
To appear in Working Notes of the AAAI Workshop on Constraints and Agents
Providence, Rhode Island, July, 1997Contract-Based Distributed Schedulingfor Distributed ProcessingDavid J. Musliner & Mark S. BoddyAutomated Reasoning GroupHoneywell Technology Center3660 Technology DriveMinneapolis, MN 55418fmusliner,boddyg@src.honeywell.comAbstractTo an increasing extent, large-scale information pro-cessing is a distributed phenomenon. As the trendin computing moves further towards distributednetworks of powerful workstations and informationservers, we see the growing importance of solutionsto dynamic distributed scheduling problems. In thesedomains, resource providers are distributed both ge-ographically and bureaucratically, so that no centralauthority can dictate a global schedule. Resource con-sumers are also distributed: tasks arrive at di�erentlocations according to arrival functions that are at beststochastically predictable.In this paper, we describe a distributed constraint-based scheduling system that adjusts task distribu-tion and execution times through the negotiation ofcontracts, using a re�nement of the Contract Net pro-tocol. By combining the minimal-commitment capa-bilities of constraint-based scheduling with the dis-tributed coordination features of contracting, this sys-tem responds exibly to dynamic variations in loadbalance and unpredictable task arrivals. Large-scalesimulations show signi�cant performance bene�ts tousing powerful scheduling methods in the determina-tion of contract negotiation bids. These results canbe used to improve the performance of distributedcomputing systems cooperating to process large-scaleshareable tasks. IntroductionAs the trend in computing moves further towards dis-tributed networks of powerful workstations and infor-mation servers, we see the growing importance of solu-tions to dynamic distributed scheduling problems. By\scheduling," we mean the allocation of resources overa speci�c period of time to the performance of a partic-ular task. We are interested in problem domains thatare \distributed" in at least two ways. First, they aredistributed because tasks may be executed at any of aset of locations, depending on what resources are avail-able at those locations. Second, they are distributed inthe sense that there is no central authority that holdsknowledge of and control over when and where di�er-ent tasks are executed. Instead, each location makesPortions of the work described in this paper were supportedby NASA, under contract #94-3050-J1237, administered byHughes STX

its own decisions about what tasks to execute at whattimes, and coordination is arranged through explicitcommunication. Finally, the domains of interest are\dynamic" in the sense that they change over time: thedesired tasks and available resources may be changingas the system is executing tasks, and the patterns ofthese changes are not known a priori . A static schedulecannot be created for these problems.The temporal aspect of these problems presents dif-�culties for conventional approaches to load-balancingin distributed systems; the deadline by which a taskmust be completed or face a penalty is a signi�cantfactor in how tasks should be scheduled at individualsites. In addition, the objective in our domain is notto simply balance the load, but rather to maximize theoverall system's net earned value. As illustrated by thesimulation results discussed in Section , a balanced loadmay actually be antithetical to maximal system-widenet value.In this paper, we describe a distributed schedulingsystem that adjusts task distribution through the ne-gotiation of contracts, using a re�nement of the Con-tract Net protocol (SMITH 1980) similar to Sand-holm's (Sandholm 1992; 1993). The behavior of thissystem is investigated through experiments conductedin a simulated domain implementing a simpli�cation ofa distributed image processing application for NASA'sEarth Observing System. Large-scale simulations haverevealed several interesting behavioral aspects of thesystem. By comparing the behavior of agents nego-tiating based on complex, constraint-based schedulingsystems against agents using simpler queue-based ne-gotiation schemes, we have veri�ed several qualitativeand quantitative advantages of the constraint-basedscheme. The main result is that there is signi�cantbene�t to having the individual negotiating agents usecomplex, constraint-based scheduling when computingtheir bids on contracts.Section describes the domain in more detail, Sec-tion provides the technical details of task schedulingand distributed negotiation, and Section sketches thedesign of the implemented simulator. Finally, Sectiondescribe our experimental results. We conclude with adiscussion of related work, draw some conclusions fromour results, and suggest some areas for further work.

Dynamic Distributed Scheduling forEOSDISOur simulated distributed scheduling domain is basedon NASA's Earth Observing System (EOS). EOS is amulti-year, multi-billion-dollar project aimed at gath-ering scienti�c information about the Earth's environ-ment. With the participation of the European SpaceAgency, Japan, Canada, and NASA, several satel-lites supporting dozens of sensors are scheduled to belaunched in the late 1990's. These systems, along withadditional sensors already in orbit, will be used to col-lect information on ozone depletion, greenhouse e�ects,ocean productivity, and other environmental features.The EOS Data and Information System (EOSDIS)will be responsible for archiving and analyzing the re-sulting vast amounts of data. EOSDIS functions in-clude managingmission information, archiving and dis-tributing data, and generating and disseminating scien-ti�c data products (Dozier & Ramapriyan 1990). Bothraw data and the results of analyzing that data will bestored in archives maintained by a set of DistributedActive Archive Centers (DAACs). Much of the dataanalysis will be performed at these centers, though in-dividual scientists or institutions will also perform in-dividual analyses of raw data (or intermediate results)obtained from the DAACs. Each DAAC will have a col-lection of specialized computing resources (e.g., CrayXMP and MasPAR computers) to support the analysisdone at that site. Individual DAACs may be responsi-ble for di�erent sets of data (from di�erent sensors),generating and archiving di�erent analysis productsfrom one or more sets of data, and supporting di�erentusers. Interactions among DAACs may arise becausesome analyses involve combining multiple sets of dataor because one DAAC's \customers" may request datastored elsewhere.A variety of interesting problems arise in the pro-cess of automating the functions of the EOSDIS net-work. These issues range from managing petabyte1data archives, including the automated generation ofcontent-based \meta-data" for indexing, to generat-ing analysis plans to produce a desired analysis prod-uct, to scheduling ground equipment for satellite sup-port (Campbell et al. 1991; Boddy et al. 1995;1994). In this paper, we are concerned with schedulinganalysis tasks at the various DAACs as requests arrivefrom their respective users. This process is compli-cated by the fact that satisfying requests may involvegetting data from or requesting a component analysisfrom another DAAC. In addition, some analysis tasksmay be o�oaded if another DAAC has the appropri-ate resources and less to do. The negotiation requiredto �nd other DAACs to take on such tasks is compli-cated by the timing restrictions imposed by customerdeadlines.1One petabyte = 1015 bytes.

Technical ApproachThe core of our approach to solving dynamic dis-tributed scheduling problems involves the combina-tion of two fundamental technologies: constraint-based scheduling and contract-based negotiation. Thescheduling methods are used to manage task schedulingand execution at individual DAACs in the distributednetwork; the negotiation methods are used to allowDAACs to exchange tasks and other commitments.This section provides a brief background in each ofthese independent technologies and then describes theapproach we use to combine them.Contract-Based NegotiationNegotiation over formal and informal contracts is alongstanding societal mechanism for establishing com-mitments between agents. Not surprisingly, contract-based negotiation is also a popular paradigm in dis-tributed AI and distributed problem-solving research.Early work by Smith (SMITH 1980) described the Con-tract Net system of distributed processing agents basedon contract negotiation. The Contract Net Protocol(CNP) speci�es how contracts are announced by con-tract managers to other agents, how bids are returnedto the manager by potential contractors, and how thecontract is then awarded by the manager.Many extensions and variations of the CNP havebeen used to satisfy various system requirements andavoid certain types of undesirable behavior. Thespecializations made by Sandholm (Sandholm 1992;1993) are most relevant to our work. These extensionsand modi�cations to the original CNP include:� The use of marginal cost calculations to determinewhat contracts should be announced, and how muchagents should bid.� The restriction that bids are binding commitments,so that an agent must reserve all necessary resourcesin order to make a bid on a contract. As a result,bidders who are not awarded a particular contractmust be sent a loser message to release them fromthe bid commitment.Constraint-Based SchedulingEach DAAC agent maintains its own schedule of tasksusing constraint envelope scheduling, in which sched-ules are constructed by a process of \iterative re�ne-ment" (Boddy, Carcio�ni, & Hadden 1992). Schedul-ing decisions correspond to constraining an activity ei-ther with respect to another activity or with respectto some timeline. The schedule becomes more de-tailed as activities and constraints are added. Undo-ing a scheduling decision means removing a constraint,not removing an activity from a speci�ed place on thetimeline. This basic approach is common to a num-ber of scheduling systems (e.g., (Fox & Smith 1984;Smith et al. 1990; Sadeh & Fox 1990; Muscettola1993)). Our implementation of this approach providesunique support for reasoning about partially-speci�ed

schedules and searching through the resulting space foran acceptable fully-ordered execution schedule.Constraint envelope scheduling is aleast-commitment approach. We do not assign a setof activities to places on a timeline, assigning each ac-tivity a start and end point. Rather, we collect setsof activities and constrain them only as needed. Con-straints may express relations between activities (e.g.,any analysis task using the results of task A must notstart before A is completed) or relative to metric time(this task takes at least 2 hours, and may not start un-til 10:15). Additional constraints are added as neededto resolve conicts over resources. So, for example, twotasks that require the same tape drive must be orderedwith respect to one another, whereas if they were touse two di�erent drives, their ordering would not haveto be determined.The least-commitment nature of our schedules is animportant advantage in dynamic domains where taskarrivals and changes require rescheduling. If an eventarises that makes a resource unavailable, or an ongoingtask takes longer than expected, the e�ect on the sched-ule is minimized. First, only those activities related bya chain of constraints to the activities explicitly movedwill be a�ected. Second, if the set of constraints inthe schedule is consistent with the new event, the pro-jected e�ect of the schedule can be updated e�ciently,without any rescheduling at all.Combined TechnologiesTraditionally, the CNP and its variants are used toexchange contracts that encapsulate complete tasks.This is the primary use in our current implementa-tion as well, where tasks correspond to users' requestsfor EOSDIS data processing, and contract negotiationsallow the DAAC agents to exchange these processingtasks to achieve a balanced system load and maximizethroughput. The constraint-based scheduling meth-ods are used within each agent to remain as exibleas possible about the start times for individual tasks,so that the dynamic arrival of new tasks and contractannouncements can be accommodated as much as pos-sible.The links between contract negotiations and taskscheduling are forged primarily through functions thatcompute the value of a task schedule and the valueof individual tasks. For example, the CNP requiresbidding agents to provide a measure of their cost (abid) to perform the contract task under consideration.In our system, this bid is the marginal cost of addingthe contract task to the bidding agent's schedule. Themarginal cost is computed by �rst storing the value ofthe agent's existing task schedule, adding the contracttask to the schedule, and then �nding the new sched-ule's value. The di�erence in values, new minus old, isthe marginal cost of the addition, and hence the bid.Note that the contract remains on the schedule afterthis computation; the bid is binding.

Similarly, the decision about which of an agent's ex-isting tasks to announce as a contract open for biddingis made by computing the marginal cost of the task.In our implementation, if the marginal cost of a taskis negative (i.e., the agent is better o� without tryingto execute the task), then the contract is announcedfor possible award to a di�erent agent2. Thus the fun-damental decisions required by the CNP are made us-ing value functions evaluated on the constraint-basedschedule.In addition to the CNP modi�cations made by Sand-holm (noted above), we adapted several aspects of thecontract negotiation protocol to focus on our thesis in-vestigation and minimize other concerns:� To limit repetitive and unproductive contract an-nouncements, each contract is announced by a par-ticular manager no more than three times: if thecontract is still not awarded to another DAAC (i.e.,the manager's bid was the best bid), the contract isexecuted locally. Also, contracts are not announcedmore frequently than every 20 time units, to avoidnegotiations when no signi�cant changes have oc-curred that could lead to a di�erent outcome. Theselimitations were chosen arbitrarily, and seem to bee�ective at limiting the network communication loadwhile still permitting e�ective contract movement.� Rather than using a \focused addressing" schemein which contract announcements are sent to a se-lect few potential bidders, we broadcast contract an-nouncements to all DAACs, maximizing the poten-tial for useful contract exchange. We are not particu-larly concerned about the resulting communicationsload, since the number of contracts \on the market"at any time is restricted through the limitations de-scribed above.� To prevents issues of bid timing from interfering withour investigation, the bidding process is required tooperate in a �rst-come, �rst-served manner: agentscannot delay their bids to see what other alternativesare available. Combined with synchronized agentclocks, this restriction also allows us to �x an upperbound on the time a contract manager must wait un-til he is assured of receiving all bids, and can makethe contract award with complete information.� Contract award messages identify which DAAC haswon a contract, and they are broadcast. Thusaward messages also act as loser messages: each loserDAAC can see that the contract has been awardedto some other DAAC.The constraint-based scheduling paradigm remainsessentially unchanged for this domain: tasks are asso-ciated with time intervals whose position in the sched-ule is restricted by constraints. One signi�cant sim-pli�cation was made to reduce the complexity of the2Actually, we announce a contract if its net value is lessthan its price, indicating that some penalty was incurred,and thus that some other DAAC might be able to do abetter job.

Domain Load

(Client scientists)

Task Execution

DAAC Agent

(Scheduling &
Negotation)

Other DAACsFigure 1: Conceptual role of the implementedDAAC agent.domain: each DAAC is de�ned to have only one execu-tion resource it is scheduling (e.g., one data processingengine), and thus the eventual executable task sched-ule is a fully-ordered list of tasks to run. However,we retain the exible constraint-based representationof scheduling limitations, so that dynamic changes ina DAAC's load and its contracting environment canbe accommodated through incremental changes to theminimal-commitment constraint structures.System Design and ImplementationWe have implemented a distributed, contract-exchanging network of scheduling agents to simulateDAAC behavior in a wide variety of load conditionsand operational scenarios. In this section, we describethe system architecture and pertinent implementationdetails that inuence the simulator's exibility and ca-pabilities.Conceptual ArchitectureConceptually, the DAAC agents we are simulating ex-ist in an environment similar to that shown in Figure 1.The negotiation and scheduling portions of the DAACare responsible for receiving new tasks from the ex-ternal domain (the EOSDIS scientists who submit in-formation processing jobs). Each new job can eitherbe scheduled to execute on local resources, or it canbe passed to another DAAC in the network using thenegotiation protocol.Our investigation is focused on the central schedul-ing and negotiation roles of the DAAC agent, and thuswe have implemented only low-detail simulations forthe domain and execution components of the system.To avoid the complexities of numerous interconnectedprocesses, we have bundled the peripheral domain andexecution components in with the controlling agent it-self, yielding an implementation in which a single Lispprocess encapsulates all of these components.Implementation ArchitectureAs shown in Figure 2, each implemented simulationprocess has components responsible for the primaryDAAC functions:� Communicationswith other DAACs, including boot-strap synchronization, contract announcement, bid-ding, and awarding.� Scheduling functions, including inserting new tasks,removing tasks, and �nding the value of individualtasks and the whole schedule.

Sim Clock

Simulation
Action

Client
Simulation

Scheduler

Communications Layer (KQML)

Schedule
Database

Task Database

Agent
Control

NegotiationFigure 2: Overview of the DAAC agent architec-ture.� Agent control, including coordination of overall com-munications, simulation, and scheduling activities.In addition, relatively simple components are includedfor:� Client simulation, including generation of new tasksfor the local DAAC.� Action simulation, including maintaining the localsimulation clock, starting and �nishing scheduledtasks, and notifying the contract managers of sta-tus changes.SchedulingEach DAAC agent maintains a local constraint-basedschedule of tasks it will perform. Based on the existingHoneywell Interval Constraint Engine (ICE) system,the DAAC scheduler provides a function-call based in-terface to maintain a fully-ordered schedule of tasks byinserting and removing execution time intervals asso-ciated with each task.When a task is de�ned at a DAAC (either via theclient simulation or a contract announcement), a timeinterval is de�ned and associated with the task. Con-straints are asserted to restrict the possible position ofthe task interval on the schedule. For example, dura-tion constraints de�ne the minimum length of the in-terval, earliest-start-time constraints limit the positionof the interval's start point, and precedence constraintscan be asserted between subtasks in a hierarchical taskstructure. The interval is then added to the existingschedule, if possible.To insert a new task interval into the schedule, thecurrent implementation uses a simple greedy algorithmthat is neither optimal nor complete; it does not guar-antee to �nd a schedule if one exists. The greedy algo-rithm takes as arguments a list of the entire set of taskintervals to be scheduled (including those that were al-ready on the schedule) and a cost function. The algo-rithm greedily inserts task intervals from the list onto

while (time < end-time){foreach message in priority-sort(get-messages())case type(message) of{ANNOUNCE: bid-on-contract(message);BID: add-bid-to-contract(message);AWARD: if (contractor(message) == self) thenaccept-contract(message)else remove-contract(message);}award-contracts();announce-contracts();}Figure 3: Pseudo-code for main agent control loop.the schedule, checking for consistency, and returns ei-ther failure or the value of the resulting schedule. Thecost function is used to choose the best possible alter-native position for each task interval as it is greedilyinserted.This system has proven quite robust in practice, butoptimizing the scheduling algorithm remains one pos-sible direction for future investigation. The cost func-tion is already passed to the scheduler, so the interfacewould not need to be changed.Overall Agent ControlThe outer loop of the agent program coordinates andcontrols each of the modular functions shown in Fig-ure 2. Ignoring the domain and execution simulationcomponents, the main loop is shown in pseudo-code inFigure 3.Action SimulationAlthough dynamic environmental conditions such asexecution failures are one of the motivations for usingconstraint-based scheduling, our current implementa-tion does not include that aspect. Tasks are started atthe start of their scheduled interval and take exactlytheir original duration to execute. No uncertainty iscurrently introduced into the system from the actionsimulation. The model of action simulation was in-cluded, however, as a placeholder for future studies inwhich execution may fail or be delayed, leading to ad-ditional contracting e�orts to ameliorate the incipientcosts of schedule disruption.Client SimulationThe client simulation generates the task load that theDAAC agents try to distribute and process in a cost-e�ective manner. The load is generated stochasticallyfrom task-class descriptions that specify the distribu-tion of arrivals, durations, deadlines, prices, and othertask features. In the experiments described below, alltask distributions are uniform.We have also implemented \conditional distribu-tions" that can express discrete variations in distribu-tions based on context information such as the time at

which a distribution is evaluated. For example, condi-tional distributions can be used to describe tasks thatarrive with a particular probability on Monday morn-ing, but do not arrive at all at other times. Supportingtemporal expressions have been built to make it easyto express a wide variety of such conditions based onweekly, daily, hourly, and other time ranges.Experimental ResultsExtensive simulations were run to test the behavior ofthe DAAC agent network under various loading condi-tions. In order to provide a basis for comparison andevaluation, two competing version of the contract nego-tiation system were used. In the �rst, \simple bidding"system, bids on announced contracts are determined byan approximation to queue duration (speci�cally, thebid consists of the �nish time of the latest queued task;this is not precisely the queue duration because theremay be slack time segments in the schedule). In thesecond, \complex bidding" system, bids are computedas the actual marginal cost of adding the contract tothe agent's schedule: the di�erence in schedule valuebefore and after the addition.The intention is thus to compare the performanceachieved using the full constraint-based scheduling sys-tem against a simpler scheme which conceivably couldemploy a di�erent scheduling method. In fact, only thebidding method is di�erent between the simulated ver-sions; in both systems, bids are made binding by plac-ing the bid-upon contract on the full constraint-basedschedule. In the simpler system, the bidding methodsimply ignores the available schedule-value informationand uses queue duration instead.Common aspects of all the experiments discussed be-low include:� The network consisted of �ve DAAC agents.� Four of the �ve DAACs all had the same stochastictask generation functions, giving them, on average,the same level of load from new tasks.� DAAC-3 was distinguished in that it receivedmedium duration tasks that none of the others did.Its expected load was approximately twice the loadsplaced on the other DAACs. Hence DAAC-3 mustgive away tasks or fall further & further behind.� All task penalties were computed as linear functionsof the tasks' lateness [i.e., penalty = penalty-factor* (�nish-time { deadline)].� All experiments were run for 10000 simulated timeticks. Since tasks can arrive at DAACs right up un-til the end of the simulation time, some tasks areleft unexecuted when the simulation halts. Thesetasks are accounted for in most of the performancemetrics (e.g., total schedule value) because they arescheduled as soon as they arrive. Continued negoti-ation could only lead to earlier execution by a dif-ferent DAAC. The tasks scheduled after time 10000are generally a very small portion of the overall data

set, amounting to less than 1% of the total durationof task arrivals.The main parameter varied throughout the exper-iment set discussed below is the overall system loadlevel: task durations and deadlines were scaled pro-portionally to vary the overall system load from 50%to 90%. Those load levels represent the average DAACload if the actual arriving tasks could be spread evenlyamongst the �ve agents. As noted above, the load ar-rived from the client simulation with an uneven dis-tribution favoring DAAC-3 with more tasks than theothers.Data CollectionEach DAAC agent writes data to a �le continuouslyas the simulation progresses. In addition, each DAACperiodically writes (to the same �le) a complete tex-tual description of its contract schedule and variousmeasures of performance. Thus incremental results areavailable for evaluation, and much of the DAAC net-work's overt behavior can be reconstructed from theset of data �les produced. Automated data extractionand processing programs have been written to producegraphs and statistics on a wide variety of agent perfor-mance measures.Performance MetricsWe have extracted and evaluated a variety of mea-sures of system behavior and performance. Some trackthe production of incoming tasks with di�erent distri-butions and load levels. Other metrics monitor eachagent's performance in terms of the number contractsthat it completes, the total slack time it accumulates,the total penalties for late contracts, and the net valueof the agent's overall schedule including both �nishedcontracts and scheduled future tasks. Still other met-rics monitor the agent's network behavior to show howmany times a contract was exchanged between DAACsbefore it was �nally executed, the number of contractsbid upon, and the number of contracts won. The exper-imental results discussed in the following subsectionsinclude examples of several of these di�erent perfor-mance evaluation metrics.General ObservationsThe experimental results support our initial hypothe-sis that the complex, full scheduling bidding methodwould outperform the simple bidding scheme based onqueue duration alone. For example, Figure 4 showsthat, at an overall load level of 82%, the simple bid-ding scheme led to uniformly falling net schedule val-ues, while the complex bidding scheme left room formore variation in DAAC performance. As a whole, thecomplex network signi�cantly outperformed the sim-ple system: the �nal summed net value across all theDAACs was seven times lower for the simple system.Furthermore, these superior results were achieved withmuch lower rates of contracting activity: nearly three

times fewer task minutes were exchanged via contractin the complex bidding scheme, and the median num-ber of \hops" by any single contract was cut in half.It is interesting to note that the simple biddingscheme led to smoother load balancing according toseveral simple measures, but was not able to outper-form the complex bidding method in terms of net value.For example, Figure 4b shows that, in the complexscheme, DAAC-2 actually underperformed the over-loaded DAAC-3, which we might normally expect to dothe worst. In this case, the bidding scheme has trans-ferred enough penalty-laden jobs to DAAC-2 to over-whelm its normally underloaded state and lead to neg-ative net schedule values. The simple bidding scheme,on the other hand, keeps all the DAAC schedule val-ues very nearly the same (see Figure 4a). Why, then,would the complex scheme do better? Both systemsare using the same scheduling algorithm, so what mustbe happening is that the complex scheme is �ndingearlier places to schedule tasks in a DAAC's schedule,so that the placement of individual tasks is optimized.The simple scheme, on the other hand, is assuming thattasks will be placed at the end of the queue, which isoften inaccurate. Thus the simple bidding scheme willnot bid as accurately, and the complex scheme is morelikely to place each task in an optimal place.Additional evidence pointing to unbalanced loadingproviding superior overall performance is provided inFigure 5 and Figure 6. The queue durations are syn-chronized very closely in Figure 5a, as we'd expect sincethis value is used to determine bids. In contrast, Fig-ure 5b shows a much wider variance in queue duration.However, the magnitude of the average queue durationis much smaller in the complex bidding case, indicatingthe e�ectiveness of the overall system at determininga good place and time to execute each incoming task.At the end of the simulation of task arrivals, the com-plex scheme had about one-half as much contract timequeued up as the simple bidding system.Similarly, Figure 6a shows closely matched cumu-lative penalties for all 5 agents in the simple biddingsystem, but Figure 6b shows wide divergence in thepenalties accumulated by the complex bidding agents.This result is particularly interesting because it indi-cates that DAAC-2, for example, continued to exe-cute high-penalty tasks even after it was already doingworse (in terms of net schedule value) than the otheragents. This may initially seem counter-intuitive, sinceit would seem better to o�oad tasks that are beingscheduled to have a penalty, and this might be expectedto even out cumulative penalty. In the short term, thecomplex bidding scheme does exhibit that behavior: ine�ect it runs a task on the DAAC that can executeit with the smallest penalty. Note, however, that thecumulative penalty shown in Figure 6 is di�erent fromthe instantaneous penalty associated with a contractat bid-time: the bid does not take into account howmuch past penalty has been accumulated by a DAAC,because the primary goal is not to smooth schedule

|
0

|
2000

|
4000

|
6000

|
8000

|
10000

|-400000

|-350000

|-300000

|-250000

|-200000

|-150000

|-100000

|-50000

|0

|50000

 Time

 V
al

ue

DAAC1
DAAC2

DAAC3

DAAC6

DAAC7

Final Sum: -1665808

� � � �

�

�

�

�

�

�

�

� �

�

�

�
�

� � �

��

� �
� �

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�
�

��

�
�

� � �

�

�

�

�

�

�

�
�

�

�

� �

�

�

�

��

�
�

� �

�

�
�

�

�

�

�

�

�

�

�
�

�
� �

�
��

|
0

|
2000

|
4000

|
6000

|
8000

|
10000

|-140000

|-120000

|-100000

|-80000

|-60000
|-40000

|-20000

|0

|20000

|40000

 Time

 V
al

ue

DAAC1

DAAC2

DAAC3

DAAC6

DAAC7Final Sum: -227168

�
� � �

� �
� �

�

�

�

� �

�

� �
�

�
�

�

��

�

�

�

�

�

�

�
�

�

�

�

�
� � �

�

�

�
�

�
��

�

�

�

�
�

�

� �

�

�

�
�

�

�

�
�

�

�

�

� ��

�
�

�

� � �

�
�

�
�

�

�

�

�
�

�

�

�

�

�
��

(a) Simple bidding. (b) Complex bidding.Figure 4: Net schedule value at 82% load level.
|
0

|
2000

|
4000

|
6000

|
8000

|
10000

|0

|200

|400

|600

|800

|1000

|1200

 Time

 L
as

t P
en

di
ng

 C
on

tr
ac

t E
nd

 T
im

e
-

T
im

e

DAAC1
DAAC2

DAAC3

DAAC6

DAAC7

Final Sum: 2366

�

�

�

�

�

�

�
�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

� �

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

|
0

|
2000

|
4000

|
6000

|
8000

|
10000

|0

|80

|160

|240

|320

|400

|480

|560

|640

|720

 Time

 L
as

t P
en

di
ng

 C
on

tr
ac

t E
nd

 T
im

e
-

T
im

e

DAAC1

DAAC2
DAAC3

DAAC6

DAAC7

Final Sum: 1139

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�
�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�(a) Simple bidding. (b) Complex bidding.Figure 5: Queue duration at 82% load level.

value, but to maximize the network-wide value. Thusthe cumulative performance measures give a picture ofsystem behavior that arises when the agents themselvesare not concerned directly with load balancing or av-erage performance measures, but rather with a global,network-wide performance metric.Changing System LoadingOur experiments were run at three di�erent load lev-els: 67%, 82%, and 90%. The loading is calculatedas the (summed) expected duration of contracts ar-riving over the entire simulation run, divided by thetime available for processing, over the entire system.The results are summarized in Figure 7. Figure 7agraphs the total slack time for each bidding scheme asa function of load level. At 67%, the slack times aree�ectively equal. Figure 7b is a graph of total penaltyincurred by the system as a whole over the entire simu-lation run. At 67%, despite the fact that both biddingschemes spent the same number of ticks computing,the complex bidding scheme accrues only two-thirds asmuch total penalty. This di�erence is consistent acrossall loading levels. In all cases, the slack times are verysimilar, but the di�erence in penalties is quite substan-tial and increases with increasing load level.This suggests that what is happening is that thesmarter bidding scheme is resulting, not in the execu-tion of a di�erent number of contracts or of contractswith di�erent durations, but in the execution of con-tracts by di�erent DAACs or at di�erent times. In fact,if we compare the numbers of contracts left uncom-pleted for each scheme at each load level, the di�erenceis in favor of the smarter scheme. The complex biddingscheme, using additional information about the sched-ule, results in more contracts being completed and amuch lower level of penalties.The fact that the proportional di�erence in penal-ties is greatest at an intermediate loading raises someinteresting possibilities for further investigation. Theadditional information available in the smarter bid-ding scheme should be most useful when two condi-tions hold: �rst, when there is substantial room forimprovement through smarter scheduling (the load ishigh enough), and second, when there is su�cient ex-ibility to make smarter decisions (the load is not toohigh).3 If borne out in further analyses, this conjecturewould support our arguments in favor of the utility ofcombining exible scheduling with informed bidding.Related WorkDistributed problem-solving in general, and the allo-cation of tasks in a distributed system in particular,are both very broad research topics, addressed using awide variety of approaches in �elds ranging from man-agement science, to AI, to operations research, to work3This parallels results from other problem-solving do-mains (e.g., Barrett and Weld's results on partial orderplanning (Barrett & Weld 1994)).

on distributed operating systems. Our concerns in thispaper are somewhat narrower. We are speci�cally in-terested in problems involving the allocation of com-puting resources to individual tasks, where allocationdecisions must be made locally. In additional, theseallocations are constrained temporally: there are lim-its on when the work can be done, where those limitsthemselves are potentially subject to negotiation.At least two aspects of our domain distinguish itfrom those addressed by operating system load bal-ancing techniques (e.g., (Ni, Xu, & Gendreau 1985;Lin & Keller 1986)). First, the temporal characterof the client tasks (i.e., earliest start times and dead-line) means that the DAACs are not simply operat-ing in a �rst-come, �rst-served queue manner, but aremaintaining a full schedule of future tasks that mustmeet stringent timing requirements. This schedulingaspect is di�cult to reconcile with the simpler notionof \load" present in operating systems. Second, theobjective in our domain is not to simply balance theload, but rather to maximize the overall system's netearned value. As illustrated by the simulation resultsdiscussed in Section , a balanced load may actually beantithetical to maximal system-wide net value. Thussimple load-balancing methods aim at the wrong tar-get for our problem. Interestingly, however, the ap-proaches used by distributed operating systems arevery similar to our contract-exchanging network; theyfocus more on using various announcement and bid-ding protocols to manage non-negligible network traf-�c. Bidding in pure load balancing is trivial; in ourdomain, high-quality bidding appears to be the key tohigh performance.Market-based approaches such as Wellman's Wal-ras (Wellman 1993) are di�cult to apply to our do-main because of the focus on scheduling individualtasks, and the relatively large size and small number ofthose tasks. Our view of the overall system architectureclosely parallels Wellman's description of a coordinat-ing mechanism synchronizing the behavior of a largeset of agents with only limited information about whatis going on in the system as a whole.Sandholm's work on task allocation in a transporta-tion domain is closest to ours in avor, and as discussedpreviously we have implemented CNP extensions mod-eled on his. However, our domains are su�ciently dif-ferent that only limited parallels can be drawn. Themain commonality is that negotiating on the basis ofmarginal cost seems to be a good approach for both do-mains. While Sandholm has investigated the exchangeof \package deals" encompassing multiple tasks, oursystem is limited to exchanging individual contracttasks. Although DAAC tasks lack the spatial interde-pendencies inherent in Sandholm's delivery tasks, theymay still interact through resource consumption, andthus package deals might be a fruitful area of extensionto our existing negotiation scheme.

|
0

|
2000

|
4000

|
6000

|
8000

|
10000

|0

|60000

|120000

|180000

|240000

|300000

|360000

|420000

|480000

|540000

 Time

 C
um

ul
at

iv
e

La
te

ne
ss

 P
en

al
ty

DAAC1DAAC2

DAAC3

DAAC6
DAAC7

Final Sum: 2200940

|
0

|
2000

|
4000

|
6000

|
8000

|
10000

|0

|30000

|60000

|90000

|120000

|150000

|180000

|210000

|240000

|270000

 Time

 C
um

ul
at

iv
e

La
te

ne
ss

 P
en

al
ty

DAAC1

DAAC2

DAAC3

DAAC6

DAAC7

Final Sum: 847210

(a) Simple bidding. (b) Complex bidding.Figure 6: Cumulative penalties at 82% load level.
 Simple Bidding

 Complex Bidding

||0

|2000

|4000

|6000

|8000

|10000

|12000

|14000

|16000

|18000

 Load Level (%)

 T
ot

al
 S

la
ck

tim
e

67 82 90

 Simple Bidding

 Complex Bidding

||0

|400000

|800000

|1200000

|1600000

|2000000

|2400000

|2800000

|3200000

|3600000

 Load Level (%)

 T
ot

al
 P

en
al

ty

67 82 90(a) Total slack time. (b) Cumulative penalty.Figure 7: Comparative behavior at di�erent load levels.

Conclusions and Future WorkIn this paper, we describe the class of dynamic dis-tributed scheduling problems, using the EOSDIS DAACscheduling problem as an exemplar. We present someearly results on the use of an architecture integratingconstraint-based scheduling with contract-based nego-tiation to task allocation in this domain. These re-sults clearly demonstrate the utility of incorporatingthe additional information made available by explicit,site-speci�c schedules of what tasks will be performedwhen.Our comparison of two bidding schemes, one usingqueue length as a measure of marginal cost, the otherusing the actual marginal cost calculated by the sched-uler, showed clear bene�ts for the more informed ap-proach. At any loading level, the �nal value of theschedule executed (task value - penalties for late com-pletion) was substantially better for the smarter bid-ding scheme. These results were achieved with muchlower rates of contracting activity, both in terms of thenumber of contracts moving and the average numberof times any one contract was moved, which means alower communications overhead. Looking at the behav-ior of the two bidding schemes as the system loadingvaries shows that the smarter bidding scheme is usingadditional information about the schedule to completemore contracts, at a much lower level of penalties, withan increasing advantage as the loading level increases.The work presented here is best characterized as pre-liminary results in an area with rich possibilities forfurther investigation. Dynamic distributed schedulingproblems are common, and will only multiply with in-creasing automation and integration in such areas asmanufacturing, distributed communication and con-trol, distributed data management, and air tra�c con-trol. Current scheduling practice for applications thatare not distributed involves the use of a wide varietyof techniques, depending on the detailed requirementsfor a given system. We expect that the choice of solu-tion methods for distributed scheduling problems willbe equally sensitive to these details.Our current simulation makes a number of simplify-ing assumptions about how the system operates, bothat an individual level and in the interactions betweenagents. These assumptions can be broadly groupedinto those related to the areas of synchronization, ex-pectation, and contract performance.4 For example,we currently assume that the agent accepting a con-tract will necessarily complete the associated task bythe speci�ed time. Relaxing this assumption will re-quire a number of system modi�cations, including pro-viding some way to penalize agents for contract viola-tions, and some way for contracting agents to realizethat a task is late and may never be completed. Themore complicated and dynamic the agents' behavior4More generally, most of these assumptions involve thecomplications involved in accounting for the passage oftime.

becomes, the more bene�ts we expect to realize fromthe exibility of the underlying constraint-based rep-resentation of the schedule.We also have plans for future work in the area ofinter-agent synchronization. We hope to utilize theconstraint-based scheduling capabilities of the individ-ual agents more fully by allowing them to negotiateover the enforcement or relaxation of individual con-straints. For example, if DAAC-1 has promised an in-termediate data product to DAAC-2 by a certain time,they might negotiate over a modi�cation in that deliv-ery. Providing this capability requires that the nego-tiation protocol include a language for expressing con-straints, including a distinction between modi�cationswhich are voluntary (\how about relaxing this deadlineby 10 minutes?") and imposed (\I'm going to be latewith that data, and there's nothing you can do aboutit.").Finally, the agents in this system currently calculatethe marginal cost of an added task based on the currentschedule, despite the fact that tasks continue to arriveas time passes. We have preliminary results showingthat explicit consideration of expectations about thearrival of future tasks allows the DAACs to compute amore accurate marginal cost, in the sense that the sys-tem makes better decisions about what tasks to sched-ule when. To date, these results do not include thepossibility of task exchanges. In future work we plan totest the additional hypothesis that, by improving thebidding function to take into account these expecta-tions, the full multi-agent, contract-exchanging systemwill also display improvements in net value earned andother performance metrics.ReferencesBarrett, A., and Weld, D. 1994. Partial order plan-ning: Evaluating possible e�ciency gains. Arti�cialIntelligence 67(1):71{112.Boddy, M.; White, J.; Goldman, R.; and Short, N.1994. Planning applications in image analysis. InHostetter, C. F., ed., Proceedings of the 1994 GoddardConference on Space Applications of Arti�cial Intelli-gence, 17{28. Available as NASA Conference Publica-tion 3268, also in Robotics and Computer-IntegratedMfg, V. 11, No. 2, pp 105-110, 1994, Elsevier.Boddy, M.; White, J.; Goldman, R.; and Short,N. 1995. Integrated planning and scheduling forearth science data processing. In Hostetter, C. F.,ed., Proceedings of the 1995 Goddard Conferenceon Space Applications of Arti�cial Intelligence andEmerging Information Technologies, 91{101. Avail-able as NASA Conference Publication 3296.Boddy, M.; Carcio�ni, J.; and Hadden, G. 1992.Scheduling with partial orders and a causal model. InProceedings of the Space Applications and ResearchWorkshop.Campbell, W.; Short, Jr., N.; Roelofs, L.; and Dorf-man, E. 1991. Using semantic data modeling tech-

niques to organize an object-oriented database for ex-tending the mass storage model. In 42nd Congress ofthe International Astronautical Federation.Dozier, J., and Ramapriyan, H. 1990. Planning forthe eos data and information system (eosdis). In TheScience of Global Environmental Change. NATO ASI.Fox, M., and Smith, S. 1984. Isis: A knowledge-based system for factory scheduling. Expert Systems1(1):25{49.Lin, F. C. H., and Keller, R. M. 1986. Gradientmodel: A demand-driven load balancing scheme. InProc. Int'l Conf. on Distributed Computer Systems,329{336.Muscettola, N. 1993. Hsts: Integrating planningand scheduling. Technical Report CMU-RI-TR-93-05,The Robotics Institute, Carnegie Mellon University.Ni, L. M.; Xu, C. W.; and Gendreau, T. B. 1985.A distributed drafting algorithm for load balancing.IEEE Trans. Software Engineering SE-11(10):1153{1161.Sadeh, N., and Fox, M. 1990. Variable and value or-dering heuristics for activity-based job-shop schedul-ing. In Proceedings of the Fourth International Con-ference on Expert Systems in Production and Opera-tions Management, Hilton Head Island, S.C.Sandholm, T. 1992. Automatic cooperation of area-distributed dispatch centers in vehicle routing. InProc. Int'l Conf. on AI Applications in Transporta-tion Engineering, 449{467.Sandholm, T. 1993. An implementation of the con-tract net protocol based on marginal cost calcula-tions. In Proc. National Conf. on Arti�cial Intelli-gence, 256{262.Smith, S. F.; Ow, P. S.; Potvin, J.-Y.; Muscettola, N.;and Matthys, D. C. 1990. An integrated frameworkfor generating and revising factory schedules. Journalof the Operational Research Society 41(6):539{552.SMITH, R. 1980. The contract net protocol: High-level communication and control in a distributedproblem solver. IEEE Trans. Computers 29.Wellman, M. P. 1993. A market-oriented program-ming environment and its application to distributedmulticommodity ow problems. Journal of AI Re-search 1:1{23.

