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Markov Decision Processes (MDPs) provide a unifying the-
oretical framework for reasoning about action under uncer-
tainty. For some domains (e.g., navigation in discrete space),
MDPs may even provide a direct path to implementing a
solution. However, many Al approaches, such as domain-
independent planning, rely on richly expressive task mod-
els. For such problems, one way to proceed is to provide a
translation from more expressive task models into MDP rep-
resentations. We have developed a technique for “unrolling”
such task models into an MDP state space that can be solved
for an (approximately) optimal policy.

In this paper, we describe how we have built a decision-
theoretic agent that solves planning/scheduling problems
formulated in a dialect of the TAEMS hierarchical task lan-
guage. One problem with bridging from TZAMS (and other
expressive languages) to MDPs is that these other languages
may not make the same simplifying assumptions as those
behind MDPs. For example TEMS task models have non-
Markovian aspects in which actions taken have effects only
after a delay period.

The task of reformulating a TEMS planning problem into
an MDP is complicated by the fact that TAEMS actions must
be scheduled against global time, and by the presence of
non-Markovian constructs in TAEAMS models (actions with
delayed effects). In this paper we describe both how we
translate these TAEMS features into MDPs and how we cope
with the state space explosion that can result.

TZAEMS task problems translate into finite-horizon MDPs,
and the utility of outcomes cannot, in general, be deter-
mined until reaching the final state; in this way they are
goal-focused and offer limited traction to approaches that
exploit interim reward information. We also describe sev-
eral optimizations that make the planning problem easier,
notably aggressive pruning of actions, collapsing together
equivalent states in the state space, and lazy exploration of
the state space.

The COORDINATORS Problem

Our work is being done in the context of the COORDI-
NATORs program. COORDINATORs is a research program
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ate technical approaches to scheduling and managing dis-
tributed activity plans in dynamic environments. As a moti-
vating example, consider the following scenario. A hostage
has been taken and might be held in one of two possible
locations. Rescuing the hostage requires that both possi-
ble locations are entered by special forces simultaneously.
As the activities to move personnel and materiel into place
are pursued, delays can occur, or actions to achieve precur-
sor objectives might have unexpected results (e.g., failure).
COORDINATOR agent systems will be associated with the
various human participants. COORDINATOR agents should
monitor the distributed plans and manage them as the situa-
tion evolves, to increase their effectiveness and make them
more likely to succeed.

In general, a set of COORDINATOR agents is meant to
work together to maximize the reward gained by the group
as a whole. In other words, the problem is to compute an
effective joint policy for the agent society, in which the ac-
tions taken by one agent can depend on the state of the group
as a whole, not just the local state of that agent. The agents
are time-pressured: each agent must make timely action de-
cisions during execution. Furthermore, the problem must be
solved in a distributed fashion.

Each agent’s partial model includes the actions that the
agent can execute, which are stochastic, rather than deter-
ministic, and some of the actions its peers can perform. The
model also provides partial information about the rewards
that the society as a whole will receive for reaching various
states. This model is not static: the agent can receive model
updates during execution. Therefore, agents must be able to
manage and reformulate policies reactively.

The problems are formulated as complex hierarchical task
networks, encoded in TAMS, which we translate to MDPs.
In this paper, we will focus on the translation from TAEMS
into MDPs, and largely ignore the issues of inter-agent coop-
eration, which we leave for other papers (see, for example,
(Musliner et al. 2006)). In the following section, we will in-
troduce the TAEMS task network notation, before proceeding
to explain how we translate it into MDPs.

C-TAEMS

COORDINATORSs researchers have jointly defined a com-
mon problem domain representation (Boddy et al. 2005)



based on the original TAEMS language (Horling et al. 1999).
The new language, C-TAMS, provides a semantically sound
subset of the original language, representing multi-agent hi-
erarchical tasks with stochastic outcomes and complex hard
and soft interactions. Unlike other hierarchical task repre-
sentations, C-T/ EMS emphasizes complex reasoning about
the utility of tasks, rather than emphasizing interactions be-
tween agents and the state of their environment.

C-TAMS permits a modeler to describe hierarchically-
structured tasks executed by multiple agents. A C-TAEMS
task network has nodes representing tasks (complex actions)
and methods (primitives).! Nodes are temporally extended:
they have durations (which may vary probabilistically), and
may be constrained by release times (earliest possible starts)
and deadlines. Methods that violate their temporal con-
straints yield zero quality (and are said to have failed). At
any time, each C-TZAEMS agent can be executing at most one
of its methods, and no method can be executed more than
once.

A C-TZAEMS model is a discrete stochastic model: meth-
ods have multiple possible outcomes. Outcomes dictate the
duration of the method, its quality, and its cost. Quality
and duration are constrained to be numbers not less than
zero. Cost is not being used in the current work. Quality
and cost are unitless, and there is no fixed scheme for com-
bining them into utilities. For the initial COORDINATORS
experiments, we treat quality as non-normalized utility (we
will use the terms “utility” and “quality” pretty much inter-
changeably).

To determine the overall utility of a C-TZEMS execution
trace, we must have a mechanism for computing the quality
of tasks (composite actions) from the quality of their chil-
dren. Every task in the hierarchy has associated with it a
“quality accumulation function” (QAF) that describes how
the quality of its children are aggregated up the hierarchy.
The QAFs combine both logical constraints on subtask exe-
cution and how quality accumulates. For example, a :MIN
QAF specifies that all subtasks must be executed and must
achieve some non-zero quality in order for the task itself to
achieve quality, and the quality it achieves is equal to the
minimum achieved by its subtasks. The :SYNCSUM QAF
is an even more interesting case. Designed to capture one
form of synchronization across agents, a :SYNCSUM task
achieves quality that is the sum of all of its subtasks that
start at the same time the earliest subtask starts. Any sub-
tasks that start after the first one(s) cannot contribute quality
to the parent task.

The quality of a given execution of a C-TZEMS task net-
work is the quality the execution assigns to the root node of
the task network. C-TZAEMS task networks are constrained to
be trees along the subtask relationships, so there is a unique
root whose quality is to be evaluated. The quality is the qual-
ity of that node at the end of the execution trace. C-TAEMS
task networks are required to have a deadline on their root
nodes, so the notion of the end of a trace is well-defined.

!'The terminology is somewhat unfortunate, since conventional
HTN planners refer to their composite actions as methods and their
primitives as operators.

One may be able to determine bounds on the final quality
of a task network before the end of the trace, but it is not
in general possible to determine the quality prior to the end,
and it may not even be possible to compute useful bounds.

Traditional planning languages model interactions be-
tween agents and the state of their environment through pre-
conditions and postconditions. In contrast, C-TAMS does
not model environmental state change at all: the only thing
that changes state is the task network. Without a notion of
environment state, in C-TAMS task interactions are mod-
eled by “non-local effect” (NLE) links indicating inter-node
relationships such as enablement, disablement, facilitation,
and hindrance. Complicating matters significantly is the fact
that these NLEs may have associated delays, violating the
conventional Markov assumption. We will discuss the impli-
cations of all of these in terms of developing Markov models
of the COORDINATORS problem shortly.

Figure 1 illustrates a simple version of the two-agent
hostage-rescue problem described earlier. The whole dia-
gram shows a global “objective” view of the problem, cap-
turing primitive methods that can be executed by different
agents (A and B). The agents in a COORDINATORS prob-
lem are not given this view. Instead, each is given a (typi-
cally) incomplete “subjective” view corresponding to what
that individual agent would be aware of in the overall prob-
lem. The subjective view specifies a subset of the overall C-
TZAMS problem, corresponding to the parts of the problem
that the local agent can directly contribute to (e.g., a method
the agent can execute or can enable for another agent) or that
the local agent is directly affected by (e.g., a task that another
agent can execute to enable one of the local agent’s tasks).
In Figure 1, the unshaded boxes indicate the subjective view
of agent-A, who can perform the primitive methods Move-
into-Position-A and Engage-A. The “enable” link indicates
a non-local effect dictating that the Move-into-Position-A
method must be completed successfully before the agent
can begin the Engage-A method. The diagram also illus-
trates that methods may have stochastic expected outcomes;
for example, agent-B’s Move-into-Position-B method has a
40% chance of taking 25 time units and a 60% chance of
taking 35 time units. The :SYNCSUM QAF on the Engage
task encourages the agents to perform their subtasks starting
at the same time (to retain the element of surprise).

Markov Decision Processes and C-TAMS

Given a (fixed) C-TAEMS task network and the fact that
method outcomes are stochastic, we frame the COORDI-
NATOR problem as building a policy that dictates how each
agent in the network chooses methods at every point in time.
In earlier work on TZEMS, the objective was to find a sat-
isfactory balance among some combination of quality, cost,
and duration (Wagner, Garvey, & Lesser 1998), and research
focused on how to define a good balance among these com-
peting objectives. C-TZAMS problems, by contrast, focus on
the problem of optimizing the cooperative action schedul-
ing of a multi-agent system under complex timing and inter-
action constraints. In this paper we will primarily be con-
cerned with the local problem, of finding a policy for a sin-
gle agent that determines how that agent will choose which
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Figure 1: A simple C-TZAMS task network for two agents, illustrating some of the representation features. Some details have

been omitted for brevity.

method to execute at each point in time.

We assume that the reader has a grasp of the basic defini-
tions of Markov Decision Processes; we recommend Puter-
man’s text (Puterman 1994) for more specifics. Briefly, an
MDP is akin to a finite state machine, except that transitions
are probabilistic, rather than deterministic or nondetermin-
istic. Agents may also receive reward (which may be either
positive or negative) for entering some states. Typically, this
reward is additive over any trajectory through the state space
(some adjustments are needed in the case of MDPs of infi-
nite duration). The solution to an MDP is a policy — an
assignment of action choice to every state in the MDP —
that maximizes expected utility. MDPs’ advantages are that
they offer a sound theoretical basis for decision-making and
action under uncertainty, and that there are relatively simple,
polynomial algorithms for finding optimal policies.?

An agent’s C-TEMS task model specifies a finite-horizon
MDP. The problems are finite-horizon because C-TAMS
problems have finite duration, with no looping or method
retries. However, the MDP tends to be quite large for even
modest-sized C-TAEMS problems because of the branching
factor associated with uncertain outcomes, and because of
the temporal component of the problem. For example, even
a single applicable method with three possible durations and
three possible quality levels gives us a branching factor of
nine. In addition, time is a critical aspect of TEMS prob-
lems: methods consume time and NLEs can have associ-
ated delays (so WAIT is often a useful action alternative).
Furthermore, an agent can always abort a method that it is
executing, and choose to start a different method. So the
branching factor is never less than two at every time tick, in
a full consideration of the problem. Multi-agent C-TAEMS
MDPs are even worse.

The COORDINATORS problem differs from most prob-
lems treated as MDPs in three important ways. First, the
problem is inherently distributed and multi-agent, so that in
the objective view, multiple actions can be executed simulta-
neously. For this reason, if one were to formulate a central-

But polynomial in the size of the state space, which is typically
exponential in the size of the input!

ized COORDINATORSs problem directly as an MDP, the ac-
tion space would have to be a tuple of assignments of actions
to each agent. As one would expect, this causes an explosion
in the state space of the problem. This problem we address
by having each agent develop its own policy (although it
may negotiate with other agents). A second difference is that
the actions in the COORDINATORs domain are temporally
extended, rather than atomic. Such “durative” actions can
be accommodated, but only at the cost of a further explosion
in the state space. Finally, the C-TZAMS planning problem
is not straightforwardly Markovian. For example, the delays
associated with NLEs such as “enables” links require the
MDP state to hold some execution outcome history. In the
following sections we will describe how we tackle the latter
two issues, unrolling the C-TZAEMS task model into an MDP
whose state has been augmented to handle non-Markov con-
structs, and how we cope with the large resulting state space.
We do not have space here to discuss how we decompose the
multi-agent problem into multiple, interacting, single-agent
problems (see (Musliner et al. 2006)).

Unrolling C-TAMS task nets

For any agent, the C-TZAEMS task network implicitly defines
a possible state space and a transition function that maps
individual states to possible future states. Our system rea-
sons about C-TZAEMS task networks by “unrolling” them into
MDPs that make this implicit state space explicit. In this
section, we explain how we have derived a state representa-
tion for C-TZAEMS that satisfies the Markov constraint. We
then explain how the transition function is defined and de-
scribe our unrolling algorithm.

State space To meet the constraints of having a well-
formed MDP, we must incorporate in each state enough in-
formation to make the state transition function be a function
of only the current state and the chosen action. We must also
incorporate into each state enough information that we can
evaluate the quality/utility function for the task network.

To compute the final score of any C-TAMS task network
over an execution trace, it is sufficient to know the quality,



start, and completion time of every method the agent has
executed in the trace. The quality of every task node can
be computed from the quality of its children, so there is no
need to store quality information about internal nodes.> We
need to know the start and completion times of each method
to determine whether or not the method has satisfied its time
constraints (and hence determine its quality). In practice, it
suffices to record the completion time and quality of each
executed method; the effect of the release time can be cap-
tured in the quality, since a method started before its release
time will achieve zero quality.

Because methods have duration and release time con-
straints, we must record “wall-clock time” in the state of
the agent. That is, in order to know the possible outcomes of
executing a method (recall that the outcome is characterized
by duration and quality), we must know when the action is
starting. When determining the outcome distribution for a
method M, we must also know the quality of every node n
for which there exists an NLE, n — M, and we must know
the quality of n at the time now — delay(n — M).* The
need to reason about NLEs is another reason we must record
the completion times of all methods. Because of the delays
in the NLE effects, we must be able to compute a quality for
the tail nodes at different times in the trace.’

Given the above features of C-TAMS, we can define the
state of a C-TZEMS agent as a tuple (t, M), where ¢ is the
current time, and M is a set of method outcomes. If M is the
set of methods a TEMS agent can execute, we can assign to
M an arbitrary numbering 1...n, for n = |M|. Then M is a
set of tuples (i, (i), 8(2), ¢(?)): the index of the method, its
start time, duration, and quality.6 This information is suffi-
cient (but not always all necessary) to give a state space that
has the Markov property.

Transition function The C-TAMS task network, with its
duration and quality distributions, defines a transition func-
tion. For example, if an agent executes a method ¢ starting
at time ¢, yielding a duration 6(¢) and a quality ¢(7), that is a
state transition as follows:

{t, M) — (t+6(i), M U{(i,t,6(i),q(2))})

So the C-TZAMS task model defines a state transition distri-
bution of the form P(s’ | m, s) for methods m and states s
and s’. Note that we do not generate states at every tick in
the system clock. Instead, we only generate states for “inter-
esting” times, when methods start or finish.

In addition to allowing agents to carry out C-TAMS
methods, we also allow them to execute “wait” pseudo-
actions. We allow agents to choose to wait until the next

3But see our discussion of state equivalence later in the docu-
ment.

“This is actually a slight oversimplification. For some NLEs we
need to know the exact quality of the tail node, for others we need
only know whether that quality is non-zero.

SNote that the quality of nodes is a montonically non-
decreasing function of time.

®In practice, the set M is most efficiently implemented as a
vector.

let openlist = )
while openlist do
let* s = pop(openlist)
ms = applicable-methods(s)
for m € ms do
;;, transitions, ts, is a set of
;; <probability, successor> pairs (p,s’)
let ts = succs(s,m)
for (p,s') € ts do
unless old-state(s’) do
add s’ to openlist
add (p, s’) to transitions(s)

Figure 2: Unrolling algorithm

time at which an action becomes enabled (i.e., the next re-
lease time). That is, we allow the agent to perform wait ac-
tions of the form wait(n) that cause a transition as follows:

{t, M) — {t +n,M)

The wait actions are deterministic.

Unrolling the state space Our techniques “unroll” the
state space for the MDP from its initial state ({0, )) for-
ward.” From the initial state, the algorithms identify ev-
ery possible method that could be executed, and for each
method every possible combination of duration-and-quality
outcomes, generating a new state for each of these possible
method-duration-quality outcomes. Each state is then fur-
ther expanded into each possible successor state, and so on.
For states where no methods can apply, a “wait-method” is
generated that leads to a later state where some non-wait
method has been enabled (or the scenario has ended). We
give a simplified pseudocode for this algorithm in Figure 2.
The unrolling process ends at leaf states whose time index is
the end of scenario. The code for performing this unrolling
was adapted from previous state-space unrollers developed
at SIFT for applications in optimal cockpit task allocation
(Miller, Goldman, & Funk 2003).

Note that in order to prevent an even worse state space
explosion, we must not revisit states. The state space gener-
ated in unrolling is a DAG rather than a tree, so states may
be regenerated. As shown in Figure 2, we check to see if a
state has previously been generated before adding it to the
openlist. The following section on recognizing equivalent
states shows how we can extend this state space pruning to
dramatically reduce the number of states enumerated.

Another issue is that the set of enabled methods is a com-
plex function of the current state, influenced by temporal
constraints, NLEs, etc. Not only must we reason about the
state to determine what methods are enabled, we also ag-
gressively prune dominated action choices so that we don’t
have to enumerate the resulting states. For example, once
one task under a :MIN QAF has failed (gotten zero qual-
ity) then none of the :MIN node’s remaining children should
ever be tried, because they cannot increase the :MIN node’s

"Note that we can just as easily start unrolling in medias res, by
starting from a state in which the agent has already executed some
actions.



quality.® Similarly, we prune methods if they are guaran-
teed to run longer than their deadlines, and we abort meth-
ods early if we can determine that they will run past their
deadlines. For example, if a method has three durations,
di < ds < ds, and its deadline is D = ¢ + d;, the agent
can execute the method, but if it fails to get an outcome with
dy, we should halt execution at D, rather than pointlessly
running longer.

Even with aggressive dominance-based pruning, we are
unable to fully enumerate the state spaces of even single
agent COORDINATORs MDPs. These MDPs would be chal-
lenging even in the best of circumstances, but in the CO-
ORDINATORS application, we must unroll the networks and
solve them under time pressure. The two techniques most
important to meeting these resource constraints are pruning
equivalent states — a process that provides exponential re-
ductions in state space — and heuristically-guided, partial
task model unrolling.

Equivalence folding

The size of the state space of the C-TZAEMS MDP grows ex-
ponentially as it progresses. Since the growth is exponential,
every state we can remove from the state space, especially
early in the problem, can provide an enormous reduction in
overall state space size. Accordingly, we have been work-
ing to aggressively prune the state space by identifying and
folding together equivalent states. Two states are equiva-
lent if they are identical with respect to the actions available
from the current time forward and the eventual quality that
will result from any execution trace starting at the two states.

Recall that all questions about an execution trace can be
answered if one knows the history of method executions
in that trace. That is why the state of a C-TZEMS agent
can be characterized by a pair of the current time and the
set of method outcomes. If that is the case, then a simple
equivalence-folding can proceed by merging together states
that have the same set of method outcomes (recall that these
may be captured by recording the completion time and qual-
ity of the methods), and the same time index.

It is important to remember that there are two aspects to
the problem of finding equivalent states in this kind of appli-
cation. One aspect is the problem of matching, or verifying
equivalence. The definitions of equivalence that we have
outlined above provide the means for developing matching
routines. However, equivalence folding will be worse than
useless without an efficient solution to the problem of re-
trieving candidates for matching. In particular, if too many
candidates are retrieved then the cost of the matching checks
will overwhelm the benefit of equivalence folding. Indeed,
our first experiments with equivalence folding encountered
this problem until we improved our indexing. For the first,
simple equivalence matching, we were able to index the
states by keeping a vector of hash-tables, one hash-table for
each time index. However, in order to effectively hash the
states, we needed to develop a custom hash-function able to

8 Actually, if a child node can enable some other local or non-
local method it may still have utility. This sort of effect makes it
quite challenging to accurately assess dominance.

indexing arrays of floating-point numbers without an exces-
sive number of collisions.

This first, simple approach to equivalence folding did, in-
deed, yield substantial speedups in the unrolling process.
However, these speedups were rapidly swallowed up by
large-scale problems with hundreds of C-TAEMS methods.
In search of further improvements, we looked for ways to
discard some methods from the agent’s history, reducing the
amount of state and thus permitting more states to be folded
together. That is, we use a form of abstraction specifically
tailored to C-TZAMS in order to map states to abstractions
that omit irrelevant history, and we fold together states that
are equivalent under this abstraction.

Our approach to exploiting the task network structure to
abstract the states relies on two features of C-TAMS QAFs:
First, if we can determine the final quality of a task ¢, then
we do not need to know about the quality of ¢’s children to
determine the final quality of the execution trace. Second,
by static inspection of the task network, we can determine a
point in time by which we will know the final quality of ev-
ery node in the task network; the node deadlines give us that
information. For any node n, we define the “latest useful
time” at which we need to know its status in order to com-
pute the quality of its parent as lutyre.(n). To emphasize
that we do not use an exact value of luty,..(n), but only an

easily-computable upper-bound, we will use lutye.(n).
Unfortunately, the C-TZAEMS QAFs and the rules for com-
puting quality up the task network are not sufficient to give
us a simple, sound abstraction relationship. The abstrac-
tion is complicated by the presence of NLEs and their de-
lays. That is, we cannot “forget” the quality over time of
a given node until the time when we can determine that
this information is no longer needed to compute the status
of the NLEs out of that node. We refer to this quantity as
lutyre(n). As with luts...(n), we can compute an ap-

proximation, luty g (n) using information that is statically
available in the task network. Essentially, for n this number
is

lutyze(n) = max deadline(n’)
n’\nl\gn’

Armed with these facts, we can define the latest useful
time for information about a node, n, as follows:

hTt(TL) = InaX(lu/\ttree (n>; lu/\tNLE (n))

We may now use lut(n) to define an abstracted equivalence
relationship between two states, s and s’. To a first approxi-
mation, this relation is as follows:

e sand s’ are equivalent if time(s) = time(s’) and they are
method-equivalent and they are task equivalent;

e s and s’ are method-equivalent if, for all m €
methods, either lu/\t(m) < time(s) or end-time(m, s) =
end-time(m, s') and quality(m, s) = quality(m, s’).’

e s and s are task-equivalent if, for all ¢ € tasks, either
1u/\t(t) < time(s) or quality(¢, s) = quality (¢, ).

“We have suppressed some complications here.



No overlap Moderate overlap
New  Original New  Original

States 13.3K 49.1K 86.4K 356K
Terminal states 12 2187 13 15.3K
MDP Unroll time (secs) 16.5 93.5 72 3995
Find policy time (secs) 0.24 0.86 417 (killed)
Reward 12.2 12.2 12.2 12.2

Table 1: Effects of improved equivalence folding as a
function of problem flexibility

Some remarks on the implementation:

e Since the lut(n) information is static, it can be computed
at task model load time and then reused.

e We may represent the “task quality state” using a vector
of quality values, one for each node. The quality of a task
will remain in the vector until after its LUT, at which time
its parent’s final quality will be known and its own quality
can be forgotten.

e We can represent LUT information for “forgetting” states
using bit masks for the quality state vectors, and these bit
masks can be lazily computed and reused. The bit masks
provide an efficient implementation of the abstraction.

e “Quality states” may be efficiently compared using bit-
wise operations.

e We have developed an effective special-purpose hash
function for these vectors.

Our preliminary experiments indicate substantial
speedups from using this new, abstract equivalence rela-
tionship. Table 1 shows the improvement that was achieved
on two versions of a representative example of a COORDI-
NATORS scenario, which is small enough for generation of
a complete policy (considering all relevant action choices,
across the entire planning horizon). This scenario involved
four separate windows of activity, in each of which there
are tasks that must be successfully accomplished for the
agent to achieve a positive reward. The agent has a total
of 7 possible actions it can take at any given time step,
though for any given time step, several of them will be
ruled out as rational choices by temporal constraints. The
two sets of results entitled “No overlap” and “Moderate
overlap” were generated to test the behavior of the new
equivalence reasoning in the presence of increased method
choice, achieved by relaxing the temporal constraints on
the windows of activity such that they go from disjoint, to
overlapping by approximately 20% of the width of each
window. In each case, we report the number of states
generated in a complete unrolling of the state space, subject
to folding together states recognized as equivalent, the
number of terminal states (distinguishable states at the end
of the scenario), the time to unroll the state space, and the
time required for Bellman backup to generate a policy for
that state space. The “Reward” entry is present to ensure
that the stronger form of equivalence reasoning is not
altering the problem being solved (e.g. by combining states
that are not truly equivalent).

The results show a pronounced improvement for the new
equivalence reasoning over the original formulation, which
increases with an increasing freedom of action choice (and
the concomitant increase in the size of the policy). The re-
duction in the number of terminal states in the unrolled state
space generated is particularly striking, and relevant in that
it directly affects the complexity of finding a policy.

We have also demonstrated that the new equivalence rea-
soning can provide a superlinear advantage over the old ver-
sion of equivalence (which was itself very much better than
an naive approach using no equivalence reasoning), in terms
of how solution times scale with problem size. The results
in Table 2 shows the difference in how old and new equiv-
alence scale with problem size. The problem template used
for these experiments consists of a variable number of win-
dows, each containing multiple methods that the agent may
execute. The reason for the difference in growth rates be-
tween the two approaches is that new equivalence does not
need to track how a given level of quality was achieved for
a task whose execution time is past, just what the quality
achieved was. While this particular problem template was
chosen to illuminate a particular structure, we expect real
scenarios to have this character to at least some degree: it
will frequently not matter exactly how a given result was
achieved, just what it was, that was achieved.

So far, we have only done what one might refer to as
“static” equivalence folding; equivalence folding using in-
formation that is independent of the actual evolution of an
execution trace. However, there is additional, dynamic in-
formation that could be employed for further abstraction.
For example, once we know that one child of a MIN task
has failed, then we know that this task will have a final qual-
ity of zero, and that we do not need any information about
other children of the task in order to compute the quality of
the task or its parents.10 It is not clear to us, however, to
what extent we can actually get a net benefit by employing
this information — computing this kind of abstraction may
be more expensive than it is worth.

To date, we have only worked with exact state equiva-
lence. Folding together states that are only approximately
equivalent could yield even greater savings. We hope to ex-
pand to do this in the future. Unfortunately, the problem of
identifying good approximations for equivalence is consid-
erably complicated by the fact that the C-TAEMS QAFs are
so expressively powerful. It is a trivial task to construct a C-
TZAMS task network whose quality is only bounded from 0
to n for an arbitrarily large n until the final time step, when
all quality is gained or lost. Determining what quality out-
comes are effectively collapsible will involve quite complex
heuristic reasoning.

“Informed Unrolling”

Even with the optimizations mentioned above, the state
space of even a single COORDINATOR agent’s MDP may
be too large for full enumeration. Since full enumeration of
even single-agent C-TZAEMS MDPs is impractical, we have

19But there may still be NLEs out of the children that have to be
reckoned with.



Number of windows in scenario
1 2 3 4 5 6
New | Orig. | New | Orig. | New | Orig. | New | Orig. | New Orig. New | Orig.
States 8 13 114 817 120 | 4087 | 126 | 20437 | 132 | 102187 | 138 | killed
Terminal states 1 5 1 70 1 350 1 1750 1 8750 1 killed
MDP Unroll time (msec) 10 10 60 200 60 1470 30 7560 40 200K 40 | killed
Find policy time (msec) 5 5 7 23 8 56 3 362 4 10K 4 killed
Reward 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 | killed
Table 2: Effects of improved equivalence folding on scaling
developed a technique for heuristic enumeration of a sub-
space of the full MDP. Our informed unroller (1U) algorithm 4 ‘ ‘ ‘ ‘
prioritizes the openlist of states waiting to be unrolled based
i ikeli ——8—% SATATaIizizzig
on an estimate of the hkehhood that the state would be en- 12 \:/ o
countered when executing the optimal policy from the ini- A Tl -
tial state. The intent is to guide the unrolling algorithm to 10f o 1
explore the most-probable states first. > e
One cannot determine the probability of reaching a state T gf e ,
without considering the policy followed by the agent. There- = .
fore, the IU intersperses policy-formulation (using the Bell- 8 &l I ]
man backup algorithm) with unrolling. This means that 3 o
we must be able to find an (appr.ox1mately) optimal policy | prrweryver=ve oy ———— |
for partial MDP state spaces, which means we must havea || - -. test!—AGENT1 (pure-kauai) L
heuristic to use to assign a quality estimate to leaf nodes in —6— test1-AGENT2 (informed-unroller) 11~ 1
our search that do not represent complete execution traces 2l test-AGENTZ (pureaua) et ]
pres p : 1 . —6— test1—AGENTS3 (informed-unrollen)| 11 i
We have developed a suite of alternative heuristics for ‘= = test1-AGENTS (pure-kauai) I
estimating intermediate state quality, since the problem of 0 0 0 0 o e

finding a good heuristic is quite difficult. Currently the most
consistent performance is achieved by a heuristic that em-
phasizes unrolling the highest (estimated) probability states
first. However, computing the heuristic function (which
involves a full Bellman backup) and sorting the openlist
(which may be quite large) is an expensive operation. There-
fore we constrain the openlist sorting activity in two ways.
First, the sorting only occurs when the size of the openlist
doubles,!'! and second, once the sorting function takes more
than a certain maximum allocated time (e.g., one second), it
is never performed again. This has the net effect of sorting
the openlist more often early in the search, when focus is
particularly important, and less often or never as the space is
unrolled farther and probability information becomes both
less discriminatory (because the probability mass is dis-
tributed over a very large set of reachable edge nodes) and
focus becomes less critical (because the agent can refine its
model/policy during execution time). We are currently revis-
ing our implementation of Bellman backup to permit partial
results to be reused across restarts, which will enable us to
use our heuristic more extensively.

The informed unroller work is at an early stage, but early
results from the evaluation against a complete solution are
promising. For example, in Figure 3 we show a compari-
son of the performance of the informed unroller against the
complete unrolling process. In these small test problems,
the informed unroller is able to find a high-quality policy
quickly and to return increasingly effective policies given
more time. This allows the IU-agent to flexibly trade off the
quality and timeliness of its policies. The current version of

"'"This threshold could, of course, be tailored.

time (seconds)

Figure 3: The Informed Unroller can find near-optimal
policies much faster than building the complete
MDP.

the IU does not support repeated, incremental unrolling of
the state space during execution. However, we are actively
working to build a new version, and integrate it into our CO-
ORDINATORS agent.

The IU approach is related to the “approximate dynamic
programming” algorithms discussed in the control theory
and operations research literature (Bertsekas 2005). These
approaches derive approximate solutions to MDP-type prob-
lems by estimating, in various ways, the “cost to go” in leaf
nodes of a limited-horizon portion of the full state space.
While our exploration of the literature is not yet complete,
initially we believe that a key difference in our IU ap-
proach is the notion of time-dependent horizon control and
unrolling-guidance (vs. just estimation of leaf-node reward
for policy derivation).

The IU method is a special case of the find-and-revise al-
gorithm schema (Bonet & Geffner 2006) (which is a gener-
alization of algorithms such as LAO* (Hansen & Zilberstein
2001)). LD F S-family algorithms use knowledge of the ini-
tial state(s) and heuristics to generate a state subspace from
which a policy can be abstracted. A find-and-revise algo-
rithm finds a state in the network for which the current value
estimate is inaccurate, and revises the value for that state
(e.g., by generating successors, and propagating the value



functions backwards in standard MDP fashion).

Our technique differs from the general case, and its in-
stances, in substantial ways. LAO™* generates a state sub-
space from which the optimal policy can be provably de-
rived. The IU, on the other hand, executes online, and might
lack enough time to enumerate such a state subspace even if
it knew exactly which states to include. The IU is an anytime
algorithm, unlike L AO*, which runs offline. For this reason,
the IU makes no claims about policy optimality; indeed, it is
not even guaranteed to generate a closed policy.

The general find-and-revise algorithm family can provide
guarantees weaker than those of LAO*, but those guaran-
tees rely on having an admissible heuristic value function for
states that have not been fully explored. We have discussed
earlier why an admissible heuristic is difficult to come by for
the COORDINATORs domain. Any truly admissible heuris-
tic is likely to be so vacuous as to cause search to founder.
Furthermore, even if we had an admissible heuristic, it is not
at all clear that the IU should use it. An admissible heuris-
tic will tend to push the policy expansion to explore states
where it is possible that the optimum will be found, in order
that we not miss the optimum. However, the IU is operating
in a time-pressured domain. So we should not be encour-
aging the system to move towards promising unexplored ar-
eas — that will tend to leave the agent with a policy that is
broad but shallow, and virtually guarantee that it will “fall
off policy” during execution. Instead of admissibility, we
must find a heuristic function that will cause the agent to
tend to build policies that trade off considerations of optimal
choice against completeness/robustness of the policy. It is
possible that this heuristic should be time-dependent — as
the agent runs out of time for policy development, the IU’s
heuristic should focus more on robustness and less on opti-
mality.

Conclusion and Future Directions

For MDP-based techniques to reach their full potential, Al
must develop techniques for translating its complex repre-
sentational schemes into what is, after all, only an enhanced
finite state machine. Past successes in other Al fields,
such as the advances offered by compiling PDDL plan-
ning representations in SAT problems, show that such trans-
lation methods can enable substantial practical advances.
In this paper we have described techniques for compiling
such an expressive representation, C-TAEMS, into MDPs.
We have shown how to augment the state space to handle
non-Markovian constructs, and provided techniques for han-
dling the state space explosion that results, including tech-
niques for aggressively folding together equivalent states,
and heuristic state space enumeration. These techniques ex-
ploit particular features of the underlying task model and of
the translation process. We have used earlier forms of these
techniques to handle another multi-agent task model, and we
believe that they may be adapted for many other domains.
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