
Appears in Working Notes of the AAAI Spring Symposium on Real-Time Autonomous Systems
Stanford, CA, March 2000Modeling and Veri�cation for Automatic Synthesis of Real-timeControllersRobert P. Goldman, Michael J. Pelican, David J. MuslinerAutomated Reasoning GroupHoneywell Technology Center3660 Technology DriveMinneapolis, MN 55418fgoldman, pelican, muslinerg@htc.honeywell.comIntroductionWe have developed a novel technique for automaticallysynthesizing hard real-time reactive controllers usingmodel-checking veri�cation. Our algorithm buildsa controller incrementally, using a timed automatonmodel to check each partial controller for correctness.The veri�cation model captures both the controller de-sign and the semantics of its execution environment.If the controller is found to be incorrect, informationfrom the veri�cation system is used to direct the searchfor improvements. This paper describes how our con-troller synthesis process uses veri�cation, and explainsin detail how we model the execution of the real timesubsystem of the CIRCA intelligent control architec-ture.We are developing autonomous, exible control sys-tems for mission-critical applications such as Un-manned Aerial Vehicles (UAVs) and deep space probes.These applications require hybrid real-time controlsystems, capable of e�ectively managing both dis-crete and continuous controllable parameters to main-tain system safety and achieve system goals. Usingthe CIRCA architecture for adaptive real-time con-trol systems (Musliner, Durfee, & Shin 1993; 1995;Musliner et al. 1999), these controllers are synthesizedautomatically and dynamically, on-line, while the plat-form is operating. Unlike many other intelligent con-trol systems, CIRCA's automatically-generated con-trol plans have strong temporal semantics and providesafety guarantees, ensuring that the controlled systemwill avoid all forms of mission-critical failure.CIRCA uses model-checking techniques for timedautomata (Alur 1998; Yovine 1998) as an integral partof its controller synthesis algorithm. CIRCA's Con-troller Synthesis Module(CSM) incrementally builds a hard real time reactivecontroller from a description of the processes in its envi-ronment, the control actions available and a set of goalstates. To do this, the Controller Synthesis Module

must build a model of the controller it is constructingthat is faithful to its execution semantics, and use thismodel to verify that the controller will function safelyin its environment.In the following section, we give a brief overview ofthe structure and purpose of the CIRCA architecture.Then we briey describe the CSM module and its syn-thesis algorithm, wrapping up with a discussion of theway the CSM uses a timed-automaton veri�er. Afterthis, we describe the modeling of the CIRCA real timeexecutive as a set of interacting timed automata. Fi-nally, we conclude with some comparison to relatedwork and some mention of future research directions.CIRCAThe CIRCA architecture is intended to provide intelli-gent control to autonomously-operating systems.1 Todo this, CIRCA must operate at multiple time scales.CIRCA must be able to reason about the pro�le of amission as a whole. For example, if CIRCA is operat-ing an Uninhabited Combat Aerial Vehicle (UCAV), itsmission-level planning must be able to reason about is-sues like fuel use and navigation to its goal. At a lowerlevel, CIRCA must have a controller that is able toreact to threats and opportunities that arise in its im-mediate environment. For example, when targeted byenemy radar, the CIRCA-controlled UCAV must carryout countermeasures (e.g., release cha�) and initiateevasive maneuvers. Furthermore, CIRCA must guar-antee that these reactions will be taken in time. It isnot enough to eventually release cha�; CIRCA mustinspect its environments for threats su�ciently often,and must react to those threats within speci�ed timebounds.1CIRCA has been applied to real-time planning and con-trol problems in several domains including mobile robotics,simulated autonomous aircraft, space probe challenge prob-lems (Musliner & Goldman 1997) and controlling a �xed-wing model aircraft (Atkins et al. 1998).

Subsystem
Real-Time

Control Synthesis
Module

Mission
Planner

AI SubsystemFigure 1: Basic CIRCA architecture.CIRCA employs two strategies to manage this com-plex task. First, its mission planner decomposes themission into more manageable subtasks that can beplanned in detail. Second, CIRCA itself is decom-posed into two concurrently-operating subsystems (seeFigure 1): an AI Subsystem (AIS) reasons about high-level problems that require powerful but potentially un-bounded computation, while a separate real-time sub-system (RTS) reactively executes the AIS-generatedplans and enforces guaranteed response times. The AIScontains the CSM, which is the focus of this paper, aswell as the mission planner and some support modules,none of which we will discuss here.The Controller Synthesis Module (CSM) bridgesmission-level planning and reactive control. It takesdescriptions of a phase of a system mission and dy-namically, automatically, synthesizes a set of reactionsthat maintain the system's safety and move it towardsits goals. When this controller is operating, the CSMwill be working to generate controllers for other phasesof the mission.The Controller Synthesis ModuleThe objective of the CIRCA CSM is to automaticallysynthesize hard real-time discrete controllers that guar-antee system safety when run on CIRCA's real-timesubsystem. The CIRCA CSM builds reactive discretecontrollers that observe the system state and some fea-tures of its environment and take appropriate controlactions. In constructing such a controller, the CSMtakes a description of the processes in the system'senvironment, represented as a set of transitions thatmodify world features and that have worst case timecharacteristics. From this description, CIRCA incre-mentally constructs a set of reactions and checks themfor correctness using a timed automaton veri�er.CIRCA's reactive controllersThe real-time controllers that CIRCA builds sense fea-tures of the system's state (both internal and exter-

nal), and execute reactions based on the current state.That is, the CIRCA RTS runs a memoryless reactivecontroller. Note particularly, that CIRCA does notmaintain any internal clocks, so time is not a featureused in choosing control actions. The CIRCA systemachieves performance guarantees by analyzing the ex-ecution time of its actions, the duration of externalprocesses, and by sensing features at appropriate inter-vals, not by consulting clocks.2 We will provide moreinformation about the execution semantics of CIRCA'sreal-time controllers below.Given the above limitation on the form of the con-troller, the controller synthesis problem can be posedas choosing a control action for each reachable state(feature-value assignment) of the system. This prob-lem is not as simple as it sounds, because the setof reachable states is not a given | by the choiceof control actions, the CSM can render some states(un)reachable.Indeed, since the CSM focuses on generating safecontrollers, a critical issue is making failure states un-reachable. In controller synthesis, this is done by theprocess we refer to as preemption. A transition t ispreempted in a state s i� some other transition t0 froms must occur before t could possibly occur. In theprocess of controller synthesis, the CSM achieves pre-emption by choosing a control action for the state thatis fast enough that it is guaranteed to occur before thetransition to be preempted.Note that the question of whether a transition is pre-empted is not a question that can be answered basedon local information: preemption of a transition, t in astate, s is a property of the controller as a whole, notof the individual state. For example, to know when abomb is going to go o� in a room with you, you can'tjust consider how fast you can throw the bomb out thewindow | you must also consider how long its timerhas been running before you got to the state in whichyou will throw it out the window. It is this non-localaspect of the controller synthesis problem that has ledus to use automatic veri�cation.Representing a control problemCIRCA's State Space Planner system builds reactionplans based on a world model and a set of formally-de�ned safety conditions that must be satis�ed by fea-sible plans (Musliner, Durfee, & Shin 1995). To de-scribe a domain to CIRCA, the user inputs a set oftransition descriptions that implicitly de�ne the set ofpossible system states. These transitions are of four2Of course, it would be possible to feature-encode cer-tain key time periods for CIRCA's bene�t by, for example,using a one-shot timer to set a register when that periodhas expired.

types:Action transitions represent actions performed bythe RTS.Temporal transitions represent the progression oftime and continuous processes that may need to bepreempted.Event transitions represent world occurrences as in-stantaneous state changes.Reliable temporal transitions represent continu-ous processes (such as the operation of a control law)that may need to be employed by the CIRCA agent.For example, Figure 2 shows several transitions usedin a situation where CIRCA is to control the Cassinispacecraft in Saturn Orbital Insertion.3While in general there is no guarantee that an im-plicit representation like this will be smaller than enu-merating the state space, in practice we �nd this repre-sentation far more e�cient. The irredundant represen-tation of processes (e.g., the process of IRU failure thatcan occur in any state in which the IRU is not alreadyfailed), is also easier to engineer. Furthermore, we usethis implicit representation in concert with algorithmsthat allow us to avoid enumerating unreachable states,providing a further advantage.CSM algorithmAt the highest level of abstraction, the controller syn-thesis algorithm is as follows:1. Choose an element of the set of reachable states(at the start of controller synthesis, only the initialstate(s) is(are) reachable).2. Choose a control action (an action or a reliable tem-poral) for that state.3. Invoke the veri�er to con�rm that the (partial) con-troller is safe.4. If the controller is not safe, use information from theveri�er to direct backtracking.5. If the controller is safe, recompute the set of reach-able states.6. If there are no unplanned reachable states (reach-able states for which a control action has not beenchosen), terminate successfully.7. If some unplanned reachable states remain, loop tostep 1.Figure 3 provides a simple \comic-book" illustrationof the process of controller synthesis. Initially (i), thereis only one state reachable, the initial state. In (ii), theCSM has chosen a control action (dashed line) for theinitial state (planned states are shaded gray), that will3The problem is taken from Erann Gat's \From theTrenches" (Gat 1996).

;; the action of switching on an Inertial;;Reference Unit (IRU)ACTION start_IRU1_warm_upPRECONDITIONS: '((IRU1 off))POSTCONDITIONS: '((IRU1 warming))DELAY: <= 1;; the process of the IRU warmingRELIABLE-TEMPORAL warm_up_IRU1PRECONDITIONS: '((IRU1 warming))POSTCONDITIONS: '((IRU1 on))DELAY: [45 90];;sometimes the IRUs break without warningEVENT IRU1_failsPRECONDITIONS: '((IRU1 on))POSTCONDITIONS: '((IRU1 broken));; if the engine is burning while the active;; IRU breaks, we have a limited amount of;; time to fix the problem before the;; spacecraft will go too far out of controlTEMPORAL fail_if_burn_with_broken_IRU1PRECONDITIONS: '((engine on)(active_IRU IRU1)(IRU1 broken))POSTCONDITIONS: '((failure T))DELAY: >= 5Figure 2: Example transition descriptions given toCIRCA's planner.carry the system to a goal state, s1 (goal states areindicated by bold outlines). There is also a temporaltransition (double line) that may carry the system tos2 . In (iii), we see the CSM decide to assign no-op asthe control action for s1 . This is permissible because s1is a safe state (there are no transitions to failure fromthat state), and is desirable because s1 is a goal state.In (iv), the CSM attempts to complete the controllersynthesis process by assigning an action to s2 that willcarry the system to s3 . However, this action does notpreempt the transition to the failure state (black). Thistriggers a backtrack (v), and the system chooses an al-ternative action (vi) that will carry the system to s1(instead of s3). This alternative action does preemptthe transition to the failure state (dark bar superim-posed on the transition arrows), so the controller issafe. (vi) shows how the set of reachable states mayvary as the controller synthesis process proceeds: atthis point s3 is no longer reachable, since the CSM haschosen not to employ the action that made it reach-able in (iv). All reachable states have been plannedfor, so the controller synthesis process has terminatedsuccessfully.During the course of the controller synthesis runabove, the CSM will have employed the veri�er mod-ule after each assignment of a control action (i.e., after

s2

BACKTRACK

(v)

(ii)

s1

(iv)

(i)

s1

s2

FAILURE FAILURE

(vi)

(iii)

s1

s2

s1

s2

s3 s3Figure 3: A simple example of controller synthesis.ii, iii, iv and vi). However, at stages ii, iii and iv,the controller is not complete. At such points we usethe veri�er as a conservative heuristic by treating allunplanned states (e.g., s2 in iii) as if they are \safehavens." Unplanned states are treated as absorbingstates of the system, and any trace that enters thesestates ends and is regarded as successful. When theveri�er indicates that a CSM-generated controller isunsafe, the CSM will query it for a path to the distin-guished failure state. The set of states along that pathprovides a set of candidate decisions to revise.Modeling for veri�cationIn controller synthesis, the CSM uses a model whichis oversimpli�ed and is biased to be overoptimistic. Itrelies on the automatic veri�cation system to assurethat the controllers it builds are safe. This means itis critical that the veri�cation system have a faithfulmodel of the execution of the system and of the en-vironment in which it operates. This section explainshow we constructed this model.Execution semanticsIn order to model the of the RTS accurately, we mustunderstand how its controllers are represented and ex-ecuted. The controllers of the CIRCA RTS are not ar-bitrary pieces of software; they are intentionally verylimited in their computational power.4 The controllergenerated by the CSM is compiled into a set of Test-Action Pairs (TAPs) to be run by the RTS. Each TAP4These limitations serve to make controller synthesiscomputationally more e�cient and make it simpler toprovide an operating platform that can provide timingguarantees.

#<TAP 8>Tests : (AND(TYPE_OF_CONVEYOR_PART SQUARE)(PART_IN_GRIPPER NIL)(EMERGENCY NIL))Acts : pickup_known_part_from_conveyorFigure 4: Sample Test-Action Pair from a CIRCAcontroller for a simulated PUMA robotarm attached to a conveyer belt.has a boolean test expression that distinguishes be-tween states where a particular action is and is not tobe executed. The test expression is a function of theplan as a whole, rather than local action assignments,because the same action may be assigned to more thanone state. A sample TAP for the Puma domain is givenin Figure 4.The set of TAPs that make up a controller are as-sembled into a loop and scheduled to meet all the TAPdeadlines. The deadlines are computed from the de-lays of the transitions that the control actions mustpreempt.5 It is possible that scheduling will not suc-ceed. In this case, the AIS will backtrack to the CSMto revise the controller, generate and schedule a newset of TAPs.Timed automataNow that we have a sense of the execution semanticsof CIRCA controllers, let us briey review the model-ing formalism, timed automata, before presenting themodel itself. A timed automaton is a nondetermin-istic �nite automaton (NFA) augmented with timinginformation. In the explication in this section, we fol-low Rajeev Alur's notation for describing timed au-tomata (Alur 1998), and refer the interested reader tohis paper for more details.De�nition 1 (Timed Automaton) A timedautomaton A is a tuple
L;L0;�; X; I; E� where1. L is a �nite set of locations;2. L0 � L is a subset of initial locations;3. � is a �nite set of labels;4. X is a �nite set of clocks;5. I is a mapping, L �! �(X) from locations to clockconstraints (see below) and6. E � L���2X ��(X)�L is the set of switches |transitions augmented with clock constraints (�(X)),clock resets (2X), and a label (�).The clock constraints that we use in our modelingwill all be of the form ci � k or ci > k for some clock5The tests and actions that the RTS can execute as partof its TAPs have associated worst-case execution times thatare used to create and verify the TAP schedule.

s2

CSM Model

State space
Image

s1 s1

s2

Verifier

EnabledDisabled

Fire T

Disable T

Enable T

l1

l2l3

l4

Base Model

Transition Models

Images
TransitionFigure 5: A pictorial summarization of the veri�ermodel and its relation to the CSM model.ci and integer constant k. Note that while the clocksare always compared to integers, they may take on ar-bitrary real values; this is a continuous time model.The labels (sometimes referred to as events) are usedin the de�nition of products of timed automata, in or-der to synchronize switches in di�erent machines. Theyare important to our modeling e�ort, since we explicitlymodel the multiple processes as separate automata.Modeling CIRCA with timed automataCIRCA translates the CSM model into a set of inter-acting timed automata for a timed automaton veri�er(see Figure 5). There is one \base machine," the lo-cations of which correspond to the states of the CSMmodel. The base machine captures the overall stateof the system and its environment. The base machineinteracts with a number of \transition machines," thatcorrespond to the transitions the CSM reasons about.This interaction is captured by the labels on the tran-sitions of the various machines; these ensure that thebase machine state reects the e�ect of the transitionsand ensure that the state of the transition machinesaccurately indicate whether or not a given process isenabled in a particular system state. The use of mul-tiple automata permits us to accurately and elegantlycapture the interaction of multiple, simultaneously op-erating processes.There are two classes of safety violations that we lookto the veri�er to detect. The obvious one is a tran-sition to the CSM's distinguished failure state. Thesecond is a failure to successfully preempt some transi-tion that does not carry the system directly to a failurestate. These are transitions that the CSM has decidedto preempt in order to make other states unreachable,possibly to make the controller smaller and more ef-�cient or to avoid other states from which the failurestate will be reachable. To detect the second class ofsafety violations, for each state s, we add to the base

Disabled Enabled

Fire T

Disable T

Enable TFigure 6: A timed automaton corresponding to aCSM transition, T .machine a transition to the distinguished failure statefor each transition that the CSM intends to preemptin s.The actual timing characteristics of the transitionsare represented in separate transition machines. As wehave outlined above, the CSM's automaton is a poorrepresentation of the actual execution semantics of theCIRCA control system. There is not a single plant tak-ing one action at a time; the environment is made up ofa number of processes that are executing concurrently.These processes are represented as the nonvolitionaltransitions in a CSM domain description: the tempo-rals, events and reliable temporals. The actions of theCIRCA control system occur concurrently with theseenvironment processes.Therefore, for each such process (CSM transition),we add a separate machine, with a distinguished clock,to the veri�er model. These machines are all of thesame form: they have two states, one for when theprocess is enabled, and one when it is disabled. Thesemachines have three transitions: one from enabled todisabled, one in the opposite direction, disabling theprocess, and one self-arc from the enabled state corre-sponding to the completion of the process, when it hasits e�ect on the environment.The timing characteristics of the process are cap-tured in the clock constraints of the transition ma-chine. The �re T transition in the transition machinewill contain a guard that expresses the lower boundconstraint on the process. For an event or action, theguard will be vacuous. For a temporal, there will bea guard of the form cT � �min(T). For example, forwarm_up_IRU1 in Figure 2, there would be a constraintcwarm_up_IRU1 � 45 ��min(warm_up_IRU1)�.The guard on the transition only captures limits onhow early a transition can occur. Upper bounds (onreliable temporals and actions) are captured by plac-ing an invariant on the enabled state of the transitionmachine. For example, it is impossible to stay in theenabled state of the warm_up_IRU1 machine for longerthan 90 time units. The machine must leave this state,

either by �ring the transition, or by becoming disabled,before this time (�max(T)) is up.The interaction between the base machine and thetransition machine for a CSM transition T is capturedusing labels. The arcs of the transition machine forT are given the labels enable T , disable T , and �re T(Figure 6). Those labels are added to appropriate tran-sitions of the base machine as outlined below, in orderto capture the enabling and disabling of processes, andthe e�ect of those processes on the system and its en-vironment.The overall system state determines whether or nota given transition is enabled. For example, the transi-tion warm_up_IRU1 is only enabled in states when theIRU1 feature has the value warming (Figure 2). Ac-tions are enabled only in CSM states for which thataction has been chosen for execution. This is modeledby tagging those transitions of the base machine thatcarry it from a state where T is enabled to one whereit is disabled, with the disable T . This labeling willforce the transition machine to its disabled state whenthat transition is followed. The enabling of processesis handled analogously, mutatis mutandis.In the CSM model, there will be an edge from eachstate in which a transition T is enabled (and not pre-empted) to its successor state by that transition. Forexample, in states where the transition warm_up_IRU1is enabled, there will be arcs that carry the systemto a new state in which the feature IRU1 has changedits value from warming to on (Figure 2). In the con-struction of the base machine, the corresponding arcswill be labeled with the corresponding �re T , e.g., �rewarm_up_IRU1. This ensures that the e�ects of tran-sitions will be reected in the state represented in thebase model.Final veri�cation of complete controllerRecall that the descriptions of action transitions takenby controllers have associated with them delays thatcorrespond to the worst case execution times of the ac-tion itself. For example, when controlling the Pumaarm, we have worst-case execution times that corre-spond to the time it takes to actually move the arm.These execution times are not realizable in any actualsystem; they only serve as lower bounds on the actualtimes, which are functions not of the actions alone, butof the entire control program.The actual worst-case time to execution of a TAPcannot be known until the entire controller is con-structed because each TAP is a part of the overall re-action loop. This means that in general, the RTS willnot be running the appropriate TAP immediately afterthe transition to the state for which its action shouldbe run. In the worst case, the RTS might have to run

tests actions

tests actions

τ)wcet(

state X

event

state Y

Figure 7: A worst-case execution of a particularTAP.(and fail) the tests for all other TAPs in the reactionloop before getting to the right one (see Figure 7).Figure 7 illustrates this possibility. The TAP thathandles state Y has begun its tests just before the tran-sition from X to Y . So the appropriate action will notbe taken until all other TAPs (shown as half-solid bars,indicating that they do not run to completion) havefailed their tests.This shows, then, that the actual delay times forthe various actions cannot be known until after the en-tire controller has been constructed and compiled intoa scheduled TAP loop. Accordingly, the �nal step ofcontroller synthesis is to re-run the veri�cation processwith a new model that contains, instead of the lower-bound estimates on action times, accurate worst-casebounds on the control actions, derived using the fullreaction loop, with sensing actions as well as controlactions. Related WorkIn independently-developed work, Asarin, Maler,Pneuli and Sifakis (AMPS) (1995; 1995) developed agame-theoretic method of synthesizing real-time con-trollers. They view the problem as trying to \force awin" against the environment, by guaranteeing that alltraces of system execution will pass through (avoid)a set of desirable (undesirable) states. Their workstopped at the development of the algorithm andderivation of complexity bounds; it was never imple-mented. Our work concentrates on the implementationaspects of this problem and on making it computation-ally practical.AI researchers at IRST have developed an approachto controller synthesis that they call \planning asmodel checking." (Giunchiglia & Traverso 1999) Theirwork is similar to our own in being concerned withe�cient controller synthesis, but more like AMPS in

that the veri�cation system is used as a prover to solvethe problem of controller synthesis, rather than beingwrapped inside a synthesis program. Furthermore, theIRST researchers assume a simpler model of execution,ignoring the duration of actions, and the question ofhow the controller is to be implemented.Kabanza, et. al. have developed work (Kabanza1996; Kabanza, Barbeau, & St.-Denis 1997) very sim-ilar to ours in scope and intention. Their early work(fully presented in (Kabanza, Barbeau, & St.-Denis1997)) is similar to the original CIRCA State SpacePlanner work, but does not take into account metrictemporal information. Later work (Kabanza 1996), ex-tends the original framework by incorporating metrictime, but does so by e�ectively imposing a system-wide clock and progressing the controller one \tick"at a time. In control problems with widely varyingtime constants, this approach will lead to an explosionof states; we have adopted model-checking techniquesthat minimize this state explosion.ConclusionsThe CIRCA CSM is a novel application of automaticveri�cation systems to automatic synthesis of con-trollers. Previous attempts to use automatic veri�ersin controller synthesis have limited themselves to sim-pler execution semantics. Our system has a rich modelof the execution of its timed controller, that reectsthe behavior of a hard real-time executive.The CIRCA system described above has been im-plemented as a Common Lisp program. The CSMcurrently works with two di�erent veri�ers, Kro-nos (Yovine 1998) and a timed automaton veri�er ofour own that is tailored speci�cally to the timed au-tomata CIRCA builds. Kronos has better backward-veri�cation and our own veri�er has better forward ver-i�cation (measured in terms of states explored). Thismeans that Kronos provides better performance atdetermining whether or not a given CIRCA controlleris safe, but in the case where the controller is not safeour custom veri�er is able to �nd a path to the failurestate more rapidly. We are currently working both toimprove our own veri�er and to determine whether touse both veri�ers together.Other areas of current work include expanding theCIRCA framework to the synthesis of more complexcontrollers. We are currently looking at automaticallysynthesizing hybrid controllers where the continuousaspect of the problem is expanded to linear control of aset of continuous parameters, rather than simply clockconstraints. ReferencesAlur, R. 1998. Timed automata. In NATO-ASI Sum-

mer School on Veri�cation of Digital and Hybrid Sys-tems.Asarin, E.; Maler, O.; and Pneuli, A. 1995. Symboliccontroller synthesis for discrete and timed systems.In Antsaklis, P.; Kohn, W.; Nerode, A.; and Sastry,S., eds., Proceedings of Hybrid Systems II. SpringerVerlag.Atkins, E. M.; Miller, R. H.; VanPelt, T.; Shaw, K. D.;Ribbens, W. B.; Washabaugh, P. D.; and Bernstein,D. S. 1998. Solus: An autonomous aircraft for ightcontrol and trajectory planning research. In Proceed-ings of the American Control Conference (ACC), vol-ume 2, 689{693.Gat, E. 1996. News from the trenches: An overview ofunmanned spacecraft for AI. In Nourbakhsh, I., ed.,AAAI Technical Report SSS-96-04: Planning with In-complete Information for Robot Problems. AmericanAssociation for Arti�cial Intelligence. Available athttp://www-aig.jpl.nasa.gov/home/gat/gp.html.Giunchiglia, F., and Traverso, P. 1999. Plan-ning as model-checking. Paper accompanying in-vited talk to be presented at the 1999 EuropeanConference on Planning (ECP-99). Available throughhttp://afrodite.itc.it:1024/~leaf/.Kabanza, F.; Barbeau, M.; and St.-Denis, R. 1997.Planning control rules for reactive agents. Arti�cialIntelligence 95(1):67{113.Kabanza, F. 1996. On the synthesis of situation con-trol rules under exogenous events. Appeared in theworking notes of the 1996 AAAI Workshop on Theo-ries of Action, Planning, and Robot Control: Bridgingthe Gap.Maler, O.; Pneuli, A.; and Sifakis, J. 1995. On thesynthesis of discrete controllers for timed systems. InMayr, E. W., and Puech, C., eds., STACS 95: Theo-retical Aspects of Computer Science. Springer Verlag.229{242.Musliner, D. J., and Goldman, R. P. 1997. CIRCAand the Cassini Saturn orbit insertion: Solving aprepositioning problem. In Working Notes of theNASA Workshop on Planning and Scheduling forSpace.Musliner, D. J.; Goldman, R. P.; Pelican, M. J.; andKrebsbach, K. D. 1999. SA-CIRCA: Self-adaptivesoftware for hard real time environments. IEEE In-telligent Systems 14(4):23{29.Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1993.CIRCA: a cooperative intelligent real-time control ar-chitecture. IEEE Transactions on Systems, Man andCybernetics 23(6):1561{1574.

Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1995.World modeling for the dynamic construction of real-time control plans. Arti�cial Intelligence 74(1):83{127.Yovine, S. 1998. Model-checking timed automata. InRozenberg, G., and Vaandrager, F., eds., EmbeddedSystems. Springer Verlag.

