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Abstract—BINSURGEON is a binary rewriting system that
enhances stripped binary executables with repairs, defenses,
and additional functionality. This involves making space-
consuming changes to the program’s control flow graph (CFG),
recomputing instruction content, and relocating instructions,
all while preserving functionality in the remainder of the
program’s control flow. BINSURGEON uses extendable rewrite
templates that enable other systems to specify and parameterize
program modifications, which allows BINSURGEON to be a
fully-automatic component of a larger system. In this paper,
we describe BINSURGEON in the context of the FuzzBoMmB
automated program analysis and repair system. We outline
BINSURGEON’s general binary rewriting algorithm for modify-
ing CFGs according to FUzzBOMB’s rewrite templates. We also
review some of FUZZBOMB’s rewrite templates to demonstrate
the diverse repair and defense strategies— including stack
protection, heap protection, CFI, pointer-checking, and more—
that are implemented by BINSURGEON to harden and repair
vulnerable binaries.
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I. INTRODUCTION

Cyberattacks threaten today’s computer systems, with
intrusions increasing in complexity and frequency every
year [1], [2]. We can counter this threat by improving the
programs at enterprise perimeters and thereby reducing the
cyber attack surface. Unfortunately, this presents multiple
practical challenges:

o Manually repairing vulnerable programs requires exper-
tise and familarity with the source code.

o Administrators must verify, prioritize, and then sequen-
tially address bug reports.

o Source code is not always available for third-party or
legacy executables.

Even with an army of expert programmers (and source code)
available for a trivial vulnerability, the perfect fix may take
tens of minutes to complete, test, and deploy, which is
orders of magnitude longer than the duration of a typical
transaction-based ROP attack.

We developed FuzzBoMB under DARPA’s Cyber Grand
Challenge (CGC) program to automatically analyze and
repair vulnerabilities in programs. FUzzBOMB uses the
FuzzBALL symbolic execution engine [3], [4], [5] to detect
vulnerabilities within the binary, and then it performs binary
rewriting to revise the executable on disk to defend it against
exploitation. This paper describes FUzzBOMB’s automatic

binary rewriting system, called BINSURGEON. BINSUR-
GEON takes a stripped binary and an optional vulnerability
report as input, and it automatically rewrites the binary with
multiple strategies to produce repaired or hardened variants.
BINSURGEON does all of this in the order of seconds.

Hardening a program may come at a cost: for instance,
if the control flow graph (CFG)— which statically de-
scribes the program’s instructions and execution paths— is
incomplete or incorrect, then binary rewriting may produce
erroneous results. For this purpose, FUZZBOMB optionally
runs a regression test suite to score and rank the BINSUR-
GEON variants. If a regression test suite is not provided,
FuzzBoMB uses the FuzzBALL symbolic execution engine
to accumulate test cases.

In this paper, we distinguish between two types of binary
rewrites:

1) Repair: Rewrite the binary to repair a known proof of
vulnerability (PoV) faulting test case. This is reactive
behavior.

2) Defense: Rewrite the binary to improve safety, in the
absence of a PoV. This is proactive behavior.

BINSURGEON performs both types of binary rewrites
using the same underlying technology; the only difference
is the content of the rewrites and the presence or absence of
a PoV. It does all of this by directly modifying the assembly
instructions in the program’s CFG. FuzzBOMB recovers the
CFG from the binary automatically, using mixed recursive/-
linear disassembly of the binary, static identification of jump
tables, and dynamic tracing to identify indirect control flow
(e.g., jump addresses stored as data) [3]. This means that
BINSURGEON does not use any intermediate languages or
reverse compilation techniques (cf. [6], [7]).

This paper describes BINSURGEON, which we have used
to rewrite 32-bit x86 CGC binaries and ordinary x86 Linux
executables [8]. FUzzZBOMB is a working demonstration that
BINSURGEON’s binary rewriting technology is an effective
component in an autonomous vulnerability repair system.
Furthermore, BINSURGEON is ready for integration with
future autonomous systems that adapt binaries with non-
defensive content (e.g., functionality patches) or for human-
guided binary rewriting (e.g., for mixed-initiative cyberde-
fense).

We begin by outlining the representations and inputs to
BINSURGEON, including background material and related



work. We then review BINSURGEON’s rewriting algorithm
and provide examples of BINSURGEON’s rewriting tem-
plates for repair and defense, as used within FUuzzBOMB.
We close with a discussion of opportunities to extend
FuzzBOMB’s rewriting templates and core rewriting capa-
bility.

II. BACKGROUND

Here we describe background on binary rewriting and
related work to contextualize BINSURGEON’s contribution.

A. Control flow graphs

As mentioned above, BINSURGEON operates on a bi-
nary’s CFG in order to modify the binary. For the purposes
of BINSURGEON, a CFG is comprised of assembly instruc-
tions grouped into blocks with exactly one entry point and
one exit point. At the exit point of any block, the program
either (a) transitions to the entry point of the adjacent block
in memory, (b) transitions the entry point of another block
via a control flow instruction such as jumps or calls, or (c)
terminates. These blocks and the control flows between them
comprises the nodes and edges, respectively, of a directed—
and often cyclic— graph.

The executable’s functions are subgraphs of the CFG,
often bounded by called blocks at the source(s) and re-
turn blocks at the sink(s), but exceptions exist, e.g., due
to uncalled (or indirectly called) functions and functions
that conclude with program termination rather than return
instructions. To account for these exceptions, BINSURGEON
infers function subgraphs by searching forward from called
blocks and searching backward from return blocks, merging
the intersecting block-sets, and also using common compiler
idioms to identify function prologues and epilogues.

Figure 1 shows a small CFG snippet of a single function
(at left) rewritten twice (middle and right) by BINSURGEON,
as we discuss later.

CFGs are recovered by disassembling the binary, which
is a potentially-unsound process, since it is undecidable
whether bytes in a stripped binary correspond to data or
code [9], [10]. This means that a smaller rewrite to the CFG
is better, all else being equal, since it assumes less of the
potentially-incorrect subgraph of the CFG.

B. Revising CFGs

We distinguish between two types of revisions to a CFG,
both of which are supported by BINSURGEON:

1) Space-conserving rewrites replace or remove instruc-
tions from the CFG without requiring additional space,
e.g., by reordering instructions or substituting an in-
struction for an instruction of equal byte-size.

2) Space-consuming rewrites modify the CFG in a way
that requires additional space, e.g., by adding in-
structions to existing functions/blocks or addition new
functions altogether.
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Figure 1. BINSURGEON rewrites a function to (1) add stack padding
with space-preserving rewrites and (2) add a stack cookie with non-space-
preserving rewrites.



These rewrites have an important practical difference:
space-conserving rewrites will preserve the integrity of the
unchanged CFG; but space-consuming rewrites require in-
structions to be shifted or relocated entirely, which poten-
tially changes the size and byte representation of instruc-
tions (including relative control flow instructions). Space-
consuming rewrites may thereby cause arbitrarily-large rip-
ples in the CFG, so they require special attention.

One technique for implementing space-consuming
rewrites is to write a trampoline, where a jmp instruction
is written over the existing instructions, and the overwritten
instructions— and others to be injected— are written to a
blank space in the binary, which is targeted by the first jmp
and terminates in a jmp back to the existing control flow.

C. Related work in binary rewriting

Previous work has explored specialized binary rewriting
to harden or diversify binaries. For instance, some rewriters
perform targeted rewriting to inject single, specialized de-
fenses such as stack cookies in return blocks [11] or control
flow checks in return blocks or before indirect calls [12].

Many recent systems perform binary rewriting to in-
crease diversity. In-place code randomization (IPCR) per-
forms space-conserving rewrites to substitute and reorder
instructions to help prevent code reuse attacks [13]. Sim-
ilarly, chronomorphic programs perform space-conserving
rewrites— including IPCR and block relocation— during
their execution [8] to diversify themselves against code reuse
attacks and cyber-reconnaissance (e.g., [14]). Other systems
perform load-time binary rewriting to diversify binaries with
a modified loader [10], [15]. These specialized rewriters
locate blocks at randomized locations in memory and then
ensure the CFG is intact.

Other methods exist for translating binaries into an in-
termediate representation (IR) (e.g., [6], [7]), and then
rewriting them back into machine code, e.g., for diversity
or safety purposes. In contrast to IR approaches, BINSUR-
GEON rewrites the CFG and assembly instructions directly,
which avoids potential IR translation errors and potential
performance degradation by making local, targeted changes.
As we demonstrate in the next section, the CFG and assem-
bly instructions themselves are expressive enough to write
diverse templates for program repair and defense.

Other tools such as DynlInst! automatically instrument
the binary, but they consume substantially higher disk
space, memory footprint, or performance overhead. BIN-
SURGEON’s rewrites are less invasive by comparison, since
its present operating setting (DARPA CGC) imposes tight
limits on disk, memory, and performance.

III. REWRITING WITH BINSURGEON

Here we describe BINSURGEON’s procedure for rewriting
stripped, third-party binaries to add or remove arbitrary

Uhttp://www.dyninst.org/

Table I
OUTLINE OF BINSURGEON’S BINARY REWRITING PROCEDURE.

GIVEN: Set of insertions/deletions to the CFG.
Compute the scope of the rewrite:
o SET affected blocks B = blocks that will change content.
o SET frontier blocks F' = B.
o WHILE any block f € F'is too small to hold a jmp instruction,
add f’s source block(s) to F' and B; remove f from F'.
Label the graph and rewrite it:
o CLAIM all space presently occupied by B as freespace.
e LABEL every block in B and every internal control flow
instruction accordingly.
o HOOK control flow at the previous start addresses of all F' by
writing labeled jmp instructions to their new labels.
o REWRITE the labled graph in memory with the insertions and
deletions.
Inject the rewritten, labeled subgraph back into the binary:
o ASSEMBLE instructions to estimate their size in the binary.
o PACK instructions into freespaces.
o TEST the packing job by assembling a custom linker script.
— IF we overflowed a freespace:
* IF other freespaces are above jmp size, update instruc-
tion size(s) accordingly and GOTO: PACK.
* ELSE return not-enough-space.
Repair BINSURGEON’s CFG model in memory:
o REMOVE nodes corresponding to former blocks B and all
edges from those nodes.
e ADD nodes and incident edges for newly-assembled blocks B’.
o SPLIT blocks as necessary if new outward edges from B’ fall
between a block’s entry and exit points.

content. We then describe some binary rewriting templates
that BINSURGEON uses for program defense and repair as
part of FUzzBOMB.

A. A Content-Agnostic CFG Rewriting Procedure

FuzzBOMB’s binary rewriting algorithm is summarized
in Table I. The procedure is given a CFG and a set of
insertions and/or deletions to the CFG.

The insertions and deletions are specified relative to
existing instructions in the CFG (e.g., insert instructions X
before instruction y or delete instructions Z). BINSURGEON
does not use absolute addresses (e.g., insert instructions X at
address y) for insertions and deletions, since making space-
consuming changes could shift the addresses of subsequent
instructions, thereby invalidating other absolute addresses.

BINSURGEON’s rewriting procedure first identifies af-
fected blocks that must be rewritten and relocated, as well
as frontier blocks that will connect the affected blocks to
the rest of the CFG. The affected blocks will be rewritten,
and if BINSURGEON overflows these blocks, it will utilize
(or append) remote freespace (i.e., available executable
memory) within the binary. BINSURGEON identifies frontier
blocks iteratively, since not all blocks are large enough to
support jmp instructions (i.e., for a trampoline, described in
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Section II-B). The frontier blocks serve as trampoline jmp
sites for the affected blocks, which is the trampoline content.

After identifying affected and frontier blocks, BINSUR-
GEON labels these blocks from their absolute addresses by
injecting assembly labels before each block, and then it
rewrites all internal control flow edges (i.e., conditional or
unconditional jumps between affected blocks b; € B and
by € B) to use these labels. BINSURGEON writes jmp in-
structions at the former entry point of each frontier block to
build a compound trampoline into the labled affected blocks.
BINSURGEON does not explicitly write jmp instructions
back to the unmodified CFG; rather, it uses the existing
control flow instructions of the labled blocks, which will
be reassembled later in its procedure. It then rewrites the
labeled, labled graph with the given insertions and deletions.

BINSURGEON next injects the rewritten, labled graph
back into the binary, using the affected blocks’ pre-
vious locations— and other claimed/extended executable
memory— as freespace. This is a greedy, iterative process of
instruction-packing: BINSURGEON finds the next freespace
proximal to the last freespace (since near jmp instructions
require fewer bytes) and writes as many instructions as
possible, insofar as it can also write a jmp instruction to
the next freespace.

After packing its freespaces, BINSURGEON writes out
a custom linker script to assemble all of the desired in-
structions at the desired addresses. This converts every
instruction of the labled CFG subgraph into the machine-
executable, location-specific opcodes. If the assembling and
linking succeeds, BINSURGEON writes the corresponding
instruction bytes directly into the binary and reports success.

In some cases, the assembled instructions may overflow a
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Remedies for templated binary rewriting, including support functionality, targeted repair templates, and defensive templates.

freespace. This occurs when BINSURGEON underestimates
instruction sizes and thereby over-packs a freespace. In these
cases, BINSURGEON updates its size estimates and attempts
to re-pack in the remaining freespaces. Otherwise, if it has
no more freespace, BINSURGEON reports that it needs more
space.

Finally, BINSURGEON repairs its in-memory model of the
program CFG, since the insertions and deletions may well
have changed existing functions and blocks connectivity or
added new functions and blocks altogether.

BINSURGEON’s rewriting procedure is content agnostic,
which means its rewriting capability is decoupled from the
rewritten content. As a practical consideration, this allowed
us to develop BINSURGEON independently of the repair and
defense templates it deployed for FuzzBOMB. We discuss
these repair and defense rewrites next, to demonstrate the
practicality of BINSURGEON.

B. Repairing & Defending Binaries

Here we describe rewriting templates— which we call
remedies— that BINSURGEON uses within FUZZBOMB to
harden and repair binaries. Figure 2 shows a dependence
graph of remedies, since some remedies depend on others’
functionality, and Table II lists a brief description of each
remedy. Each remedy takes one or more parameters (e.g.,
a vulnerable function or instruction) and produces a set of
instruction insertions and deletions to use with BINSUR-
GEON’s rewriting procedure.

These specific remedies are designed to avoid compro-
mised states or terminate the program when a compromised
state exists. Intuitively, when the program is in a compro-
mised state— or in program states where compromise is



imminent and unavoidable— terminating the program safely
is preferable to relinquishing control a cyberattack.

These remedies do not fix the underlying problems, such
as overflows or off-by-one errors; rather, they mitigate the
adverse, exploitable manifestations. Templated repair of the
underlying problems are the focus of some source-code
repair systems (e.g., [16]), which is evidence that we can also
develop BINSURGEON templates to fix underlying problems
if they are adequately described. Next, we describe some
novel and/or counter-intuitive remedies in additional depth.

The simplest remedies are terminate and
o/w-terminate, which terminate the program at a
specified location in the CFG. The o/w-terminate
(overwrite) remedy does this without first allocating
freespace, in case the binary cannot be properly extended.

The stack-pad and stack-cookie remedies are
used in succession to protect a function’s stack frame by (1)
adding padding to a stack frame before or between the local
variables, and (2) writing a cookie value within that padding,
to flag an overflow if it is overwritten. Figure 1 illustrates the
injections and deletions specified by these remedies as per-
formed by BINSURGEON: stack-pad (Figure 1, middle)
revises the setup and reset of the stack frame (Figure 1 [a]
and [b], respectively) and revises all references to the stack
via the base pointer (Figure 1[c]); and stack-cookie
(Figure 1, right) injects a cookie at the head of the function
(Figure 1[d]), and adds cookie checks after each function
call (Figure 1[e]) and at the return block (Figure 1[f]).

One of the most complex remedies used within
FuzzBOMB is the heap-cookie. This remedy template
is comprised of the following modifications:

1) Injecting functions that intercept memory management
functions, e.g., malloc and free, that allocate and
free an extra byte, respectively, and write a specific
value to the extra byte, and store the location of the
byte within an injected array.

2) Overwriting call instructions to malloc and free
to instead invoke the injected functions.

3) Inject a cookie-checking function that iteratively
checks the cookie array, and terminates if any have
changed value.

4) Inject a call to the cookie-checking function at the
location of the PoV.

In conjunction, these modifications to the CFG cause the
program to add an extra cookie-byte to each heap allocation
and then check these cookie-bytes where specified, termi-
nating if it senses an overwrite.

IV. CONCLUSION AND FUTURE WORK

We have presented the BINSURGEON general binary
rewriting system. We distinguished BINSURGEON’s binary
rewriting capability (i.e., its general rewriting procedure)
from the content that it writes into the binary. We described
BINSURGEON’s rewriting capabilities in the setting of the

Table II
REMEDIES IMPLEMENTED BY BINSURGEON FOR FUZZBOMB

Support remedies add utilites for defense & repair:

e cleanup: substitutes instructions in the CFG with instructions
guaranteed to re-assemble.

e add-text-section: appends a new executable section to
the binary by extending or adding a program header.

e fn-inject: adds new function(s) to the binary.

e fn-intercept: intercepts existing functions by rerouting
direct calls to new or existing functions.

e add-data-space: adds space in the binary for static data
storage.

Repair remedies address known PoVs:

e terminate: injects instruction(s) to terminate the program at
the PoV location.

e o/w-terminate: overwrite existing instructions to terminate
the program at the PoV location.

e null-ptr-check: test a register or memory address, and
terminate if zero.

e stack-top-cookie: write a cookie value to the top of
the program stack. Check it at the PoV location; terminate if
overwritten.

e heap-cookie: intercept malloc, write a cookie value after
each allocation. Check it at the PoV location; terminate if
overwritten.

e Dbss-cookie: write cookie value(s) into the binary’s static data
segment. Check it at the PoV location; terminate if overwritten.

Repair & Defense addresses known/unknown vulns:

e stack-pad: increase stack frame size; decrement all base
pointer offsets below a given threshold.

e stack-cookie: write a constant to frame pointer between
local variables or before the return address. Check the cookie
upon return or after function calls; terminate if overwritten.

e range-check: if a memory address (e.g., pointer or function
pointer) is not within a given range (e.g., text section), terminate.

e receive-check: intercept input functions and terminate if
they will write to illegal memory ranges.

e cfi:range-based control flow integrity on return addresses and
indirect call and jmp addresses.

FuzzBoMB fully-automated binary analysis and repair sys-
tem, including template-based rewrites that detect and react
to corrupton of stack memory and heap memory.

As mentioned above, FUzZZBOMB presently uses BIN-
SURGEON to mitigate the effect of vulnerabilities in order to
prevent subsequent malicious exploits; however, we believe
that the same template approach can be used to fix the
vulnerability itself (e.g., integer overflow, off-by-one-error,
buffer overflow), provided information about the problem.
This is already being done with templates at the source
code level (e.g., [16]), so constructing templates in a stripped
binary setting is an area of future work on FUZZBOMB and
BINSURGEON technologies.

We do not regard FUZZBOMB’s set of template-based
repairs and defenses as a complete set of strategies for
hardening binaries, but it illustrates BINSURGEON’s di-
verse capabilities. In the near term, we plan to increase
FuzzBOMB’s set of program-hardening templates, e.g., with



different CFI strategies (e.g., [12]) and memory corruption
detectors.
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