Appearsin Working Notes of the AAAI Spring Symposium on Real-Time Autonomous Systems
Stanford, CA, March 2000

Modeling and Verification for Automatic Synthesis of Real-time
Controllers

Robert P. Goldman, Michael J. Pelican, David J. Musliner
Automated Reasoning Group
Honeywell Technology Center
3660 Technology Drive
Minneapolis, MN 55418
{goldman, pelican, musliner }@htc.honeywell.com

Introduction

We have developed a novel technique for automatically
synthesizing hard real-time reactive controllers using
model-checking verification. Our algorithm builds
a controller incrementally, using a timed automaton
model to check each partial controller for correctness.
The verification model captures both the controller de-
sign and the semantics of its execution environment.
If the controller is found to be incorrect, information
from the verification system is used to direct the search
for improvements. This paper describes how our con-
troller synthesis process uses verification, and explains
in detail how we model the execution of the real time
subsystem of the CIRCA intelligent control architec-
ture.

We are developing autonomous, flexible control sys-
tems for mission-critical applications such as Un-
manned Aerial Vehicles (UAVs) and deep space probes.
These applications require hybrid real-time control
systems, capable of effectively managing both dis-
crete and continuous controllable parameters to main-
tain system safety and achieve system goals. Using
the CIRCA architecture for adaptive real-time con-
trol systems (Musliner, Durfee, & Shin 1993; 1995;
Musliner et al. 1999), these controllers are synthesized
automatically and dynamically, on-line, while the plat-
form s operating. Unlike many other intelligent con-
trol systems, CIRCA’s automatically-generated con-
trol plans have strong temporal semantics and provide
safety guarantees, ensuring that the controlled system
will avoid all forms of mission-critical failure.

CIRCA uses model-checking techniques for timed
automata (Alur 1998; Yovine 1998) as an integral part
of its controller synthesis algorithm. CIRCA’s Con-
troller Synthesis Module
(CSM) incrementally builds a hard real time reactive
controller from a description of the processes in its envi-
ronment, the control actions available and a set of goal
states. To do this, the Controller Synthesis Module

must build a model of the controller it is constructing
that is faithful to its execution semantics, and use this
model to verify that the controller will function safely
in its environment.

In the following section, we give a brief overview of
the structure and purpose of the CIRCA architecture.
Then we briefly describe the CSM module and its syn-
thesis algorithm, wrapping up with a discussion of the
way the CSM uses a timed-automaton verifier. After
this, we describe the modeling of the CIRCA real time
executive as a set of interacting timed automata. Fi-
nally, we conclude with some comparison to related
work and some mention of future research directions.

CIRCA

The CIRCA architecture is intended to provide intelli-
gent control to autonomously-operating systems.! To
do this, CIRCA must operate at multiple time scales.
CIRCA must be able to reason about the profile of a
mission as a whole. For example, if CIRCA is operat-
ing an Uninhabited Combat Aerial Vehicle (UCAV), its
mission-level planning must be able to reason about is-
sues like fuel use and navigation to its goal. At a lower
level, CIRCA must have a controller that is able to
react to threats and opportunities that arise in its im-
mediate environment. For example, when targeted by
enemy radar, the CIRCA-controlled UCAV must carry
out countermeasures (e.g., release chaff) and initiate
evasive maneuvers. Furthermore, CIRCA must guar-
antee that these reactions will be taken in time. It is
not enough to eventually release chaff; CIRCA must
inspect its environments for threats sufficiently often,
and must react to those threats within specified time
bounds.

LCIRCA has been applied to real-time planning and con-
trol problems in several domains including mobile robotics,
simulated autonomous aircraft, space probe challenge prob-
lems (Musliner & Goldman 1997) and controlling a fixed-
wing model aircraft (Atkins et al. 1998).

Mission
Planner

Al Subsystem

Control Synthesis
Module

Vo

Real-Time
Subsystem

Figure 1: Basic CIRCA architecture.

CIRCA employs two strategies to manage this com-
plex task. First, its mission planner decomposes the
mission into more manageable subtasks that can be
planned in detail. Second, CIRCA itself is decom-
posed into two concurrently-operating subsystems (see
Figure 1): an AT Subsystem (AIS) reasons about high-
level problems that require powerful but potentially un-
bounded computation, while a separate real-time sub-
system (RTS) reactively executes the AIS-generated
plans and enforces guaranteed response times. The AIS
contains the CSM, which is the focus of this paper, as
well as the mission planner and some support modules,
none of which we will discuss here.

The Controller Synthesis Module (CSM) bridges
mission-level planning and reactive control. It takes
descriptions of a phase of a system mission and dy-
namically, automatically, synthesizes a set of reactions
that maintain the system’s safety and move it towards
its goals. When this controller is operating, the CSM
will be working to generate controllers for other phases
of the mission.

The Controller Synthesis Module

The objective of the CIRCA CSM is to automatically
synthesize hard real-time discrete controllers that guar-
antee system safety when run on CIRCA’s real-time
subsystem. The CIRCA CSM builds reactive discrete
controllers that observe the system state and some fea-
tures of its environment and take appropriate control
actions. In constructing such a controller, the CSM
takes a description of the processes in the system’s
environment, represented as a set of transitions that
modify world features and that have worst case time
characteristics. From this description, CIRCA incre-
mentally constructs a set of reactions and checks them
for correctness using a timed automaton verifier.

CIRCA’s reactive controllers

The real-time controllers that CIRCA builds sense fea-
tures of the system’s state (both internal and exter-

nal), and execute reactions based on the current state.
That 1s, the CIRCA RTS runs a memoryless reactive
controller. Note particularly, that CIRCA does not
maintain any internal clocks, so time 1s not a feature
used in choosing control actions. The CIRCA system
achieves performance guarantees by analyzing the ex-
ecution time of its actions, the duration of external
processes, and by sensing features at appropriate inter-
vals, not by consulting clocks.? We will provide more
information about the execution semantics of CIRCA’s
real-time controllers below.

Given the above limitation on the form of the con-
troller, the controller synthesis problem can be posed
as choosing a control action for each reachable state
(feature-value assignment) of the system. This prob-
lem is not as simple as it sounds, because the set

of reachable states is not a given — by the choice
of control actions, the CSM can render some states
(un)reachable.

Indeed, since the CSM focuses on generating safe
controllers, a critical issue is making failure states un-
reachable. In controller synthesis, this is done by the
process we refer to as preemption. A transition t is
preempted in a state s iff some other transition ¢ from
s must occur before ¢ could possibly occur. In the
process of controller synthesis, the CSM achieves pre-
emption by choosing a control action for the state that
is fast enough that it is guaranteed to occur before the
transition to be preempted.

Note that the question of whether a transition is pre-
empted is not a question that can be answered based
on local information: preemption of a transition, ¢ in a
state, s 1s a property of the controller as a whole, not
of the individual state. For example, to know when a
bomb is going to go off in a room with you, you can’t
just consider how fast you can throw the bomb out the
window — you must also consider how long its timer
has been running before you got to the state in which
you will throw it out the window. It i1s this non-local
aspect of the controller synthesis problem that has led
us to use automatic verification.

Representing a control problem

CIRCA’s State Space Planner system builds reaction
plans based on a world model and a set of formally-
defined safety conditions that must be satisfied by fea-
sible plans (Musliner, Durfee, & Shin 1995). To de-
scribe a domain to CIRCA, the user inputs a set of
transition descriptions that implicitly define the set of
possible system states. These transitions are of four

20f course, it would be possible to feature-encode cer-
tain key time periods for CIRCA’s benefit by, for example,
using a one-shot timer to set a register when that period
has expired.

types:

Action transitions represent actions performed by
the RTS.

Temporal transitions represent the progression of
time and continuous processes that may need to be
preempted.

Event transitions represent world occurrences as in-
stantaneous state changes.

Reliable temporal transitions represent continu-
ous processes (such as the operation of a control law)
that may need to be employed by the CIRCA agent.

For example, Figure 2 shows several transitions used
in a situation where CIRCA 1s to control the Cassini
spacecraft in Saturn Orbital Insertion.?

While in general there is no guarantee that an im-
plicit representation like this will be smaller than enu-
merating the state space, in practice we find this repre-
sentation far more efficient. The irredundant represen-
tation of processes (e.g., the process of IRU failure that
can occur in any state in which the IRU is not already
failed), is also easier to engineer. Furthermore, we use
this implicit representation in concert with algorithms
that allow us to avoid enumerating unreachable states,
providing a further advantage.

CSM algorithm

At the highest level of abstraction, the controller syn-
thesis algorithm is as follows:

1. Choose an element of the set of reachable states
(at the start of controller synthesis, only the initial
state(s) is(are) reachable).

2. Choose a control action (an action or a reliable tem-
poral) for that state.

3. Invoke the verifier to confirm that the (partial) con-
troller is safe.

4. If the controller is not safe, use information from the
verifier to direct backtracking.

5. If the controller is safe, recompute the set of reach-
able states.

6. If there are no unplanned reachable states (reach-
able states for which a control action has not been
chosen), terminate successfully.

7. If some unplanned reachable states remain, loop to
step 1.

Figure 3 provides a simple “comic-book” illustration
of the process of controller synthesis. Initially (i), there
is only one state reachable, the initial state. In (ii), the
CSM has chosen a control action (dashed line) for the
initial state (planned states are shaded gray), that will

SThe problem is taken from Erann Gat’s “From the
Trenches” (Gat 1996).

;; the action of switching on an Inertial

; ;Reference Unit (IRU)

ACTION start_IRUl_warm_up
PRECONDITIONS: ’ ((IRU1 off))
POSTCONDITIONS: ’((IRUl warming))
DELAY: <= 1

;3 the process of the IRU warming

RELTABLE-TEMPORAL warm_up_IRU1
PRECONDITIONS: ’ ((IRU1 warming))
POSTCONDITIONS: ’ ((IRU1 on))
DELAY: [45 90]

; ;sometimes the IRUs break without warning
EVENT IRU1_fails
PRECONDITIONS: ’ ((IRU1 on))
POSTCONDITIONS: ’ ((IRU1 broken))

;3 if the engine is burning while the active
;3 IRU breaks, we have a limited amount of
;, time to fix the problem before the
; spacecraft will go too far out of control
TEMPDRAL fail_if_burn_with_broken_IRU1
PRECONDITIONS: ’ ((engine on) (active_IRU IRU1)
(IRU1 broken))
POSTCONDITIONS: ’ ((failure T))
DELAY: >= 5

Figure 2: Example transition descriptions given to

CIRCA’s planner.

carry the system to a goal state, sf (goal states are
indicated by bold outlines). There is also a temporal
transition (double line) that may carry the system to
s2. In (iii), we see the CSM decide to assign no-op as
the control action for s1. This is permissible because s1
is a safe state (there are no transitions to failure from
that state), and is desirable because s/ is a goal state.
In (iv), the CSM attempts to complete the controller
synthesis process by assigning an action to s2 that will
carry the system to s3. However, this action does not
preempt the transition to the failure state (black). This
triggers a backtrack (v), and the system chooses an al-
ternative action (vi) that will carry the system to s/
(instead of s3). This alternative action does preempt
the transition to the failure state (dark bar superim-
posed on the transition arrows), so the controller is
safe. (vi) shows how the set of reachable states may
vary as the controller synthesis process proceeds: at
this point s3 is no longer reachable; since the CSM has
chosen not to employ the action that made it reach-
able in (iv). All reachable states have been planned
for, so the controller synthesis process has terminated
successfully.

During the course of the controller synthesis run
above, the CSM will have employed the verifier mod-
ule after each assignment of a control action (i.e., after

@) (in) (i)

BACKTRACK

\\@ \@//

(iv) v) (vi)

Figure 3: A simple example of controller synthesis.

ii, iii, iv and vi). However, at stages ii, iii and iv,
the controller is not complete. At such points we use
the verifier as a conservative heuristic by treating all
unplanned states (e.g., s2 in iii) as if they are “safe
havens.” Unplanned states are treated as absorbing
states of the system, and any trace that enters these
states ends and is regarded as successful. When the
verifier indicates that a CSM-generated controller is
unsafe, the CSM will query it for a path to the distin-
guished failure state. The set of states along that path
provides a set of candidate decisions to revise.

Modeling for verification

In controller synthesis, the CSM uses a model which
1s oversimplified and is biased to be overoptimistic. It
relies on the automatic verification system to assure
that the controllers it builds are safe. This means it
is critical that the verification system have a faithful
model of the execution of the system and of the en-
vironment in which 1t operates. This section explains
how we constructed this model.

Execution semantics

In order to model the of the RTS accurately, we must
understand how 1ts controllers are represented and ex-
ecuted. The controllers of the CIRCA RTS are not ar-
bitrary pieces of software; they are intentionally very
limited in their computational power.* The controller
generated by the CSM is compiled into a set of Test-
Action Pairs (TAPs) to be run by the RTS. Each TAP

4These limitations serve to make controller synthesis
computationally more efficient and make it simpler to
provide an operating platform that can provide timing
guarantees.

#<TAP 8>
Tests : (AND
(TYPE_OF_CONVEYOR_PART SQUARE)
(PART_IN_GRIPPER NIL)
(EMERGENCY NIL))
Acts : pickup_known_part_from_conveyor

Figure 4: Sample Test-Action Pair from a CIRCA
controller for a simulated PUMA robot
arm attached to a conveyer belt.

has a boolean test expression that distinguishes be-
tween states where a particular action is and 1s not to
be executed. The test expression is a function of the
plan as a whole, rather than local action assignments,
because the same action may be assigned to more than
one state. A sample TAP for the Puma domain is given
in Figure 4.

The set of TAPs that make up a controller are as-
sembled into a loop and scheduled to meet all the TAP
deadlines. The deadlines are computed from the de-
lays of the transitions that the control actions must
preempt.® It is possible that scheduling will not suc-
ceed. In this case, the AIS will backtrack to the CSM
to revise the controller, generate and schedule a new
set of TAPs.

Timed automata

Now that we have a sense of the execution semantics
of CIRCA controllers, let us briefly review the model-
ing formalism, timed automata, before presenting the
model itself. A timed automaton is a nondetermin-
istic finite automaton (NFA) augmented with timing
information. In the explication in this section, we fol-
low Rajeev Alur’s notation for describing timed au-
tomata (Alur 1998), and refer the interested reader to
his paper for more details.

Definition 1 (Timed Automaton) A timed
automaton A is a tuple <L, IL° v X, I, E> where

1. L s a finite set of locations;

2. L° C L s a subset of initial locations;

3. X is a finite set of labels;

4. X s a finite set of clocks;

5. Iis a mapping, L — ®(X) from locations to clock
constraints (see below) and

6. BEC Lx%x2% x®(X) x L is the set of switches —
transitions augmented with clock constraints (®(X)),

clock resets (2%), and a label (3).

The clock constraints that we use in our modeling
will all be of the form ¢; < k or ¢; > k for some clock

®The tests and actions that the RTS can execute as part
of its TAPs have associated worst-case execution times that
are used to create and verify the TAP schedule.

CSM Model Base Model
Transition
Images

Drsaie. @
e
| —[_}\
[Verifier
Transition Models

Figure 5: A pictorial summarization of the verifier
model and its relation to the CSM model.

¢; and integer constant k. Note that while the clocks
are always compared to integers, they may take on ar-
bitrary real values; this is a continuous time model.
The labels (sometimes referred to as events) are used
in the definition of products of timed automata, in or-
der to synchronize switches in different machines. They
are important to our modeling effort, since we explicitly
model the multiple processes as separate automata.

Modeling CIRCA with timed automata

CIRCA translates the CSM model into a set of inter-
acting timed automata for a timed automaton verifier
(see Figure 5). There is one “base machine,” the lo-
cations of which correspond to the states of the CSM
model. The base machine captures the overall state
of the system and its environment. The base machine
interacts with a number of “transition machines,” that
correspond to the transitions the CSM reasons about.
This interaction is captured by the labels on the tran-
sitions of the various machines; these ensure that the
base machine state reflects the effect of the transitions
and ensure that the state of the transition machines
accurately indicate whether or not a given process is
enabled in a particular system state. The use of mul-
tiple automata permits us to accurately and elegantly
capture the interaction of multiple, simultaneously op-
erating processes.

There are two classes of safety violations that we look
to the verifier to detect. The obvious one is a tran-
sition to the CSM’s distinguished failure state. The
second is a failure to successfully preempt some transi-
tion that does not carry the system directly to a failure
state. These are transitions that the CSM has decided
to preempt in order to make other states unreachable,
possibly to make the controller smaller and more ef-
ficient or to avoid other states from which the failure
state will be reachable. To detect the second class of
safety violations, for each state s, we add to the base

Enable T

Disabled Enabled

Disable T

Fire T

Figure 6: A timed automaton corresponding to a
CSM transition, 7.

machine a transition to the distinguished failure state
for each transition that the CSM intends to preempt
in s.

The actual timing characteristics of the transitions
are represented in separate transition machines. As we
have outlined above, the CSM’s automaton is a poor
representation of the actual execution semantics of the
CIRCA control system. There is not a single plant tak-
ing one action at a time; the environment is made up of
a number of processes that are executing concurrently.
These processes are represented as the nonvolitional
transitions in a CSM domain description: the tempo-
rals, events and reliable temporals. The actions of the
CIRCA control system occur concurrently with these
environment processes.

Therefore, for each such process (CSM transition),
we add a separate machine, with a distinguished clock,
to the verifier model. These machines are all of the
same form: they have two states, one for when the
process is enabled, and one when it is disabled. These
machines have three transitions: one from enabled to
disabled, one in the opposite direction, disabling the
process, and one self-arc from the enabled state corre-
sponding to the completion of the process, when it has
its effect on the environment.

The timing characteristics of the process are cap-
tured in the clock constraints of the transition ma-
chine. The fire T transition in the transition machine
will contain a guard that expresses the lower bound
constraint on the process. For an event or action, the
guard will be vacuous. For a temporal, there will be
a guard of the form c¢p > A i, (7). For example, for
warm_up_IRU1 in Figure 2, there would be a constraint
Cwarm_up_IRU1 > 45 (A pip(warm_up_IRU1)).

The guard on the transition only captures limits on
how early a transition can occur. Upper bounds (on
reliable temporals and actions) are captured by plac-
ing an invariant on the enabled state of the transition
machine. For example, it is impossible to stay in the
enabled state of the warm_up_IRU1 machine for longer
than 90 time units. The machine must leave this state,

either by firing the transition, or by becoming disabled,
before this time (Amax(T)) is up.

The interaction between the base machine and the
transition machine for a CSM transition 7" is captured
using labels. The arcs of the transition machine for
T are given the labels enable T, disable T'; and fire T
(Figure 6). Those labels are added to appropriate tran-
sitions of the base machine as outlined below, in order
to capture the enabling and disabling of processes, and
the effect of those processes on the system and its en-
vironment.

The overall system state determines whether or not
a given transition is enabled. For example, the transi-
tion warm_up_IRU1 is only enabled in states when the
IRU1 feature has the value warming (Figure 2). Ac-
tions are enabled only in CSM states for which that
action has been chosen for execution. This is modeled
by tagging those transitions of the base machine that
carry it from a state where T' 1s enabled to one where
it 1s disabled, with the disable T'. This labeling will
force the transition machine to its disabled state when
that transition is followed. The enabling of processes
is handled analogously, mutatis mutandis.

In the CSM model, there will be an edge from each
state in which a transition 7" is enabled (and not pre-
empted) to its successor state by that transition. For
example, in states where the transition warm_up_IRU1
is enabled, there will be arcs that carry the system
to a new state in which the feature IRU1 has changed
its value from warming to on (Figure 2). In the con-
struction of the base machine, the corresponding arcs
will be labeled with the corresponding fire T, e.g., fire
warm_up_IRU1. This ensures that the effects of tran-
sitions will be reflected in the state represented in the
base model.

Final verification of complete controller

Recall that the descriptions of action transitions taken
by controllers have associated with them delays that
correspond to the worst case execution times of the ac-
tion itself. For example, when controlling the Puma
arm, we have worst-case execution times that corre-
spond to the time it takes to actually move the arm.
These execution times are not realizable in any actual
system; they only serve as lower bounds on the actual
times, which are functions not of the actions alone, but
of the entire control program.

The actual worst-case time to execution of a TAP
cannot be known until the entire controller is con-
structed because each TAP is a part of the overall re-
action loop. This means that in general, the RTS will
not be running the appropriate TAP immediately after
the transition to the state for which its action should
be run. In the worst case, the RTS might have to run

event
state x : State

‘}tests‘ actions |
[\

| tests | actions |
! weet(1) !

Figure 7: A worst-case execution of a particular

TAP.

(and fail) the tests for all other TAPs in the reaction
loop before getting to the right one (see Figure 7).

Figure 7 illustrates this possibility. The TAP that
handles state Y has begun its tests just before the tran-
sition from X to Y. So the appropriate action will not
be taken until all other TAPs (shown as half-solid bars,
indicating that they do not run to completion) have
failed their tests.

This shows, then, that the actual delay times for
the various actions cannot be known until after the en-
tire controller has been constructed and compiled into
a scheduled TAP loop. Accordingly, the final step of
controller synthesis is to re-run the verification process
with a new model that contains, instead of the lower-
bound estimates on action times, accurate worst-case
bounds on the control actions, derived using the full
reaction loop, with sensing actions as well as control
actions.

Related Work

In independently-developed work, Asarin, Maler,
Pneuli and Sifakis (AMPS) (1995; 1995) developed a
game-theoretic method of synthesizing real-time con-
trollers. They view the problem as trying to “force a
win” against the environment, by guaranteeing that all
traces of system execution will pass through (avoid)
a set of desirable (undesirable) states. Their work
stopped at the development of the algorithm and
derivation of complexity bounds; it was never imple-
mented. Our work concentrates on the implementation
aspects of this problem and on making it computation-
ally practical.

ATl researchers at IRST have developed an approach
to controller synthesis that they call “planning as
model checking.” (Giunchiglia & Traverso 1999) Their
work is similar to our own in being concerned with
efficient controller synthesis, but more like AMPS in

that the verification system is used as a prover to solve
the problem of controller synthesis; rather than being
wrapped inside a synthesis program. Furthermore, the
IRST researchers assume a simpler model of execution,
ignoring the duration of actions, and the question of
how the controller is to be implemented.

Kabanza, et. al. have developed work (Kabanza
1996; Kabanza, Barbeau, & St.-Denis 1997) very sim-
ilar to ours in scope and intention. Their early work
(fully presented in (Kabanza, Barbeau, & St.-Denis
1997)) is similar to the original CIRCA State Space
Planner work, but does not take into account metric
temporal information. Later work (Kabanza 1996), ex-
tends the original framework by incorporating metric
time, but does so by effectively imposing a system-
wide clock and progressing the controller one “tick”
at a time. In control problems with widely varying
time constants, this approach will lead to an explosion
of states; we have adopted model-checking techniques
that minimize this state explosion.

Conclusions

The CIRCA CSM is a novel application of automatic
verification systems to automatic synthesis of con-
trollers. Previous attempts to use automatic verifiers
in controller synthesis have limited themselves to sim-
pler execution semantics. Our system has a rich model
of the execution of its timed controller, that reflects
the behavior of a hard real-time executive.

The CIRCA system described above has been im-
plemented as a Common Lisp program. The CSM
currently works with two different verifiers, Kro-
Nos (Yovine 1998) and a timed automaton verifier of
our own that is tailored specifically to the timed au-
tomata CIRCA builds. KRONOS has better backward-
verification and our own verifier has better forward ver-
ification (measured in terms of states explored). This
means that KRONOS provides better performance at
determining whether or not a given CIRCA controller
is safe, but in the case where the controller is not safe
our custom verifier is able to find a path to the failure
state more rapidly. We are currently working both to
improve our own verifier and to determine whether to
use both verifiers together.

Other areas of current work include expanding the
CIRCA framework to the synthesis of more complex
controllers. We are currently looking at automatically
synthesizing hybrid controllers where the continuous
aspect of the problem is expanded to linear control of a
set of continuous parameters, rather than simply clock
constraints.

References
Alur, R. 1998. Timed automata. In NATO-ASI Sum-

mer School on Verification of Digital and Hybrid Sys-
tems.

Asarin, E.; Maler, O.; and Pneuli, A. 1995. Symbolic
controller synthesis for discrete and timed systems.
In Antsaklis, P.; Kohn, W.; Nerode, A.; and Sastry,
S., eds., Proceedings of Hybrid Systems II. Springer
Verlag.

Atkins, E. M.; Miller, R. H.; VanPelt, T.; Shaw, K. D.;
Ribbens, W. B.; Washabaugh, P. D.; and Bernstein,
D. S. 1998. Solus: An autonomous aircraft for flight
control and trajectory planning research. In Proceed-
ings of the American Control Conference (ACC), vol-
ume 2, 689-693.

Gat, E. 1996. News from the trenches: An overview of
unmanned spacecraft for AI. In Nourbakhsh, I., ed.,
AAAI Technical Report SS5-96-04: Planning with In-
complete Information for Robot Problems. American
Association for Artificial Intelligence. Available at
http://www-aig.jpl.nasa.gov/home/gat/gp.html.

Giunchigha, F., and Traverso, P. 1999. Plan-
ning as model-checking. Paper accompanying in-
vited talk to be presented at the 1999 European
Conference on Planning (ECP-99). Available through
http://afrodite.itc.it:1024/ " leaf/.

Kabanza, F.; Barbeau, M.; and St.-Denis, R. 1997.
Planning control rules for reactive agents. Artificial

Intelligence 95(1):67-113.

Kabanza, F. 1996. On the synthesis of situation con-
trol rules under exogenous events. Appeared in the
working notes of the 1996 AAAI Workshop on Theo-
ries of Action, Planning, and Robot Control: Bridging
the Gap.

Maler, O.; Pneuli, A.; and Sifakis, J. 1995. On the
synthesis of discrete controllers for timed systems. In
Mayr, E. W., and Puech, C., eds., STACS 95: Theo-
retical Aspects of Computer Science. Springer Verlag.
229-242.

Musliner, D. J., and Goldman, R. P. 1997. CIRCA
and the Cassini Saturn orbit insertion: Solving a
prepositioning problem. In Working Notes of the
NASA Workshop on Planning and Scheduling for
Space.

Musliner, D. J.; Goldman, R. P.; Pelican, M. J.; and
Krebsbach, K. D. 1999. SA-CIRCA: Self-adaptive
software for hard real time environments. IEEE In-
telligent Systems 14(4):23-29.

Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1993.
CIRCA: a cooperative intelligent real-time control ar-

chitecture. IEEE Transactions on Systems, Man and
Cybernetics 23(6):1561-1574.

Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1995.
World modeling for the dynamic construction of real-
time control plans. Artificial Intelligence 74(1):83-
127.

Yovine, S. 1998. Model-checking timed automata. In
Rozenberg, G., and Vaandrager, F. eds., Embedded
Systems. Springer Verlag.

