
CIRCA:A Cooperative Intelligent Real-Time Control ArchitectureDavid J. Musliner Edmund H. Durfee Kang G. ShinComputer Science and Engineering DivisionDepartment of Electrical Engineering and Computer ScienceThe University of MichiganAnn Arbor, Michigan 48109-2122fdjm, durfee, kgshing@eecs.umich.edu(313) 763-5363ABSTRACTMost research into applying AI techniques to real-time control problems has limited the powerof AI methods or embedded \reactivity" in an AI system. We present an alternative, cooperativearchitecture that uses separate AI and real-time subsystems to address the problems for which eachis designed; a structured interface allows the subsystems to communicate without compromisingtheir respective performance goals. By reasoning about its own bounded reactivity, CIRCA canguarantee that it will meet hard deadlines while still using unpredictable AI methods. With itsabilities to guarantee or trade o� the timeliness, precision, con�dence, and completeness of itsoutput, CIRCA provides more
exible performance than previous systems.Index Terms: Real-Time Control; Arti�cial Intelligence; Reactive Systems; Resource Scheduling;Planning; Cooperation; Intelligent Robotics.
To appear inIEEE Transactions on Systems, Man, and Cybernetics, vol. 23, no. 6, 1993.The work reported in this paper was supported in part by the National Science Foundation under Grants DMC-8721492 and IRI-9158473, by the O�ce of Naval Research under Grant N00014-91-J-1115, and by a NSF GraduateFellowship. The opinions, �ndings, and recommendations expressed in this publication are those of the authors, anddo not necessarily re
ect the views of the funding agencies.

1 IntroductionAs Arti�cial Intelligence (AI) techniques become mature, there has been growing interest inapplying these techniques to controlling complex real-world systems which involve hard deadlines.In such systems, the controller is required to respond to certain inputs within rigid deadlines, orthe system may fail catastrophically. Since the number of possible domain situations is too largeto be fully enumerated, and the consequences of failure are so severe, testing alone is insu�cientto guarantee the required real-time performance [24, 40]. These control problems require systemswhich can be proven to meet the hard deadlines imposed by the environment. Unfortunately, manyAI techniques and heuristics are not suited to analyses that would provide guaranteed response times[11]. Even when AI techniques can be shown to have predictable response times, the variance inthese response times is typically so large that providing timeliness guarantees based on the worst-case performance would result in severe underutilization of the computational resources duringnormal operations [33].Thus we perceive an apparent con
ict between the nature of AI and the needs of real-world,real-time control systems. While AI methods are characterized by unpredictable or high-varianceperformance, real-time control systems require constant, predictable performance. Most researchon \real-time AI" focuses either on restricted AI techniques that have predictable performancecharacteristics [4, 19, 23] or on reactive systems that retain little of the power of traditional AI [1, 5].Several researchers are investigating systems which combine reactive and traditional AI methods[2, 14, 31, 35]. These approaches have concentrated on retaining both reactive and unpredictablemechanisms, but do not address the guarantees required by hard real-time tasks.To combine unrestricted AI techniques with the ability to make hard performance guarantees, wepropose a Cooperative Intelligent Real-time Control Architecture (CIRCA). In this architecture, anAI subsystem reasons about task-level problems that require its powerful but unpredictable reason-ing methods, while a separate real-time subsystem uses its predictable performance characteristicsto deal with control-level problems that require guaranteed response times. The key di�culty withthis approach is allowing the subsystems to interact without compromising their respective per-formance goals. We have developed a scheduling module and a structured interface that allow theunconstrained AI subsystem to asynchronously direct the real-time subsystem without violatingany response-time guarantees.Realistic intelligent control systems must recognize their resource limitations and make tradeo�sin the quality of their control outputs, or responses. Section 2 of this paper brie
y discusses the pre-vious approaches that have reasoned about such limitations, and describes CIRCA's unique abilityto guarantee a chosen subset of responses. CIRCA's scheduling module allows the AI subsystem toreason explicitly about the real-time subsystem's execution resources, and the response guaranteesit can provide. Since these guarantees are based on worst-case performance measures, CIRCA alsoprovides mechanisms to utilize the time which becomes available when guaranteed mechanisms useless than their scheduled time allowance.Section 3 develops a functional distinction between task-level goals and control-level goals, andpresents a formal graph model of CIRCA's interactions with its environment. This model formsthe basis for CIRCA's performance guarantees, and illustrates how CIRCA makes performanceCIRCA 1 12:28 March 26, 1993

tradeo�s based on resource limitations.Section 4 presents the architecture itself, and describes the interface which allows the AI sub-system and the real-time subsystem to cooperatively guarantee deadlines and achieve goals. Thissection also presents a formal statement of the guarantees that CIRCA can provide. Section 5describes our prototype implementation, which incorporates an AI subsystem combining featuresof both the PRS [13, 20] and blackboard [32] architectures. The prototype system pilots a HeathkitHero 2000 robot through the hallways of our building. The robot uses sonar to sense its orientationwith respect to the hallway, as well as to sense obstacles and the open/closed status of doorwaysalong its path. Throughout the paper, we use examples from this domain to illustrate both theconcepts underlying the architecture and the details of our prototype implementation. Section 6presents a more detailed comparison to related work, and Section 7 concludes with a brief discussionof future research directions.2 Performance Tradeo�s and Bounded ReactivityThe responses of an intelligent control system can be rated along four dimensions: completeness,precision, con�dence, and timeliness [28]. Completeness means that responses are produced for allpossible inputs; timeliness means that the responses are produced before any associated deadlines.Precision and con�dence together determine the \quality" of a solution, or how accurate the outputis, to the best of the system's knowledge. An ideal intelligent control system could guarantee thatany possible sequence of inputs would elicit optimal responses from the system, within all timingrequirements.Some systems strive for this ideal by assuming they have unlimited processing resources. Forexample, the subsumption architecture [5] assigns each reactive element to a separate processor.Such assumptions limit scalability: it would be highly impractical to build a subsumption systemto control an oil drilling platform, which can make up to 20,000 signals available to its operators[3, 24].Other systems recognize that processor limitations make realistic control systems subject to thesame \bounded rationality" [38] as humans, pushing ideal performance out of reach. To deal withbounded rationality, these systems provide di�ering levels of guarantees for the four performancedimensions. The guarantees that a system provides are often de�ned by the conditions that de-termine when its control algorithm returns a result. We call methods that halt when they reacha certain threshold along a dimension \any-<dimension>" algorithms. For example, \any-time"algorithms can be terminated at any time, yielding some result, possibly with reduced precision,con�dence, or completeness [4, 7, 19]. If \any-time" algorithms are interrupted before the deadlinefor every response, they guarantee timeliness and completeness. Many iterative numerical methods[6] are \any-precision" algorithms that terminate when a result with a certain precision has beenachieved. Similarly, algorithms that halt when the con�dence in a solution rises above a thresholdare examples of \any-con�dence" algorithms.These types of systems are inappropriate for hard real-time control tasks because they can-not guarantee acceptable results within a deadline. Even \any-time" systems are inappropriate,because they have no control over the degree of response quality degradation which may occur.A hard real-time control system might only guarantee a subset of tasks, but that subset requiresCIRCA 2 12:28 March 26, 1993

guaranteed timeliness, precision, and con�dence to ensure that the system does not fail catastroph-ically. Realistic systems must also recognize that, in addition to processor limitations, sensor andactuator limitations constrain intelligent control systems. Even if a system's processors are fastenough, its sensors and actuators might not be able to provide ideal performance. Thus a systemmust recognize its \bounded reactivity" as well as its bounded rationality.CIRCA was designed to meet these demands by guaranteeing that it will produce a precise, highcon�dence response in a timely fashion to a limited set of inputs. In other words, the architecturecan sacri�ce completeness in order to achieve precision, con�dence, and timeliness. CIRCA reasonsabout its bounded reactivity within the AI subsystem (AIS) and the Scheduler, which cooperateto decide which responses the real-time subsystem (RTS) can and should guarantee. The AIS andthe Scheduler form an \any-completeness" system, searching for a subset of guaranteed responsesthat will cover the inputs which are expected to occur in the domain at each moment. If the AIScan move the subset of guaranteed responses over the complete response set properly, CIRCA willprovide guaranteed ideal performance.3 Making Performance GuaranteesHow can CIRCA provide any performance guarantees when its AIS uses high-variance or un-predictable computations? The answer is based on the distinction we draw between task-level goalsand control-level goals. This distinction is largely a functional one: in CIRCA, the RTS uses pre-dictable methods to achieve control-level goals, while the AIS has unpredictable AI techniques todecompose task-level goals into control-level goals. CIRCA is designed to reason about guaranteeingits control-level goals, but not necessarily its task-level goals.The choice of which speci�c goals are assigned to which category is largely up to the systemdesigner: the \control-level" and the \task-level" are somewhat arbitrary divisions along a continu-ous range of problem complexities. However, since CIRCA's guarantees are based on worst-caseperformance assumptions, assigning goals which need high-variance algorithms to the RTS resultsin a decreased capacity to guarantee other control-level goals. Thus the system designer mustdecide which types of goals will require guarantees, and which can be left less predictable. Giventhat separation, the AIS and Scheduler attempt to guarantee the control-level goals.We have developed a graph model that represents the AIS' reasoning about the RTS and its en-vironment. The graph model shows how we can recognize what subset of reactions are necessary tosatisfy the system's control-level goals. Thus the model allows us to concisely state the assumptionsthat CIRCA requires to guarantee its control-level goals (see Section 4.6). Furthermore, the modelshows how a subset of all reactions can isolate the guaranteed control level from the unguaranteedtask level, so that the unpredictable AIS does not cause the RTS to violate hard deadlines.3.1 The Graph Model of RTS/Environment InteractionThe directed graph model represents the worst-case behavior of the environment, and the actionswhich the RTS can take to avoid failure. The graph model has �ve elements (S; F; TE; TA; TT):1. A �nite set of \states" S = fS1; S2; :::; Smg, where each state Si represents a description ofrelevant features of the world.CIRCA 3 12:28 March 26, 1993

2. A distinguished failure state F , which subsumes all states that violate domain constraints orcontrol-level goals (e.g., system survival). The system strives to avoid the failure state.3. A �nite set of \event transitions" TE = fTE1; TE2; :::; TEng, that represent world occurrencesas instantaneous state changes.4. A �nite set of \action transitions" TA = fTA1; TA2; :::; TApg, that represent actions performedby the RTS.5. A �nite set of \temporal transitions" TT = fTT1; TT2; :::; TTqg, that represent the progressionof time. We represent only the signi�cant temporal transitions which lead to state changes.Each transition Ti 2 T = TE [TA [TT is a mapping between states; Ti : S ! S. The functionsD : T ! S and R : T ! S determine the domain and range of a transition; Ti : D(Ti)! R(Ti).An \event-closed" set of states SEC � S is de�ned as a connected set of states for whichevery event transition from every state in the set leads to a state that is also in the set. That is,8TEi 2 TE j D(TEi) =2 SEC _ R(TEi) 2 SEC . In other words, non-temporal events (as opposed tothe mere progression of time) cannot move the system out of the event-closed set of states.An event-closed set of states which does not contain the failure state is called a \safe" set ofstates (F =2 Ssafe). Note that a safe set of states can still lead to failure through temporal transitions(i.e., it is possible that 9TTi 2 TT j D(TTi) 2 Ssafe ^ R(TTi) = F). These temporal transitions tofailure correspond exactly to violating the hard real-time domain constraints: if the system entersa new state because of an event, but fails to react to the new state before a hard deadline, it willhave entered the failure state via a temporal transition: that is, by \waiting too long" to react, thesystem fails.Figure 1 shows a portion of the graph model for the example hallway-following task. Eachlabeled box in the graph model represents a state Si. Solid single arrows represent event transitionsTEi, dashed single arrows represent action transitions TAi, and double arrows represent temporaltransitions TTi. In the �gure, states fA,B,C,D,Eg form a safe set of states Ssafe: no event transitionslead out of the set. However, temporal transitions can still lead to failure. In the example, we cansee this in the transition from state B to state C caused when an obstacle appears in the path;if the system waits too long to recognize the situation and take action, it will follow the temporaltransition to F by colliding with the obstacle. But, if the system quickly detects the obstacleand halts, it can avoid a collision and transition to state E instead. Thus, if the system canguarantee that it will always preempt temporal transitions that lead from states in the safe set tothe failure state, moving instead to another state within the safe set, then the system can remainin a safe set of states for an inde�nite period of time without violating its control-level goals or thedomain constraints. The big \if," then, requires that the system provide the appropriate actiontransitions to stay within the safe set. CIRCA was designed to achieve just that, using the AISand Scheduler to reason about which transitions to guarantee, and the RTS to implement thoseguaranteed transitions.In our prototype implementation, described in Section 5, the AIS reasons implicitly about theinformation in the graph model to derive the necessary RTS reactions. We are investigating ageneralized production representation for the graph transitions that may allow the AIS to reasonCIRCA 4 12:28 March 26, 1993

- Moving
- Not oriented
- Path clear

- Moving
- Oriented
- Path clear

wait too long: collide
FAILURE

action:
sense state &
correct steering

event:
wheel slips

event:
obstacle appears

- Moving
- Oriented
- Path not clear

- Not moving
- Oriented
- Path clear

- Not moving
- Oriented
- Path not clear

action: sense state,
halt & notify AIS

action: sense state,
resume motion &
notify AIS

event:
obstacle disappears

wait

wait

wait wait

wait

F

CB

A

D E

wait too long:
collide

Figure 1: An example portion of the graph model of RTS/environment interactions. Somestates and transitions are omitted for clarity.explicitly about the graph model without encountering the state space explosion associated withenumerating all possible world states.3.2 Model RequirementsThe example graph model shows only deterministic transitions, where a given state and input(action, event, or time) always determine a unique new state. However, nothing prevents us frommodeling non-deterministic transitions, which can map a given state and input into one of severalnew states. We are not concerned with actually simulating the behavior of the world, but ratherwith extracting its worst-case behavior and the minimum time to failure from various world states.Thus non-determinism only provides more paths to consider when deriving worst-case behaviors.To allow guaranteed preemption of temporal transitions to failure, we must place two require-ments on the behavior of the world. First, we must know the minimum duration of any worldstates that require responses, so that we can derive a sampling frequency su�ciently high to detectthe state. Second, if failure may result from performing an action required by a state after thatstate has been left, we must ensure that our sensors have a predictive capability that spans thegap between sensing a state and acting on that information. That is, a sensor reading must indic-ate both that a particular condition exists, and that it will continue to exist long enough for theresponse action to occur. Both of these assumptions are required by any system striving to makesimilar guarantees.CIRCA 5 12:28 March 26, 1993

3.3 Accounting for Incomplete Knowledge and Bounded RationalitySince the graph model represents the AIS' reasoning about the RTS and the environment, itis inherently subject to the AIS' incomplete domain knowledge. The model only represents thosestates and transitions which the AIS can reason about. For example, the prototype AIS has noknowledge to indicate that the Hero's battery may become discharged, and thus the AIS does notreason about that possibility, its graph model would not include that transition to F , and it doesnot arrange responses to avoid that type of failure. This is perfectly acceptable, since no systemcan plan to avoid an event for which it has no relevant knowledge.The AIS might recognize its own bounded rationality, and further limit the extent of the graphmodel it considers, in order to speed processing. For example, the AIS could incorporate an\any-time" algorithm which would incrementally expand the graph model it used to derive theguaranteed set of responses for the RTS. The AIS would start with only the most probable statesand transitions, and would add new, less probable states to the model only after a guaranteedresponse set was generated for the previous partial model. If the AIS ran out of time beforeexamining the entire set of states that the graph model could potentially involve, it would at leasthave built a set of responses to cover a highly-probable subset of the safe set.3.4 Accounting for Bounded ReactivityAs discussed in Section 2, a realistic control system also has bounded reactivity. The AIS canaccount for the limitations on sensor and actuator resources available to the RTS by e�ectivelymodifying its graph model. For example, if the AIS attempts to guarantee responses to preemptboth of the temporal transitions to failure shown in Figure 1, the Scheduler may indicate that theRTS does not have su�cient sensor resources to guarantee both responses (it cannot sense for bothorientation and obstruction frequently enough). The AIS can then modify its model to decreasethe sensor requirements, possibly by eliminating low probability transitions associated with theoversubscribed sensor. In this example, the AIS might stop considering the transition from B to C,eliminating the demands for sensors to check that transition. This solution trades o� completenessagainst guaranteed timeliness, so that the system can no longer guarantee its safety from all knownforms of failure.As an alternative approach to modifying the model to account for resource limitations, theAIS might change a parameter which a�ects the deadlines associated with temporal transitions tofailure. For example, if the robot's speed is decreased, the time before the transition from state Cto F will be increased. Thus the RTS would not have to check for obstacles ahead as frequently,and the demands on the sensors would decrease.This process of reasoning about resource constraints is CIRCA's mechanism for making tradeo�sin the completeness of its guaranteed responses. The system strives to guarantee to preempt allknown transitions to failure; when it cannot, it modi�es the modeled set of states and transitions,and thus alters the required subset of guaranteed responses.4 CIRCAFigure 2 illustrates the Cooperative Intelligent Real-Time Control Architecture. The RTS isresponsible for implementing the actual guaranteed responses; the AIS and the Scheduler cooperateCIRCA 6 12:28 March 26, 1993

Sensors Actuators

Environment

Real-Time Subsystem AI Subsystem

Inference Engine

World Model

SchedulerTAP Schedule

Limited World Model

data
control
signals

TAPs
TAP
schedules

feedback
data

feedback
dataFigure 2: The Cooperative Intelligent Real-Time Control Architecture.to adjust the subset of responses that the RTS is supporting, attempting to ensure that the overallsystem meets hard deadlines and also achieves system goals as closely as possible.The RTS executes a cyclic schedule of simple test-action pairs (TAPs1) which have knownworst-case execution times. Since the RTS performs no other functions, it can guarantee that thescheduled tests and actions are performed within predictable time bounds. The AIS reasons aboutthe RTS' bounded reactivity, attempting to �nd a subset of TAPs which can be guaranteed to meetthe control-level goals and make progress towards the task-level goals. In cooperation with the AIS,the Scheduler reasons about the limited execution resources available to the RTS, and builds theschedule of TAPs. Since the AIS and RTS run asynchronously, the AIS need not conform to therigid performance restrictions which the RTS uses to guarantee meeting hard deadlines. Thus theAIS can utilize unpredictable, high variance heuristics without compromising the overall system'sability to meet real-time deadlines.4.1 Test-Action Pairs (TAPs)The TAP structure was developed to provide a standard primitive with which the Schedulerand AIS can reason about the timing and resource characteristics of the RTS' behavior, in orderto guarantee meeting deadlines and resource restrictions. An implementation of CIRCA de�nes anumber of TAP classes, and the RTS runs schedules made up of instances of these classes. EachTAP class has a �xed set of tests (or preconditions), a set of actions to take if all the tests returntrue, data about the sensing and actuating resources the TAP requires, and worst-case timing dataon how long it takes to test the preconditions and execute the actions. Speci�c TAP instances alsohave parameters which the AIS can set depending on the context in which the TAP is used. Theseparameters include frequency requirements or deadlines, which constrain the times at which a TAPmust be invoked. TAP tests and actions may include acquiring sensor readings, performing limiteddata processing, and controlling the system actuators.For example, Figure 3 shows an instance of the simple stop-if-object-ahead TAP class used inthe hallway-following task. The TEST speci�es that the TAP should only be executed if the robot1Not to be confused with Firby's RAPs [12], which are larger in scale and do not have predictable execution times.CIRCA 7 12:28 March 26, 1993

TAP stop-if-object-ahead:TEST (and *moving* (< (get-sonar-reading-ahead) *safety-distance*)):ACTION (progn (halt) (notify-AIS 'halted)):RESOURCES (sonar base-motors):MAX-PERIOD .70 :TEST-TIME .15 :ACTION-TIME .05Figure 3: A stop-if-object-ahead TAP instance.is moving and the distance ahead of the robot, as sensed by sonar, is less than *safety-distance*.If these conditions are true, the robot is halted and the RTS sends a noti�cation message to theAIS. Testing and executing this TAP takes a maximum of .20 seconds (TEST-TIME + ACTION-TIME), and the AIS has determined that it must be run at least every .70 seconds (MAX-PERIOD)to guarantee avoiding collisions with objects in front of the robot. Note that the frequency withwhich this TAP must be executed is dependent on the speed of the robot's motion: the AIS reasonsabout this and other variables to produce the parameters such as MAX-PERIOD, which can bedi�erent in each TAP instance.4.2 The AI Subsystem (AIS)The AIS decomposes task-level goals into plans consisting of several phases. The AIS reasonsimplicitly about the safe set of states which the RTS might encounter during each plan phase, andtries to generate a set of TAPs which will preempt the temporal transitions to failure, so that theRTS remains in the safe set. In our model of the AIS/Scheduler cooperation, the AIS suggests thisset of TAPs to the Scheduler, which attempts to build a TAP schedule. The Scheduler returnseither a successful schedule that meets all the timing constraints, or some informative feedback ifit fails to produce such a schedule. In that case, the AIS will modify the suggested set of TAPs,possibly by altering timing parameters, by choosing alternate TAPs to produce a desired behavior,or by actually dropping some TAPs altogether. In this way, the AIS and Scheduler reason aboutthe RTS' bounded reactivity, and choose how to degrade performance to meet those limitations.The AIS and the Scheduler run in parallel with the RTS, trying to form the TAP schedule forthe next plan phase before the RTS has accomplished the goals of the current phase. The AIScan immediately download the new TAP schedule to the RTS, and the RTS will switch to the newschedule when the current goals are achieved (see Section 4.4). If the AIS and Scheduler do notproduce the new TAP schedule before the RTS has accomplished the goals of the current schedule(possibly because of unexpected events), the RTS continues to execute the current schedule, waitingin a safe set of states. Thus the RTS' guarantees of system safety are decoupled from the AIS'unpredictable performance.4.3 The SchedulerThe Scheduler is responsible for building a cyclic schedule from the list of TAPs suggested by theAIS. The Scheduler reasons about the maximum periods of the TAPs, their worst-case executiontime and resource needs, and the resources available from the RTS. If the Scheduler cannot builda successful schedule to guarantee all the TAP timing constraints, it returns a failure message tothe AIS, which must adjust its proposed TAP list to loosen the scheduling constraints.CIRCA 8 12:28 March 26, 1993

(load-bootstrap-schedule)(setf *run-current-schedule* T)(while T (while *run-current-schedule* (process-TAP-schedule *schedule*))(setf *schedule* *new-schedule*)(setf *next-schedule-available* nil)(setf *run-current-schedule* T))Figure 4: The RTS main loop.TAP check-for-new-schedule:TEST (msg-pending-from-AIS):ACTION (progn (read-bytes-from-AIS *packet-size* *new-schedule*)(if (schedule-complete *new-schedule*)(setf *next-schedule-available* T))):MAX-PERIOD 1.5 :TEST-TIME .10 :ACTION-TIME .15Figure 5: A check-for-new-schedule TAP instance.The Scheduler builds schedules based on the assumption that each TAP will use its worst-case time to test and execute. But, when the RTS is running, many TAPs test negative andare not executed. Their scheduled execution time is available for other RTS activity. To �ll inthese unpredictable blocks of free time, the AIS sends a special \unguaranteed" list of TAPs tothe RTS along with the guaranteed TAP schedule. When TAPs don't �re, the RTS can look forunguaranteed TAPs that �t the remaining scheduled execution time2, and invoke them instead.These unguaranteed TAPs provide a form of graceful degradation: as the system becomes moretime-pressured, they will be run less frequently.4.4 The Real-Time System (RTS)The RTS is actually a fairly simple program loop, shown in Figure 4, that loads and thenexecutes the TAP schedule sent from the AIS. Since the RTS has no other duties, its performanceexactly follows the model which the Scheduler used to produce the TAP schedule. The RTS runsthrough the guaranteed TAP schedule, checking the tests for each TAP and �ring those TAPswhose tests return true. If a TAP is not �red, the RTS uses the time scheduled for its execution tosearch for and invoke one or more of the unguaranteed TAPs.But, if the RTS is only executing the TAP schedule, how does it ever get a new TAP schedule?The answer is simple: the TAP schedule itself includes the check-for-new-schedule TAP, shownin Figure 5, which causes the RTS to check for a new TAP schedule from the AIS. In other words,the AIS actually determines how often the RTS is checking to see if a new schedule is available.Thus, when the AIS expects the environment to be highly dynamic and challenging for the RTS, itcan cause the RTS to spend less time checking its input communication bu�ers, by increasing themaximum period of the check-for-new-schedule TAP.The check-for-new-schedule TAP is also important because it reads in the new TAP schedule2Actually, the unused time minus the time needed to �nd an appropriate unguaranteed TAP.CIRCA 9 12:28 March 26, 1993

TAP end-hallway:TEST (>= (get-distance-traveled) *traversal-distance*):ACTION (cond (*next-schedule-available*(setf *run-current-schedule* nil))(*moving* (halt) (notify-AIS 'reached-end))):MAX-PERIOD 1.5 :TEST-TIME .15 :ACTION-TIME .10Figure 6: An end-hallway TAP instance.incrementally. Each time the TAP's test indicates there is data waiting from the AIS, the RTS willread in a constant amount of the new schedule from the AIS. This has the e�ect of interleaving thedownloading of the next schedule with the execution of the current schedule, avoiding unpredictablylong periods in which the RTS is involved in communication. All incoming communication is brokenup into �xed size packets whose processing is explicitly scheduled.Switching control to the new TAP schedule is somewhat complex, because the system mustcontinue to ensure its safety during and after the switch. From the graph model viewpoint, thesystem must only switch to a new schedule when the world is in a state shared by the modelsused to generate both the old and new schedules. In other words, the world states accounted forby the new schedule must include at least one state that is also reachable with the old schedule.If the new schedule completely subsumes the old, then the switch can occur at any time. Morelikely, the AIS will have to decide on one or more states from which it will switch to the next planphase, and download TAPs to detect when the world is in one of those states and a new schedule isavailable. Figure 6 shows an example TAP that detects when the robot has traveled the intendeddistance. If the schedule for the next plan phase is available, the TAP sets a
ag causing the RTS toterminate the current schedule, dropping back into the main RTS loop shown in Figure 4. At thatpoint, the RTS makes three variable assignments and immediately returns to executing the TAPschedule. Thus, the transition between TAP schedules is extremely rapid, and can be subsumedby the execution time requirements of the end-hallway TAP without great cost.The output channel from the RTS to the AIS is also used only within TAPs, as illustrated inFigure 6. The end-hallway TAP includes an explicit message-sending function, whose executiontime is included in the ACTION-TIME for the TAP. Similarly, the I/O time required to commu-nicate with the sensors and actuators is included in the timing characteristics of the TAPs thatuse those channels. Thus all communication in and out of the RTS is scheduled explicitly withinTAPs, avoiding unpredictable I/O delays. This not only allows the Scheduler to make guarantees,it also gives the AIS control over the amount of feedback data which the RTS sends to the AIS,allowing a dynamic �ltering similar to that used by Guardian [17].In general, the RTS might run on multiple processors, as long as the Scheduler could model itsperformance correctly. We have presented the RTS and TAP interface for a single processor; theprinciples of predictable primitives and incremental, scheduled communication would extend in astraightforward manner. However, if more than one TAP could be active simultaneously, issuesof command fusion and resource access arbitration would complicate the predictability. Reactivearchitectures which assume numerous parallel behaviors have been developed to address theseCIRCA 10 12:28 March 26, 1993

problems [1, 5, 34].4.5 How CIRCA Meets the Requirements for Real-Time Intelligent SystemsBased on an extensive survey of current research and development, La�ey et al. [24] outlinedseveral requirements for real-time intelligent systems. In this section, we show how CIRCA meetsmost of these requirements explicitly, and provides a framework within which advanced AI tech-niques can address the remaining goals.Integration of Numeric and Symbolic Computing: Highly predictable, numeric al-gorithms for signal processing and feature extraction can be easily invoked by TAPs, and theirresults can be utilized by the reactive RTS as well as transmitted to the symbolically-oriented AIS.CIRCA provides the TAP formalism to express the control of such algorithms, and the Schedulerreasons about the integration of their performance with sensing and acting behaviors.Interrupt Handling: Many systems use hardware interrupts to asynchronously signal im-portant events. As discussed above, the RTS is expected to have TAPs that check for all importantevents as frequently as necessary. Thus, the RTS does not need hardware interrupts; in fact, al-lowing interrupts would make the RTS' performance unpredictable, voiding CIRCA's guarantees.In a sense, we have moved the loop which polls for important events out of the interrupt hardwareand into the software RTS, so that the AIS and Scheduler can reason explicitly about the formand frequency of that polling loop. Moving the polling loop decreases its frequency, since manyprocessor instructions are involved in running each TAP, but increases the architecture's ability tocontrol and predict the loop.Resource Utilization: The Scheduler reasons explicitly about the computing, sensing andactuating resources available to the RTS, so it can schedule optimal resource utilization. Theongoing cooperation between the AIS and the Scheduler allows CIRCA to trade o� any of itsperformance dimensions for any other, based on the system goals and the resource limitations.Temporal Reasoning and Truth Maintenance: The prototype AIS, described in Sec-tion 5.1, currently includes rudimentary mechanisms to reason about relations between time points.The AIS uses these mechanisms to reason about the temporal relations between tasks, so that it canfocus its attention on the earliest-deadline task during time-pressured situations. Nothing prohib-its the integration of truth maintenance systems [10] or more e�cient temporal reasoning systems[9, 22] into the AIS.Continuous Operation and Fault Tolerance: The architecture uses asynchrony, the TAPinterface, and safe sets of states to isolate the predictable RTS (which is continuously reactive)from the unpredictable AIS (which is continuously deliberative). CIRCA can detect faults in itssensors, actuators or the RTS by having the Scheduler monitor those subsystems (without inter-fering with the RTS), or by having explicit monitoring TAPs built into the TAP schedule. TheAIS and Scheduler can then modify their models of those resources, taking faults into accountand automatically adjusting their performance. In situations where the AIS and RTS are phys-ically separated, the Scheduler's monitoring behaviors might be best implemented on the sameplatform as the RTS. CIRCA supports this possibility by assuming only a loose coupling betweenthe cooperating Scheduler and AIS.CIRCA 11 12:28 March 26, 1993

Predictability: CIRCA was primarily designed to achieve the goal of predictability. By reas-oning explicitly about the detailed, predictable behaviors described by TAPs, CIRCA can provideguaranteed timeliness, precision, con�dence, and completeness, if su�cient resources are available.And, when resource restrictions prohibit ideal performance, CIRCA can explicitly reason abouttrading o� these performance dimensions to achieve guarantees for a subset of control-level goals.4.6 The Control-Level GuaranteeAs discussed in Section 3, CIRCA strives to guarantee its control-level goals. Of course, allguarantees must make some assumptions, and the value of a guarantee depends on how well un-derstood and reasonable those assumptions are. We now describe the assumptions which underliethe architecture's control-level guarantees, and argue that they are quite reasonable.Assuming thatA1) the space of system states can be covered by safe sets of states, andA2) the RTS is given complete TAP schedules to preempt the temporal transitions to failure ineach safe set, thenG1) CIRCA can guarantee that it will never violate a control-level goal or domain constraint.Assumption A1 is really not very restrictive, since the only type of transition that cannot becovered by a safe set of states is a non-temporal event transition to failure. This is reasonable,because if there is no time delay between an event and failure, the system cannot possibly preemptthe failure. For example, if our model of the environment includes the possibility of a nuclearblast very near the robot, no control system could guarantee avoiding failure. Essentially, requiringcoverage by safe sets of states merely insists that it is possible for the agent to guarantee survivalin its environment.Assumption A2 requires that the AIS and Scheduler manage to produce a successful, completeTAP schedule for each phase of a plan before the RTS begins executing that phase. By the de�nitionof a safe set of states, no non-temporal events can move the system out of the safe set. And, sincethe previous TAP schedule is guaranteed to preempt all temporal transitions out of the safe set,the RTS can remain in a safe set of states for an indeterminate period without failure. Therefore,the AIS is not required to produce TAP schedules before the RTS has accomplished the purpose ofa previous schedule. For example, once the Hero has traversed a hallway it may wait (safely) at theend of the hall for a new TAP schedule. Thus assumption A2 is reduced to a simple requirementthat the AIS and Scheduler produce the TAP schedule at some time.Furthermore, if we assume thatA3) the AIS and Scheduler perform a complete search of the space of TAP schedules,then A2 reduces to a requirement that some complete TAP schedule exists for each safe set of states.This is equivalent to saying that the RTS has su�cient resources to guarantee control-level goals inthe given environment, and of course that assumption must underlie all systems which make suchguarantees. We can thus restate G1 as follows: if the system has the requisite resources and it ispossible to guarantee survival in the environment, then CIRCA can guarantee all its control-levelgoals.CIRCA 12 12:28 March 26, 1993

4.7 The Task-Level Guarantee?The control-level guarantee is based largely on the fact that the system can remain in a safe setof states for an indeterminate amount of time without violating its control-level goals. Of course,the same cannot be said for task-level goals: the AIS must produce the necessary TAP schedules fastenough that the system achieves its task-level goals within their deadlines. Guaranteeing task-levelgoals presents several di�culties, not the least of which is de�ning \fast enough" in the previoussentence.One problem with reasoning about the task level results from task decomposition: when ahigh-level goal is broken up into sequences of subgoals, and �nally into TAPs, the time available toachieve the high-level goal must also be split into intervals for each subgoal. Doing this correctlywould require the AIS to have a predictable model of how long it takes to solve a subgoal. Butwe have already noted that AI methods are either too unpredictable or too high-variance to beusefully modeled. Thus the AIS cannot use unpredictable methods and also reason accuratelyabout apportioning time to subgoals.Even if we restricted the complexity of the AIS to predictable methods, the time requiredto actually achieve each subgoal in the real world is dependent on the dynamic environment.Thus, unexpected events might delay the accomplishment of a subgoal, violating the subgoal'stime interval. In many cases, this violation need not be a fatal event; the AIS might be able tomanipulate the time spent on later subgoals so that the overall high-level goal is still achievedbefore its deadline. For example, a delivery task with a hard deadline might be broken into severalhallway traversal tasks. If the Hero's path is temporarily blocked during one of those traversals,the system might need to adjust the subsequent traversals to a higher speed, to make up for thelost time. This adjustment would probably reduce the safety of the system, sacri�cing safety fortimeliness. This type of dynamic performance tradeo� requires complex task-level reasoning thatvaries with the environment, and thus de�es a priori analyses and guarantees.5 The Prototype ImplementationWe have built a prototype CIRCA system which emphasizes the interface between the subsys-tems, bridging the gap between the uncertain performance of the AIS and the rigid constraints ofthe RTS. The prototype is designed to provide control-level guarantees based on the graph modelwhich underlies the architecture's design. And, when resource restrictions make ideal performanceimpossible, the prototype AIS has several strategies for reducing resource requirements, trading o�the various dimensions of performance against each other.5.1 The Prototype AI SubsystemThe design of the prototype AIS is motivated by several operational requirements. To decidewhat subset of all possible TAPs should be active at any given time, the AIS must reason aboutthe system goals, the current world state, the anticipated future world states, and the capabilitiesof the RTS. Our implementation reasons about a declarative world model built upon classes of\objects" and \tasks." Object classes and instances are used to represent the physical environmentand the system's sensor and actuator resources. Task classes and instances provide a hierarchicrepresentation of the goals which the system is pursuing, their temporal relations, and the progressCIRCA 13 12:28 March 26, 1993

(assert-initial-world-model)(setf *soak* (get-all-matched-KSs))(while T(assert *soak*)(setf *new-soak* (get-new-matched-KSs))(cond ((and (null *soak*) (null *new-soak*)) ;; Stop if no KSs matched.(return))((null *new-soak*) ;; If no meta-level KSs(execute-KS (random-choice *soak*)) ;; matched, fire one from(unassert *soak*) ;; last soak.(setf *soak* (get-all-matched-KSs)))(T (unassert *soak*) ;; Else, climb to meta-level.(setf *soak* *new-soak*))))Figure 7: The prototype AIS interpreter.made so far.Since CIRCA is designed to operate in highly dynamic environments where plans may fail andunexpected circumstances may arise at any time, the prototype AIS should be highly interruptible,and allow rapid context switches to reasoning about new, unexpected problems. The prototypeAIS must be able to reason about multiple goals and about multiple methods for achieving thosegoals, so that it can evaluate tradeo�s of the various performance dimensions based on resourcelimitations, event probabilities, criticality measures, etc.The prototype inferencing mechanism incorporates features derived from the PRS [13, 20] andblackboard architectures [32]. Procedural knowledge is encoded in a set of Knowledge Sources (KSs)similar in form to those of a blackboard system: each KS has a set of class-constrained variablesand a set of parameterized preconditions which must all be true for the KS to be \applicable" tothe state of the world model. Each KS also has a set of routines that are run if the KS is actually\�red," or chosen and executed.The interpreter that chooses the next KS to �re is drawn almost directly from the PRS archi-tecture [20], and bears little resemblance to a blackboard's agenda mechanism. Figure 7 shows theLisp code for the prototype AIS interpreter. Each cycle of the interpreter �nds the set of KSs whosepreconditions are true in the current state of the world model (the \set of applicable KSs" or soak),and then asserts the value of the current soak into the world model, essentially making the worldmodel represent the fact that the system is considering executing those KSs. This new assertionmay cause new, meta-level KSs to match the world model state. The meta-level KSs are responsiblefor choosing which KS to �re from the soak matched in the previous interpreter cycle. Figure 8shows an example meta-level KS that chooses which lower-level KS to �re for a particular task,based on a global strategy variable (that some other KSs can manipulate). When any KSs matchat the meta-level, the interpreter removes the previously asserted soak from the world model andasserts the value of the new (meta-level) soak to be exactly the set of newly matched, meta-levelKSs. Again, new KSs may match against this assertion, forming a meta-meta-level. In this way,the interpreter can climb an arbitrary number of meta-levels. When no new meta-level KSs match,CIRCA 14 12:28 March 26, 1993

KS strategy-choice:VARIABLES (task-p ?task) (soak-p ?soak):PRECONDITIONS (get-KSs-for-task ?soak ?task):ACTIONS (let ((task-KSs (get-KSs-for-task ?soak ?task)))(execute-KS (random-choice(get-KSs-for-strategy task-KSs *strategy*))))Figure 8: The strategy-choice meta-level KS.the system executes a single KS, chosen randomly from the soak of the previous reasoning level.Our prototype AIS di�ers from PRS in the relatively unstructured form of our KSs, and thelack of an architectural \intentions" structure. In the prototype AIS, �ring a KS simply meansrunning some block of Lisp code. A PRS Knowledge Area (KA), on the other hand, is a structuredrepresentation of the set of plans to achieve a goal. When a PRS KA is chosen by the interpreterdescribed above, it is merged into the PRS intentions structure, which represents the cognitivecommitments of the system. The KA is then executed at some later time, as the intentions structureis traversed by the PRS execution phase (which has no parallel in our implementation). Cognitivecommitments are represented in our system by task objects which are manipulated by KSs in thesame way as other tasks, rather than by architectural mechanisms.Messages to the prototype AIS from the RTS are received into a bu�ered I/O process thatinterrupts the AIS when a complete message has arrived. The interrupt handler asserts the newmessage into the AIS world model and aborts the current activity. Control returns to the startof the interpreter loop, so that the AIS can then decide whether to process the incoming data,restart the previous task, or switch to a new task entirely. We are investigating ways in which thecommunication interrupt handler can save the state of a KS rather than aborting it [16].Remaining interruptible gives PRS and our AIS the useful ability to perform arbitrarily complexcomputations within a KS while also attending to ongoing world events. In particular, Ingrand andGeorge� [20] have shown that, given certain reasonable assumptions about event frequency and KSprecondition complexity, the prototype AIS will notice every event that generates an interrupt.The prototype AIS has KSs to incrementally form hierarchical plans to navigate through thehallways of our
oor. Given a destination and the current location of the Hero, KSs at the \hallway"abstraction level build a plan from hallway-path tasks. Hallway-path tasks are decomposed intoone or more tasks at the \traversal" abstraction level. This decomposition may involve splitting thehallway into di�erent sections which are traversed in di�erent ways. For example, a long hallwaymight be traversed in a \ballistic-traverse" task for most of its length, so that the RTS only uses theHero's wheel-encoders to keep track of its progress down the hallway. Then, when the end of thehallway draws near, the traversal can be switched to a \cautious-traverse" task, during which theHero also checks its position and orientation by sensing landmarks (walls, doorways, and corners).At the traversal abstraction level, several KSs match each class of traversal task to suggest theTAPs needed to implement the traversal. These KSs essentially form the AIS' implicit reasoningabout the graph model corresponding to the traversal phase and the reactions required to preemptCIRCA 15 12:28 March 26, 1993

KS suggest-stop-if-object-ahead:VARIABLES (traversal-task-p ?task):PRECONDITIONS (null (tap-list ?task)):ACTIONS (push (make-tap 'stop-if-object-ahead:MAX-PERIOD (/ *safety-distance* (speed ?task)))(tap-list ?task))Figure 9: The suggest-stop-if-object-ahead KS.failures. For example, the suggest-stop-if-object-ahead KS, shown in Figure 9, matches allclasses of traversal tasks and adds the stop-if-object-ahead TAP to the list of suggested TAPsfor the task. Note that the MAX-PERIOD for the TAP is based on the speed at which the traversalwill take place. When the strategy-choice meta-level KS chooses to decompose a traversal task,it executes all of the KSs which suggest TAPs for the traversal task, rather than choosing just one.3The resulting list of TAPs is then sent to the Scheduler.5.2 The Prototype SchedulerIn the current implementation, the RTS can run only one TAP at a time, and TAPs are notinterruptible, so the prototype Scheduler does not need to consider TAP preemption. For the sakeof simplicity, the Scheduler also assumes that TAPs are independent of each other: that is, the�ring of one TAP has no bearing on the �ring of any other TAP. In fact, this is not true, sincesets of TAPs can enable each other or act in a mutually exclusive fashion. For example, if oneTAP speci�es (*moving*) in its precondition and another TAP speci�es (not *moving*), the TAPscannot both �re in a cycle of the RTS unless an intermediate TAP changes the value of *moving*.A more sophisticated Scheduler would be able to take into account such dependencies and producemore e�cient schedules.By assuming TAP independence and TAP atomicity, the prototype Scheduler can use a simpli-�ed deadline-driven scheduling algorithm [30] to optimally derive a TAP schedule. This algorithmspeci�es that, each time the system can choose which TAP to run, it should run the available TAPwith the closest deadline. To derive a cyclic schedule with this criterion, the Scheduler simulates theoperation of a dynamic scheduler, incrementing a time counter and deciding which TAPs to run assimulated time passes. After the simulation has progressed far enough to invoke the TAP with themaximum MAX-PERIOD, the Scheduler begins scanning the trace of the simulation, attemptingto extract a loop of TAP invocations which meets all TAP timing requirements. The maximumpossible loop size is equal to the least common multiple of the TAP MAX-PERIODs. Note thatwe can relax the atomicity requirements, and allow TAP preemption, without losing the abilityto build a provably optimal schedule. Deadline-driven scheduling has been shown to be optimalfor such problems [30], but the short execution time of current TAPs does not warrant the cost ofadding preemption mechanisms to the RTS.If the Scheduler cannot build a successful schedule to guarantee all the TAP timing constraints,it returns a failure message to the AIS, which must adjust its proposed TAP list to loosen thescheduling constraints. The prototype AIS can make this adjustment by altering the traversal task3Figure 8 shows a simpli�ed version of the strategy-choice meta-level KS that always invokes one KS.CIRCA 16 12:28 March 26, 1993

1 AIS: Decomposing hallway task #<TASK HALLWAY-PATH1>2 AIS: Creating new cautious traverse #<TASK CAUTIOUS-TRAVERSE3>3 AIS: Speed = 16 inches/second, Distance = 427 inches, Deadline = 36 seconds4 AIS: Running all KSs for strategy SUGGEST-TAPS on #<TASK CAUTIOUS-TRAVERSE3>5 AIS: Suggesting check-orientation TAPs, max period 1.88 seconds6 AIS: Suggesting get-next-schedule TAP7 AIS: Suggesting follow-hall TAPs8 AIS: Suggesting stop-if-object-ahead TAP, max period .50 seconds9 AIS: Running Scheduler for #<TASK CAUTIOUS-TRAVERSE3>...10 SCHED: FAILURE: #<BEHAVIOR STOP-IF-OBJECT-AHEAD> exceeded max period of .5011 SCHED: WARNING: No schedule was possible12 AIS: Decreasing speed for #<TASK CAUTIOUS-TRAVERSE3>13 AIS: Set speed to minimum required to meet deadline: 12 inches/second14 AIS: Running all KSs for strategy SUGGEST-TAPS on #<TASK CAUTIOUS-TRAVERSE3>15 AIS: Suggesting check-orientation TAPs, max period 2.50 seconds16 AIS: Suggesting get-next-schedule TAP17 AIS: Suggesting follow-hall TAPs18 AIS: Suggesting stop-if-object-ahead TAP, max period .67 seconds19 AIS: Running Scheduler for #<TASK CAUTIOUS-TRAVERSE3>...20 SCHED: Successful schedule is:21 SCHED: #<BEHAVIOR CHECK-ORIENTATION>22 SCHED: #<BEHAVIOR STOP-IF-OBJECT-AHEAD>23 SCHED: #<BEHAVIOR FOLLOW-HALL>24 SCHED: #<BEHAVIOR STOP-IF-OBJECT-AHEAD>25 SCHED: #<BEHAVIOR GET-NEXT-SCHEDULE>26 SCHED: #<BEHAVIOR STOP-IF-OBJECT-AHEAD>27 SCHED: loop.Figure 10: A trace of AIS/Scheduler interactions. \Behaviors" consist of one or more TAPsgrouped together for scheduling e�ciency. This trace does not illustrate any TAPson the unguaranteed list.and then re-running the KSs which suggest the TAPs for the task. The KSs adjust their parametersbased on the new traversal task, and create an alternative TAP list. Our implementation currentlyhas two methods for altering a traversal task to ease the scheduling problem. Figure 10 shows asystem trace illustrating the �rst method, in which the AIS changes a traversal parameter such asthe Hero's speed. In the example, the AIS initially proposes to use a 16 inch/second \cautious"traverse (lines 1{3), and KSs suggest the appropriate TAPs with the necessary timing constraints(lines 4{8). The Scheduler is unable to build a schedule (lines 9{11), so the AIS decreases thetraversal speed to the minimum required to meet the traversal deadline (lines 12{13), and deletesthe previous TAP suggestions. KSs then �re to suggest TAPs with revised timing constraints (lines14{18), and this time the Scheduler succeeds in building a cyclic schedule.The AIS' second method for ameliorating scheduling problems is to change the class of thetraversal. For example, changing a \cautious" traversal to a \ballistic" traversal eliminates theCIRCA 17 12:28 March 26, 1993

need to guarantee the TAPs that sense landmarks4 and check orientation, and thus decreases thenumber of TAPs to be scheduled. Ballistic-traversal tasks actually include the landmark-sensingTAPs on the unguaranteed list, so that if the RTS has time it will try to verify the Hero's position.Thus changing the class of a traversal task can have the e�ect of moving a TAP from the guaranteedto the unguaranteed TAP list, or dropping the TAP entirely.6 Comparison to Related WorkIn recent years, numerous systems have been developed to apply AI techniques to real-worlddomains, particularly those which involve response deadlines. In this section, we discuss relatedresearch from an architectural point of view, where the form of the system and the division ofresponsibilities among its components is signi�cant. We will also consider the types of performanceguarantees these systems can provide, and thus how well they address real-time control issues.There are two common approaches to developing intelligent real-time control systems: embeddingan AI system within a real-time system, and vice versa [11].6.1 Embedding Intelligence in a Real-Time SystemMost researchers strive to embed intelligence within a real-time system, so that the AI mech-anisms are required to meet deadlines. One way to accomplish this is to simplify an AI system'sknowledge-base and inference mechanism so that it responds to all inputs within a bounded time[24, 27]. Unfortunately, this approach engineers out of the AI system the high-variance unpredict-ability which distinguishes AI techniques from simple algorithms. In a sense, when a system withthese limitations can always solve a problem, that problem is no longer in the realm of AI.Another approach to embedding intelligence in a real-time system assumes that the systemruns on a single processor which must satisfy both the bounded real-time tasks and the uncertainAI tasks. Paul et al. [33] deal with this problem by encapsulating high-variance AI tasks withina server process that is scheduled to run around the real-time tasks. Thus the real-time taskscan be guaranteed to meet their deadlines, and the AI task assumes the remaining CPU time(minus context switching overhead). Kaelbling [21] presents a similar approach in which the real-time processes are described in REX, a language with provable run-time properties. While thesesystems achieve the desired isolation of the real-time processes from the AI processes, they donot address the fundamental issue of how the systems interact to provide overall goal-directedperformance. Hendler and Agrawala [18] are integrating the Dynamic Reaction system and theMARUTI operating system, to implement guaranteed real-time reactive reasoning in a mannervery similar to CIRCA's guaranteed TAP schedules. They too are investigating the mechanismsby which a planning system can generate real-time task requirements. However, by restrictingthe system to a single processor, they exacerbate the complex issues of trading o� action anddeliberation [14, 29].A re�nement of the single-processor approach uses iterative improvement algorithms to guar-antee that the intelligent system can be interrupted at any time and will still yield a solution,possibly with reduced precision or con�dence [4, 19]. Such \anytime" algorithms cannot provide4Sets of related TAPs can be grouped together into \behaviors" for scheduling e�ciency. The follow-hallbehaviorin Figure 10 includes TAPs to recognize landmarks during a cautious traverse.CIRCA 18 12:28 March 26, 1993

any performance guarantees, since the degree of response quality reduction is not under the sys-tem's control. The imprecise computation method [7] speci�es that some minimum amount ofcomputation is performed before the problem-solving can be interrupted, and thus this methodcould make guarantees about its worst-case performance.However, all of these methods are limited to problems which are suited to iterative improvementalgorithms. In many real-time applications, meeting time constraints might require producingresponses that are signi�cantly di�erent from the responses that would be appropriate withouttime constraints. And, in many situations, approximate responses are not desirable at all. Forexample, when traversing a crowded area, a quick approximation (to an ideal collision avoidancemaneuver) such as \turn right 70 degrees, plus or minus 30 degrees" might lead to disaster, whilea completely di�erent response such as \halt" would be far better [11].6.2 Reactive ArchitecturesAt the other end of the \processor count" dimension, embedding intelligence in a real-timesystem leads to reactive architectures such as Pengi [1] and the subsumption architecture [5]. LikeCIRCA, these systems have separate behaviors which are each responsible for recognizing andreacting to speci�c input patterns. However, these systems assume that all of their behaviors arerunning concurrently on separate processors. In addition to the scaling problems discussed earlier,the processor-per-behavior scheme also wastes computing power, since many behaviors need notbe active at various times. Other systems [8, 39] have made provisions to activate only subsetsof behaviors, in much the same way as CIRCA runs di�erent TAP schedules. However, theseother systems do not reason about the resources required for each set of behaviors, and do not useadvanced AI techniques to control the set of activated behaviors5. CIRCA's resource allocationand scheduling are crucial to the system's
exibility, extensibility and e�ciency. And, by explicitlyreasoning about time and resources, CIRCA is able to provide guaranteed performance, whichreactive systems cannot. Reactive systems simply run as fast as they can, and thus they are only\coincidently real-time" [24].Finally, since purely reactive systems lack the ability to learn and to form complex symbolicplans or expectations, they have little of the power we associate with intelligent systems [14].Essentially, all of the inferencing and uncertainty associated with intelligent behavior has beenengineered out of these systems. We might consider them to be convenient, powerful formulationsof traditional control systems, rather than intelligent real-time control systems.6.3 Embedding Reactivity in an AI SystemOther researchers have taken the opposite approach, embedding real-time capabilities withinan AI system. These systems use a set of designated reactions which bypass the normal invocationmechanisms, leading to faster response times. Soar [26], for example, encodes reactive knowledgein the same production form as its other knowledge, with the added feature that reactive operatorsare �red immediately after they are matched [25]. This eliminates the possibility of recursivesubgoaling, providing an immediate reaction once the productions are matched. However, sinceSoar tries to match all its productions all the time, its growing knowledge base makes bounding5Although Connell and Viola [8] are on a similar track: they use a human to make the decisions.CIRCA 19 12:28 March 26, 1993

reaction time problematic. Assumptions of complete match parallelism lead to the same scalingdi�culties and ine�ciency as the reactive architectures discussed above.CIRCA avoids these problems by choosing the subsets of reactive knowledge it will test duringeach cycle of the RTS. These choices prevent CIRCA from displaying the opportunistic behaviorof general pattern-directed invocation methods, but they are necessary to cope with restrictedresources and bounded reactivity. The choice of TAPs also has the e�ect of focusing the system'sattention on features which are deemed important, eliminating the assumption that all changes inthe world are detected by the sensor system [25].6.4 Cooperative SystemsCIRCA demonstrates an alternative to the embedded approaches, using separate, concurrent AIand real-time subsystems to cooperatively produce the desired performance. Hanks and Firby [14]are investigating a similar approach, combining a transformational planner [15] with an executionmodule based on Reactive-Action Packages (RAPs) [12]. Their work does not concentrate onproviding timeliness, since RAPs are executed by a complex queue manager. Also, the strategicplanning and RAP execution subsystems share a global world model; this shared resource couldlead to contention problems that would delay the subsystems. CIRCA avoids shared data for thisreason, and relies instead on message passing and interrupts.Arkin's Autonomous Robot Architecture (AuRA) [2] includes a reactive execution subsystemand a hierarchical planner that determines which reactive \schemas" are active. A world modellingsubsystem controls AuRA's stored knowledge, providing an interface that avoids shared-memoryassumptions. AuRA also includes a \homeostatic control" subsystem that monitors the internalconditions of the execution subsystem, allowing changes in the execution subsystem to a�ect theplanning process. CIRCA's AIS and Scheduler can provide similar functionality by monitoring theRTS, as mentioned in Section 4.5. AuRA does not address the timeliness or resource restrictionsthat are the focus of our architecture.Simmons' Task Control Architecture (TCA) also combines reactive and planning systems [35,37]. Although TCA does not provide execution-time guarantees, it does reason about its limitedsensor capabilities, and is intended to derive sensing parameters (such as frequency) from a causalexplanation of the sensing behavior and environment. This corresponds directly to CIRCA's reas-oning about TAP parameters. However, although sensing monitors are under the control of acentral AI system, the reactive elements of TCA which attempt to keep the system safe are outsidethe system's control [36].Miller and Gat have developed the three-layer ATLANTIS system [31], in which the bottomlayer provides a subsumption-like reactive controller and the top layer is a deliberative plannerand world modeller. In between, the sequencing layer turns on and o� sets of reactive behaviors,much as CIRCA runs di�erent TAP schedules. The sequencing layer actually does more, since italso maintains a task queue similar to the RAP interpreter, and sequences these tasks when it isinterrupted or detects that the previous task is �nished. ATLANTIS does not address the resourcereasoning or guaranteed performance objectives of CIRCA.CIRCA 20 12:28 March 26, 1993

7 Current Status & Future DirectionsAs presented in Section 5, the prototype AI subsystem successfully plans hallway paths, break-ing them into traversal phases and developing TAP schedules in cooperation with the prototypeScheduler. Currently, the Scheduler is encapsulated within a KS, and returns either a successfulschedule or nil. We are investigating ways in which the Scheduler can provide more informativefeedback about the cause of a scheduling failure, so that the AIS can make intelligent decisionsabout how to modify the suggested set of TAPs. This will allow the AIS and Scheduler to interactin a more intelligent manner than the current \generate and test" scheme. We are also examin-ing more powerful scheduling algorithms that would account for dependencies between TAPs or amultiprocessor RTS.The RTS, described in Section 4.4, has successfully piloted the Hero through numerous hallwaytraversals, including stopping for obstacles, rounding corners, and recognizing doorways. Althoughthe Hero's inaccurate sensors and wheel slippage have caused occasional navigation failures, thesafety of the robot has not been violated (it has never collided with walls or obstacles). We areplanning to re-implement the RTS in C, to eliminate Lisp's unpredictable garbage collection andto speed performance.We also seek to evaluate and verify the prototype system's timeliness guarantees. The graphmodel and the concept of a safe set of states are the foundation for the architecture's control-levelperformance guarantees. The guarantees which an implementation makes depend on the accuracyof the timing information used to schedule TAPs and anticipate control-level deadlines. Currently,the AIS and Scheduler use �xed, estimated timing parameters. We hope to develop methods whichcan derive the relevant domain deadlines from a model of the environment, providing a sound basisfor safety guarantees and the adjustment of TAP parameters.In summary, CIRCA is an innovative architecture in which cooperating subsystems provideboth the performance guarantees needed for real-time control and the powerful, unpredictableintelligence needed to address complex task-level problems. Using deadline-driven scheduling and agraph model of the RTS and the environment, CIRCA represents a unique and promising methodof applying unrestricted AI techniques to tasks with hard real-time deadlines.AcknowledgmentThe authors would like to thank Marcel Schoppers and the anonymous reviewers for manyinsightful comments on this work.References[1] P. E. Agre and D. Chapman, \Pengi: An Implementation of a Theory of Activity," in Proc. NationalConf. on Arti�cial Intelligence, pp. 268{272. Morgan Kaufmann, 1987.[2] R. C. Arkin, \Integrating Behavioral, Perceptual, and World Knowledge in Reactive Navigation," inRobotics and Autonomous Systems 6, pp. 105{122, 1990.[3] J. E. Arnold, \Experiences with the Subsumption Architecture," in Conf. on Arti�cial IntelligenceApplications, pp. 93{100, 1989.[4] M. Boddy and T. Dean, \Solving Time-Dependent Planning Problems," in Proc. Int'l Joint Conf. onArti�cial Intelligence, pp. 979{984, August 1989.CIRCA 21 12:28 March 26, 1993

[5] R. A. Brooks, \A Robust Layered Control System for a Mobile Robot," IEEE Journal of Robotics andAutomation, vol. RA-2, no. 1, pp. 14{22, March 1986.[6] R. L. Burden and J. D. Faires, Numerical Analysis, PWS-KENT Publishing Co., 1989.[7] J.-Y. Chung, J. W. Liu, and K.-J. Lin, \Scheduling Periodic Jobs That Allow Imprecise Results," IEEETrans. Computers, vol. 39, no. 9, pp. 1156{1174, September 1990.[8] J. Connell and P. Viola, \Cooperative Control of a Semi-Autonomous Mobile Robot," in Proc. IEEEInt'l Conf. on Robotics and Automation, pp. 1118{1121, 1990.[9] T. Dean and D. McDermott, \Temporal Data Base Management," Arti�cial Intelligence, vol. 32, no. 1,pp. 1{55, April 1987.[10] J. Doyle, \A Truth Maintenance System," Arti�cial Intelligence, vol. 12, no. 3, pp. 231{272, 1979.[11] E. H. Durfee, \A Cooperative Approach to Planning for Real-Time Control," in Proc. Workshop onInnovative Approaches to Planning, Scheduling and Control, pp. 277{283, November 1990.[12] R. J. Firby, \An Investigation into Reactive Planning in Complex Domains," in Proc. National Conf.on Arti�cial Intelligence, pp. 202{206, 1987.[13] M. P. George� and F. F. Ingrand, \Decision-Making in an Embedded Reasoning System," in Proc. Int'lJoint Conf. on Arti�cial Intelligence, pp. 972{978, August 1989.[14] S. Hanks and R. J. Firby, \Issues and Architectures for Planning and Execution," in Proc. Workshopon Innovative Approaches to Planning, Scheduling and Control, pp. 59{70, November 1990.[15] S. Hanks, \Practical Temporal Projection," in Proc. National Conf. on Arti�cial Intelligence, 1990.[16] B. Hayes-Roth, \A Multi-Processor Interrupt-Driven Architecture for Adaptive Intelligent Systems,"Technical Report KSL 87{31, Knowledge Systems Laboratory, Stanford University, June 1987.[17] B. Hayes-Roth, \Architectural Foundations for Real-Time Performance in Intelligent Agents," Journalof Real-Time Systems, vol. 2, no. 1/2, pp. 99{125, May 1990.[18] J. Hendler and A. Agrawala, \Mission Critical Planning: AI on the MARUTI Real-Time OperatingSystem," in Proc. Workshop on Innovative Approaches to Planning, Scheduling and Control, pp. 77{84,November 1990.[19] E. J. Horvitz, \Reasoning About Beliefs and Actions Under Computational Resource Constraints," inProc. Workshop on Uncertainty in AI, 1987.[20] F. F. Ingrand and M. P. George�, \Managing Deliberation and Reasoning in Real-Time AI Systems," inProc. Workshop on Innovative Approaches to Planning, Scheduling and Control, pp. 284{291, November1990.[21] L. P. Kaelbling, \An Architecture for Intelligent Reactive Systems," in Proc. Workshop on ReasoningAbout Actions and Plans, pp. 395{410. AAAI, 1986.[22] J. A. Koomen, \The TIMELOGIC Temporal Reasoning System," in University of Rochester ComputerScience Department Technical Report 231, 1989.[23] R. E. Korf, \Real-Time Search for Dynamic Planning," in Proc. AAAI Spring Symp. on Planning inUncertain, Unpredictable, or Changing Environments, 1990.[24] T. J. La�ey, P. A. Cox, J. L. Schmidt, S. M. Kao, and J. Y. Read, \Real-Time Knowledge-BasedSystems," AI Magazine, vol. 9, no. 1, pp. 27{45, 1988.CIRCA 22 12:28 March 26, 1993

[25] J. E. Laird, \Integrating Planning and Execution in Soar," in Proc. AAAI Spring Symp. on Planningin Uncertain, Unpredictable, or Changing Environments, 1990.[26] J. E. Laird, A. Newell, and P. S. Rosenbloom, \SOAR: An Architecture for General Intelligence,"Arti�cial Intelligence, vol. 33, pp. 1{64, 1987.[27] J. S. Lark, L. D. Erman, S. Forrest, et al., \Concepts, Methods, and Languages for Building TimelyIntelligent Systems," Journal of Real-Time Systems, vol. 2, no. 1/2, pp. 127{148, May 1990.[28] V. R. Lesser, J. Pavlin, and E. Durfee, \Approximate Processing in Real-Time Problem Solving," AIMagazine, vol. 9, no. 1, pp. 49{61, 1988.[29] R. Levinson, \Autonomous Prediction and Reaction with Dynamic Deadlines," in Proc. AAAI SpringSymp. on Planning in Uncertain, Unpredictable, or Changing Environments, 1990.[30] C. L. Liu and J. W. Layland, \Scheduling Algorithms for Multiprogramming in a Hard Real-TimeEnvironment," Journal of the ACM, vol. 20, no. 1, pp. 46{61, January 1973.[31] D. P. Miller and E. Gat, \Exploiting Known Topologies to Navigate with Low-Computation Sensing,"in Proc. SPIE Sensor Fusion Conf., November 1990.[32] P. Nii, \The Blackboard Model of Problem Solving," AI Magazine, vol. VII, no. 2, pp. 38{53, Summer1986.[33] C. J. Paul, A. Acharya, B. Black, and J. K. Strosnider, \Reducing Problem-Solving Variance to ImprovePredictability," Communications of the ACM, vol. 34, no. 8, pp. 81{93, August 1991.[34] D. W. Payton, \An Architecture for Re
exive Autonomous Vehicle Control," in Proc. IEEE Int'l Conf.on Robotics and Automation, volume 3, pp. 1838{1845, 1986.[35] R. Simmons, \An Architecture for Coordinating Planning, Sensing, and Action," in Proc. Workshop onInnovative Approaches to Planning, Scheduling and Control, pp. 292{297, November 1990.[36] R. Simmons, \Robust Behavior with Limited Resources," in Proc. AAAI Spring Symp. on Planning inUncertain, Unpredictable, or Changing Environments, 1990.[37] R. Simmons, \Coordinating Planning, Perception, and Action for Mobile Robots," in AAAI SpringSymposium, 1991.[38] H. A. Simon,Models of Bounded Rationality, M. I. T. Press, 1982.[39] M. H. Soldo, \Reactive and Preplanned Control in a Mobile Robot," in Proc. IEEE Int'l Conf. onRobotics and Automation, pp. 1128{1132, 1990.[40] J. A. Stankovic, \Misconceptions about Real-Time Computing: A Serious Problem for Next-GenerationSystems," IEEE Computer, vol. 21, no. 10, pp. 10{19, October 1988.
CIRCA 23 12:28 March 26, 1993

