Appearsin Working Notes of the AAAI Spring Symposium on Computational Modelsfor Mixed-initiative I nteraction
Stanford, CA, March 1997

Integrated Task Representation for Indirect Interaction
Position Paper

Robert P. Goldman and Stephanie Guerlain and Christopher Miller and David J. Musliner

Honeywell Technology Center
3660 Technology Drive
Minneapolis, MN 55408
{goldman, guerlain, cmiller, musliner }@htc.honeywell.com

Abstract

We are developing mixed-initiative systems that pro-
vide users with flexible control over evolving processes.
For such systems to be feasible, both users and au-
tomated agents must be able to operate at multiple
levels of abstraction. We are designing mixed initia-
tive systems organized around shared task models to
achieve this multi-level task sharing. These task mod-
els will allow both human and automated agents to
view the ongoing state, to control tasks and to project
future requirements. Our task models will have se-
mantics, allowing a suitable interpreter to directly exe-
cute tasks for users. We discuss this approach and our
initial implementation of a system that assists users in
proposal preparation.

Introduction

We are an interdisciplinary research group at the Hon-
eywell Technology Center (HTC), chartered to de-
velop a general-purpose task representation scheme for
mixed initiative systems. The knowledge encapsulated
in this general-purpose task representation scheme will
provide the foundation for applications in a number of
areas, including crisis-management for industrial con-
trol systems, data mining and scheduling systems. The
task representation scheme will support both (1) the
inferences needed for the system to take action to
achieve goals held jointly with users and (2) the de-
sign and population of user interfaces to the system.

Our working hypothesis is that mixed initiative sys-
tems must permit both users and automation to oper-
ate at multiple levels of abstraction. Systems in which
the user can only delegate whole tasks are too inflexible
for the applications that interest us. Systems in which
the user can only act by direct manipulation overload
their users.

We believe that the best way to achieve multiple-
level intermingling of activities is to organize mixed
initiative systems around shared task models. These
task models should be understandable to both human

and automated agents. They will capture the vari-
ous tasks required by the system and user at mul-
tiple levels of abstraction, allowing both automation
and user to view the ongoing state and future require-
ments of problem solving. We call systems designed in
this way “indirect interaction” systems, because they
permit users to act indirectly, delegating tasks to au-
tomation, but also to interact relatively directly, and
to constrain the actions taken by the automation.

Why Mixed Initiative Systems?

In this section we discuss the reasons our group is
pursuing mixed initiative systems. One major moti-
vating concern 1s the need to combine human and Al
expertise in complex systems. Another, particularly
relevant to Honeywell’s controls business, is that au-
tomated systems often need to affect systems that can
only be acted on or observed by people directly. Soci-
ological and organizational reasons often dictate only
partial automation even where full automation might
be possible.

One reason for the adoption of mixed initiative sys-
tems is the limitations of knowledge acquisition in au-
tomating complex tasks. In many of the domains that
concern us, there are aspects of human domain knowl-
edge that we cannot hope to completely capture. One
application area where we have confronted this issue is
scheduling. Putting aside questions of computational
practicality, scheduling is fairly a well-understood com-
putational task: make a set of ordering decisions such
that a set of actions will be carried out in a way that
optimizes an objective function. We can point a search
engine at the problem and wait for the answer. In ac-
tual manufacturing problems, however, we have rarely
been able to formulate a tidy objective function. For
example, we might wish, in general, to schedule pro-
duction of a particular substance towards the end of a
production period (because this task is most tolerant
of residues left by earlier processes). However, if the
plant manager gets an urgent order for this substance

from a very valuable customer, the ordering must be
changed. There may be no time to formulate a suitable
new objective function, and it would not be worthwhile
to do so for every forseeable special situation.

In other cases, there are actions that cannot be per-
formed by automation. For example, in many refineries
there are valves that are not actuated by the control
system and must be adjusted by field operatives with
wrenches. We would like to build a mixed initiative
system to support proposal preparation. The actual
writing of the text cannot be automated of course, but
many support tasks (e.g., construction of Gantt charts
from milestone lists) can be at least partially auto-
mated.

Finally, there are cases which cannot be automated
for reasons that are not technological. For example, re-
searchers in medical informatics have stated that even
were 1t possible to automate diagnosis, diagnostic sys-
tems would not be accepted, because diagnosis is one
of the most interesting tasks physicians perform. We
may not want to fully automate other tasks because
we do not want to make humans dependent on au-
tomation. For example, often operators of point-of-sale
devices are so dependent on mechanically-performed
arithmetic that they are unable to “sanity check” these
computations. We would not like workers in safety-
critical professions, e.g. pilots, to allow their skills to
erode in this way.

One question worth asking is “Why not leave tasks
like this completely free of automation?” In some
cases, automation can fill gaps in human cognitive ca-
pabilities. Determining the presence of antibodies in
blood samples is a task that people perform poorly, but
that can be significantly aided by a mixed-initiative
decision support system (Guerlain 1995). Scheduling
often requires consideration of more possible orderings
than can be evaluated by people. In other cases, for-
going automation is no longer even an option. For
example, preparation of the complex documentation
and accounting required to bid for a large contract is
simply not feasible without tools like spreadsheets.

Our Working Hypotheses

We have adopted three hypotheses to direct our design
experiments.! First, mixed initiative systems should
permit humans and automation to work at multiple
levels of detail. Second, these efforts should be orga-
nized around a shared task model. Third, this task
model will provide the backbone of the user interfaces
of the systems we build.

L As yet, these are experiments only in the informal sense
of the word.

Mixed initiative systems will be most flexible and
most capable if both humans and automation are free
to work at multiple levels of detail (see Figure 1). This
trait sets our work apart from, for example, the kind
of interfaces currently provided by Microsoft products.
Current Microsoft products provide “Wizards” that al-
low users to delegate tasks to the automation. How-
ever, one cannot work with the wizard to achieve a
goal: the delegation is effectively all or none. Complex
Al systems typically cannot tolerate human interven-
tion in details of their solutions. Further, human users,
when delegating a (part of) a task to an automated
actor, should be able to impose constraints on the au-
tomated actor’s actions or propose a partial solution.

The joint efforts of humans and automation are to
be organized around a shared task model that is under-
standable and manipulable by both users and automa-
tion. For example, the user may select a displayed sub-
task, thereby saying “Now let’s talk about this” and
from there can do things like say “What needs to be
done to accomplish this?” “How is progress on this?”
“I’'m going to work on this now” or “I want you to
work on this now,” etc. If the user of the system acts
through a shared task model, that will permit his/her
actions and decisions to be incorporated into the net-
work of constraints that the system uses to guide its
own actions. That will prevent the confusion that cur-
rently occurs when humans intervene to change low-
level aspects of automation actions. Conversely, the
human-understandable task model will help the user
comprehend actions taken autonomously by the sys-
tem and relate them to jointly-held goals.

The shared task model is to be the keystone of the
user interface of the mixed initiative systems we de-
velop. Currently, a major expense in systems devel-
opment 1s the development of user interfaces. Fur-
thermore, the construction of direct manipulation in-
terfaces requires us to develop direct manipulation
metaphors, which are often strained by complex sys-
tems (Gentner & Nielson 1996). If we can develop
a satisfactory cross-domain task modeling formalism,
and a user interface approach that operates on this for-
malism, then we will be able to amortize the costs of
user interface development for even complex software
systems.

In our initial work, we are making three simplify-
ing assumptions. First, we are focusing our efforts on
systems with a single top-level goal. Our initial ex-
perimental system is an associate for proposal man-
agers at HTC, to aid them in the process of preparing
a single proposal. In this way we simplify the prob-
lem of inferring which goal the user is working on at
any given time. Second, the systems we build will be

Traditiona
Automation

User

Abstraction

Automation

Mixed-Initiative
Systems

I
.

Indirect Interaction
Systems

®
.
s
Y
N

Figure 1: A spectrum of interaction.

environments within which users will work to achieve
these goals. The user will always be working through
a main system, rather than individually invoking mul-
tiple tools (the Unix model). This makes it easier for
us to avoid situations where the user goes “behind the
back” of the system. Finally, we are initially attempt-
ing only single-user systems, although many of the do-
mains involve multiple human agents.

Scenario

We are starting by developing a system for assisting
in the preparation of contract proposals. This is a
good test application for us, because it provides us with
the opportunity to get user experiences and provides
a useful corrective — if we fail to provide a benefit to
these users over and above existing automation, they
will not accept our system.

We are proceeding by iteratively developing demon-
stration scenarios with the task representation and in-
ference algorithms necessary to support these scenar-
10s. As aresult, we are intertwining the development of
our representation scheme with representation of sam-
ple task domains. In this section we present a sample
interaction with our indirect interaction proposal asso-
ciate.

On startup, the system will display the skeletal plan
(see Figure 2).2 Of the tasks in the initial, shallow, ex-
pansion, only the “Collect Proposal Information” task
is marked as currently executable.

2This is only a diagram of the task model, not a sample
of the user interface!

Configuration When the user selects “Collect Pro-
posal Information,” the display shifts to show the sub-
plan for this task, illustrated in Figure 3. Once again,
only one choice is executable, “Collect background in-
formation.”

Collecting Background Information The assis-
tant system will collect background information from
the user. In particular:

e Formal and informal program titles.

e Customer (select from list or add new ones)

e Funding available to prepare the proposal

e Proposer’s information packet (PIP) file location
e Deadline

When the user specifies the PIP file location, the Pro-
posal Assistant recognizes an opportunity to be of as-
sistance. The Proposal Assistant will invoke a local
tool, the “dePIPer,” that attempts to parse an ARPA
PIP document and extract an initial outline for the
proposal document.

Another opportunity will be spotted by the Proposal
Assistant when the user specifies the deadline. This
information will be propagated throughout the plan to
generate bounds on completion times of the various
goals.

-

-
init-plan.dom
v

Prepare Proposal

A A

|| Collect Proposal Information | | Prepare proposal sections | | Duplicate proposal | | Deliver Proposal to Customer

Figure 2: The initial plan. The “haloed” plan step is executable.

L

plan2.dom
v J

Prepare Proposal

Collect Proposal Information |—>| Prepare proposal sections |—>| Duplicate proposal |—>| Deliver Proposal to Customer

4
|| Collect background information ” specify proposal structure Initialize RCS

1
Proposal Team
enables
Customer

PFA amount

Deadline specify proposal outline specify proposal format

i A

A 4

enables > Analyze PIP

Figure 3: The plan after an initial move by the user.

Specify Proposal Structure When the user indi-
cates that s/he is ready to specify the proposal out-
line, the Proposal Assistant brings up a display that
contains the results of the attempt to parse the PIP.
Note: we are assuming that there was an identifiable,
machine-readable PIP in this scenario. If there were
no such thing, then the system would simply display
a blank outline or a set of defaults derived from prior
proposals to similar customers).

When the sections have been defined, the Proposal
Assistant notes another opportunity to act in support
of the user. The Proposal Assistant determines what
document preparation method will be used, by exam-
ining defaults and/or by interrogating users.> Notic-
ing that the proposal team is working on engineering
workstations, the Proposal Assistant creates a direc-
tory that will act as a repository for all of the proposal
files. The Proposal Assistant also applies templates
to generate boilerplate text for the various sections,
and initializes the revision control system (RCS) for
these files. The Proposal Assistant also initializes the
main proposal file with information about the format-
ting and page layout.

This is a simple scenario illustrating an initial in-
teraction with the Proposal Assistant system. We are
currently implementing an initial version of the Pro-
posal Assistant in Java.

Task representation
Desiderata

The desiderata for the task representation arise out of
the needs of users of the indirect interaction system.
The needs we have identified are:

e User can direct task plans. This includes

— Choose alternative means to achieve goals: choose
alternative expansions for a task;

— Edit parameters to tasks.

e System provides user with feedback about plan qual-
ity.
e User must control system initiative.

e User must be able to explore scenarios.

e System must be able to assimilate actual with pre-
dicted data.

e User must be able to reverse system actions (char-
acteristics of the domain permitting).

SFor this discussion, we assume text editors and a
text formatter (e.g., LaTeX). Similar functionality will be
provided through a WYSIWYG system such as Word or

Framemaker.

To provide these facilities, the system must be able to:
o track progress toward the top-level goal (monitor);

e look ahead and anticipate future events and threats
to the goal’s achievement (project);

e take initiative to execute sub-tasks on the user’s be-
half (execute).

In addition to the inferential desiderata, the task model
must support comprehensible browsing and interac-
tion.

Monitoring The system must be able to determine
the status of various sub-tasks in the task model. Mon-
itoring is a necessary prerequisate for the other infer-
ential processes of projection and execution. Further
steps in the exection of the task cannot be foreseen
unless the system can identify what has already been
done and the system cannot take initiative to act for
the user if it cannot determine that a task remains to
be done.

While we are interested in general purpose plan-
recognition (Charniak & Goldman 1993; Kautz 1991;
Carberry 1990; Schmidt, Sridharan, & Goodson 1978),
we do not believe that plan-recognition algorithms yet
handle sufficiently expressive representations or are
sufficiently efficient and robust for our purposes. Ac-
cordingly, we are designing our systems to minimize
the amount of plan recognition necessary. We hope to
do this in two ways: first, by making our mixed ini-
tiative interface a “home base,” from which the user
will depart to carry out actions and to which the user
will return (see discussion of simplifying assumptions
in Section), we hope to maximize the extent to which
we can “just see,” what tasks the user is performing.
Second, when necessary we will fall back on asking the
user directly.

Note that both of these tactics reinforce our desire
for a task representation that is understandable to the
user.

Projection In several of our domains of interest, re-
source and time management are of great interest to
our prospective users. For example, in assembling a
proposal, primary concerns are to establish and track
a schedule and not to overspend the budget allocated
to proposal preparation. Even in cases where resource
management is of less interest (e.g., knowledge-assisted
data mining), we need to project the effect of early
actions in order to determine their effect on possible
actions in the future.

Execution There are two primary means of execu-
tion for the systems we have in mind: first, automated
execution of tasks by dispatch to other programs; sec-
ond, explicit transfer of responsibility for a task to the
user.

In order to be able to support execution, the system
needs to make two primary kinds of inference: first,
the system needs to be able to detect when a task the
system 1s able to perform is ready for execution; sec-
ond, the system needs to be able to detect when a task
must be performed but the system itself is unable to
do so. These inferences must take into account user-
expressed preferences about system initiative, in order
to afford the user control.

Preliminary design

We are building our task modeling scheme on exist-
ing planning languages. In particular, we are going
to use concepts from hierarchical planning. The no-
tations used by “first principles” planning systems are
not suitable for our purposes. First principles plan-
ning systems require modeling of domain mechanics in
too great detail. E.g., it is not possible to require one
action to follow another without an explicit producer-
consumer relation between them. Further, these no-
tations provide no way of capturing goal-subgoal and
abstraction relationships.

Our task models are based on the Procedural
Reasoning System (PRS) (Georgeff & Lansky 1986;
Georgeff & Ingrand 1990; Ingrand, Georgeff, & Rao
1992). PRS provides a high-level language for describ-
ing agent behaviors and an interpreter to execute them.
The PRS architecture, illustrated in Figure 4, performs
somewhat like an enhanced production system.

Knowledge about how to accomplish given goals or
react to certain situations is represented in PRS by
declarative procedure specifications called Knowledge
Areas (KAs). Each KA is triggered when its context
1s satisfied by current conditions. This encapsulation
of procedures and context-dependent reactions allows
both the modular structure of rule-based systems and
the compound actions, subgoaling, and metalevel ex-
pressions of more powerful task representations (e.g.
RAPS (Firby 1987)).

The Intention Structure (IS) contains all those tasks
the system has chosen for execution, either immedi-
ately or at some later time, and i1s under full introspec-
tive control of KAs. Thus rather than simply executing
one KA after another, at any given moment the IS may
contain a number of intentions, some of which may be
suspended or deferred, some of which may be waiting
for conditions to hold prior to activation, and some of
which may be metalevel intentions describing how to

select from alternative future courses of action.

The following PRS characteristics appear especially
useful as an enabling technology for mixed initiative
tools and agents:

e The IS supports the identification of executable
plans, necessary for the system to take initiative to
achieve goals for the user.

e The interpreter will provide an initial framework for
task execution.

e PRS provides more complex patterns of action
than conventional planning representations; includ-
ing looping.

e Its procedural plan representation, which is
consistent with the form of many existing domain
knowledge bases (e.g., standard operating proce-
dures). Furthermore, the hierarchical, subgoaling
nature of the procedural representation allows PRS
to combine pieces of procedures in novel ways, which
i1s important for flexible plan execution and goal re-
finement.

o Its ability to pursue parallel goal-directed tasks
while at the same time being responsive to chang-
ing patterns of events in bounded time. The conven-
tional planning assumption of a single-tasking agent
1s not sufficient for mixed initiative systems.

o Its ability to construct and act on partial (rather
than complete) procedures.

e Its knowledge representation assumptions, which en-
courage incremental refinement of the plan (pro-
cedure) library, an enormous advantage for develop-
ing large-scale applications.

We need to augment PRS to handle

temporal projection For many applications the
“schedule view” is crucial. We will support this by
adding temporal information to the KAs and by pro-
viding meta-level temporal constraint propagation.

feasibility inference We need to be able to rapidly
identify when choices made by the user or automa-
tion will threaten the successful completion of the
plan. We will support this by special-purpose infer-
ence that detects when plan completion is impossi-

ble.

user interface needs We will augment the model
with information about its presentation and about
ways to gather appropriate information (e.g., param-
eter bindings) from the user.

Summary

We are working to develop a general-purpose task rep-
resentation scheme for mixed initiative systems. In this

Database KA Library
(Facts, Beliefs) (Plans)
Interpreter
(Reasoner)
Intention
Goals Structure
. Command
Monitor Generator
Application
Domain

Figure 4: The PRS architecture (Georgeff & Ingrand 1990).

paper we have discussed the role of such a scheme in a
class of mixed initiative systems we have called “indi-
rect interaction” systems. These are systems in which
both users and automation operate at multiple levels
of abstraction. We have presented desiderata for the
representation scheme and have discussed our initial
steps in its development.

References

Carberry, S. 1990. Incorporating default inferences
into plan recognition. In Proceedings of the FEighth
National Conference on Artificial Intelligence, 471—
478. Cambridge, MA: MIT Press.

Charniak, E., and Goldman, R. P. 1993. A Bayesian
model of plan recognition. Artificial Intelligence

64(1):53-79.

Firby, R. J. 1987. An investigation in reactive plan-
ning in complex domains. In Proceedings AAAI-87,
196-201.

Gentner, D.; and Nielson, J. 1996. The anti-mac
interface. Communications of the ACM 39(8):70-82.

Georgeff, M. P., and Ingrand, F. F. 1990. Real-time
reasoning: The monitoring and control of spacecraft
systems. In Proceedings of the Sizth Conference on
Artificial Intelligence Application, 198-204.

Georgeff, M., and Lansky, A. 1986. Procedural knowl-
edge. IEEE Special Issue on Knowledge Representa-
tion 74:1383-1398.

Guerlain, S. 1995. Critiquing as a Design Strategy for
Engineering Successful Cooperative Problem Solving
Systems. Ph.D. Dissertation, The Ohio State Univer-
sity, Columbus, OH.

Ingrand, F.; Georgeff, M.; and Rao, A. 1992. An ar-
chitecture for real-time reasoning and system control.
IEEE Frpert 7:6:34-44.

Kautz, H. A. 1991. A Formal theory of plan recogni-
tion and its implementation. In Allen, J. F.; Kautz,
H. A.; Pelavin, R. N.; and Tenenberg, J. D., eds.,
Reasoning About Plans. Los Altos, CA: Morgan Kauf-

mann.

Schmidt, C.; Sridharan, N.; and Goodson, J. 1978.
The plan recognition problem: an intersection of psy-
chology and artificial intelligence. Artificial Intelli-
gence 11:45-83.

