Appearsin Working Notes of AAAI Symposium on Hybrid Control
Stanford; March, 1999

Hard Real-time Mode Logic Synthesis for Hybrid Control
A CIRCA-based approach

Robert P. Goldman, Mike Pelican, David J. Musliner

{ goldman,pelican,musliner } @htc.honeywell.com

Introduction

We are developing intelligent, autonomous, flexible
control systems for mission-critical applications such
as Uninhabited Aerial Vehicles (UAVs) and deep space
probes. These applications require hybrid control sys-
tems, capable of effectively managing both discrete and
continuous controllable parameters to maintain sys-
tem safety and achieve system goals. This report de-
scribes our work on developing intelligent, hard real-
time controllers for such hybrid systems. In particu-
lar, we focus on the techniques we are developing for
automatically synthesizing guaranteed mode-switching
controllers from domain models.

The mission-critical systems we are interested in are
typically designed, built, verified, and fielded by very
large organizations such as defense contractors. The
overall system control problems for these products are
not solvable “in the whole” because of sheer magnitude,
theoretical limitations, and because they require the in-
tegration of specialists from many different disciplines.
Instead, the overall control problems are decomposed
into multiple simpler control problems. For example, in
an aircraft controller, pitch, roll and yaw are typically
done separately and indeed, often by different avion-
ics firms.! Even a relatively primitive behavior such as
coordinated turn is several layers up the control hierar-
chy. Autopilots provide sets of qualitative modes, such
as “Altitude hold,” “Altitude select,” “Vertical speed,”
etc.

Piecing together the different controllers, the sys-
tem’s mode logic is both critical and extremely com-
plex. We generate this kind of logic, in the form of
clocked, discrete controllers. These controllers do not
address the continuous part of the problem (except in
the temporal dimension). Instead, the behavior of in-

Y“The current allocation of flight automation to sepa-
rate functions is the result of largely accidental historical
factors. Consequently, certain control variables that are
tightly coupled in a dynamical sense are managed by differ-
ent functions: for example, engine thrust is managed by the
autothrottle, and pitch angle by the autopilot.” (Rushby
1998)

dividual control modes i1s summarized in terms of a
qualitative feature space and in terms of bounds on the
timing of transitions between qualitative states. Note
that the kind of mode logic that we are discussing is
not simply sequencing a single control system through
multiple modes; it also covers sequencing multiple con-
trol systems in coordination. To take a simple exam-
ple, the developer of an autopilot module that 1s de-
signed to carry an aircraft from one waypoint to an-
other typically does not concern him /herself with han-
dling the behavior of the aircraft while its landing gear
are deployed. Accordingly, 1t will be the job of our
“outermost-loop” discrete control to ensure that the
landing gear are not deployed when the autopilot is
switched to this mode.

In our approach, these controllers are synthesized
automatically and dynamically, on-line, while the plat-
form s operating. Dynamic generation allows us to
handle both the familiar problem of state space ex-
plosion, and a related problem we call bounded reac-
tivity (Musliner, Durfee, & Shin 1993): even simple,
reactive systems have only limited ability to monitor
their environments and act. If too many contingencies
must be addressed, the system will not be able to re-
act in a timely way. Dynamic generation of mode-logic
allows our system to tailor its reactive subsystem to
the immediately relevant contingencies. Rather than
requiring the system to monitor all contingencies over
an entire mission, we develop a set of specialized dis-
crete state controllers for different parts of the mission.

In this paper, we discuss current work on adapt-
ing the CIRCA architecture (Musliner, Durfee, & Shin
1993; 1995) to control hybrid systems. We have aug-
mented the knowledge representation used in develop-
ing CIRCA’s reactive plans (real-time discrete event
controllers) to be better suited to developing mode
logic. To provide the temporal reasoning needed to use
this knowledge, we have incorporated a model-checker
into CIRCA’s Controller Synthesis Module. We are
in the process of adding an Adaptive Mission Plan-
ner and a monitoring subsystem to the architecture.
The Adaptive Mission Planner will provide long-term

Al Subsystem

A on
Planner
Domain Model

H I
subgoals partial domains

Code Modules
Local Subgodls plen

= canvoter i (T
schedule

C Environment

Evaluators

Figure 1: The CIRCA architecture as recently ex-
panded.

(mission duration) projection and reasoning about re-
sources and decompose the problem space for the bene-
fit of the Controller Synthesis Module. The monitoring
subsystem will monitor progress towards goals, alert-
ing the mission planner when the system is not moving
towards its objectives quickly enough.

CIRCA

CIRCA has been applied to real-time planning and
control problems in several domains including mobile
robotics, simulated autonomous aircraft, space probe
challenge problems (Musliner & Goldman 1997) and
controlling a fixed-wing model aircraft (Atkins et al.
1998). CIRCA is designed to support both hard real-
time response guarantees and unrestricted (i.e., in-
tractable) AT methods that can guide those real-time
responses. In CIRCA, an AT subsystem (AIS) reasons
about high-level problems that require its powerful but
potentially unbounded planning methods, while a sepa-
rate real-time subsystem (RTS) reactively executes the
AlS-generated plans and enforces guaranteed response
times.

CIRCA’s planning and execution subsystems oper-
ate in parallel. The AIS reasons about an internal
model of the world and dynamically programs the RTS
with a planned set of reactions (a discrete controller).
While the RTS is executing those reactions, ensuring
that the system avoids failure, the AIS continues using
heuristic planning methods to find the next appropri-
ate set of reactions. For example, while the RTS is
executing a controller that will take a UAV from its
start point through a sequence of waypoints to its tar-
get, the AIS will be generating a new controller for
the UAV’s actions over the target (e.g., overflying a
particular location and photographing it). When this
controller has been generated and the UAV has reached
an appropriate position, the new schedule of reactions
will be downloaded to the RTS.

A diagram of the current CIRCA system architecture
is given in Figure 1. In our current system, the AIS is
partitioned into an Adaptive Mission Planner (AMP)

Figure 2: Conceptual view of multiple reactive con-
trollers.

a Controller Synthesis Module (CSM) and a scheduler.
The AMP reasons about mission profiles in a quasi-
linear way, carving the overall mission control plan into
smaller regions that are fed to the CSM(see Figure 2).
For each of these control regions, the CSM generates a
timed discrete event controller that will assure system
safety and attempt to achieve system goals. Put differ-
ently, the AMP divides the overall mission state space
into a series of smaller state spaces, for which the CSM
generates controllers.

The AMP also drives the generation of evaluators.
These are used to give feedback to the AMP as a mis-
sion unfolds. The AMP reasons about overall mission
achievement, while the running set of reactions are re-
sponsible only for moving towards local subgoals (re-
gion intersections in Figure 2). The evaluators pro-
vide the AMP with a constantly-updated view of the
current world state, watching both the progress of the
agent towards its objective and the planning activity
of the CSM. Space will not permit detailed discussion
of the monitoring subsystem here.

CIRCA’s Controller Synthesis Module system builds
reaction plans based on a world model and a set of
formally-defined safety conditions that must be satis-
fied by feasible plans (Musliner, Durfee, & Shin 1995).
To describe a domain to CIRCA | the user inputs a set
of transition descriptions that implicitly define the set
of reachable states. In the existing system, these tran-
sitions are of four types:

Action transitions represent actions performed by

the RTS.

Temporal transitions represent the progression of
time and continuous processes that may need to be
preempted.

Event transitions represent world occurrences as in-
stantaneous state changes.

Reliable temporal transitions represent continu-
ous processes (such as the operation of a control law)
that may need to be employed by the CIRCA agent.

;; the action of switching on an Inertial

; ;Reference Unit (IRU)

ACTION start_IRUl_warm_up
PRECONDITIONS: ’ ((IRU1 off))
POSTCONDITIONS: ’((IRUl warming))
DELAY: <=1

;; the process of the IRU warming

RELTABLE-TEMPORAL warm_up_IRU1
PRECONDITIONS: ’ ((IRU1 warming))
POSTCONDITIONS: ’ ((IRU1 on))
DELAY: [45 90]

; ;sometimes the IRUs break without warning
EVENT IRU1_fails
PRECONDITIONS: ’((IRU1 on))
POSTCONDITIONS: ’ ((IRU1 broken))

;3 if the engine is burning while the active
;3 IRU breaks, we have a limited amount of
;, time to fix the problem before the
; spacecraft will go too far out of control
TEMPDRAL fail_if_burn_with_broken_IRU1
PRECONDITIONS: ’ ((engine on) (active_IRU IRU1)
(IRU1 broken))
POSTCONDITIONS: ’ ((failure T))
DELAY: >= 5

Figure 3: Example transition descriptions given to

CIRCA’s planner.

For example, Figure 3 shows several transitions used
in a situation where CIRCA 1s to control the Cassini
spacecraft in Saturn Orbital Insertion.? Note that
these transition descriptions implicitly provide a fac-
tored description of a timed discrete controller state
space.

The CSM plans by generating a timed nondetermin-
istic finite automaton (NFA) (Alur 1998) from these
transition descriptions. It assigns to each reachable
state either an action transition, a reliable temporal or
no—op. These selections are made to preempt transi-
tions that lead to failure states and to drive the system
towards goal states. A transition, ¢, is preempted in a
state when that state is assigned an action or reliable
temporal that is guaranteed to occur before t can pos-
sibly occur.

The assignment of actions and reliable temporals de-
termines the topology of the NFA (and so the set of
reachable states): preemption of temporal transitions
removes edges and assignment of actions adds them.
System safety is guaranteed by planning transitions
that preempt all transitions to failure, making the fail-
ure state unreachable (Musliner, Durfee, & Shin 1995).
It is this ability to build plans that guarantee the cor-

2The problem is taken from Erann Gat’s “From the
Trenches” (Gat 1996).

rectness and timeliness of safety-preserving reactions
that makes CIRCA suited to mission-critical applica-
tions in hard real-time domains.

The NFA is then compiled into a memoryless con-
troller for downloading to the RTS. This is done
through a two-step process. First, the action assign-
ments in the NFA are compiled into a set of Test-Action
Pairs (TAPs). Each TAP has a boolean test expression
that distinguishes between states where a particular ac-
tion is and is not to be executed. The test expression
is a function of the plan as a whole, rather than local
action assignments, because the same action may be
assigned to more than one state.

These TAPs are then assembled into a loop that will
meet all the deadlines. These deadlines are captured
as constraints on the maximum temporal separation of
the TAPs. This second phase of the translation pro-
cess is done by the scheduler. CIRCA’s scheduler ver-
ifies that all actions in the TAP loop will be executed
quickly enough to preempt the transitions the CSM has
determined need preempting. The tests and actions
that the RTS can execute as part of its TAPs have as-
sociated worst-case execution times that are used to
verify the schedule. It is possible that scheduling will
not succeed. In this case, the AIS will backtrack to the
CSM to revise the NFA and generate and schedule a
new set of TAPs.

When the TAPs are arranged into an executable
loop, they will be downloaded to the RTS to be exe-
cuted. The RTS will loop over the set of TAPs, check-
ing each test expression and executing the correspond-
ing action if the test is satisfied. The tests consist only
of sensing the agent’s environment, rather than check-
ing any internal memory, so the RTS is asynchronous
and memoryless.

For example, in a recent test of the CIRCA RTS, it
was used to pilot two simulated UAVs in an attack mis-
sion. Each UAV’s RTS controller, following a mission
profile, first triggers a control subsystem that causes
the aircraft to take off. It then switches the autopi-
lot into a waypoint-directed flight mode. While the
aircraft are flying from one waypoint to the next, the
RTS will be running a number of TAPs in rotation.
Some important TAPs are:

e One that checks to see whether the aircraft has
reached the next waypoint and, if so, sequences the
next waypoint.

e One that checks to see if the aircraft has been
“painted” by enemy radar and, if so, takes coun-
termeasures (in this case releasing chaff).

e One that checks to see if the aircraft is in the vicinity
of a valid ground target and is currently the LEAD.
If so, the aircraft will attempt to destroy the target.

Generating Mode-logic for Hybrid
Control

We are revising the CIRCA controller synthesis algo-
rithm to be more suitable for generating mode logic
for hybrid systems. The new CIRCA CSM employs an
abstraction technique that we call “dynamic abstrac-
tion planning” (DAP) (Goldman et al. 1997) to help
control the state space explosion. We have also re-
vised the CSM algorithm to incorporate a real-time
model-checker. Finally, we have augmented the CSM’s
knowledge representation, complicating the controller
synthesis problem.

In the original CIRCA, which drove a mobile robot,
the RTS was intended to directly interact with the
plant: RTS tests would sample sensors and RTS actions
would control effectors. This simple discrete-event con-
trol approach is not suitable for mode logic in which
the RTS must control other, lower-level controllers.
Instead, the RTS must use temporally-extended pro-
cesses, both those in the environment itself and those
that are created by subsidiary controllers. To do this,
we have introduced the reliable temporal class of tran-
sition referred to in the previous section.

DAP Technique

CIRCA generates its controllers through a process that
we call “dynamic abstraction planning” (DAP) (Gold-
man et al. 1997). Abstraction is used to omit detail
from the state representation, reducing both the size
of the state space that must be explored to produce a
plan, and the size of the resulting plan itself. The ab-
straction method we describe has three useful features:

1. The abstraction method does not compromise safety-
preserving guarantees: the world model used for
planning is reduced, but not in ways that affect the
system’s ability to make rigorous statements about
the safety assurances of plans it is building.

2. The method is fully automatic, and dynamically de-
termines the appropriate level of abstraction during
the planning process itself.

3. The method uses different levels of abstraction in
different parts of the search space, adjusting the
amount of detail omitted at each step.

The intuition behind DAP is simple: in some situa-
tions, certain world features are important, while in
other situations those same features are not important.
An optimal state space representation would capture
only the important features for any particular state.
DAP allows a planner to search for useful state space
abstractions at the same time it is searching for a plan.

The controller synthesis problem for CIRCA 1s to as-
sign to every reachable state in the state space an ac-
tion or reliable temporal that preserves safety, by pre-

So S F
emergency-aert emergency-failure
Emergency NIL Emergency T FAILURE
(event) (temporal)

Figure 4: A partially-completed CIRCA plan.

empting any posstbly applicable transitions to a failure
state. In order to assign an action to a state, the ac-
tion must necessarily apply. The DAP planner begins
with a very coarse NFA /plan, with all the non-failure
states consolidated into a single state. In a state with
so few features defined, nearly all transitions to failure
are possibly applicable and almost none of the actions
are necessarily applicable.

During the planning process, DAP dynamically adds
more detail to this sketchy NFA. When it is unable to
generate a satisfactory plan at the current level of de-
tail, DAP refines the NFA by taking an existing state
and splitting it into a number of more specific states,
one for each possible value of a particular feature, F;.
Features are chosen for splitting because they either
make a potential failure state unreachable (by making
a possibly applicable transition to failure inapplicable)
or enable a preempting action choice (by making a pos-
sibly applicable action necessarily applicable).

For example, let us consider the partially-completed
plan given in Figure 4. Here there are three states: the
failure state and two non-failure states, one for each
value of emergency, a boolean proposition. We assume
that emergency is nil when the system begins opera-
tion. The NFA in Figure 4 is not safe, because there
is a reachable state, 57, from which there is a tran-
sition to the failure state (emergency-failure) that
has not been preempted. One way to fix this problem
would be to choose an action for S; that will preempt
emergency-failure. The domain description contains
such an action, push-emergency-button. Unfortu-
nately, one of push-emergency-button’s preconditions
is part-in-gripper=nil and S; is not sufficiently de-
tailed to specify values for part-in-gripper. We can
rectify this omission by splitting 57 into a set of states,
one for each value of part-in-gripper. We can now
assign push-emergency-button to solve the problem
posed by state S; ;. The resulting NFA is given in
Figure 5. Further planning is required to resolve the
problem posed by 57 2, either by finding a preempting
action that does not require part-in-gripper = nil
or by making S » unreachable.

One unusual aspect of DAP is that detail is added to
the NFA only locally. In our example above, we only
added the feature part-in-gripper to the part of the
state space where the emergency feature took on the
value t, rather than refining all of the states of the
NFA symmetrically.

The CIRCA CSM algorithm is summarized in

Figure 6. The algorithm is presented as a non-

push-emergency-button

=" (action)

) S0
o, 4
£ emergency-alert Emergency T M FAILURE
Emergency NIL Part-in-gripper NIL =7~ —
preempted
S1,2

emergency-failure

Emergency T
Part-in-gripper T

Figure 5: A refinement of the NFA in Figure 4.

abstract-plan (isd);
isd s enetial state description
let N = 0; The graph
openlist = 0;
is = make-initial-state(isd);
N = N U {is}
push(is, openlist);
loop
if there are no more reachable states in the openlist then
we are done
break;
else
let s = choose a reachable state from openlist;
openlist := openlist — {s};
oneof
split-state :

choose a proposition p and split s into |val(p)|

states;
remove s from N and insert the new states;
add the new states to the open list;
assign-action :
choose an action applicable to s;

(1) verify timing properties of partial plan, N

utilize-process :
choose a reliable-temporal applicable to s;

(1) verify timing properties of partial plan, N

fail

Figure 6: Pseudo-code for the CIRCA state-space
planning algorithm.

preconditions
clobbered

preconditions

disabled d
elapses

enabled

established

impose
postconditions

Figure 7: Clocked automaton representing the
states of a temporal transition.

deterministic algorithm, with choice points marked in
bold-face. The algorithm is implemented by search,
using intelligent backjumping.

Verification of Intermediate Plans

In the discussion above, we have ignored the temporal
aspects of CIRCA state space planning. In particular,
we have drawn the plan/controller as if it were a simple
nondeterministic finite automaton (NFA). However,
the controller is in fact the product of a set of clocked
NTFAs and should be analyzed accordingly (Alur 1998).
To do so requires that we reason about multiple paths
through the automaton, because the temporal aspect
of the automaton is not Markovian in a useful sense.
To do that reasoning, we use a real-time model-checker.

One can view the overall CIRCA plan as being the
product of the following automata:

e one automaton for each temporal and reliable tem-
poral,

e one automaton representing action choice, and

e one automaton for the execution of each action as-
signed to a state.

For example, Figure 7 shows the states a temporal
transition may be in: initially it is disabled. When the
system enters a state in which the temporal’s precon-
ditions are satisfied, the transition becomes enabled.
At this point, one of two things can happen: (1) the
preconditions remain enabled, in which case, after the
(lower bound) delay has elapsed, the machine moves
to the ready state; or (2) the preconditions get clob-
bered and the machine returns to disabled. In the

ready state, at any time the transition may fire, as-
serting its postconditions and returning to disabled or,
if the preconditions are denied, the machine will simply
return to the disabled state.

The automata representing action execution are sim-
ilar but slightly complicated by the need to consider
the “sense-act gap” — the delay between the moment
when the sensory snapshot was taken and the chosen
action actually occurs.

Note that temporal transitions can remain enabled
through a number of states in the overall NFA (the
product machine). This complicates the temporal rea-
soning needed to verify correct timing. To solve this
problem, we have used the KroNos (Yovine 1998)
model-checking tool to verify the timing of (partial)
plans. When an action or reliable temporal is assigned
to preempt a temporal transition, ¢, the DAP algo-
rithm uses KRONOS to verify that ¢ cannot occur in
the planned-for region of the state space (see () in
Figure 6). In the event that the timing requirements
are not met (i.e., ¢ can occur), KRONOS returns a path
through the state space that leads to this failure. DAP
then uses the path to failure to identify the planning
decisions that led to failure, and to select one as a
backjumping target.

Backjumping

DAP’s ability to identify culprit decisions and back-
jump has proven critical to its ability to find plans
within a reasonable amount of time. The CIRCA CSM
search space has two characteristics that make it very
difficult to search using a naive chronological back-
tracking approach. First, the space is very large. Sec-
ond, it 1s very difficult to identify when a decision made
early in the search process has made a solution infea-
sible. Typically, it 13 only when a sequence of actions
and temporal transitions have been specified that the
failure condition is realized.

We have used a dependency-directed backjumping
approach to overcome these difficulties. When the
KrONOS verifier determines that failure is reachable
in an intermediate plan, it finds path from an initial
state to a failure state and returns i1t to the planner.
From that path, a list of implicated decisions is ex-
tracted and the planner backjumps to the most recent
of those decisions.

The backjumping is complicated by the use of reli-
able temporals as a way of employing domain processes
and special-purpose controllers. Essentially, the prob-
lem of using a reliable temporal 1s one of constructing
a sufficiently long chain of states in which that reliable
temporal is enabled. The difficulty is to augment the
backjumping with enough information about how to
correct problems in such a chain while not making the

search incomplete. Efforts to overcome this challenges
are a focus of current research.

Related Work

Our work on controller synthesis 1s similar in its subject
to the controller synthesis work of Maler, Pneuli, and
Sifakis (1995) (henceforth MPS). MPS have developed
a game-theoretic framework for synthesizing discrete
controllers for timed systems® and show that the con-
troller synthesis problem for these systems is decidable.
More recently, Tomlin, Lygeros, and Sastry (1998) have
extended the MPS method to the synthesis of hybrid
automata, even in the presence of nonlinear continuous
dynamics. Unlike MPS| we are interested in completely
automated, on-line controller synthesis, so computa-
tional efficiency is critically important. To simplify the
problem, we have limited the power of our controllers,
and carefully limited the size of the state space using
the AMP, factoring the state space, and using the DAP
method. We also provide an execution platform for our
controllers (the RTS) and a scheduling theory.

In the AT literature, Kabanza, Barbeau, and St.-
Denis (KBS) (1997) also work on generating timed dis-
crete controllers. KBS’s work differs in assuming a dis-
crete time model, and representing time explicitly in
the controller. Our controllers are unclocked (although
they meet timing constraints), making them less pow-
erful but easier to synthesize; representing time explic-
itly in the controller can lead to a state space explosion.
Recent research based on Markov Decision Processes
(e.g., (Dearden & Boutilier 1997)), differs from ours
in considering uncertainty to be more important than
timing. For the control problems that interest us, a
simple representation of uncertainty is adequate, while
correct handling of timing is critical.

Conclusions and Future Work

We argue that, for many autonomous hybrid systems,
the key to effective, intelligent control, 1s the engineer-
ing of appropriate mode logic. Further, we argue that
this mode logic can be effectively generated by model-
based reasoning from the temporal and discrete event
features of special-purpose controllers. We have devel-
oped an algorithm for generating mode-logic automat-
ically from such descriptions and verifying its timing
properties through the use of a model-checker. We are
currently applying the CIRCA techniques described in
this paper to controlling a simulated combat UAV | un-
der support from DARPA’s Active Software Composi-
tion program.

*Their “forcing a win” parallels our “necessarily avoid-
ing failure.”

Acknowledgments This work was supported by the
Defense Advanced Research Projects Agency under
contract F30602-98-C-0212.

References

Alur, R. 1998. Timed automata. In NATO-ASI Sum-
mer School on Verification of Digital and Hybrid Sys-
tems.

Atkins, E. M.; Miller, R. H.; VanPelt, T.; Shaw, K. D.;
Ribbens, W. B.; Washabaugh, P. D.; and Bernstein,
D. S. 1998. Solus: An autonomous aircraft for flight
control and trajectory planning research. In Proceed-
ings of the American Control Conference (ACC), vol-
ume 2, 689-693.

Dearden, R., and Boutilier, C. 1997. Abstraction
and approximate decision-theoretic planning. Artifi-

cial Intelligence 89(1-2):219-283.

Gat, E. 1996. News from the trenches: An overview of
unmanned spacecraft for AI. In Nourbakhsh, I., ed.,
AAAI Technical Report SSS-96-04: Planning with In-
complete Information for Robot Problems. American
Association for Artificial Intelligence. Available at

http://www-aig. jpl.nasa.gov/home/gat/gp.html.

Goldman, R. P.; Musliner, D. J.; Krebsbach, K. D;
and Boddy, M. S. 1997. Dynamic abstraction plan-
ning. In Proceedings of the Fourteenth National Con-
ference on Artificial Intelligence, 680-686. Menlo
Park, CA: American Association for Artificial Intelli-
gence.

Kabanza, F.; Barbeau, M.; and St.-Denis, R. 1997.
Planning control rules for reactive agents. Artificial

Intelligence 95(1):67-113.
Maler, O.; Pneuli, A.; and Sifakis, J. 1995. On the

synthesis of discrete controllers for timed systems. In
Mayr, E. W., and Puech, C., eds., STACS 95: Theo-
retical Aspects of Computer Science. Springer Verlag.
229-242.

Musliner, D. J., and Goldman, R. P. 1997. CIRCA
and the Cassini Saturn orbit insertion: Solving a
prepositioning problem. In Working Notes of the
NASA Workshop on Planning and Scheduling for
Space.

Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1993.
CIRCA: a cooperative intelligent real-time control ar-
chitecture. IEEFE Transactions on Systems, Man and
Cybernetics 23(6):1561-1574.

Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1995.
World modeling for the dynamic construction of real-
time control plans. Artificial Intelligence 74(1):83-
127.

Rushby, J. 1998. Partitioning in avionics archi-
tectures: Requirements, mechanisms, and assurance.
draft version.

Tomlin, C.; Lygeros, J.; and Sastry, S. 1998. Synthe-
sizing controllers for nonlinear hybrid systems. In Lec-
ture Notes in Computer Science 1386, Proceedings of
Hybrid Systems: Computation and Control. Springer
Verlag.

Yovine, S. 1998. Model-checking timed automata. In
Rozenberg, G., and Vaandrager, F. eds., Embedded
Systems. Springer Verlag.

