The Front End

The purpose of the front end is to deal with the input language
- Perform a membership test: code ∈ source language?
- Is the program well-formed (semantically)?
- Build an IR version of the code for the rest of the compiler

The front end is not monolithic

Scanner
- Maps stream of characters into words
 - Basic unit of syntax
 - \(x = x + y \); becomes
 \(<\text{id},x> <\text{eq},=> <\text{id},x> <\text{pl},+> <\text{id},y> <\text{sc},;>\)
- Characters that form a word are its lexeme
- Its part of speech (or syntactic category) is called its token type
- Scanner discards white space & (often) comments

Speed is an issue in scanning
⇒ use a specialized recognizer
The Big Picture

Why study lexical analysis?
• We want to avoid writing scanners by hand
• We want to harness automata theory

Goals:
> To simplify specification & implementation of scanners
> To understand the underlying techniques and technologies

Review of Scanners

Lexical Analysis Strategy: Simulation of Finite Automaton
> States, characters, actions
> State transition \(\delta \) (state, charclass) determines next state

Next character function
> Reads next character into buffer
> Computes character class by fast table lookup

Transitions from state to state
> Current state and next character determine (via \(\delta \))
 → Next state and action to be performed
 → Some actions preload next character

Identifiers distinguished from keywords by hashed lookup
> This differs from EAC advice (discussion later)
> Permits translation of identifiers into \(<\text{type}, \text{symbol_index}>\)
 → Keywords each get their own type
Examples of Regular Expressions

Identifiers:

Letter → (a|b|c| ... |z|A|B|C| ... |Z)
Digit → (0|1|2| ... |9)
Identifier → Letter (Letter | Digit)^*

Numbers:

Integer → (+|-) (0|1|2|3| ... |9)(Digit^*)
Decimal → Integer^ Digit^*
Real → (Integer | Decimal) E (+|-) Digit^*
Complex → (Real \ Real)

Numbers can get much more complicated!

Regular Expressions (the point)

Regular expressions can be used to specify the words to be translated to parts of speech by a lexical analyzer

Using results from automata theory and theory of algorithms, we can automatically build recognizers from regular expressions

⇒ We study REs and associated theory to automate scanner construction!
Example (from Lab 1)

Consider the problem of recognizing register names

\[\text{Register} \rightarrow r \ (0|1|2| \cdots | 9 \ (0|1|2| \cdots | 9)^* \]

- Allows registers of arbitrary number
- Requires at least one digit

RE corresponds to a recognizer (or DFA)

Transitions on other inputs go to an error state, \(s_e \)

Example (continued)

DFA operation

- Start in state \(S_0 \) & take transitions on each input character
- DFA accepts a word \(x \) iff \(x \) leaves it in a final state (\(S_2 \))

So,

- \(r17 \) takes it through \(s_0, s_1, s_2 \) and accepts
- \(r \) takes it through \(s_0, s_1 \) and fails
- \(a \) takes it straight to \(s_e \)
Example (continued)

<table>
<thead>
<tr>
<th>δ / action</th>
<th>r</th>
<th>0,1,2,3, 4,5,6, 7,8,9</th>
<th>other</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 / start</td>
<td>e / error</td>
<td>e / error</td>
</tr>
<tr>
<td>1</td>
<td>e / error</td>
<td>2 / add</td>
<td>e / error</td>
</tr>
<tr>
<td>2</td>
<td>e / error</td>
<td>2 / add</td>
<td>x / exit</td>
</tr>
<tr>
<td>e</td>
<td>e / error</td>
<td>e / error</td>
<td>e / error</td>
</tr>
</tbody>
</table>

The recognizer translates directly into code
To change DFAs, just change the tables

What if we need a tighter specification?

`Digit Digit*` allows arbitrary numbers
- Accepts `r00000`
- Accepts `r99999`
- What if we want to limit it to `r0` through `r31`?

Write a tighter regular expression

- `Register → r ((0|1|2) (Digit | ε) | (4|5|6|7|8|9) | (3|30|31))`
- `Register → r0|r1|r2|...|r31|r00|r01|r02|...|r09`

Produces a more complex DFA
- Has more states
- Same cost per transition
- Same basic implementation
Tighter register specification (continued)

The DFA for

\[\text{Register} \rightarrow r \ (0|1|2) \ (\text{Digit} | \varepsilon) \ | (4|5|6|7|8|9) \ | (3|30|31) \]

- Accepts a more constrained set of registers
- Same set of actions, more states

<table>
<thead>
<tr>
<th>state action</th>
<th>r</th>
<th>0,1</th>
<th>2</th>
<th>3</th>
<th>4,5,6 7,8,9</th>
<th>other</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>start</td>
<td>e</td>
<td>e</td>
<td>e</td>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>1</td>
<td>e</td>
<td>2</td>
<td>add</td>
<td>2</td>
<td>add 5 add 4 add</td>
<td>e</td>
</tr>
<tr>
<td>2</td>
<td>e</td>
<td>3</td>
<td>add</td>
<td>3</td>
<td>add 3 add 3 add x</td>
<td>exit</td>
</tr>
<tr>
<td>3,4</td>
<td>e</td>
<td>e</td>
<td>e</td>
<td>e</td>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>5</td>
<td>e</td>
<td>6</td>
<td>add</td>
<td>e</td>
<td>e</td>
<td>x</td>
</tr>
<tr>
<td>6</td>
<td>e</td>
<td>e</td>
<td>e</td>
<td>e</td>
<td>e</td>
<td>x</td>
</tr>
<tr>
<td>e</td>
<td>e</td>
<td>e</td>
<td>e</td>
<td>e</td>
<td>e</td>
<td>e</td>
</tr>
</tbody>
</table>
Automating Scanner Construction

To convert a specification into code:
1. Write down the RE for the input language
2. Build a big NFA
3. Build the DFA that simulates the NFA
4. Systematically shrink the DFA
5. Turn it into code

Scanner generators
- Lex and Flex work along these lines
- Algorithms are well-known and well-understood
- Key issue is interface to parser (define all parts of speech)
- You could build one in a weekend!

Automating Scanner Construction

RE \rightarrow NFA (Thompson's construction)
- Build an NFA for each term
- Combine them with ε-moves

NFA \rightarrow DFA (subset construction)
- Build the simulation

DFA \rightarrow Minimal DFA
- Hopcroft's algorithm

DFA \rightarrow RE (Not part of the scanner construction)
- All pairs, all paths problem
- Take the union of all paths from s_0 to an accepting state
- (Not a particularly obvious algorithm)
RE \rightarrow NFA using Thompson’s Construction

Key idea
- NFA pattern for each symbol & each operator
- Join them with ε moves in precedence order

Example of Thompson’s Construction

Let’s try $a (b | c)^*$

1. a, b, & c

2. $b | c$

3. $(b | c)^*$
Example of Thompson’s Construction (continued)

4. \(a (b \mid c)^*\)

Of course, a human would design something simpler …

But, we can automate production of the more complex one …

NFA \(\rightarrow\) DFA with Subset Construction

Need to build a simulation of the NFA

Two key functions

- \(\text{Move}(s, a)\) is set of states reachable from \(s\) by \(a\)
- \(\varepsilon\)-closure\((s)\) is set of states reachable from \(s\) by \(\varepsilon\)

The algorithm:

- Start state derived from \(s_0\) of the NFA
- Take its \(\varepsilon\)-closure \(S_0 = \varepsilon\text{-closure}(s_0)\)
- Take the image of \(S_0\) \(\text{Move}(S_0, \alpha)\) for each \(\alpha \in \Sigma\) and take its \(\varepsilon\)-closure
- Iterate until no more states are added

Sounds more complex than it is…
NFA → DFA with Subset Construction

The algorithm:

\[s_0 \leftarrow \varepsilon\text{-closure}(q_{0n}) \]

while (\(S \) is still changing)

for each \(s_i \in S \)

for each \(\alpha \in \Sigma \)

\[s_{ij} \leftarrow \varepsilon\text{-closure}(\text{Move}(s_i, \alpha)) \]

if \(s_{ij} \notin S \)

add \(s_{ij} \) to \(S \) as \(s_j \)

\[T[s_{ij}] \leftarrow s_j \]

Let's think about why this works

The algorithm halts:

1. \(S \) contains no duplicates (test before adding)
2. \(2^{\mathcal{Q}_n} \) is finite
3. while loop adds to \(S \), but does not remove from \(S \) (monotone)
 ⇒ the loop halts
4. \(S \) contains all the reachable NFA states
5. It tries each character in each \(s_i \)
6. It builds every possible NFA configuration.
 ⇒ \(S \) and \(T \) form the DFA

Example of a fixed-point computation

- Monotone construction of some finite set
- Halts when it stops adding to the set
- Proofs of halting & correctness are similar
- These computations arise in many contexts

Other fixed-point computations

- Canonical construction of sets of LR(1) items
 - Quite similar to the subset construction
- Classic data-flow analysis (& Gaussian Elimination)
 - Solving sets of simultaneous set equations

We will see many more fixed-point computations
NFA → DFA with Subset Construction

Remember $(a \mid b)^* \text{abb}$?

![NFA Diagram]

Applying the subset construction:

<table>
<thead>
<tr>
<th>Iter.</th>
<th>State</th>
<th>Contains</th>
<th>ε-closure(move(s,a))</th>
<th>ε-closure(move(s,b))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>s_0</td>
<td>q_0, q_1</td>
<td>q_1, q_2</td>
<td>q_1</td>
</tr>
<tr>
<td>1</td>
<td>s_1</td>
<td>q_1, q_2</td>
<td>q_1, q_2</td>
<td>q_1, q_3</td>
</tr>
<tr>
<td>2</td>
<td>s_2</td>
<td>q_1</td>
<td>q_1, q_2</td>
<td>q_1</td>
</tr>
<tr>
<td>3</td>
<td>s_3</td>
<td>q_1, q_3</td>
<td>q_1, q_2</td>
<td>q_1, q_3</td>
</tr>
<tr>
<td></td>
<td>s_4</td>
<td>q_1, q_3, q_4</td>
<td>q_1, q_2</td>
<td>q_1</td>
</tr>
</tbody>
</table>

Iteration 3 adds nothing to S, so the algorithm halts.

contains q_4 (final state)

NFA → DFA with Subset Construction

The DFA for $(a \mid b)^* \text{abb}$

- Not much bigger than the original
- All transitions are deterministic
- Use same code skeleton as before

<table>
<thead>
<tr>
<th>δ</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_0</td>
<td>s_1</td>
<td>s_2</td>
</tr>
<tr>
<td>s_1</td>
<td>s_1</td>
<td>s_3</td>
</tr>
<tr>
<td>s_2</td>
<td>s_1</td>
<td>s_2</td>
</tr>
<tr>
<td>s_3</td>
<td>s_1</td>
<td>s_4</td>
</tr>
<tr>
<td>s_4</td>
<td>s_1</td>
<td>s_2</td>
</tr>
</tbody>
</table>
Final Task: Generate the Scanner

• How do we specify different token types, etc?
 > One rule per token type
 → RE on right hand side
 > What about ambiguity?

• How do we provide actions in a scanner specified by REs?
 > One simple action: add character to current token
 > More complex actions on token end
 → Part of specification

• How do we generate a scanner for multiple tokens?
 > Combine rules for each token
 → What about ambiguity?
 > How do we identify the tokens (in the input, etc)
 → Legal token if error (or end) transition taken from accepting state
 → Leave error char in input buffer

A Lex Specification, Part I

```c
{% /* definition of constants BEGIN, END, NAME, NUM, STRNG, SPCL, PLUS, MINUS, LT, LE */
%
/\ Regular Definitions */
blank [ ]
ib []
rb []
comment {ib}.\{rb\}/. = any but newline */
ws ((blank)\{comment\})+
letter [A-Za-z]
digit [0-9]
name {letter}(\{letter\}\{digit\})
numb {digit}+
quote ["]
string \{quote\}.\{quote\}
%
```
Lex Specification, Part II

/* Translation Rules */
{ws} { /* no action and no return */}
begin {return(BEGIN)}
end {return(END)}
{name} {yylval = install_name(); return(NAME);}
{number} {yylval = install_num(); return(NUM);}
{string} {yylval = install_str(); return(STRNG);}
"+" {yylval = PLUS; return(SPCL);}
"-" {yylval = MINUS; return(SPCL);}
"<" {yylval = LT; return(SPCL);}
"<=" {yylval = LE; return(SPCL);}
%
install_name() {
 /* procedure to install the lexeme
 whose first character is pointed to by yytext
 and whose length is yyleng into symbol table
 and return pointer to entry */
}

Automating Scanner Construction

RE \rightarrow NFA (Thompson’s construction)

- Build an NFA for each term
- Combine them with ε-moves

NFA \rightarrow DFA (subset construction)

- Build the simulation

DFA \rightarrow Minimal DFA

- Hopcroft’s algorithm

DFA \rightarrow RE (not really part of scanner construction)

- All pairs, all paths problem
- Union together paths from s_0 to a final state
DFA Minimization

The Big Picture
• Discover sets of equivalent states
• Represent each such set with just one state

Two states are equivalent if and only if:
• The set of paths leading to them are equivalent
• \(\forall \alpha \in \Sigma, \) transitions on \(\alpha \) lead to equivalent states \((\text{DFA})\)
• \(\alpha \)-transitions to distinct sets \(\Rightarrow \) states must be in distinct sets

A partition \(P \) of \(S \)
• Each \(s \in S \) is in exactly one set \(p_i \in P \)
• The algorithm iteratively partitions the DFA’s states

Details of the algorithm
• Group states into maximal size sets, optimistically
• Iteratively subdivide those sets, as needed
• States that remain grouped together are equivalent

Initial partition, \(P_0 \), has two sets: \(\{F\} \& \{Q-F\} \) \((D = (Q, \Sigma, \delta, q_0, F))\)

Splitting a set (“partitioning a set by \(a \)”)
• Assume \(q_r \& q_y \in s \), and
• \(\delta(q_r, a) = q_r \& \delta(q_y, a) = q_y \)
• If \(q_r \& q_y \) are not in the same set, then \(s \) must be split
• One state in the final DFA cannot have two transitions on \(a \)
DFA Minimization

The algorithm

\[P \leftarrow \{ F, \{Q-F\} \} \]

while (P is still changing)

\[T \leftarrow \{ \} \]

for each set \(s \in P \)

for each \(\alpha \in \Sigma \)

partition \(s \) by \(\alpha \)

\[s_1, s_2, \ldots, s_k \]

\[T \leftarrow T \cup s_1, s_2, \ldots, s_k \]

if \(T \neq P \) then

\[P \leftarrow T \]

Why does this work?

- Partition \(P \in 2^Q \)
- Start off with 2 subsets of \(Q \) (\(F \) and \(Q-F \))
- While loop takes \(P_i \rightarrow P_{i+1} \) by splitting 1 or more sets
- Maximum of \(|Q|\) splits

Note that

- Partitions are never combined
- Initial partition ensures that final states are intact

Hopcroft’s Algorithm

\[W \leftarrow \{F, Q-F\}; \ P \leftarrow \{F, Q-F\}; \ // W is the worklist, P the current partition \]

while (\(W \) is not empty) do begin

- select and remove \(S \) from \(W \); \ // \(S \) is a set of states

 for each \(\alpha \in \Sigma \) do begin

 let \(I_\alpha \leftarrow \delta^{-1}_\alpha(S) \);

 for each \(R \) in \(P \) such that \(R \cap I_\alpha \) is not empty

 and \(R \) is not contained in \(I_\alpha \), do begin

 partition \(R \) into \(R_1 \) and \(R_2 \) such that \(R_1 \leftarrow R \cap I_\alpha \); \(R_2 \leftarrow R - R_1 \);

 replace \(R \) in \(P \) with \(R_1 \) and \(R_2 \);

 if \(R \in W \) then replace \(R \) with \(R_1 \) in \(W \) and add \(R_2 \) to \(W \);

 end

 else if \(|| R_1 || \leq || R_2 || \)

 then add \(R_1 \) to \(W \);

 else add \(R_2 \) to \(W \);

 end

end
Key Idea

This part must have an α-transition to some other state!

DFA Minimization

Enough theory, does this stuff work?

> Recall our example: $(a \mid b)^* abb$

<table>
<thead>
<tr>
<th>Current Partition</th>
<th>W</th>
<th>s</th>
<th>Split on a</th>
<th>Split on b</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_0</td>
<td>${s_4}$ ${s_0, s_1, s_2}$</td>
<td>${s_4}$ ${s_0, s_1, s_2}$</td>
<td>${s_4}$ none</td>
<td>${s_0, s_1, s_2} {s_4}$</td>
</tr>
<tr>
<td>P_1</td>
<td>${s_0} {s_1} {s_2}$</td>
<td>${s_0, s_1, s_2}$</td>
<td>${s_2}$ none</td>
<td>${s_0, s_1} {s_2}$</td>
</tr>
<tr>
<td>P_2</td>
<td>${s_0, s_1} {s_2}$</td>
<td>${s_0, s_1} {s_2}$</td>
<td>${s_2}$ none</td>
<td>${s_0, s_1} {s_2}$ none</td>
</tr>
</tbody>
</table>

![Diagram of DFA Minimization](image-url)
DFA Minimization

What about \(a \, (b \mid c)^* \)?

First, the subset construction:

<table>
<thead>
<tr>
<th>NFA states</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td>(q_0)</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>(q_1)</td>
<td>(q_2)</td>
<td>(q_2)</td>
<td>(q_2)</td>
</tr>
<tr>
<td>(q_2)</td>
<td>(q_2)</td>
<td>(q_2)</td>
<td>(q_2)</td>
</tr>
<tr>
<td>(q_3)</td>
<td>(q_4)</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>(q_4)</td>
<td>(q_4)</td>
<td>(q_4)</td>
<td>(q_4)</td>
</tr>
<tr>
<td>(q_5)</td>
<td>(q_5)</td>
<td>(q_5)</td>
<td>(q_5)</td>
</tr>
<tr>
<td>(q_6)</td>
<td>(q_6)</td>
<td>(q_6)</td>
<td>(q_6)</td>
</tr>
<tr>
<td>(q_7)</td>
<td>(q_7)</td>
<td>(q_7)</td>
<td>(q_7)</td>
</tr>
<tr>
<td>(q_8)</td>
<td>(q_8)</td>
<td>(q_8)</td>
<td>(q_8)</td>
</tr>
<tr>
<td>(q_9)</td>
<td>(q_9)</td>
<td>(q_9)</td>
<td>(q_9)</td>
</tr>
</tbody>
</table>

Then, apply the minimization algorithm

<table>
<thead>
<tr>
<th>Current Partition</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_0)</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
</tbody>
</table>

To produce the minimal DFA

In lecture 5, we observed that a human would design a simpler automaton than Thompson’s construction did. The algorithms produce that same DFA!
Limits of Regular Languages

Advantages of Regular Expressions
- Simple & powerful notation for specifying patterns
- Automatic construction of fast recognizers
- Many kinds of syntax can be specified with REs

Example — an expression grammar

\[
\begin{align*}
\text{Term} & \rightarrow [a-zA-Z] (\text{[a-zA-Z]} | \text{[0-9]})^* \\
\text{Op} & \rightarrow \pm | \cdot | \div \\
\text{Expr} & \rightarrow (\text{Term Op})^* \text{ Term}
\end{align*}
\]

Of course, this would generate a DFA …

If REs are so useful …

Why not use them for everything?

Limits of Regular Languages

Not all languages are regular

\[
\text{RL's} \subset \text{CFL's} \subset \text{CSL's}
\]

You cannot construct DFA’s to recognize these languages

- \(L = \{ p^k q^k \} \)
 \(\text{(parenthesis languages)} \)
- \(L = \{ wcw^r | w \in \Sigma^* \} \)

Neither of these is a regular language

(nor an RE)

But, this is a little subtle. You can construct DFA’s for

- Strings with alternating 0’s and 1’s
 \((\varepsilon | 1)(01)^*(\varepsilon | 0) \)
- Strings with and even number of 0’s and 1’s
 See Homework 1!

RE’s can count bounded sets and bounded differences
What can be so hard?

Poor language design can complicate scanning

- Reserved words are important

  ```pli
  if then then then = else; else else = then
  ```

- Significant blanks

  ```fortran
  do 10 i = 1,25
  do 10 i = 1.25
  ```

- String constants with special characters

  ```c
  newline, tab, quote, comment delimiters, ...
  ```

- Finite closures
 - Limited identifier length
 - Adds states to count length

What can be so hard?

Fortran 66/77

```fortran
INTEGERFUNCTIONA
PARAMETER(A=6,B=2)
IMPLICIT CHARACTER*(A-B)(A-B)
INTEGER FORMAT(10), IF(10), DO9E1
100 FORMAT(4H)=(3)
200 FORMAT(4)= (3)
   DO9E1=1
   DO9E1=1,2
   9
   IF(X)=1
   IF(X)=1
   IF(X)=300,200
300 CONTINUE
   END
C THIS IS A "COMMENT CARD"
$ FILE(1)
   END
```

How does a compiler do this?

- First pass finds & inserts blanks
- Can add extra words or tags to create a scanable language
- Second pass is normal scanner

Example due to Dr. F. K. Zadeck
Building Faster Scanners from the DFA

Table-driven recognizers waste a lot of effort

- Read (& classify) the next character
- Find the next state
- Assign to the state variable
- Trip through case logic in action()
- Branch back to the top

We can do better

- Encode state & actions in the code
- Do transition tests locally
- Generate ugly, spaghetti-like code
- Takes (many) fewer operations per input character

```
char ← next character;
state ← s0;
call action(state,char);
while (char ≠ eof)
    state ← δ(state,char);
call action(state,char);
char ← next character;

if T(state) = final then
    report acceptance;
else
    report failure;
```

Building Faster Scanners from the DFA

A direct-coded recognizer for \texttt{Digit Digit*}:

- \texttt{goto s_0;}
- \texttt{s_0: word ← Ø; char ← next character; if (char = ‘r’) then goto s_1; else goto s_0;}
- \texttt{s_1: word ← word + char; char ← next character; if (‘0’ ≤ char ≤ ‘9’) then goto s_2; else goto s_0;}
- \texttt{s_2: word ← word + char; char ← next character; if (‘0’ ≤ char ≤ ‘9’) then goto s_2; else if (char = eof) then report acceptance; else goto s_0;}
- \texttt{s_0: print error message; return failure;}

- Many fewer operations per character
- Almost no memory operations
- Even faster with careful use of fall-through cases
Building Faster Scanners

Hashing keywords versus encoding them directly

- Some compilers recognize keywords as identifiers and check them in a hash table (some well-known compilers do this!)
- Encoding it in the DFA is a better idea
 - O(1) cost per transition
 - Avoids hash lookup on each identifier

It is hard to beat a well-implemented DFA scanner