() ;; no preconditions
((:task . ?taskspec)))

;; Skip planning for a prioritized task
(:method (plan-for ?priority ?taskspec)

((assign ?cost (compute-cost ?priority)))
((!!charge-cost ?cost)))

;; Example priority=3 task invocation:
;; (plan-for 3 (prosecute-target ?L ?S target-12))

Figure 3: This cleaner approach uses generalized meta-level
methods to implement strict priorities without task-specific
skip methods.

as shown in the figure. Then the planner will either use
the first method, which reduces to actually planning for
the task specification, or the second, generic skip method,
which charges the penalty cost as before. The key trick
here is in the first method, which really plans for an
arbitrary task specification by taking advantage of SHOP2’s
very flexible unification system and its Lisp underpinnings.
The ?taskspec parameter can unify to a full task invo-
cation specification (e.g., (prosecute-target ?L ?S
target-12)) and the method uses the ‘.’ operator to join
that task specification into the method’s task network.

As a result, there is no need to replicate skip methods
or modify top-level tasks with unused priority arguments.
Furthermore, detecting whether a prioritized task is actually
planned-for is easier because the plan either will or will not
include a method that corresponds to the task specification
(e.g., prosecute-target).

IV. EVALUATION

While our investigation is fairly new, we have conducted
early experiments to assess the scalability of this prioritized
plan optimization approach. As in the illustrations shown
here, our experimental domains omit many details of the
more realistic UAV planning problem, including action du-
rations and UAV-selection heuristics that depend on travel
distances and fuel levels. We expect that those aspects are
not the primary source of complexity; rather, the scale issues
arise from the large number of potential asset allocation
choices (i.e., which UAV performs which task).

To explore the approach’s scalability, we created a set
of very simple planning domains that included different
numbers of prosecute-target tasks (T) and different
numbers of laser-equipped UAVs (L) and missile-equipped
UAVs (M). Since each prosecute-target task requires
one of each UAV type, the total number of possible assign-
ments is (L!M !/((L − T)!(M − T)!) when L >= T and
M >= T . When there are more tasks than can be satisfied
by the available UAVs, the planner must choose a subset to
satisfy (T !/(R!(T −R))! choices, where R = min(L,M))

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 2 3 4 5 6

tasks

Opt-1

Opt-all

All

P
la

n
n

in
g
 t

im
e
 (

s
)

Tasks

Figure 4: Planning time scales exponentially but still accept-
ably when SHOP2 is asked to only return a single optimal
plan.

and then consider the alternative asset assignments, giving
(L!M !/((L − R)!(M − R)!) permutations for each subset
choice. For our test domains, where each task had a different
priority but all UAV assignments are of equal value, the
number of optimal plans is not increased as T exceeds R,
because the optimal plans all fail to achieve the lower T−R
goals.

Figure 4 shows the resulting planning time for different
numbers of prioritized tasks when the domain includes six
laser-equipped UAVs (L = 6) and five missile-equipped
UAVs (M = 5). We tested SHOP2 in three different modes,
returning a single optimal plan (Opt-1), all the optimal plans
(Opt-all), or all the plans regardless of optimality (All).
As expected, returning a single optimal plan is faster than
returning all the optimal plans. However, we were surprised
that returning all the plans, regardless of cost, is so much
faster than returning all the optimal plans (at least for T < 5,
when the All mode does not run out of memory). While
some computation is clearly needed to calculate and compare
costs, the Opt-all mode should be able to quickly prune
many plans. For example, all the tasks can be accomplished
whenever T < 6, so any plans that involve skipping goals
should be immediately pruned before being fleshed out fully.
Nevertheless, Opt-all was a full order of magnitude slower
than the non-optimizing algorithm. These early results may
indicate that significant improvements may be identified by
comparing the optimizing and non-optimizing algorithms.

V. RELATED WORK

Early work in over-subscription scheduling emphasized
domain-specific greedy algorithms that schedule higher pri-
ority tasks first and then perform local revisions/repairs [6],
[7]. A more recent survey found that simulated annealing
worked best for scheduling oversubscribed satellite obser-

vations [8]. Over-subscription planning has received little
attention until fairly recently. Some partial satisfaction plan-
ning approaches rely on using heuristics to select a subset of
goals and then building plans to match [9], [10]. Other tech-
niques integrate goal-selection and plan-construction and use
advanced heuristics to guide both [11], [12]. However, all
of these methods have been developed in the context of
first-principles planners, rather than the more powerful HTN
framework.

By integrating the cost of skipping a goal into the normal
plan cost optimization framework, our approach allows a
single unified HTN planning algorithm to address both
goal selection and plan construction. However, we have
not yet developed any heuristic guidance methods that can
“understand” the representational trick of Figure 3. We
may be able to build on recent preference-based planning
extensions of SHOP2 [13].

VI. CONCLUSION AND FUTURE DIRECTIONS

We have illustrated two domain modeling techniques that
allow the SHOP2 HTN planner to control its own goals and
thus, indirectly, its level of planning effort. The second, more
elegant technique is both domain-independent and broadly
generalizable to other forms of goal selection criterion,
beyond the strict priority scheme we have used for our UAV
tasking problem. In earlier work, we demonstrated a related
technique in which SHOP2’s optimization mode is used
to address over-constrained problems by relaxing temporal
constraints [14]. These techniques just scratch the surface
of the full potential for meta-control and complex reasoning
within SHOP2. For example, we could easily implement
goal pruning based on planning time, so that as the planner’s
runtime grows or a deadline approaches, the planner sheds
less-important goals.

ACKNOWLEDGMENTS

This work was supported by the U.S. Army Avia-
tion Applied Technology Directorate under SBIR Contract
W911W6-08-C-0066. Any opinions, findings, conclusions,
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
U.S. Government.

REFERENCES

[1] C. A. Miller, M. J. S. Pelican, and R. P. Goldman, ““Tasking”
interfaces for flexible interaction with automation: Keeping
the user in control,” in Proceedings of the Conference on
Human Interation with Complex Systems, April - May 2000.

[2] C. A. Miller, R. P. Goldman, H. B. Funk, P. Wu, and
B. Pate, “A playbook approach to variable autonomy control:
Application for control of multiple, heterogeneous unmanned
air vehicles,” in Proc. American Helicopter Society 60th
Annual Forum, June 2004, pp. 2146–2157.

[3] Detlof von Winterfeldt and W. Edwards, Decision Analysis
and Behavioral Research. Cambridge, ENGLAND: Cam-
bridge University Press, 1986.

[4] D. Nau, T. C. Au et al., “SHOP2: An HTN planning system,”
Journal of Artificial Intelligence Research, vol. 20, pp. 379–
404, 2003.

[5] R. P. Goldman, K. Z. Haigh, D. J. Musliner et al., “MACBeth:
A multi-agent constraint-based planner,” in AAAI Workshop
on Constraints and AI Planning, 2000, pp. 11–17.

[6] L. Kramer and M. Giuliano, “Reasoning about and scheduling
linked hst observations with spike,” in Proc. Int’l Workshop on
Planning and Scheduling for Space Exploration and Science,
1997.

[7] W. Potter and J. Gasch, “A photo album of earth: Scheduling
Landsat 7 mission daily activities,” in Proc. Int’l Symp. on
Space Mission Operations and Ground Data Systems, 1998.

[8] A. Globus, J. Crawford, J. Lohn, and A. Pryor, “A comparison
of techniques for scheduling earth observing satellites,” in
Proc. Conf. on Innovative Applications of AI, 2004.

[9] D. E. Smith, “Choosing objectives in over-subscription plan-

ning,” in Proc. Int’l Conf. on Automated Planning & Schedul-
ing, 2004.

[10] R. S. Nigenda and S. Kambhampati, “Planning graph heuris-
tics for selecting objectives in over-subscription planning
problems,” in Proc. Int’l Conf. on Automated Planning &
Scheduling, 2005, pp. 192–201.

[11] M. van den Briel, R. S. Nigenda, M. B. Do, and S. Kamb-
hampati, “Effective approaches for partial satisfaction (over-
subscription) planning,” in Proc. National Conf. on Artificial
Intelligence, 2004, pp. 562–569.

[12] L. Li and N. Onder, “Generating plans in concurrent, prob-
abilistic, over-subscribed domains,” in Proc. National Conf.
on Artificial Intelligence, 2008, pp. 957–962.

[13] S. Sohrabi, J. A. Baier, and S. A. McIlraith, “Htn planning
with preferences,” in Proc. Int’l Joint Conf. on Artificial
Intelligence, July 2009.

[14] R. P. Goldman, C. A. Miller, P. Wu, H. B. Funk, and
J. Meisner, “Optimizing to satisfice: Using optimization to
guide users,” in Proc. American Helicopter Societys Int’l
Specialists Meeting on Unmanned Aerial Vehicles, 2005.

