
FUZZBUSTER: Towards Adaptive Immunity from Cyber Threats

David J. Musliner, Jeffrey M. Rye, Dan Thomsen, David D. McDonald, Mark H. Burstein
SIFT

Email: {musliner, rye, dthomsen, dmcdonald, burstein}@sift.net

Paul Robertson
DOLL

Email: paulr@dollabs.com

Abstract—Today’s computer systems are under relentless at-
tack from cyber attackers armed with sophisticated vulnerabil-
ity search and exploit development toolkits. To protect against
such threats, we are developing FUZZBUSTER, an automated
system that provides adaptive immunity against a wide variety
of cyber threats. FUZZBUSTER reacts to observed attacks
and proactively searches for never-before-seen vulnerabilities.
FUZZBUSTER uses a suite of fuzz testing and vulnerability
assessment tools to find or verify the existence of vulnerabilities.
Then FUZZBUSTER conducts additional tests to characterize the
extent of the vulnerability, identifying ways it can be triggered.
After characterizing a vulnerability, FUZZBUSTER synthesizes
and applies an adaptation to prevent future exploits.

Keywords-adaptive immunity, cyber-security, fuzz-testing

I. INTRODUCTION

Modern computer systems face constant attack from so-
phisticated adversaries, and the number of cyber-intrusions
increases every year [1], [2]. Cyber-attackers use numerous
vulnerability scanning tools that automatically probe target
software systems for a wide array of vulnerabilities. For
example, attackers use fuzz-testing tools (such as Peach
and SPIKE) that try to crash target applications, and SQL
injection tools (such as sqlmap and havij) that attempt to
manipulate the contents of databases. Upon discovering a
potential vulnerability, attackers use powerful exploit devel-
opment toolkits (such as Metasploit and Inguma) to quickly
craft exploits that take advantage of identified vulnerabilities.

Under DARPA’s Clean-slate design of Resilient, Adaptive,
Survivable Hosts (CRASH) program, we are developing
FUZZBUSTER to provide adaptive immunity from these
and other cyber-threats. FUZZBUSTER provides long-term
immunity against both observed and novel (zero-day) cyber-
attacks.

As shown in Figure 1, FUZZBUSTER operates proactively
to find vulnerabilities before they can be exploited, and
reactively to address exploits observed “in the wild.” FUZZ-
BUSTER directs the execution of custom and off-the-shelf
fuzz-testing tools to find and characterize vulnerabilities.
Fuzz-testing tools find software vulnerabilities by exploring
millions of semi-random inputs to a program. Given time
and expert guidance, fuzz-testing has proven effective at
finding a wide variety of software flaws, including defects
that account for the most severe security problems [3].

FUZZBUSTER uses fuzz-testing tools to find and charac-
terize vulnerabilities, determining what inputs to a program

Innate 
mechanisms 
stop exploit

Fuzz-testing Shield
Generation

Exemplar
Proactive

Refined 
vulnerability 

model

Fuzzbuster 
synthesizes 

possible 
exploit

Reactive

Figure 1. When reacting to a fault, FUZZBUSTER creates an exemplar test
case that reflects the environment and inputs at the time of the observed
fault. During proactive exploration, FUZZBUSTER synthesizes exemplar test
cases that could lead to a fault.

can cause a fault. FUZZBUSTER then synthesizes defenses
to shield or repair the flaw, protecting against entire classes
of exploits that may be encountered in the future.

II. ARCHITECTURE

Model Repository

Exemplar 

Generator Meta-Fuzz Tester 

(MFT)

Adaptation 

GeneratorExemplar

test case

Vulnerability

profile

Immunity Response Manager 

(IRM)Software

Models

Detected

faults/exploits

Adaptations

Vulnerability

Ontology

Rest of system

Hardware

Operating System

Applications Replication/Recovery, Fault Handling, 

Static Analysis, Tagged Architecture, 

Wrappers, Access Rules, Policy

CRASH host with innate

immune system: run.pl

Fuzz Wrappers

env-var fuzz-2001 overflow …

Reactive Proactive

Figure 2. FUZZBUSTER’s IRM guides its efforts to automatically find,
refine, and adaptively shield vulnerabilities.

Figure 2 illustrates FUZZBUSTER’s major components and
how they interact to provide adaptive immunity. FUZZ-
BUSTER uses both proactive and reactive exploration to
identify (and then shield) vulnerabilities in a CRASH host.



For each vulnerability, FUZZBUSTER creates a profile rep-
resenting the nature of the vulnerability, including what
ranges of inputs lead to the vulnerability. After constructing
a vulnerability profile, FUZZBUSTER creates and applies an
adaptation that prevents future exploits of the vulnerability.

Processing begins with the Exemplar Generator creating
an exemplar test case, either in response to a fault no-
tification from the CRASH innate immune system or in
response to an instruction from the Immunity Response
Manager (IRM) to initiate proactive exploration. At some
point, the IRM determines that looking for vulnerabilities
relating to a particular exemplar test case is the next highest
priority activity, and the IRM assigns this activity to the
Meta-Fuzz Tester (MFT). Based on the nature and attributes
of the exemplar test case, the MFT chooses a fuzz-testing
tool to search for or assess vulnerabilities associated with
the exemplar test case. Each fuzz-testing tool refines a
vulnerability profile based on the results of its exploration.
The MFT may use multiple fuzz-testing tools to construct
as complete a vulnerability profile as possible given the
available time or resources. For each vulnerability profile,
the Adaptation Generator creates one or more candidate
adaptations to protect the system against exploitation. When
appropriate, the IRM directs the Adaptation Generator to
verify and then subsequently apply these patches to the
CRASH host. Since fuzz-testing and patch verification both
run tests that may require significant time or resources to
complete, the IRM balances the priorities of these operations
with the available resources on the system, to minimize
FUZZBUSTER’s impact on system performance.

When an actual exploit or flaw is encountered and trapped
by the CRASH innate immune system, FUZZBUSTER re-
sponds reactively. In our design, the IRM puts a high priority
on responding to a live exploit, and may immediately choose
to use the Adaptation Generator to synthesize a customized
adaptation to shield the application while also engaging the
MFT to refine the vulnerability profile. FUZZBUSTER may
be conservative when reacting to an exploit, initially dis-
abling useful features of the subject software while disabling
the vulnerability. As the tests yield additional information,
FUZZBUSTER revises the adaptation to relax (or tighten) the
behavior restrictions it enforces. In this way, FUZZBUSTER
acts as a self-protecting, self-regenerative system, initially
clamping down on security and limiting functions when
attacked, and then gradually relaxing limits and restoring
functions as it gets a better picture of the vulnerabilities
that are being exploited.

A. Infrastructure

1) GBBopen: Our FUZZBUSTER implementation is built
using the GBBopen blackboard system [4], which supports
object-oriented data storage and event-triggered procedural
code. The functional components shown in Figure 2 are
implemented as blackboard Knowledge Sources (KSs) that

respond to events on blackboard objects representing the
ongoing tasks and results.

For instance, exemplar objects are used to describe cases
raised by the immune system and cases where proactive ex-
ploration is suggested. Vulnerability profile objects capture
a progressively-refined model of the set of situations that
lead to security warnings for a particular software system.

2) Interface to CRASH Host (run.pl): FUZZBUSTER
is designed to run in the context of a CRASH host whose
innate immune system provides alerts to security violations
that may indicate vulnerabilities. Since a physical instantia-
tion of the CRASH host is not yet available, FUZZBUSTER
defines a proxy that serves as a stand-in. The proxy is
currently implemented as a Perl script that provides key
CRASH functionality on existing systems. In particular,
the proxy mimics the CRASH innate immune system by
identifying and reporting certain classes of faults. The proxy
also provides an adaptation mechanism that allows FUZZ-
BUSTER to modify the environment and inputs of executing
programs.

B. Exemplar Generator

The Exemplar Generator captures relevant inputs and
environmental aspects of an observed or suspected vulner-
ability as an exemplar test case. Ideally, an exemplar test
case contains all of the information required to generate
a repeatable test case for the MFT. However, since it
is not always possible to record every relevant piece of
information, and knowing the relevant bits is impossible
in the context of proactive exploration, the MFT treats an
exemplar test case as a starting point for exploration.

When the CRASH proxy run.pl detects a fault, it sends
the Exemplar Generator a description of the environment and
inputs that triggered the fault. The description includes each
environment variable and its value, the path of the command,
the command line arguments, and the content passed thru
open streams including standard-input.

The Exemplar Generator implementation also synthesizes
exemplar test cases from application models for proactive
exploration. FUZZBUSTER stores models of applications
that include a specification of the allowed (or expected)
command line arguments and a flag indicating whether the
application accepts standard-input. The Exemplar Generator
translates these application models into exemplar test cases
by choosing specific command line arguments or inputs.
When creating an exemplar test case, the Exemplar Genera-
tor can also indicate that an input should be present during
testing, but that the specific value is arbitrary and should be
determined by the tester.

C. Meta-Fuzz Tester

The Immunity Response Manager invokes the MFT to
conduct an analysis of subsystem or protocol vulnerabil-
ities, focused by the exemplar test case and limited by



some computing resource constraints (initially, just execu-
tion time). The MFT attempts to identify the specific cause
of an observed defect, or probe for a latent vulnerability in
the case of proactive analysis. Starting from the exemplar
test case, the MFT constructs a belief state describing the
vulnerabilities that could be triggered by execution. Then, as
long as the MFT has remaining resources, it chooses a fuzz-
testing tool and uses it to try to gain more information about
the vulnerability. This analysis culminates in a vulnerability
profile describing the observed aspects of the vulnerability
and providing a basis for the Adaptation Generator to
generate an adaptation that protects the system. We view this
process as a Partially Obervable Markov Decision Process
(POMDP) that defines states in terms of vulnerability profile
refinements with the objective of maximizing the precision
of the profile generated along the way. Our preliminary
implementation uses a simpler method to allocate effort, and
is currently evolving into a POMDP-based solution.

To facilitate the integration of diverse fuzz-testing tools,
FUZZBUSTER defines a fuzz-tool wrapper interface to each
tool, providing a common API for controlling tool execution.
In addition to executing a fuzz tool, each fuzz-tool wrapper
interprets the results of execution, updating the vulnerability
profile with additional information.

D. Adaptation Generator

FUZZBUSTER’s Adaptation Generator improves system
security by creating and applying custom adaptations that
prevent exploitation of the flaws characterized by vulnera-
bility profiles. The Adaptation Generator uses a variety of
adaptive techniques, making the choice between them based
on an adaptation’s needs and the facilities available for the
relevant input channels. Our design anticipates that adapta-
tions could be defined at any level in the system, from an
atomic instruction, to a function call, to a high-level function
of an application. Our initial implementation operates only
at the application-input level, using the facilities provided
by the run.pl CRASH proxy.

To safely adapt a live system, the Adaptation Generator
follows two core principles. First, adaptations only restrict
or reduce capability or privilege. Second, adaptations do not
disable key functionality. To enforce the second principle,
FUZZBUSTER will capture a set of test cases during vulner-
ability analysis. Some of these tests will trigger the vulner-
ability and others will exercise the vulnerable application
without triggering the vulnerability. Along with any other
available regression tests, these tests will be used during
adaptation creation to verify that an adaptation successfully
prevents the vulnerability without otherwise changing the
results or behavior of the vulnerable application.

When creating an adaptation, the Adaptation Generator
maps the constraints in the vulnerability profile to a set of
actions that the adaptation can take to prevent the fault.
FUZZBUSTER’s initial set of actions includes “remove,”

“modify,” “truncate,” and “filter”. An adaptation using the
remove action completely removes the fault-inducing in-
put, for instance unsetting an environmental variable. An
adaptation using the modify action performs an arbitrary
modification of the input, for example replacing the value
with another one. The truncate and filter actions apply
common modifications to inputs. Truncate reduces the size
of the input channel to a specific threshold, for example
shortening the length of an argument to prevent a buffer
overflow. The filter action replaces specific substrings in
the input channel. The Adaptation Generator examines the
vulnerability profile to derive parameters for these actions,
such as the target length for truncation or the content to
remove.

When instructed by the IRM, the Adaptation Generator
verifies an adaptation by temporarily applying the adaptation
to the system and running the accumulated test cases. Once
an adaptation passes verification, the IRM may instruct the
Adaptation Generator to apply it to the system, thus prevent-
ing a vulnerability from being exploited. An adaptation fails
verification if it changes the behavior for non-fault-inducing
inputs, or if it fails to prevent a fault.

E. Immunity Response Manager

The IRM oversees and manages FUZZBUSTER’s adaptive
immunity processes, ensuring that FUZZBUSTER’s proactive
and reactive protection functions are effective, while avoid-
ing undue burden on the resources of the protected system.

The IRM’s chief roles include initiating proactive vul-
nerability exploration, assigning test priorities, and tasking
the MFT and Adaptation Generator. Across these activities,
the IRM controls the system by creating, assigning, and
pausing tasks. Each task specifies a unit of work to be
performed by a component in the system. FUZZBUSTER
defines tasks for exploring an exemplar test case, verifying a
patch, applying a patch to the system, and revoking a patch.
By controlling which tasks are active, the IRM controls the
balance between proactive and reactive testing, decides when
to allocate resources to verifying that patches are acceptable,
and controls when FUZZBUSTER modifies the system.

Our initial implementation of the IRM uses a hand-
coded, static prioritization scheme that ranks tasks based on
their order of arrival. This initial implementation ensures
that FUZZBUSTER eventually explores all exemplar test
cases and attempts to apply adaptations for all identified
vulnerability profiles. In the future, the IRM will evolve
into an MDP-based meta-controller similar to the approach
described in [5].

III. CONCEPT DEMONSTRATION

We have completed an initial end-to-end implementation
of FUZZBUSTER, and have conducted several demonstra-
tions and preliminary experiments with the system. For



example, the implemented FUZZBUSTER can reactively de-
tect an attack that exploits the CVE-2010-3856 privilege
escalation vulnerability in Linux’s glibc, and then fully
automatically diagnose the fault and create a shield that
prevents all future exploitations of that flaw. In addition
to reacting to faults, our FUZZBUSTER implementation can
conduct proactive searches for vulnerabilities and subse-
quently diagnose the relevant parts of the fault-inducing
input. In one case, FUZZBUSTER found a vulnerability in
tcsh and then determined that in addition to the specific
input to stdin, the vulnerability required the LANG envi-
ronment variable to be set appropriately. FUZZBUSTER then
automatically prevents that setting and thus shields the flaw.

With the first version of each FUZZBUSTER module
now functional, we have conducted numerous small tests
and one significant series of long experiments. In those
experiments, we used FUZZBUSTER to proactively search
for vulnerabilities in a set of 53 command-line utilities.
We ran the exploration on a Debian VM and a laptop
running OS X; both systems were fully patched at the
time of the experiment. FUZZBUSTER ran 3,380 trials in
just over 18 hours, identifying 23 unique inputs leading to
potentially exploitable vulnerabilities in five programs: a2p,
dc, indent, tcsh, and troff.

IV. RELATED WORK

As previously noted, the FUZZBUSTER approach has roots
in fuzz-testing, a term first coined in 1988 in the context of
software security analysis [6]. It refers to invalid, random,
or unexpected data that is deliberately provided as program
input in order to identify defects. Fuzz-testers and the closely
related “fault injectors” are good at finding buffer overflow,
XSS, denial of service (DoS), SQL Injection, and format
string bugs. They are generally not highly effective in
finding vulnerabilities that do not cause program crashes,
e.g., encryption flaws and information disclosure vulnerabil-
ities [7]. Moreover, existing fuzz-testing tools tend to rely
significantly on expert user oversight, testing refinement, and
decision-making in responding to identified vulnerabilities.

FUZZBUSTER is designed both to augment the power
of fuzz-testing and to address some of its key limitations.
FUZZBUSTER fully automates the process of identifying
seeds for fuzz-testing, guides the use of fuzz-testing to
develop general vulnerability profiles, and automates the
synthesis of defenses for identified vulnerabilities.

To date, several research groups have created special-
ized self-adaptive systems for protecting software applica-
tions. For example, both AWDRAT and PMOP [8] used
dynamically-programmed wrappers to compare program ac-
tivities against hand-generated models, detecting attacks and
blocking them or adaptively selecting application methods
to avoid damage or compromises.

The CORTEX system [9] used a different approach, plac-
ing a dynamically-programmed proxy in front of a replicated

database server and using active experimentation based on
learned (not hand-coded) models to diagnose new system
vulnerabilities and protect against novel attacks.

While these systems demonstrated the feasibility of the
self-adaptive, self-regenerative software concept, they are
closely tailored to specific applications and specific repre-
sentations of program behavior. FUZZBUSTER provides a
general approach to adaptive immunity that is not limited
to a single class of application. FUZZBUSTER does not
require detailed system models, but will work from high-
level descriptions of component interactions, such as APIs
or contracts. Furthermore, FUZZBUSTER’s proactive use of
intelligent, automatic fuzz-testing identifies possible vulner-
abilities before they can be exploited.

ACKNOWLEDGMENTS

This work was supported by DARPA and Air Force Re-
search Laboratory under contract FA8650-10-C-7087. The
views expressed are those of the author and do not reflect
the official policy or position of the Department of Defense
or the U.S. Government.

REFERENCES

[1] T. Kellerman, “Cyber-threat proliferation: Today’s truly perva-
sive global epidemic,” Security Privacy, IEEE, vol. 8, no. 3,
pp. 70 –73, may-june 2010.

[2] G. C. Wilshusen, “Cyber threats and vulnerabilities place fed-
eral systems at risk,” United States Government Accountability
Office, Tech. Rep., May 2009.

[3] “Automated penetration testing with white-box fuzzing,”
2008. [Online]. Available: http://msdn.microsoft.com/en-us/
library/cc162782.aspx#Fuzzing topic1

[4] D. D. Corkill, “Blackboard systems,” AI expert, vol. 6, no. 9,
pp. 40–47, 1991.

[5] D. J. Musliner, R. P. Goldman, and K. D. Krebsbach, “Delib-
eration scheduling strategies for adaptive mission planning in
real-time environments,” in Proc. Third International Workshop
on Self Adaptive Software, 2003.

[6] B. Miller, L. Fredriksen, and B. So, “An empirical study of
the reliability of unix utilities,” Communications of the ACM,
vol. 33, no. 12, December 1990.

[7] C. Anley, J. Heasman, F. Linder, and G. Richarte, The Shell-
coder’s Handbook: Discovering and Exploiting Security Holes,
2nd Ed. John Wiley & Sons, 2007, ch. The art of fuzzing.

[8] H. Shrobe, R. Laddaga, B. Balzer et al., “Self-Adaptive sys-
tems for information survivability: PMOP and AWDRAT,” in
Proc. First Int’l Conf. on Self-Adaptive and Self-Organizing
Systems, 2007, pp. 332–335.

[9] “Cortex: Mission-aware cognitive self-regeneration technol-
ogy,” Final Report, US Air Force Research Laboratories Con-
tract Number FA8750-04-C-0253, March 2006.


