
Working Notes of the AAAI Spring Symposium on Distributed Plan and Schedule Management
Stanford, CA, March 2006

Coordinated Plan Management Using Multiagent MDPs
David J. Musliner

Honeywell Laboratories
david.musliner@honeywell.com

Edmund H. Durfee, Jianhui Wu, Dmitri A. Dolgov
University of Michigan

durfee,jianhuiw,ddolgov@umich.edu

Robert P. Goldman
SIFT, LLC

rpgoldman@sift.info

Mark S. Boddy
Adventium Labs

mark.boddy@adventiumlabs.org

Introduction

For the past several years, we have been developing multi-

agent technology to help humans coordinate their activi-

ties in complex, dynamic environments. In recent work on

the DARPA COORDINATORs program, we have developed

multi-agent Markov-decision process (MDP) techniques for

distributed plan management. The COORDINATORs prob-

lems arrive in distributed form, with different agents getting

local views of their portion of the problem and its relation-

ship to others. Even so, the individual agents’ MDPs that

capture their local planning and scheduling problem can be

too large to enumerate and solve. Furthermore, the COOR-

DINATOR agents must build and execute their plans in real-

time, interacting with a world simulation that makes their

actions have uncertain outcome.

Accordingly, we have developed an embedded agent sys-

tem that negotiates to try to find approximately-optimal dis-

tributed policies within tight time constraints. Our work

draws together and extends ideas in multi-agent Markov de-

cision processes, real-time computing, negotiation, meta-

level control, and distributed constraint optimization. Con-

tributions of our work include “unrolling” techniques for

translating local hierarchical task networks to MDPs, “in-

formed” heuristic search control of the unrolling pro-

cess, and negotiation methods for allocating responsibilities

across cooperating agents and using those allocations to in-

fluence local policy construction.

In the rest of this paper, we describe our approach in

more detail. We begin by summarizing the challenges in dis-

tributed plan management embodied in the COORDINATORs

problem, and the TÆMS representation used to model the

actions and interactions requiring coordination. We then de-

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

scribe how we translate the problem represented in TÆMS

into an MDP, and the strategies that we use for finding poli-

cies when the MDP state space exceeds the time and/or

space bounds for our system. After that, we discuss the

challenge of using inter-agent negotiation to coordinate the

agents’ policies. Finally, we point out the limitations of

our initial implementation, and we outline our plan to im-

prove the management of uncertain and unexpected events

by more fully integrating ongoing deliberation and coordi-

nation.

The COORDINATORs Problem

COORDINATORs is a research program funded by DARPA

IPTO to identify, prototype, and evaluate well-founded tech-

nical approaches to scheduling and managing distributed ac-

tivity plans in dynamic environments. As a motivating ex-

ample, consider the following scenario. A hostage has been

taken and might be held in one of two possible locations.

Rescuing the hostage requires that both possible locations

are entered by special forcessimultaneously. As the activi-

ties to move personnel and materiel into place are pursued,

delays can occur, or actions to achieve precursor objectives

might have unexpected results (e.g., failure). COORDINA-

TOR agent systems will be associated with the various hu-

man participants. COORDINATORagents should monitor the

distributed plans and manage them as the situation evolves,

to increase their effectiveness and make them more likely to

succeed.

In general, a set of COORDINATOR agents is meant to

work together to maximize the reward gained by the group

as a whole. In other words, the problem is to compute an

effective joint policy for the agent society, in which the ac-

tions taken by one agent can depend on the state of the group

as a whole, not just the local state of that agent. The agents

are time-pressured: each agent must make timely action de-

cisions during execution. Furthermore, the problem must be

solved in a distributed fashion.

Each agent’s partial model includes the actions that the

agent can execute, which are stochastic, rather than deter-

ministic, and some of the actions its peers can perform. The

model also providespartial information about the rewards

that the society as a whole will receive for reaching various

states. This model is not static: the agent can receive model

updates during execution. Therefore, agents must be able to

manage and reformulate policies reactively.

The problems are formulated as complex hierarchical task

networks, which we translate to MDPs. It is our hypothesis

that MDPs provide the appropriate modeling tool for repre-

senting the COORDINATORs problem, and that each agent

should generate, store, and follow the best policy that its

knowledge and available resources (time, etc.) allow. To ex-

plore this approach, we must develop distributed negotiation

techniques for coordinating the policy-finding activitiesof

the various agents, and we must provide alocalutility model

that will cause the individualagents to (approximately) max-

imize group expected utilityby (approximately) maximizing

their local expected utility.

The intractable space of joint multiagent policies means

that our negotiation protocols for collaboratively arriving at

joint policies can explore only a small portion of the joint

policy space. Our approach reduces this full space by pro-

jecting down to an alternative space of joint “commitments”

which bias the agents’ local policy formulation processes.

However, because the MDPs are generally too large to create

and solve within the environment’s time limits, the agents

can only formulate partial and approximate policies.We have

developed single-agent policy-finding techniques that en-

able an agent to flexibly trade off the quality of a policy for

time. At runtime, the agents monitor their changing local

states, and model the changes to each other’s states, tracking

their passage through the MDP state space and taking the

appropriate actions based on their policies.

C-TÆMS

COORDINATORs researchers have jointly defined a common

problem domain representation based on the original TÆMS

language (Horlinget al. 1999). The new language, C-

TÆMS, provides a semantically sound subset of the original

language, representing multi-agent hierarchical tasks with

probabilistic expectations on their outcomes (characterized

by quality, cost, and duration) and complex hard and soft

interactions (Boddyet al. 2005). Unlike other hierarchical

task representations, C-TÆMS emphasizes complex reason-

ing about the utility of tasks, rather than emphasizing inter-

actions between agents and the state of their environment.

C-TÆMS permits a modeler to describe hierarchically-

structured tasks executed by multiple agents. A C-TÆMS

task network has agents and nodes representingtasks(com-

plex actions) andmethods(primitives). Nodes are tempo-

rally extended: they have durations (which may vary prob-

abilistically), and may be constrained by release times (ear-

liest possible starts) and deadlines. At any time, each C-

TÆMS agent can be executing at most one of its methods.

A C-TÆMS model is a discrete stochastic model: meth-

ods have multiple possible outcomes. Outcomes dictate the

duration of the method, itsquality, and itscost. Quality

and cost are unit-less, and there is no fixed scheme for com-

bining them into utilities. For the initial COORDINATORs

experiments, we dispense with cost, so that quality may be

thought of as utility. Methods that violate their temporal

constraints yield zero quality (and are said to havefailed).

Every task in the hierarchy has associated with it a “qual-

ity accumulation function” (QAF) that describes how the

quality of its children are aggregated up the hierarchy. The

QAFs combine both logical constraints on subtask execu-

tion and how quality accumulates. For example, a :MIN

QAF specifies that all subtasks must be executed and must

achieve some non-zero quality in order for the task itself to

achieve quality, and the quality it achieves is equal to the

minimum achieved by its subtasks. The :SYNCSUM QAF

is an even more interesting case. Designed to capture one

form of synchronization across agents, a :SYNCSUM task

achieves quality that is the sum of all of its subtasks that

start at the same time the earliest subtask starts. Any sub-

tasks that start later cannot contribute quality to the parent

task.

Traditional planning languages model interactions be-

tween agents and the state of their environment through pre-

conditions and postconditions. In contrast, C-TÆMS does

not model environmental state change at all: the only thing

that changes state is the task network. Without a notion of

environment state, in C-TÆMS task interactions are mod-

eled by “non-local effect” (NLE) links indicating inter-node

relationships such as enablement, disablement, facilitation,

and hindrance. Complicating matters significantly is the fact

that these NLEs may have associated delays. We will dis-

cuss the implications of all of these in terms of developing

Markov models of the COORDINATORs problem shortly.

Figure 1 illustrates a simple version of the two-agent

hostage-rescue problem described earlier. The whole dia-

gram shows a global “objective” view of the problem, cap-

turing primitive methods that can be executed by different

agents (A and B). The agents in a COORDINATORs prob-

lem arenot given this view. Instead, each is given a (typi-

cally) incomplete “subjective” view corresponding to what

that individual agent would be aware of in the overall prob-

lem. The subjective view specifies a subset of the overall C-

TÆMS problem, corresponding to the parts of the problem

that the local agent can directly contribute to (e.g., a method

the agent can execute or can enable for another agent) or that

the local agent is directly affected by (e.g., a task that another

agent can execute to enable one of the local agent’s tasks).

In Figure 1, the unshaded boxes indicate the subjective view

of agent-A, who can perform the primitive methods Move-

into-Position-A and Engage-A. The “enable” link indicates

a non-local effect dictating that the Move-into-Position-A

method must be completed successfully before the agent

can begin the Engage-A method. The diagram also illus-

trates that methods may have stochastic expected outcomes;

for example, agent-B’s Move-into-Position-B method has a

40% chance of taking 25 time units and a 60% chance of

taking 35 time units. The :SYNCSUM QAF on the Engage

task encourages the agents to perform their subtasks starting

at the same time (to retain the element of surprise).

Execution environment

COORDINATORs agent designs are evaluated in a real-time

simulation environment. When agents first wake up in the

simulation they are given their local, subjective view prob-

lem description and an initial schedule of activities. The

initial schedule captures the notion that the agents already

have some nominal plan of what they should do. One of the

prime objectives of COORDINATORs is to manage responses

to uncertain outcomes and task model changes.

During evaluation, the agents send commands to the sim-

ulator specifying what methods they want to initiate, and

the simulator randomly determines duration and outcome

quality according to the distributions in the objective C-

TÆMS model. In order to achieve the best results, agents

will need to adapt their courses of action to the simulated

events. Agents can use a combination of precomputation

(policy generation) and reaction to adapt their plans. How-

ever, the simulated environment won’t wait for the agents to

replan; each simulated time tick is tied firmly to wall-clock

time.

In addition to the stochastic outcomes that are modeled in

C-TÆMS, the simulator can inject unmodeled events. Such

unmodeled events can include adding nodes to the C-TÆMS

network, removing nodes, or modifying duration/quality

distributions for existing nodes. Agents must manage their

plans at runtime to account for these changes, and they must

also contend with the fact that only a subset of the agents

may be aware of the unexpected change.

Multiagent MDPs for distributed plan
management

Given a (fixed) C-TÆMS task network and the fact that

method outcomes are stochastic, we frame the problem as

building a policy that dictates how each agent in the net-

work chooses methods at every point in time. In earlier

work on TÆMS, the objective was to find a satisfactory bal-

ance among some combination of quality, cost, and dura-

tion (Wagner, Garvey, & Lesser 1998). In C-TÆMS, by

contrast, the problem is simply to find a policy that maxi-

mizes the network’s expected quality (utility).

Markov Decision Processes

We assume that the reader has a grasp of the basic defini-

tions of Markov Decision Processes; we recommend Puter-

man’s text (Puterman 1994) for more specifics. Briefly, an

MDP is akin to a finite state machine, except that transitions

are probabilistic, rather than deterministic or nondetermin-

istic. Agents may also receive reward (which may be either

positive or negative) for entering some states. Typically,this

reward is additive over any trajectory through the state space

(some adjustments are needed in the case of MDPs of infi-

nite duration). The solution to an MDP is apolicy — an

assignment of action choice to every state in the MDP —

that maximizesexpected utility. MDPs’ advantages are that

they offer a sound theoretical basis for decision-making and

action under uncertainty, and that there are relatively simple,

polynomial algorithms for finding optimal policies.1

An agent’s C-TÆMS task model may be thought of as

specifying afinite-horizonMDP. The problems are finite-

horizon because C-TÆMS problems have finite duration,

with no looping or method retries. However, the MDP tends

1But polynomial in the (often large) size of the state space!

:SYNCSUM
:SUM

Quality: (20 1.0)

Duration: (25 0.4

35 0.6)

Quality: (20 1.0)

Duration: (35 1.0)

Move-into-Position-A

Accomplish-Mission

Engage-A

:MAX

enables

Move-into-Position Engage

Engage-BMove-into-Position-B

enables

Figure 1: A simple C-TÆMS task network for two agents, illustrating some of the representation features. Some details have
been omitted for brevity.

to be quite large for even modest-sized C-TÆMS problems

because of the branching factor associated with uncertain

outcomes, and because of the temporal component of the

problem. Multi-agent C-TÆMS MDPs are even worse.

The COORDINATORs problem differs from most prob-

lems treated as MDPs in two important ways. First, the

problem is inherently distributed and multi-agent, so that

in the objective view, multiple actions can be executed si-

multaneously. For this reason, if one were to formulate a

centralized COORDINATORs problem directly as an MDP,

the action space would have to be a tuple of assignments of

actions to each agent. As one would expect, this causes an

explosion in the state space of the problem. A second dif-

ference is that the actions in the COORDINATORs domain

are temporally extended, rather than atomic. Such “dura-

tive” actions can be accommodated, but only at the cost of

a further explosion in the state space. Other aspects of the

COORDINATORs problem make its MDP formulation tricky

and increase the state space even more. For example, the

delays associated with NLEs such as “enables” links require

the MDP state to hold some execution outcome history.

Unrolling TÆMS task nets

We translate C-TÆMS task networks by “unrolling” them

into MDPs that make explicit the state space implicit in the

task net. For any agent, the C-TÆMS task network defines

a possible state space and transition function. A C-TÆMS

agent’s state may be defined as a tuple:〈t, M〉, wheret is

the current time, andM is a vector of method outcomes. If

M is the set of methods a TÆMS agent can execute, we can

assign toM an arbitrary numbering,1...n for n = |M|.

ThenM is a set of tuples,〈i, σ(i), δ(i), q(i)〉: the index of

the method, its start time, duration, and quality. This infor-

mation is sufficient (but not always all necessary) to give a

state space that has the Markov property. The C-TÆMS task

network, with its duration and quality distributions, defines

a transition function. For example, if an agent executes a

methodi starting at timet, yielding a durationδ(i) and a

qualityq(i), that is a state transition as follows:

〈t, M〉 → 〈t + δ(i), M ∪ {〈i, t, δ(i), q(i)〉}〉

Our techniques “unroll” the state space for the MDP from

its initial state (〈0, ∅〉) forward.2 From the initial state, the

algorithms identify every possible method that could be ex-

ecuted, and for each method every possible combination of

duration-and-quality outcomes, generating a new state for

each of these possible method-duration-quality outcomes.

Each state is then further expanded into each possible suc-

cessor state, and so on. For states where no methods can

apply, a “wait-method” is generated that leads to a later

state where some non-wait method has been enabled (or

the scenario has ended). The unrolling process ends at leaf

states whose time index is the end of scenario. The code

for performing this unrolling was adapted from previous

state-space unrollers developed at SIFT for applications in

optimal cockpit task allocation (Miller, Goldman, & Funk

2003).

There are a number of complexities in performing this

unrolling. For example, the set of enabled methods is a

complex function of the current state, influenced by tem-

poral constraints, NLEs, etc. Our unroller tries to eliminate

2Note that we can just as easily start unrollingin medias res, by
starting from a state in which the agent has already executedsome
actions.

dominated action choices without enumerating the resulting

states. For example, once one task under a :MIN QAF has

failed (gotten zero quality) then none of the :MIN node’s re-

maining children should ever be tried, because they cannot

increase the :MIN node’s quality.3

Furthermore, we can exploit the structure of the C-TÆMS

task model, and its QAFs, to collapse together states that

are equivalent with respect to future action choice and fi-

nal quality. These techniques, and especially the equivalent-

state folding, give exponential reductions in state space size.

Informed Unrolling

Since full enumeration of even single-agent C-TÆMS

MDPs is impractical (the state space is too large), we have

developed a technique for heuristic enumeration of a sub-

space of the full MDP. Ourinformed unroller(IU) algorithm

prioritizes the queue of states waiting to be unrolled based

on an estimate of the likelihood that the state would be en-

countered when executing the optimal policy from the ini-

tial state. The intent is to guide the unrolling algorithm to

explore the most-probable states first. Because the proba-

bility of reaching a state is dependent on the policy, the IU

intersperses policy-formulation (using the Bellman backup

algorithm) with unrolling. However, the quality of a state

at the edge of the partially-unrolled state space is generally

difficult to assess, since quality often only accrues at the end

of the entire execution trace (i.e., the domains include de-

layed reward). Thus, we have developed a suite of alterna-

tive heuristics for estimating intermediate state quality.

We have experimented with several different heuristic

functions to evaluate edge states and guide the informed

unroller. Currently the most consistent performance is

achieved by a heuristic that emphasizes unrolling the high-

est (estimated) probability states first. However, computing

the heuristic function and sorting the openlist is an expen-

sive operation. Therefore we constrain the openlist sorting

activity in two ways. First, the sorting only occurs when

the size of the openlist doubles,4 and second, once the sort-

ing function takes more than a certain maximum allocated

time (e.g., one second), it is never performed again. This

has the net effect of sorting the openlist more often early in

the search, when focus is particularly important, and less of-

3Actually, if a child node can enable some other local or non-
local method it may still have utility. This sort of effect makes it
quite challenging to accurately assess dominance.

4This threshold could, of course, be tailored.

10
0

10
1

10
2

10
3

10
4

10
5

0

2

4

6

8

10

12

14

time (seconds)

ex
pe

ct
ed

 q
ua

lit
y

test1−AGENT1 (informed−unroller)
test1−AGENT1 (pure−kauai)
test1−AGENT2 (informed−unroller)
test1−AGENT2 (pure−kauai)
test1−AGENT3 (informed−unroller)
test1−AGENT3 (pure−kauai)

Figure 2: The Informed Unroller can find near-optimal
policies much faster than building the complete
MDP.

ten or never as the space is unrolled farther and probability

information becomes both less discriminatory (because the

probability mass is distributed over a very large set of reach-

able edge nodes) and focus becomes less critical (because

the agent will refine its model on the fly).

The informed unroller work is at an early stage, but early

results from the evaluation against a complete solution are

promising. For example, in Figure 2 we show a compari-

son of the performance of the informed unroller against the

complete unrolling process. In these small test problems,

the informed unroller is able to find a high-quality policy

quickly and to return increasingly effective policies given

more time. This allows the IU-agent to flexibly trade off the

quality and timeliness of its policies. The current versionof

the IU does not support repeated, incremental unrolling of

the state space during execution. However, we are actively

working to build a new version, and integrate it into our CO-

ORDINATORs agent.

Related Techniques

The IU approach is related to the “approximate dynamic pro-

gramming” algorithms discussed in the control theory and

operations research literature (Bertsekas 2005). These ap-

proaches derive approximate solutions to MDP-type prob-

lems by estimating, in various ways, the “cost to go” in leaf

nodes of a limited-horizon portion of the full state space.

While our exploration of the literature is not yet complete,

initially we believe that a key difference in our IU ap-

proach is the notion of time-dependent horizon control and

unrolling-guidance (vs. just estimation of leaf-node reward

for policy derivation).

The IU method is also somewhat similar to

LAO* (Hansen & Zilberstein 2001), which uses knowledge

of the initial state(s) and heuristics to generate a state

subspace from which the optimal policy can be provably

derived. Our technique differs in substantial ways. The IU

executes online, and might lack enough time to enumerate

such a state subspace even if it knew exactly which states

to include. The IU is an anytime algorithm, unlike LAO*,

which runs offline. For this reason, the IU makes no claims

about policy optimality; indeed, it is not even guaranteed

to generate a closed policy. LAO* trims the state space by

using an admissible heuristic. No such heuristic is available

to the IU because estimating the final quality of a C-TÆMS

network, given the various QAFs, is so difficult. However,

because the IU is an online algorithm, it can be re-employed

periodically during execution, so the policy created can be

iteratively tailored to better fit the circumstances.

Coordination

When we consider multiple COORDINATOR agents, the

problem expands to finding an optimaljoint policy. This

problem is challenging because:

• The number of possible local policies for agents is in gen-

eral very large, so the product space of joint policies to

search through can be astronomical.

• The size and distribution of the problem makes reasoning

about the global behavior of the system impossible.

To address these practical limitations on solving the prob-

lem of finding optimal joint policies, our coordination ap-

proach is designed to take advantage of three assumptions:

• Inter-agent effects are well-defined and visible to individ-

ual agents through their subjective views.

• The agents are given reasonableinitial schedules.

• The sum of the local expected qualities of the agents is

a sufficient approximation of the global expected quality

for the problem with respect to guiding search toward im-

proved joint policies.

Our coordination method exploits the first assumption by

mining an agent’s local subjective view to detect the pos-

sible “coordination opportunities.” For example, if one of

agent-A’s methods enables a method for agent-B, that rep-

resents a coordination opportunity. Given these discrete op-

portunities, we can reduce the overall problem from an enor-

mous search over the space of joint policies to a merely huge

search over the space of alternative commitments on coordi-

nation opportunities.

We exploit the second assumption by extracting default

initial coordination decisions from the nominal initial sched-

ule of activities. After ensuring that the agents have coher-

ent and consistent expectations about those commitments,

they can then search for approximately-optimal local poli-

cies where the commitments for their coordination opportu-

nities are enforced, as described later.

The third assumption will enable negotiating agents to

compare different sets of commitments. For an individual

agent, a commitment set is preferred to another if it enables

the creation of a local policy that has a higher expected re-

ward. A group of agents will prefer a particular combination

of local commitment sets if the sum of the expected quali-

ties of their resulting local policies is higher. Note that some

agents in the group might have lower expected qualities, but

if these are more than compensated by the expected quality

gains of other agents then the combination of local commit-

ment sets is considered superior.

There are several ways in which these assumptions and

our solution approach (coordination over commitments)

may result in sub-optimal behavior. For example, the actual

optimal policy set may not adhere to a static set of commit-

ments: e.g., to behave optimally, agents may have to adjust

which enablements they will accomplish depending on how

prior methods execute. To mitigate this weakness, we plan

to have our agents deliberating and negotiating continually,

so that they can manage and adapt their commitment set and

policies on the fly as methods execute.

Perhaps worse, the third assumption may be violated: an

agent’s subjective view may not give an accurate estimate

of global quality. This problem arises because of the non-

monotonic and non-additive effects of different QAFs. For

example, suppose three agents have methods under a com-

mon :SYNCSUM parent, and in the initial schedule, two of

them have agreed to execute their methods at time 10, while

the third agent has decided not to execute his method. Now,

suppose the third agent realizes it can execute its method

at time 7. If it chooses to do so, its local C-TÆMS model

may indicate that this change can produce increased local

quality and therefore looks like a good idea. But if the

other agents do not adjust their plans, then their methods

running at time 10 will be rendered useless (failed, due to

the :SYNCSUM semantics emulating the lack of surprise).

Thus the third agent may inadvertently reduce the overall

team quality by pursuing its local goals without proper con-

sideration of global effects in the task model. This exam-

ple is fairly easy to recognize, but in general such effects

can propagate across multiple NLE links, making them very

hard to recognize and manage. Further study is required

to determine how badly this assumption affects the perfor-

mance of our COORDINATOR agent societies in widely var-

ied problems.

Initial Commitments

The agents begin their coordination by identifying their po-

tential interactions (coordination opportunities) and initial-

izing their planned responses (commitments) to those inter-

actions. Each agent does this based on its subjective view of

the problem and on its corresponding initial schedule.

The subjective view includes information on the agent’s

own tasks, as well as some limited information on the tasks

of other agents with which the agent may need to coordi-

nate. Specifically, the agent will know about the existence,

though not the details, of other agents’ tasks that are con-

nected to local tasks throughnon-local effects, for example

tasks that another agent must execute before some local task

can start. Several types ofcoordination opportunitiesare

extracted from the agent’s subjective view:

• NLE coordination opportunities are indicated by NLEs

across multiple agents’ tasks.

• Synchronizationcoordination opportunities are indicated

by :SYNCSUM tasks in the subjective view.

• Redundant Taskcoordination opportunities are indicated

by tasks that are visible to other agents, indicating that

they too have children under that node. Depending on the

QAF, such shared tasks may indicate that only one agent

should execute methods below the task.

Initial Commitments

The initial schedule is used to infer a set of provisional com-

mitments to the coordination opportunities. For example, if

agent-A has a methodMA that enables agent-B’s method

MB , then both agents recognize an NLE coordination op-

portunity. Each agent inspects its initial schedule to see

which methods are initially scheduled. For example, agent-

A may find that its initial schedule suggests executingMA at

time 3, with an anticipated finish at time 9, and agent-B’s ini-

tial schedule may suggest executingMB at time 11. Agent-

A would form a tentative commitment to finishMA before

9, and agent-B would form a tentative commitment expect-

ing its enablement before time 11. Note that the agents’ ini-

tial schedules may have flaws or poorly-aligned methods, so

these initial commitments may not be entirely consistent.

Distributed Constraint Satisfaction

In our problem formulation, negotiation can be viewed as

a search over the space of compatible commitments that

agents make to their coordination opportunities, seeking a

set of commitments that satisfactorily achieves high global

expected quality (as estimated by the sum of local expected

qualities). The search begins with the initial set of commit-

ments, and then tries to improve on this initial set (or some

previous improvement of that set) to increase the compati-

bility and/or quality of the commitments.

Our agents begin by ensuring compatibility among the

commitments, essentially treating the problem as a dis-

tributed constraint satisfaction problem (DCSP). For exam-

ple, an agent acting as the source for an enablement NLE

should be committed to completing the enabling task be-

fore the target agent expects to begin the enabled task. If

their locally-generated commitments do not satisfy this con-

straint, then the agents need to resolve the inconsistency.

As a simple first step, our agents exchange their initial

commitments with the relevant partner agents and, in a one-

shot computation, modify the commitments to ensure con-

sistency. Since each agent applies the same process to the

same information to establish consistency, each agent in-

volved in a coordination opportunity will arrive at the same

resolution to any inconsistency. Note that, even within this

simple protocol, there are several possible approaches. For

example, if agents disagree on the time an enablement will

occur, the agreed-upon time could be the earlier time, later

time, or some intermediate value.

Enforcing Commitments

Given a consistent set of commitments, we need a method

to enforcethose commitments in the agents’ policy-finding

process. One approach would be to re-write the task model

so that the MDP unroller does not even consider the pos-

sibility of violating the commitment. This approach is too

restrictive because it would not permit the agents to reason

flexibly about off-nominal method outcomes. In some sit-

uations it may be a rational decision tonot satisfy a given

commitment. Therefore, rather than rigidly enforce commit-

ments, we strongly bias the policies generated by the MDP

solver towards the committed behaviors. This can be done

by providing an extra reward for states in which a given com-

mitment is satisfied and an extra penalty for states in which it

can be determined that the commitment will not be satisfied.

We also add local “proxy methods” modeling the execution

of other agents’ tasks.

We simplify the negotiation process to reduce the com-

plexity of enforcement. For example, the execution of tasks

by other agents is currently modeled deterministically: the

commitment agreement includes a single time by which the

task is to be executed. A more expressive representation

would accommodate completion time distributions.

Conclusion and Future Directions

Our agents are in the early stages of their design evolution,

having “played the game” in simulation for only a short

while, during which time the simulation environment itself

has also evolved. In their current form, the agents recog-

nize coordination opportunities, derive initial commitments

from the initial schedule, communicate to ensure consis-

tency among commitments, and then unroll the resulting

local MDP until their first method’s release time arrives.

They then execute their MDP policy whenever possible. If

the MDP unrolling expands the entire reachable state space,

they should remain “on-policy” and perform according to

the MDP’s predictions unless there is an unmodeled failure

or new task arrival. More often, the unrolling is incom-

plete and the agents can “fall off-policy” when the simu-

lated world state reaches an unexpanded part of the MDP

state space. At that point, the agents begin executing one

of two simple reactive scheduling algorithms (one driven off

the initial schedule, one based on a one-step lookahead).

Initial performance results indicate that, given a modest

amount of time to unroll their MDPs (e.g., twenty seconds),

the agents can explore tens of thousands of MDP states

and sometimes dramatically outperform the simple reactive

schemes alone. However, there is clearly room for major

improvement, and the simple reactive approaches likewise

sometimes dramatically outperform our initial IU system.

As our system evolves to fulfill its full design, we will con-

duct more detailed experimentation and analysis.

We believe that we now have a strong foundation for prin-

cipled future work on coordinated plan and schedule man-

agement in uncertain domains. We have many additional

features to develop, including incremental and continuous

MDP unrolling (so the agents continue to think about the

problem as they are executing their existing policy) and im-

proved negotiation that will lead to more dramatic changes

in the initial schedule and inter-agent commitments.

Acknowledgments
This material is based upon work supported by the

DARPA/IPTO COORDINATORs program and the Air Force

Research Laboratory under Contract No. FA8750–05–C–

0030. Any opinions, findings and conclusions, or recom-

mendations expressed in this material are those of the au-

thors and do not necessarily reflect the views of DARPA,

the U.S. Government, or the Air Force Research Laboratory.

References
Bertsekas, D. P. 2005. Dynamic programming and subop-

timal control: A survey from ADP to MPC. InProc. Conf.

on Decision and Control.

Boddy, M.; Horling, B.; Phelps, J.; Goldman, R. P.; and

Vincent, R. 2005. C-TÆMS language specification. Un-

published; available from this paper’s authors.

Hansen, E. A., and Zilberstein, S. 2001. LAO: a heuristic

search algorithm that finds solutions with loops.Artificial

Intelligence129(1-2):35–62.

Horling, B.; Lesser, V.; Vincent, R.; Wagner, T.; Raja, A.;

Zhang, S.; Decker, K.; and Garvey, A. 1999. The TAEMS

white paper. Technical report, University of Massachus-

setts, Amherst, Computer Science Department.

Miller, C. A.; Goldman, R. P.; and Funk, H. B. 2003.

A Markov decision process approach to human/machine

function allocation in optionally piloted vehicles. InPro-

ceedings of FORUM 59, the Annual Meeting of the Ameri-

can Helicopter Society.

Puterman, M. 1994.Markov Decision Processes: Discrete

Stochastic Dynamic Programming. John Wiley & Sons.

Wagner, T. A.; Garvey, A. J.; and Lesser, V. R. 1998. Cri-

teria Directed Task Scheduling.Journal for Approximate

Reasoning19:91–118.

