
Appears in Working Notes of the AAAI Spring Symposium on Computational Models for Mixed-initiative Interaction
Stanford, CA, March 1997Integrated Task Representation for Indirect InteractionPosition PaperRobert P. Goldman and Stephanie Guerlain and Christopher Miller and David J. MuslinerHoneywell Technology Center3660 Technology DriveMinneapolis, MN 55408fgoldman, guerlain, cmiller, muslinerg@htc.honeywell.comAbstractWe are developing mixed-initiative systems that pro-vide users with 
exible control over evolving processes.For such systems to be feasible, both users and au-tomated agents must be able to operate at multiplelevels of abstraction. We are designing mixed initia-tive systems organized around shared task models toachieve this multi-level task sharing. These task mod-els will allow both human and automated agents toview the ongoing state, to control tasks and to projectfuture requirements. Our task models will have se-mantics, allowing a suitable interpreter to directly exe-cute tasks for users. We discuss this approach and ourinitial implementation of a system that assists users inproposal preparation.IntroductionWe are an interdisciplinary research group at the Hon-eywell Technology Center (HTC), chartered to de-velop a general-purpose task representation scheme formixed initiative systems. The knowledge encapsulatedin this general-purpose task representation scheme willprovide the foundation for applications in a number ofareas, including crisis-management for industrial con-trol systems, data mining and scheduling systems. Thetask representation scheme will support both (1) theinferences needed for the system to take action toachieve goals held jointly with users and (2) the de-sign and population of user interfaces to the system.Our working hypothesis is that mixed initiative sys-tems must permit both users and automation to oper-ate at multiple levels of abstraction. Systems in whichthe user can only delegate whole tasks are too in
exiblefor the applications that interest us. Systems in whichthe user can only act by direct manipulation overloadtheir users.We believe that the best way to achieve multiple-level intermingling of activities is to organize mixedinitiative systems around shared task models. Thesetask models should be understandable to both human

and automated agents. They will capture the vari-ous tasks required by the system and user at mul-tiple levels of abstraction, allowing both automationand user to view the ongoing state and future require-ments of problem solving. We call systems designed inthis way \indirect interaction" systems, because theypermit users to act indirectly, delegating tasks to au-tomation, but also to interact relatively directly, andto constrain the actions taken by the automation.Why Mixed Initiative Systems?In this section we discuss the reasons our group ispursuing mixed initiative systems. One major moti-vating concern is the need to combine human and AIexpertise in complex systems. Another, particularlyrelevant to Honeywell's controls business, is that au-tomated systems often need to a�ect systems that canonly be acted on or observed by people directly. Soci-ological and organizational reasons often dictate onlypartial automation even where full automation mightbe possible.One reason for the adoption of mixed initiative sys-tems is the limitations of knowledge acquisition in au-tomating complex tasks. In many of the domains thatconcern us, there are aspects of human domain knowl-edge that we cannot hope to completely capture. Oneapplication area where we have confronted this issue isscheduling. Putting aside questions of computationalpracticality, scheduling is fairly a well-understood com-putational task: make a set of ordering decisions suchthat a set of actions will be carried out in a way thatoptimizes an objective function. We can point a searchengine at the problem and wait for the answer. In ac-tual manufacturing problems, however, we have rarelybeen able to formulate a tidy objective function. Forexample, we might wish, in general, to schedule pro-duction of a particular substance towards the end of aproduction period (because this task is most tolerantof residues left by earlier processes). However, if theplant manager gets an urgent order for this substance



from a very valuable customer, the ordering must bechanged. There may be no time to formulate a suitablenew objective function, and it would not be worthwhileto do so for every forseeable special situation.In other cases, there are actions that cannot be per-formed by automation. For example, in many re�neriesthere are valves that are not actuated by the controlsystem and must be adjusted by �eld operatives withwrenches. We would like to build a mixed initiativesystem to support proposal preparation. The actualwriting of the text cannot be automated of course, butmany support tasks (e.g., construction of Gantt chartsfrom milestone lists) can be at least partially auto-mated.Finally, there are cases which cannot be automatedfor reasons that are not technological. For example, re-searchers in medical informatics have stated that evenwere it possible to automate diagnosis, diagnostic sys-tems would not be accepted, because diagnosis is oneof the most interesting tasks physicians perform. Wemay not want to fully automate other tasks becausewe do not want to make humans dependent on au-tomation. For example, often operators of point-of-saledevices are so dependent on mechanically-performedarithmetic that they are unable to \sanity check" thesecomputations. We would not like workers in safety-critical professions, e.g. pilots, to allow their skills toerode in this way.One question worth asking is \Why not leave taskslike this completely free of automation?" In somecases, automation can �ll gaps in human cognitive ca-pabilities. Determining the presence of antibodies inblood samples is a task that people perform poorly, butthat can be signi�cantly aided by a mixed-initiativedecision support system (Guerlain 1995). Schedulingoften requires consideration of more possible orderingsthan can be evaluated by people. In other cases, for-going automation is no longer even an option. Forexample, preparation of the complex documentationand accounting required to bid for a large contract issimply not feasible without tools like spreadsheets.Our Working HypothesesWe have adopted three hypotheses to direct our designexperiments.1 First, mixed initiative systems shouldpermit humans and automation to work at multiplelevels of detail. Second, these e�orts should be orga-nized around a shared task model. Third, this taskmodel will provide the backbone of the user interfacesof the systems we build.1As yet, these are experiments only in the informal senseof the word.

Mixed initiative systems will be most 
exible andmost capable if both humans and automation are freeto work at multiple levels of detail (see Figure 1). Thistrait sets our work apart from, for example, the kindof interfaces currently provided by Microsoft products.Current Microsoft products provide \Wizards" that al-low users to delegate tasks to the automation. How-ever, one cannot work with the wizard to achieve agoal: the delegation is e�ectively all or none. ComplexAI systems typically cannot tolerate human interven-tion in details of their solutions. Further, human users,when delegating a (part of) a task to an automatedactor, should be able to impose constraints on the au-tomated actor's actions or propose a partial solution.The joint e�orts of humans and automation are tobe organized around a shared task model that is under-standable and manipulable by both users and automa-tion. For example, the user may select a displayed sub-task, thereby saying \Now let's talk about this" andfrom there can do things like say \What needs to bedone to accomplish this?" \How is progress on this?"\I'm going to work on this now" or \I want you towork on this now," etc. If the user of the system actsthrough a shared task model, that will permit his/heractions and decisions to be incorporated into the net-work of constraints that the system uses to guide itsown actions. That will prevent the confusion that cur-rently occurs when humans intervene to change low-level aspects of automation actions. Conversely, thehuman-understandable task model will help the usercomprehend actions taken autonomously by the sys-tem and relate them to jointly-held goals.The shared task model is to be the keystone of theuser interface of the mixed initiative systems we de-velop. Currently, a major expense in systems devel-opment is the development of user interfaces. Fur-thermore, the construction of direct manipulation in-terfaces requires us to develop direct manipulationmetaphors, which are often strained by complex sys-tems (Gentner & Nielson 1996). If we can developa satisfactory cross-domain task modeling formalism,and a user interface approach that operates on this for-malism, then we will be able to amortize the costs ofuser interface development for even complex softwaresystems.In our initial work, we are making three simplify-ing assumptions. First, we are focusing our e�orts onsystems with a single top-level goal. Our initial ex-perimental system is an associate for proposal man-agers at HTC, to aid them in the process of preparinga single proposal. In this way we simplify the prob-lem of inferring which goal the user is working on atany given time. Second, the systems we build will be



SystemsAutomation
Indirect InteractionTraditional

Systems
Mixed-Initiative

Automation

User

A
bs

tr
ac

tio
n

Figure 1: A spectrum of interaction.environments within which users will work to achievethese goals. The user will always be working througha main system, rather than individually invoking mul-tiple tools (the Unix model). This makes it easier forus to avoid situations where the user goes \behind theback" of the system. Finally, we are initially attempt-ing only single-user systems, although many of the do-mains involve multiple human agents.ScenarioWe are starting by developing a system for assistingin the preparation of contract proposals. This is agood test application for us, because it provides us withthe opportunity to get user experiences and providesa useful corrective | if we fail to provide a bene�t tothese users over and above existing automation, theywill not accept our system.We are proceeding by iteratively developing demon-stration scenarios with the task representation and in-ference algorithms necessary to support these scenar-ios. As a result, we are intertwining the development ofour representation scheme with representation of sam-ple task domains. In this section we present a sampleinteraction with our indirect interaction proposal asso-ciate.On startup, the system will display the skeletal plan(see Figure 2).2 Of the tasks in the initial, shallow, ex-pansion, only the \Collect Proposal Information" taskis marked as currently executable.2This is only a diagram of the task model, not a sampleof the user interface!

Con�guration When the user selects \Collect Pro-posal Information," the display shifts to show the sub-plan for this task, illustrated in Figure 3. Once again,only one choice is executable, \Collect background in-formation."Collecting Background Information The assis-tant system will collect background information fromthe user. In particular:� Formal and informal program titles.� Customer (select from list or add new ones)� Funding available to prepare the proposal� Proposer's information packet (PIP) �le location� DeadlineWhen the user speci�es the PIP �le location, the Pro-posal Assistant recognizes an opportunity to be of as-sistance. The Proposal Assistant will invoke a localtool, the \dePIPer," that attempts to parse an ARPAPIP document and extract an initial outline for theproposal document.Another opportunity will be spotted by the ProposalAssistant when the user speci�es the deadline. Thisinformation will be propagated throughout the plan togenerate bounds on completion times of the variousgoals.



init-plan.dom

Prepare Proposal

Deliver Proposal to CustomerCollect Proposal Information Prepare proposal sections Duplicate proposalFigure 2: The initial plan. The \haloed" plan step is executable.
plan2.dom

Prepare Proposal

Deliver Proposal to CustomerCollect Proposal Information Prepare proposal sections Duplicate proposal

specify proposal structure

specify proposal outline specify proposal format

Initialize RCS

Analyze PIP

Collect background information

Proposal Team

Customer

PFA amount

Deadline

PIP

enables

enablesFigure 3: The plan after an initial move by the user.



Specify Proposal Structure When the user indi-cates that s/he is ready to specify the proposal out-line, the Proposal Assistant brings up a display thatcontains the results of the attempt to parse the PIP.Note: we are assuming that there was an identi�able,machine-readable PIP in this scenario. If there wereno such thing, then the system would simply displaya blank outline or a set of defaults derived from priorproposals to similar customers).When the sections have been de�ned, the ProposalAssistant notes another opportunity to act in supportof the user. The Proposal Assistant determines whatdocument preparation method will be used, by exam-ining defaults and/or by interrogating users.3 Notic-ing that the proposal team is working on engineeringworkstations, the Proposal Assistant creates a direc-tory that will act as a repository for all of the proposal�les. The Proposal Assistant also applies templatesto generate boilerplate text for the various sections,and initializes the revision control system (RCS) forthese �les. The Proposal Assistant also initializes themain proposal �le with information about the format-ting and page layout.This is a simple scenario illustrating an initial in-teraction with the Proposal Assistant system. We arecurrently implementing an initial version of the Pro-posal Assistant in Java.Task representationDesiderataThe desiderata for the task representation arise out ofthe needs of users of the indirect interaction system.The needs we have identi�ed are:� User can direct task plans. This includes{ Choose alternative means to achieve goals: choosealternative expansions for a task;{ Edit parameters to tasks.� System provides user with feedback about plan qual-ity.� User must control system initiative.� User must be able to explore scenarios.� System must be able to assimilate actual with pre-dicted data.� User must be able to reverse system actions (char-acteristics of the domain permitting).3For this discussion, we assume text editors and atext formatter (e.g., LaTeX). Similar functionality will beprovided through a WYSIWYG system such as Word orFramemaker.

To provide these facilities, the system must be able to:� track progress toward the top-level goal (monitor);� look ahead and anticipate future events and threatsto the goal's achievement (project);� take initiative to execute sub-tasks on the user's be-half (execute).In addition to the inferential desiderata, the task modelmust support comprehensible browsing and interac-tion.Monitoring The system must be able to determinethe status of various sub-tasks in the task model. Mon-itoring is a necessary prerequisate for the other infer-ential processes of projection and execution. Furthersteps in the exection of the task cannot be foreseenunless the system can identify what has already beendone and the system cannot take initiative to act forthe user if it cannot determine that a task remains tobe done.While we are interested in general purpose plan-recognition (Charniak & Goldman 1993; Kautz 1991;Carberry 1990; Schmidt, Sridharan, & Goodson 1978),we do not believe that plan-recognition algorithms yethandle su�ciently expressive representations or aresu�ciently e�cient and robust for our purposes. Ac-cordingly, we are designing our systems to minimizethe amount of plan recognition necessary. We hope todo this in two ways: �rst, by making our mixed ini-tiative interface a \home base," from which the userwill depart to carry out actions and to which the userwill return (see discussion of simplifying assumptionsin Section ), we hope to maximize the extent to whichwe can \just see," what tasks the user is performing.Second, when necessary we will fall back on asking theuser directly.Note that both of these tactics reinforce our desirefor a task representation that is understandable to theuser.Projection In several of our domains of interest, re-source and time management are of great interest toour prospective users. For example, in assembling aproposal, primary concerns are to establish and tracka schedule and not to overspend the budget allocatedto proposal preparation. Even in cases where resourcemanagement is of less interest (e.g., knowledge-assisteddata mining), we need to project the e�ect of earlyactions in order to determine their e�ect on possibleactions in the future.



Execution There are two primary means of execu-tion for the systems we have in mind: �rst, automatedexecution of tasks by dispatch to other programs; sec-ond, explicit transfer of responsibility for a task to theuser.In order to be able to support execution, the systemneeds to make two primary kinds of inference: �rst,the system needs to be able to detect when a task thesystem is able to perform is ready for execution; sec-ond, the system needs to be able to detect when a taskmust be performed but the system itself is unable todo so. These inferences must take into account user-expressed preferences about system initiative, in orderto a�ord the user control.Preliminary designWe are building our task modeling scheme on exist-ing planning languages. In particular, we are goingto use concepts from hierarchical planning. The no-tations used by \�rst principles" planning systems arenot suitable for our purposes. First principles plan-ning systems require modeling of domain mechanics intoo great detail. E.g., it is not possible to require oneaction to follow another without an explicit producer-consumer relation between them. Further, these no-tations provide no way of capturing goal-subgoal andabstraction relationships.Our task models are based on the ProceduralReasoning System (PRS) (George� & Lansky 1986;George� & Ingrand 1990; Ingrand, George�, & Rao1992). PRS provides a high-level language for describ-ing agent behaviors and an interpreter to execute them.The PRS architecture, illustrated in Figure 4, performssomewhat like an enhanced production system.Knowledge about how to accomplish given goals orreact to certain situations is represented in PRS bydeclarative procedure speci�cations called KnowledgeAreas (KAs). Each KA is triggered when its contextis satis�ed by current conditions. This encapsulationof procedures and context-dependent reactions allowsboth the modular structure of rule-based systems andthe compound actions, subgoaling, and metalevel ex-pressions of more powerful task representations (e.g.RAPS (Firby 1987)).The Intention Structure (IS) contains all those tasksthe system has chosen for execution, either immedi-ately or at some later time, and is under full introspec-tive control of KAs. Thus rather than simply executingone KA after another, at any given moment the IS maycontain a number of intentions, some of which may besuspended or deferred, some of which may be waitingfor conditions to hold prior to activation, and some ofwhich may be metalevel intentions describing how to

select from alternative future courses of action.The following PRS characteristics appear especiallyuseful as an enabling technology for mixed initiativetools and agents:� The IS supports the identi�cation of executableplans, necessary for the system to take initiative toachieve goals for the user.� The interpreter will provide an initial framework fortask execution.� PRS provides more complex patterns of actionthan conventional planning representations, includ-ing looping.� Its procedural plan representation, which isconsistent with the form of many existing domainknowledge bases (e.g., standard operating proce-dures). Furthermore, the hierarchical, subgoalingnature of the procedural representation allows PRSto combine pieces of procedures in novel ways, whichis important for 
exible plan execution and goal re-�nement.� Its ability to pursue parallel goal-directed taskswhile at the same time being responsive to chang-ing patterns of events in bounded time. The conven-tional planning assumption of a single-tasking agentis not su�cient for mixed initiative systems.� Its ability to construct and act on partial (ratherthan complete) procedures.� Its knowledge representation assumptions, which en-courage incremental re�nement of the plan (pro-cedure) library, an enormous advantage for develop-ing large-scale applications.We need to augment PRS to handletemporal projection For many applications the\schedule view" is crucial. We will support this byadding temporal information to the KAs and by pro-viding meta-level temporal constraint propagation.feasibility inference We need to be able to rapidlyidentify when choices made by the user or automa-tion will threaten the successful completion of theplan. We will support this by special-purpose infer-ence that detects when plan completion is impossi-ble.user interface needs We will augment the modelwith information about its presentation and aboutways to gather appropriate information (e.g., param-eter bindings) from the user.SummaryWe are working to develop a general-purpose task rep-resentation scheme for mixed initiative systems. In this



Domain

Database
(Facts, Beliefs)

Interpreter
(Reasoner)

KA Library
(Plans)

Monitor
Command

Intention

Application

Generator

Structure
Goals

Figure 4: The PRS architecture (George� & Ingrand 1990).paper we have discussed the role of such a scheme in aclass of mixed initiative systems we have called \indi-rect interaction" systems. These are systems in whichboth users and automation operate at multiple levelsof abstraction. We have presented desiderata for therepresentation scheme and have discussed our initialsteps in its development.ReferencesCarberry, S. 1990. Incorporating default inferencesinto plan recognition. In Proceedings of the EighthNational Conference on Arti�cial Intelligence, 471{478. Cambridge, MA: MIT Press.Charniak, E., and Goldman, R. P. 1993. A Bayesianmodel of plan recognition. Arti�cial Intelligence64(1):53{79.Firby, R. J. 1987. An investigation in reactive plan-ning in complex domains. In Proceedings AAAI-87,196{201.Gentner, D., and Nielson, J. 1996. The anti-macinterface. Communications of the ACM 39(8):70{82.George�, M. P., and Ingrand, F. F. 1990. Real-timereasoning: The monitoring and control of spacecraftsystems. In Proceedings of the Sixth Conference onArti�cial Intelligence Application, 198{204.

George�, M., and Lansky, A. 1986. Procedural knowl-edge. IEEE Special Issue on Knowledge Representa-tion 74:1383{1398.Guerlain, S. 1995. Critiquing as a Design Strategy forEngineering Successful Cooperative Problem SolvingSystems. Ph.D. Dissertation, The Ohio State Univer-sity, Columbus, OH.Ingrand, F.; George�, M.; and Rao, A. 1992. An ar-chitecture for real-time reasoning and system control.IEEE Expert 7:6:34{44.Kautz, H. A. 1991. A Formal theory of plan recogni-tion and its implementation. In Allen, J. F.; Kautz,H. A.; Pelavin, R. N.; and Tenenberg, J. D., eds.,Reasoning About Plans. Los Altos, CA: Morgan Kauf-mann.Schmidt, C.; Sridharan, N.; and Goodson, J. 1978.The plan recognition problem: an intersection of psy-chology and arti�cial intelligence. Arti�cial Intelli-gence 11:45{83.


