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Stanford; March, 1999Hard Real-time Mode Logic Synthesis for Hybrid ControlA CIRCA-based approachRobert P. Goldman, Mike Pelican, David J. Muslinerf goldman,pelican,muslinerg@htc.honeywell.comIntroductionWe are developing intelligent, autonomous, 
exiblecontrol systems for mission-critical applications suchas Uninhabited Aerial Vehicles (UAVs) and deep spaceprobes. These applications require hybrid control sys-tems, capable of e�ectively managing both discrete andcontinuous controllable parameters to maintain sys-tem safety and achieve system goals. This report de-scribes our work on developing intelligent, hard real-time controllers for such hybrid systems. In particu-lar, we focus on the techniques we are developing forautomatically synthesizing guaranteed mode-switchingcontrollers from domain models.The mission-critical systems we are interested in aretypically designed, built, veri�ed, and �elded by verylarge organizations such as defense contractors. Theoverall system control problems for these products arenot solvable \in the whole" because of sheer magnitude,theoretical limitations, and because they require the in-tegration of specialists from many di�erent disciplines.Instead, the overall control problems are decomposedintomultiple simpler control problems. For example, inan aircraft controller, pitch, roll and yaw are typicallydone separately and indeed, often by di�erent avion-ics �rms.1 Even a relatively primitive behavior such ascoordinated turn is several layers up the control hierar-chy. Autopilots provide sets of qualitative modes, suchas \Altitude hold," \Altitude select," \Vertical speed,"etc.Piecing together the di�erent controllers, the sys-tem's mode logic is both critical and extremely com-plex. We generate this kind of logic, in the form ofclocked, discrete controllers. These controllers do notaddress the continuous part of the problem (except inthe temporal dimension). Instead, the behavior of in-1\The current allocation of 
ight automation to sepa-rate functions is the result of largely accidental historicalfactors. Consequently, certain control variables that aretightly coupled in a dynamical sense are managed by di�er-ent functions: for example, engine thrust is managed by theautothrottle, and pitch angle by the autopilot." (Rushby1998)

dividual control modes is summarized in terms of aqualitative feature space and in terms of bounds on thetiming of transitions between qualitative states. Notethat the kind of mode logic that we are discussing isnot simply sequencing a single control system throughmultiple modes; it also covers sequencing multiple con-trol systems in coordination. To take a simple exam-ple, the developer of an autopilot module that is de-signed to carry an aircraft from one waypoint to an-other typically does not concern him/herself with han-dling the behavior of the aircraft while its landing gearare deployed. Accordingly, it will be the job of our\outermost-loop" discrete control to ensure that thelanding gear are not deployed when the autopilot isswitched to this mode.In our approach, these controllers are synthesizedautomatically and dynamically, on-line, while the plat-form is operating. Dynamic generation allows us tohandle both the familiar problem of state space ex-plosion, and a related problem we call bounded reac-tivity (Musliner, Durfee, & Shin 1993): even simple,reactive systems have only limited ability to monitortheir environments and act. If too many contingenciesmust be addressed, the system will not be able to re-act in a timely way. Dynamic generation of mode-logicallows our system to tailor its reactive subsystem tothe immediately relevant contingencies. Rather thanrequiring the system to monitor all contingencies overan entire mission, we develop a set of specialized dis-crete state controllers for di�erent parts of the mission.In this paper, we discuss current work on adapt-ing the CIRCA architecture (Musliner, Durfee, & Shin1993; 1995) to control hybrid systems. We have aug-mented the knowledge representation used in develop-ing CIRCA's reactive plans (real-time discrete eventcontrollers) to be better suited to developing modelogic. To provide the temporal reasoning needed to usethis knowledge, we have incorporated a model-checkerinto CIRCA's Controller Synthesis Module. We arein the process of adding an Adaptive Mission Plan-ner and a monitoring subsystem to the architecture.The Adaptive Mission Planner will provide long-term
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AI SubsystemFigure 1: The CIRCA architecture as recently ex-panded.(mission duration) projection and reasoning about re-sources and decompose the problem space for the bene-�t of the Controller Synthesis Module. The monitoringsubsystem will monitor progress towards goals, alert-ing the mission planner when the system is not movingtowards its objectives quickly enough.CIRCACIRCA has been applied to real-time planning andcontrol problems in several domains including mobilerobotics, simulated autonomous aircraft, space probechallenge problems (Musliner & Goldman 1997) andcontrolling a �xed-wing model aircraft (Atkins et al.1998). CIRCA is designed to support both hard real-time response guarantees and unrestricted (i.e., in-tractable) AI methods that can guide those real-timeresponses. In CIRCA, an AI subsystem (AIS) reasonsabout high-level problems that require its powerful butpotentially unbounded planningmethods, while a sepa-rate real-time subsystem (RTS) reactively executes theAIS-generated plans and enforces guaranteed responsetimes.CIRCA's planning and execution subsystems oper-ate in parallel. The AIS reasons about an internalmodel of the world and dynamically programs the RTSwith a planned set of reactions (a discrete controller).While the RTS is executing those reactions, ensuringthat the system avoids failure, the AIS continues usingheuristic planning methods to �nd the next appropri-ate set of reactions. For example, while the RTS isexecuting a controller that will take a UAV from itsstart point through a sequence of waypoints to its tar-get, the AIS will be generating a new controller forthe UAV's actions over the target (e.g., over
ying aparticular location and photographing it). When thiscontroller has been generated and the UAV has reachedan appropriate position, the new schedule of reactionswill be downloaded to the RTS.A diagramof the current CIRCA system architectureis given in Figure 1. In our current system, the AIS ispartitioned into an Adaptive Mission Planner (AMP)
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(STABLE REGIONS)Figure 2: Conceptual view of multiple reactive con-trollers.a Controller Synthesis Module (CSM) and a scheduler.The AMP reasons about mission pro�les in a quasi-linear way, carving the overall mission control plan intosmaller regions that are fed to the CSM(see Figure 2).For each of these control regions, the CSM generates atimed discrete event controller that will assure systemsafety and attempt to achieve system goals. Put di�er-ently, the AMP divides the overall mission state spaceinto a series of smaller state spaces, for which the CSMgenerates controllers.The AMP also drives the generation of evaluators.These are used to give feedback to the AMP as a mis-sion unfolds. The AMP reasons about overall missionachievement, while the running set of reactions are re-sponsible only for moving towards local subgoals (re-gion intersections in Figure 2). The evaluators pro-vide the AMP with a constantly-updated view of thecurrent world state, watching both the progress of theagent towards its objective and the planning activityof the CSM. Space will not permit detailed discussionof the monitoring subsystem here.CIRCA's Controller Synthesis Module system buildsreaction plans based on a world model and a set offormally-de�ned safety conditions that must be satis-�ed by feasible plans (Musliner, Durfee, & Shin 1995).To describe a domain to CIRCA, the user inputs a setof transition descriptions that implicitly de�ne the setof reachable states. In the existing system, these tran-sitions are of four types:Action transitions represent actions performed bythe RTS.Temporal transitions represent the progression oftime and continuous processes that may need to bepreempted.Event transitions represent world occurrences as in-stantaneous state changes.Reliable temporal transitions represent continu-ous processes (such as the operation of a control law)that may need to be employed by the CIRCA agent.



;; the action of switching on an Inertial;;Reference Unit (IRU)ACTION start_IRU1_warm_upPRECONDITIONS: '((IRU1 off))POSTCONDITIONS: '((IRU1 warming))DELAY: <= 1;; the process of the IRU warmingRELIABLE-TEMPORAL warm_up_IRU1PRECONDITIONS: '((IRU1 warming))POSTCONDITIONS: '((IRU1 on))DELAY: [45 90];;sometimes the IRUs break without warningEVENT IRU1_failsPRECONDITIONS: '((IRU1 on))POSTCONDITIONS: '((IRU1 broken));; if the engine is burning while the active;; IRU breaks, we have a limited amount of;; time to fix the problem before the;; spacecraft will go too far out of controlTEMPORAL fail_if_burn_with_broken_IRU1PRECONDITIONS: '((engine on)(active_IRU IRU1)(IRU1 broken))POSTCONDITIONS: '((failure T))DELAY: >= 5Figure 3: Example transition descriptions given toCIRCA's planner.For example, Figure 3 shows several transitions usedin a situation where CIRCA is to control the Cassinispacecraft in Saturn Orbital Insertion.2 Note thatthese transition descriptions implicitly provide a fac-tored description of a timed discrete controller statespace.The CSM plans by generating a timed nondetermin-istic �nite automaton (NFA) (Alur 1998) from thesetransition descriptions. It assigns to each reachablestate either an action transition, a reliable temporal orno-op. These selections are made to preempt transi-tions that lead to failure states and to drive the systemtowards goal states. A transition, t, is preempted in astate when that state is assigned an action or reliabletemporal that is guaranteed to occur before t can pos-sibly occur.The assignment of actions and reliable temporals de-termines the topology of the NFA (and so the set ofreachable states): preemption of temporal transitionsremoves edges and assignment of actions adds them.System safety is guaranteed by planning transitionsthat preempt all transitions to failure, making the fail-ure state unreachable (Musliner, Durfee, & Shin 1995).It is this ability to build plans that guarantee the cor-2The problem is taken from Erann Gat's \From theTrenches" (Gat 1996).

rectness and timeliness of safety-preserving reactionsthat makes CIRCA suited to mission-critical applica-tions in hard real-time domains.The NFA is then compiled into a memoryless con-troller for downloading to the RTS. This is donethrough a two-step process. First, the action assign-ments in the NFA are compiled into a set ofTest-ActionPairs (TAPs). Each TAP has a boolean test expressionthat distinguishes between states where a particular ac-tion is and is not to be executed. The test expressionis a function of the plan as a whole, rather than localaction assignments, because the same action may beassigned to more than one state.These TAPs are then assembled into a loop that willmeet all the deadlines. These deadlines are capturedas constraints on the maximum temporal separation ofthe TAPs. This second phase of the translation pro-cess is done by the scheduler. CIRCA's scheduler ver-i�es that all actions in the TAP loop will be executedquickly enough to preempt the transitions the CSM hasdetermined need preempting. The tests and actionsthat the RTS can execute as part of its TAPs have as-sociated worst-case execution times that are used toverify the schedule. It is possible that scheduling willnot succeed. In this case, the AIS will backtrack to theCSM to revise the NFA and generate and schedule anew set of TAPs.When the TAPs are arranged into an executableloop, they will be downloaded to the RTS to be exe-cuted. The RTS will loop over the set of TAPs, check-ing each test expression and executing the correspond-ing action if the test is satis�ed. The tests consist onlyof sensing the agent's environment, rather than check-ing any internal memory, so the RTS is asynchronousand memoryless.For example, in a recent test of the CIRCA RTS, itwas used to pilot two simulated UAVs in an attack mis-sion. Each UAV's RTS controller, following a missionpro�le, �rst triggers a control subsystem that causesthe aircraft to take o�. It then switches the autopi-lot into a waypoint-directed 
ight mode. While theaircraft are 
ying from one waypoint to the next, theRTS will be running a number of TAPs in rotation.Some important TAPs are:� One that checks to see whether the aircraft hasreached the next waypoint and, if so, sequences thenext waypoint.� One that checks to see if the aircraft has been\painted" by enemy radar and, if so, takes coun-termeasures (in this case releasing cha�).� One that checks to see if the aircraft is in the vicinityof a valid ground target and is currently the LEAD.If so, the aircraft will attempt to destroy the target.



Generating Mode-logic for HybridControlWe are revising the CIRCA controller synthesis algo-rithm to be more suitable for generating mode logicfor hybrid systems. The new CIRCA CSM employs anabstraction technique that we call \dynamic abstrac-tion planning" (DAP) (Goldman et al. 1997) to helpcontrol the state space explosion. We have also re-vised the CSM algorithm to incorporate a real-timemodel-checker. Finally, we have augmented the CSM'sknowledge representation, complicating the controllersynthesis problem.In the original CIRCA, which drove a mobile robot,the RTS was intended to directly interact with theplant: RTS tests would sample sensors and RTS actionswould control e�ectors. This simple discrete-event con-trol approach is not suitable for mode logic in whichthe RTS must control other, lower-level controllers.Instead, the RTS must use temporally-extended pro-cesses, both those in the environment itself and thosethat are created by subsidiary controllers. To do this,we have introduced the reliable temporal class of tran-sition referred to in the previous section.DAP TechniqueCIRCA generates its controllers through a process thatwe call \dynamic abstraction planning" (DAP) (Gold-man et al. 1997). Abstraction is used to omit detailfrom the state representation, reducing both the sizeof the state space that must be explored to produce aplan, and the size of the resulting plan itself. The ab-straction method we describe has three useful features:1. The abstraction method does not compromise safety-preserving guarantees: the world model used forplanning is reduced, but not in ways that a�ect thesystem's ability to make rigorous statements aboutthe safety assurances of plans it is building.2. The method is fully automatic, and dynamically de-termines the appropriate level of abstraction duringthe planning process itself.3. The method uses di�erent levels of abstraction indi�erent parts of the search space, adjusting theamount of detail omitted at each step.The intuition behind DAP is simple: in some situa-tions, certain world features are important, while inother situations those same features are not important.An optimal state space representation would captureonly the important features for any particular state.DAP allows a planner to search for useful state spaceabstractions at the same time it is searching for a plan.The controller synthesis problem for CIRCA is to as-sign to every reachable state in the state space an ac-tion or reliable temporal that preserves safety, by pre-
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S0Figure 4: A partially-completed CIRCA plan.empting any possibly applicable transitions to a failurestate. In order to assign an action to a state, the ac-tion must necessarily apply. The DAP planner beginswith a very coarse NFA/plan, with all the non-failurestates consolidated into a single state. In a state withso few features de�ned, nearly all transitions to failureare possibly applicable and almost none of the actionsare necessarily applicable.During the planning process, DAP dynamically addsmore detail to this sketchy NFA. When it is unable togenerate a satisfactory plan at the current level of de-tail, DAP re�nes the NFA by taking an existing stateand splitting it into a number of more speci�c states,one for each possible value of a particular feature, Fi.Features are chosen for splitting because they eithermake a potential failure state unreachable (by makinga possibly applicable transition to failure inapplicable)or enable a preempting action choice (by making a pos-sibly applicable action necessarily applicable).For example, let us consider the partially-completedplan given in Figure 4. Here there are three states: thefailure state and two non-failure states, one for eachvalue of emergency, a boolean proposition. We assumethat emergency is nil when the system begins opera-tion. The NFA in Figure 4 is not safe, because thereis a reachable state, S1, from which there is a tran-sition to the failure state (emergency-failure) thathas not been preempted. One way to �x this problemwould be to choose an action for S1 that will preemptemergency-failure. The domain description containssuch an action, push-emergency-button. Unfortu-nately, one of push-emergency-button's preconditionsis part-in-gripper= nil and S1 is not su�ciently de-tailed to specify values for part-in-gripper. We canrectify this omission by splitting S1 into a set of states,one for each value of part-in-gripper. We can nowassign push-emergency-button to solve the problemposed by state S1;1. The resulting NFA is given inFigure 5. Further planning is required to resolve theproblem posed by S1;2, either by �nding a preemptingaction that does not require part-in-gripper = nilor by making S1;2 unreachable.One unusual aspect of DAP is that detail is added tothe NFA only locally. In our example above, we onlyadded the feature part-in-gripper to the part of thestate space where the emergency feature took on thevalue t, rather than re�ning all of the states of theNFA symmetrically.The CIRCA CSM algorithm is summarized inFigure 6. The algorithm is presented as a non-
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enabled readyFigure 7: Clocked automaton representing thestates of a temporal transition.deterministic algorithm, with choice points marked inbold-face. The algorithm is implemented by search,using intelligent backjumping.Veri�cation of Intermediate PlansIn the discussion above, we have ignored the temporalaspects of CIRCA state space planning. In particular,we have drawn the plan/controller as if it were a simplenondeterministic �nite automaton (NFA). However,the controller is in fact the product of a set of clockedNFAs and should be analyzed accordingly (Alur 1998).To do so requires that we reason about multiple pathsthrough the automaton, because the temporal aspectof the automaton is not Markovian in a useful sense.To do that reasoning, we use a real-timemodel-checker.One can view the overall CIRCA plan as being theproduct of the following automata:� one automaton for each temporal and reliable tem-poral,� one automaton representing action choice, and� one automaton for the execution of each action as-signed to a state.For example, Figure 7 shows the states a temporaltransition may be in: initially it is disabled. When thesystem enters a state in which the temporal's precon-ditions are satis�ed, the transition becomes enabled.At this point, one of two things can happen: (1) thepreconditions remain enabled, in which case, after the(lower bound) delay has elapsed, the machine movesto the ready state; or (2) the preconditions get clob-bered and the machine returns to disabled. In the



ready state, at any time the transition may �re, as-serting its postconditions and returning to disabled or,if the preconditions are denied, the machine will simplyreturn to the disabled state.The automata representing action execution are sim-ilar but slightly complicated by the need to considerthe \sense-act gap" | the delay between the momentwhen the sensory snapshot was taken and the chosenaction actually occurs.Note that temporal transitions can remain enabledthrough a number of states in the overall NFA (theproduct machine). This complicates the temporal rea-soning needed to verify correct timing. To solve thisproblem, we have used the Kronos (Yovine 1998)model-checking tool to verify the timing of (partial)plans. When an action or reliable temporal is assignedto preempt a temporal transition, t, the DAP algo-rithm uses Kronos to verify that t cannot occur inthe planned-for region of the state space (see (y) inFigure 6). In the event that the timing requirementsare not met (i.e., t can occur), Kronos returns a paththrough the state space that leads to this failure. DAPthen uses the path to failure to identify the planningdecisions that led to failure, and to select one as abackjumping target.BackjumpingDAP's ability to identify culprit decisions and back-jump has proven critical to its ability to �nd planswithin a reasonable amount of time. The CIRCA CSMsearch space has two characteristics that make it verydi�cult to search using a naive chronological back-tracking approach. First, the space is very large. Sec-ond, it is very di�cult to identify when a decision madeearly in the search process has made a solution infea-sible. Typically, it is only when a sequence of actionsand temporal transitions have been speci�ed that thefailure condition is realized.We have used a dependency-directed backjumpingapproach to overcome these di�culties. When theKronos veri�er determines that failure is reachablein an intermediate plan, it �nds path from an initialstate to a failure state and returns it to the planner.From that path, a list of implicated decisions is ex-tracted and the planner backjumps to the most recentof those decisions.The backjumping is complicated by the use of reli-able temporals as a way of employing domain processesand special-purpose controllers. Essentially, the prob-lem of using a reliable temporal is one of constructinga su�ciently long chain of states in which that reliabletemporal is enabled. The di�culty is to augment thebackjumping with enough information about how tocorrect problems in such a chain while not making the

search incomplete. E�orts to overcome this challengesare a focus of current research.Related WorkOur work on controller synthesis is similar in its subjectto the controller synthesis work of Maler, Pneuli, andSifakis (1995) (henceforth MPS). MPS have developeda game-theoretic framework for synthesizing discretecontrollers for timed systems3 and show that the con-troller synthesis problem for these systems is decidable.More recently, Tomlin,Lygeros, and Sastry (1998) haveextended the MPS method to the synthesis of hybridautomata, even in the presence of nonlinear continuousdynamics. Unlike MPS, we are interested in completelyautomated, on-line controller synthesis, so computa-tional e�ciency is critically important. To simplify theproblem, we have limited the power of our controllers,and carefully limited the size of the state space usingthe AMP, factoring the state space, and using the DAPmethod. We also provide an execution platform for ourcontrollers (the RTS) and a scheduling theory.In the AI literature, Kabanza, Barbeau, and St.-Denis (KBS) (1997) also work on generating timed dis-crete controllers. KBS's work di�ers in assuming a dis-crete time model, and representing time explicitly inthe controller. Our controllers are unclocked (althoughthey meet timing constraints), making them less pow-erful but easier to synthesize; representing time explic-itly in the controller can lead to a state space explosion.Recent research based on Markov Decision Processes(e.g., (Dearden & Boutilier 1997)), di�ers from oursin considering uncertainty to be more important thantiming. For the control problems that interest us, asimple representation of uncertainty is adequate, whilecorrect handling of timing is critical.Conclusions and Future WorkWe argue that, for many autonomous hybrid systems,the key to e�ective, intelligent control, is the engineer-ing of appropriate mode logic. Further, we argue thatthis mode logic can be e�ectively generated by model-based reasoning from the temporal and discrete eventfeatures of special-purpose controllers. We have devel-oped an algorithm for generating mode-logic automat-ically from such descriptions and verifying its timingproperties through the use of a model-checker. We arecurrently applying the CIRCA techniques described inthis paper to controlling a simulated combat UAV, un-der support from DARPA's Active Software Composi-tion program.3Their \forcing a win" parallels our \necessarily avoid-ing failure."
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