Parsing Techniques

Top-down parsers (LL(1), recursive descent)
- Start at the root of the parse tree and grow toward leaves
- Pick a production & try to match the input
- Bad “pick” ⇒ may need to backtrack
- Some grammars are backtrack-free (predictive parsing)

Bottom-up parsers (LR(1), operator precedence)
- Start at the leaves and grow toward root
- As input is consumed, encode possibilities in an internal state
- Start in a state valid for legal first tokens
- Bottom-up parsers handle a large class of grammars

Top-down Parsing

A top-down parser starts with the root of the parse tree
The root node is labeled with the goal symbol of the grammar

Top-down parsing algorithm:
Construct the root node of the parse tree
Repeat until the leaves of the parse tree matches the input string

1. At a node labeled A, select a production with A on its lhs and, for each symbol on its rhs, construct the appropriate child
2. When a terminal symbol is added to the fringe and it doesn’t match the fringe, backtrack
3. Find the next node to be expanded (label ∈ NT)

The key is picking the right production in step 1
> That choice should be guided by the input string
Remember the expression grammar?

<table>
<thead>
<tr>
<th>Rule</th>
<th>Sentential Form</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Goal → Expr</td>
<td>x – 2 * y</td>
</tr>
<tr>
<td>2</td>
<td>Expr → Expr + Term</td>
<td>x – 2 * y</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>x – 2 * y</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>x – 2 * y</td>
</tr>
<tr>
<td>5</td>
<td>Term → Term * Factor</td>
<td>x – 2 * y</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>x – 2 * y</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>x – 2 * y</td>
</tr>
<tr>
<td>8</td>
<td>Factor → number</td>
<td>x – 2 * y</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>x – 2 * y</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>x – 2 * y</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>x – 2 * y</td>
</tr>
</tbody>
</table>

And the input x – 2 * y

Example

Let’s try x – 2 * y:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Sentential Form</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Expr + Term</td>
<td>x – 2 * y</td>
</tr>
<tr>
<td>4</td>
<td>Term + Term</td>
<td>x – 2 * y</td>
</tr>
<tr>
<td>7</td>
<td>Factor + Term</td>
<td>x – 2 * y</td>
</tr>
<tr>
<td>9</td>
<td><id,x> + Term</td>
<td>x – 2 * y</td>
</tr>
<tr>
<td>9</td>
<td><id,x> + Term</td>
<td>x – 2 * y</td>
</tr>
</tbody>
</table>
Example

Let's try $x - 2 \cdot y$:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Sentential Form</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal</td>
<td>$\uparrow x - 2 \cdot y$</td>
<td></td>
</tr>
<tr>
<td>1 Expr</td>
<td>$\uparrow x - 2 \cdot y$</td>
<td></td>
</tr>
<tr>
<td>2 Expr + Term</td>
<td>$\uparrow x - 2 \cdot y$</td>
<td></td>
</tr>
<tr>
<td>4 Term + Term</td>
<td>$\uparrow x - 2 \cdot y$</td>
<td></td>
</tr>
<tr>
<td>7 Factor + Term</td>
<td>$\uparrow x - 2 \cdot y$</td>
<td></td>
</tr>
<tr>
<td>9 <id,x> + Term</td>
<td>$\uparrow x - 2 \cdot y$</td>
<td></td>
</tr>
<tr>
<td>9 <id,x> + Term</td>
<td>$\uparrow x - 2 \cdot y$</td>
<td></td>
</tr>
</tbody>
</table>

This worked well, except that “–” doesn’t match “+.”

The parser must backtrack to here.

Example

Continuing with $x - 2 \cdot y$:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Sentential Form</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal</td>
<td>$\uparrow x - 2 \cdot y$</td>
<td></td>
</tr>
<tr>
<td>1 Expr</td>
<td>$\uparrow x - 2 \cdot y$</td>
<td></td>
</tr>
<tr>
<td>3 Expr - Term</td>
<td>$\uparrow x - 2 \cdot y$</td>
<td></td>
</tr>
<tr>
<td>4 Term - Term</td>
<td>$\uparrow x - 2 \cdot y$</td>
<td></td>
</tr>
<tr>
<td>7 Factor - Term</td>
<td>$\uparrow x - 2 \cdot y$</td>
<td></td>
</tr>
<tr>
<td>9 <id,x> - Term</td>
<td>$\uparrow x - 2 \cdot y$</td>
<td></td>
</tr>
<tr>
<td>9 <id,x> - Term</td>
<td>$\uparrow x - 2 \cdot y$</td>
<td></td>
</tr>
</tbody>
</table>

This time, “–” and “–” matched.

We can advance past “–” to look at “2.”

⇒ Now, we need to expand Term - the last NT on the fringe.
Example

Trying to match the “2” in \(x - 2 \times y \):

<table>
<thead>
<tr>
<th>Rule</th>
<th>Sentential Form</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>(<id,x> - \text{Term})</td>
<td>(x - \uparrow 2 \times y)</td>
</tr>
<tr>
<td>7</td>
<td>(<id,x> - \text{Factor})</td>
<td>(x - \uparrow 2 \times y)</td>
</tr>
<tr>
<td>9</td>
<td>(<id,x> - \text{<num,2>})</td>
<td>(x - \uparrow 2 \times y)</td>
</tr>
<tr>
<td>—</td>
<td>(<id,x> - \text{<num,2>})</td>
<td>(x - \uparrow 2 \times y)</td>
</tr>
</tbody>
</table>

Where are we?
- “2” matches “2”
- We have more input, but no \(NTs\) left to expand
- The expansion terminated too soon
 \[
\Rightarrow \text{Need to backtrack}
\]

Example

Trying again with “2” in \(x - 2 \times y \):

<table>
<thead>
<tr>
<th>Rule</th>
<th>Sentential Form</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>(<id,x> - \text{Term})</td>
<td>(x - \uparrow 2 \times y)</td>
</tr>
<tr>
<td>5</td>
<td>(<id,x> - \text{Term} \times \text{Factor})</td>
<td>(x - \uparrow 2 \times y)</td>
</tr>
<tr>
<td>7</td>
<td>(<id,x> - \text{Factor} \times \text{Factor})</td>
<td>(x - \uparrow 2 \times y)</td>
</tr>
<tr>
<td>8</td>
<td>(<id,x> - \text{<num,2>} \times \text{Factor})</td>
<td>(x - \uparrow 2 \times y)</td>
</tr>
<tr>
<td>—</td>
<td>(<id,x> - \text{<num,2>} \times \text{Factor})</td>
<td>(x - \uparrow 2 \times y)</td>
</tr>
<tr>
<td>—</td>
<td>(<id,x> - \text{<num,2>} \times \text{<id,y>})</td>
<td>(x - \uparrow 2 \times y)</td>
</tr>
<tr>
<td>9</td>
<td>(<id,x> - \text{<num,2>} \times \text{<id,y>})</td>
<td>(x - \uparrow 2 \times y)</td>
</tr>
<tr>
<td>—</td>
<td>(<id,x> - \text{<num,2>} \times \text{<id,y>})</td>
<td>(x - \uparrow 2 \times y)</td>
</tr>
</tbody>
</table>

This time, we matched & consumed all the input
 \[
\Rightarrow \text{Success!}
\]
Another possible parse

Other choices for expansion are possible

<table>
<thead>
<tr>
<th>Rule</th>
<th>Sentential Form</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>Goal</td>
<td>$x - 2 \times y$</td>
</tr>
<tr>
<td>1</td>
<td>Expr</td>
<td>$x - 2 \times y$</td>
</tr>
<tr>
<td>2</td>
<td>Expr + Term</td>
<td>$x - 2 \times y$</td>
</tr>
<tr>
<td>2</td>
<td>Expr + Term + Term</td>
<td>$x - 2 \times y$</td>
</tr>
<tr>
<td>2</td>
<td>Expr + Term + Term + ... + Term</td>
<td>$x - 2 \times y$</td>
</tr>
</tbody>
</table>

This doesn't terminate \((obviously)\)
- Wrong choice of expansion leads to non-termination
- Non-termination is a bad property for a parser to have
- Parser must make the right choice

Left Recursion

Top-down parsers cannot handle left-recursive grammars

Formally,

A grammar is left recursive if \(\exists A \in N \) such that
\(\exists \) a derivation \(A \Rightarrow^{*} A\alpha \), for some string \(\alpha \in (N \cup T)^{+} \)

Our expression grammar is left recursive
- This can lead to non-termination in a top-down parser
- For a top-down parser, any recursion must be right recursion
- We would like to convert the left recursion to right recursion

Non-termination is a bad property in any part of a compiler
Eliminating Left Recursion

To remove left recursion, we can transform the grammar

Consider a grammar fragment of the form

\[Fee \rightarrow Fee \alpha \]
\[\quad | \beta \]

where neither \(\alpha \) nor \(\beta \) start with \(Fee \)

Note that: \(Fee \Rightarrow \beta \alpha^* \)

We can rewrite this to generate \(\beta \) first, as

\[Fee \rightarrow \beta Fee \]
\[Fie \rightarrow \alpha Fie \]
\[\quad | \epsilon \]

where \(Fie \) is a new non-terminal

This accepts the same language, but uses only right recursion

Eliminating Left Recursion

The expression grammar contains two cases of left recursion

\[
\begin{align*}
Expr & \rightarrow Expr + Term \\
& \quad | Expr - Term \\
& \quad | Term \\
\end{align*}
\[
\begin{align*}
Term & \rightarrow Term * Factor \\
& \quad | Term / Factor \\
& \quad | Factor \\
\end{align*}
\]

Applying the transformation yields

\[
\begin{align*}
Expr & \rightarrow Term Expr' \\
& \quad | + Term Expr' \\
& \quad | - Term Expr' \\
& \quad | \epsilon \\
Expr' & \rightarrow Term Expr' \\
& \quad | Factor Term' \\
& \quad | * Factor Term' \\
& \quad | / Factor Term' \\
& \quad | \epsilon \\
\end{align*}
\]

These fragments use only right recursion

They retains the original left associativity
Eliminating Left Recursion

Substituting back into the grammar yields

1. \(\text{Goal} \rightarrow \text{Expr} \)
2. \(\text{Expr} \rightarrow \text{Term} \text{Expr}' \)
3. \(\text{Expr}' \rightarrow + \text{Term} \text{Expr}' \)
4. \(\text{Expr}' \rightarrow - \text{Term} \text{Expr}' \)
5. \(\text{Expr}' \rightarrow \epsilon \)
6. \(\text{Term} \rightarrow \text{Factor} \text{Term}' \)
7. \(\text{Term}' \rightarrow * \text{Factor} \text{Term}' \)
8. \(\text{Term}' \rightarrow \text{Term} \text{Term}' \)
9. \(\text{Term}' \rightarrow \epsilon \)
10. \(\text{Factor} \rightarrow \text{number} \)
11. \(\text{Factor} \rightarrow \text{id} \)
12. \(\text{Factor} \rightarrow (\text{Expr}) \)

- This grammar is correct, if somewhat non-intuitive.
- It is left associative, as was the original
- A top-down parser will terminate using it.
- A top-down parser may need to backtrack with it.

Eliminating Left Recursion

The transformation eliminates immediate left recursion
What about more general, indirect left recursion?

The general algorithm:

arrange the NTs into some order \(A_1, A_2, \ldots, A_n \)

for \(i \leftarrow 1 \) to \(n \)

for \(s \leftarrow 1 \) to \(i - 1 \)

replace each production \(A_i \rightarrow A_s \gamma \) with \(A_i \rightarrow \delta_1 \gamma \delta_2 \gamma \ldots \delta_k \gamma \)

where \(A_s \rightarrow \delta_1 \delta_2 \gamma \ldots \gamma \delta_k \) are all the current productions for \(A_s \)

eliminate any immediate left recursion on \(A_i \)
using the direct transformation

This assumes that the initial grammar has no cycles \((A_i \Rightarrow^* A_j) \),
and no epsilon productions
Eliminating Left Recursion

How does this algorithm work?

1. Impose arbitrary order on the non-terminals
2. Outer loop cycles through NT in order
3. Inner loop ensures that a production expanding A_i has no non-terminal A_s in its rhs, for $s < i$
4. Last step in outer loop converts any direct recursion on A_i to right recursion using the transformation showed earlier
5. New non-terminals are added at the end of the order & have no left recursion

At the start of the i^{th} outer loop iteration

For all $k < i$, no production that expands A_k contains a non-terminal A_s in its rhs, for $s < k$

Example

- Order of symbols: G, E, T

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$G \rightarrow E$</td>
<td>$G \rightarrow E$</td>
<td>$G \rightarrow E$</td>
<td>$G \rightarrow E$</td>
</tr>
<tr>
<td>$E \rightarrow E + T$</td>
<td>$E \rightarrow TE'$</td>
<td>$E \rightarrow TE'$</td>
<td>$E \rightarrow TE'$</td>
</tr>
<tr>
<td>$E \rightarrow T$</td>
<td>$E' \rightarrow + TE'$</td>
<td>$E' \rightarrow + TE'$</td>
<td>$E' \rightarrow + TE'$</td>
</tr>
<tr>
<td>$T \rightarrow E \sim T$</td>
<td>$T \rightarrow T \sim T$</td>
<td>$T \rightarrow T \sim T$</td>
<td>$T \rightarrow T \sim T$</td>
</tr>
<tr>
<td>$T \rightarrow \text{id}$</td>
<td>$T \rightarrow \text{id}$</td>
<td>$T \rightarrow \text{id}$</td>
<td>$T \rightarrow \text{id}$</td>
</tr>
<tr>
<td>$T \rightarrow \text{id}$</td>
<td>$T \rightarrow \text{id}$</td>
<td>$T \rightarrow \text{id}$</td>
<td>$T \rightarrow \text{id}$</td>
</tr>
<tr>
<td>$T \rightarrow \text{id}$</td>
<td>$T \rightarrow \text{id}$</td>
<td>$T \rightarrow \text{id}$</td>
<td>$T \rightarrow \text{id}$</td>
</tr>
<tr>
<td>$T \rightarrow T' \sim T$</td>
</tr>
<tr>
<td>$T' \rightarrow E \sim TT'$</td>
</tr>
<tr>
<td>$T' \rightarrow \epsilon$</td>
<td>$T' \rightarrow \epsilon$</td>
<td>$T' \rightarrow \epsilon$</td>
<td>$T' \rightarrow \epsilon$</td>
</tr>
</tbody>
</table>
Roadmap (Where are we?)

We set out to study parsing

- **Specifying syntax**
 - Context-free grammars
 - Ambiguity
- **Top-down parsers**
 - Algorithm & its problem with left recursion
 - Left-recursion removal
- **Predictive top-down parsing** – When can we make the right decision without backtracking?
 - The LL(1) condition
 - Simple recursive descent parsers

Picking the “Right” Production

If it picks the wrong production, a top-down parser may backtrack
Alternative is to look ahead in input & use context to pick correctly

How much lookahead is needed?

- In general, an arbitrarily large amount
- E.g., the Cocke-Younger-Kasami algorithm or Earley’s algorithm
 - $O(n^3)$ on size of input.

Fortunately,

- Large subclasses of CFGs can be parsed with limited lookahead
- Most programming language constructs fall in those subclasses

Among the interesting subclasses are LL(1) and LR(1) grammars
Predictive Parsing

Basic Idea

Given \(A \rightarrow \alpha \mid \beta \), the parser should be able to choose between \(\alpha \) & \(\beta \)

FIRST sets

For some rhs \(\alpha \in G \), define \(\text{FIRST}(\alpha) \) as the set of tokens that appear as the first symbol in some string that derives from \(\alpha \)

That is, \(x \in \text{FIRST}(\alpha) \) *iff* \(\alpha \Rightarrow^* x \gamma \), for some \(\gamma \)

When is First(\alpha) useful?

- When there is no choice in what production to choose.

The LL(1) Property

If \(A \rightarrow \alpha \) and \(A \rightarrow \beta \) both appear in the grammar, we would like

\[
\text{FIRST}(\alpha) \cap \text{FIRST}(\beta) = \emptyset
\]

This would allow the parser to make a correct choice with a lookahead of exactly one symbol!

(Pursuing this idea leads to LL(1) parser generators...)

Predictive Parsing

Given a grammar that has the **LL(1)** property

- Can write a simple routine to recognize each \(lhs \)
- Code is both simple & fast

Consider \(A \rightarrow \beta_1 \mid \beta_2 \mid \beta_3 \), with pairwise emptiness, i.e., \(i \neq j \)

\[
\text{FIRST}(\beta_i) \cap \text{FIRST}(\beta_j) = \emptyset
\]

```
/* find an A */
if (current_word \in \text{FIRST}(\beta_i))
   find a \beta_i and return true
else if (current_word \in \text{FIRST}(\beta_j))
   find a \beta_j and return true
else if (current_word \in \text{FIRST}(\beta_3))
   find a \beta_3 and return true
else
   report an error and return false
```

Grammar with the **LL(1)** property are called **predictive grammars**

because the parser can "predict" the correct expansion at each point in the parse.

Parsers that capitalize on the **LL(1)** property are called **predictive parsers**.

One kind of predictive parser is the **recursive descent** parser.

Of course, there is more detail to "find a \(\beta \)"
LL(1) process

Given $X \rightarrow \alpha$, compute $\text{FIRST}(\alpha)$

<table>
<thead>
<tr>
<th>NT</th>
<th>FIRST(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>ETF</td>
</tr>
<tr>
<td>E</td>
<td>ETF</td>
</tr>
<tr>
<td>T</td>
<td>TF</td>
</tr>
<tr>
<td>F</td>
<td>Num id</td>
</tr>
</tbody>
</table>

Table

<table>
<thead>
<tr>
<th></th>
<th>+</th>
<th>-</th>
<th>(</th>
<th>)</th>
<th>*</th>
<th>/</th>
<th>id</th>
<th>num</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>$G\rightarrow E$</td>
<td>$G\rightarrow E$</td>
<td>$G\rightarrow E$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>$E\rightarrow ET$</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>$T\rightarrow TF$</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>$F\rightarrow (E)$</td>
<td>$F\rightarrow \text{id}$</td>
<td>$F\rightarrow \text{Num}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* We know since grammar is left recursive that it can't be LL(1).
* Multiple entries in table prove it -- no explicit rule to use.

But recall grammar after left recursion eliminated

Given $X \rightarrow \alpha$, compute $\text{FIRST}(\alpha)$

<table>
<thead>
<tr>
<th>NT</th>
<th>FIRST(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>ETF</td>
</tr>
<tr>
<td>E</td>
<td>TF</td>
</tr>
<tr>
<td>F</td>
<td>Num id</td>
</tr>
</tbody>
</table>

Table

<table>
<thead>
<tr>
<th></th>
<th>+</th>
<th>-</th>
<th>(</th>
<th>)</th>
<th>*</th>
<th>/</th>
<th>id</th>
<th>num</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>$G\rightarrow ET$</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>$E\rightarrow TF$</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>$T\rightarrow F$</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>$F\rightarrow (E)$</td>
<td>$F\rightarrow \text{id}$</td>
<td>$F\rightarrow \text{Num}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What do we do with \(\varepsilon \) rules?

FIRST(\(\varepsilon \)):

- if $X \Rightarrow \varepsilon$ then $\text{FIRST}(\varepsilon) = \text{FIRST}($FOLLOW(X)$)$
But recall grammar after left recursion eliminated

<table>
<thead>
<tr>
<th></th>
<th>Goal</th>
<th>Expr</th>
<th>Expr’</th>
<th>+ Term Expr’</th>
<th>– Term Expr’</th>
<th>Term</th>
<th>Factor Term’</th>
<th>* Factor Term’</th>
<th>Factor</th>
<th>number</th>
<th>id</th>
<th>(Expr’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Goal</td>
<td>→ Expr</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Expr</td>
<td>→ Term Expr’</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Expr’</td>
<td>→ + Term Expr’</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>[\text{c}]</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>[\varepsilon]</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Term</td>
<td>→ Factor Term’</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Term’</td>
<td>→ * Factor Term’</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>[\varepsilon]</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Factor</td>
<td>→ number</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>id</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>[\text{E}]</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>[\text{F}]</td>
<td></td>
</tr>
</tbody>
</table>

Recall the expression grammar, after transformation

<table>
<thead>
<tr>
<th></th>
<th>Goal</th>
<th>Expr</th>
<th>Expr’</th>
<th>+ Term Expr’</th>
<th>– Term Expr’</th>
<th>Term</th>
<th>Factor Term’</th>
<th>* Factor Term’</th>
<th>Factor</th>
<th>number</th>
<th>id</th>
<th>(Expr’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Goal</td>
<td>→ Expr</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Expr</td>
<td>→ Term Expr’</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Expr’</td>
<td>→ + Term Expr’</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>[\text{c}]</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>[\varepsilon]</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Term</td>
<td>→ Factor Term’</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Term’</td>
<td>→ * Factor Term’</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>[\varepsilon]</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Factor</td>
<td>→ number</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>id</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>[\text{E}]</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>[\text{F}]</td>
<td></td>
</tr>
</tbody>
</table>

This produces a parser with six mutually recursive routines:

- Goal
- Expr
- EPrime
- Term
- TPrime
- Factor

Each recognizes one NT

The term descent refers to the direction in which the parse tree is traversed (or built).
Recursive Descent Parsing (Procedural)

A couple of routines from the expression parser

\[\text{Goal()} \]
\begin{align*}
\text{token} & \leftarrow \text{next_token();} \\
\text{if (Expr() = true)} & \\
\text{then next compilation step; } & \\
\text{else } & \\
\text{return false; } & \\
\end{align*}

\[\text{Expr()} \]
\begin{align*}
\text{result} & \leftarrow \text{true; } \\
\text{if (Term() = false)} & \\
\text{then result} & \leftarrow \text{false; } & \\
\text{else if (EPrime() = false)} & \\
\text{then result} & \leftarrow \text{true; if term found } & \\
\text{return result; } & \\
\end{align*}

\[\text{Factor()} \]
\begin{align*}
\text{result} & \leftarrow \text{true; } \\
\text{if (token = Number)} & \\
\text{then token} & \leftarrow \text{next_token(); } & \\
\text{else if (token = identifier)} & \\
\text{then token} & \leftarrow \text{next_token(); } & \\
\text{else } & \\
\text{report syntax error; } & \\
\text{result} & \leftarrow \text{false; } & \\
\text{return result; } & \\
\end{align*}

EPrime, Term, & TPrime follow along the same basic lines (Figure 3.4, EAC)

Recursive Descent Parsing

To build a parse tree:
- Augment parsing routines to build nodes
- Pass nodes between routines using a stack
- Node for each symbol on rhs
- Action is to pop rhs nodes, make them children of lhs node, and push this subtree

To build an abstract syntax tree
- Build fewer nodes
- Put them together in a different order

This is a preview of Chapter 4
Recursive Descent in Object-Oriented Languages

- Shortcomings of Recursive Descent
 - Procedural
 - Parse tree construction is a side activity
- Solution
 - Associate a class with each non-terminal symbol
 → Allocated object contains pointer to the parse tree

```java
abstract class NonTerminal {

  protected Scanner s;
  protected TreeNode tree;

  public NonTerminal(Scanner scnr) { s = scnr; tree = null; }

  public abstract boolean isPresent();

  public TreeNode abSynTree() { return tree; }
}
```

Implementation of Expr

```java
class Expr extends NonTerminal {

  public Expr(Scanner scnr) { super(scnr); }

  public boolean isPresent() {
    // construct AST too
    Term operand1 = new Term(s);
    if (!operand1.isPresent()) return false;
    tree = operand1.abSynTree();

    EPrime operand2 = new EPrime(s, tree);
    if (operand2.isPresent())
      tree = operand2.absSynTree();

    // here tree is either the tree for the Term
    // or the tree for Term followed by EPrime
    return true;
  }
}
```
Implementation of EPrime

```java
class EPrime extends NonTerminal {
    protected TreeNode exprSofar;

    public EPrime(Scanner scnr, TreeNode p)
    { super(scnr); exprSofar = p; }

    public boolean isPresent() { // construct AST too
        TokenType op = s.nextToken();
        if (op == PLUS | op == MINUS) {
            s.advance();
            Term operand2 = new Term(s);
            if (!operand2.isPresent()) throw new SyntaxError(s);
            tree = new TreeNode(op, exprSofar, operand2.absSynTree());
            Eprime operand3 = new Eprime(s, tree);
            if (operand3.isPresent()) tree = operand3.absSynTree();
        } else return false;
    }
}
```

Tree Building in EPrime

![Tree Building Diagram]
Implementation of Factor

class Factor extends NonTerminal {
 public Factor(Scanner scnr) {super(scnr);}

 public boolean isPresent() { // with semantic processing
 TokenType op = s.nextToken();
 if (op == IDENTIFIER | op == NUMBER) {
 tree = new TreeNode(op, s.tokenValue());
 s.advance();
 return true;
 }
 else if (op == LPAREN) {
 s.advance();
 Expr operand = new Expr(s);
 if (!operand.isPresent()) throw new SyntaxError(s);
 if (s.nextToken() != RPAREN) throw new SyntaxError(s);
 s.advance();
 tree = operand.absSynTree();
 return true;
 }
 else return false;
 }
}

Left Factoring

What if my grammar does not have the LL(1) property?
⇒ Sometimes, we can transform the grammar

The Algorithm

∀ A ∈ NT,

find the longest prefix α that occurs in two or more right-hand sides of A

if α ≠ ε then replace all of the A productions,

A → αβ₁ | αβ₂ | ... | αβₙ | γ

with

A → αZ | γ
Z → β₁ | β₂ | ... | βₙ

where Z is a new element of NT

Repeat until no common prefixes remain
Left Factoring *(An example)*

Consider the following fragment of the expression grammar

```
Factor \rightarrow Identifier \\
    | Identifier [ ExprList ] \\
    | Identifier ( ExprList )
```

After left factoring, it becomes

```
Factor \rightarrow Identifier Arguments \\
Arguments \rightarrow [ ExprList ] \\
    | ( ExprList ) \\
    | ε
```

This form has the same syntax, with the LL(1) property

\[
\text{FIRST}(\text{rhs}_1) = \{ \text{Identifier} \} \\
\text{FIRST}(\text{rhs}_2) = \{ \} \\
\text{FIRST}(\text{rhs}_3) = \{ \} \\
\text{FIRST}(\text{rhs}_4) = \text{FOLLOW}(\text{Factor})
\]

⇒ It has the LL(1) property

Left Factoring

A graphical explanation for the same idea

```
A \rightarrow αβ_1 \\
    | αβ_2 \\
    | αβ_3
```

becomes …

```
A \rightarrow αZ \\
Z \rightarrow β_1 \\
    | β_2 \\
    | β_n
```

CMSC430 Spring 2007
Left Factoring

(Generality)

Question

By eliminating left recursion and left factoring, can we transform an arbitrary CFG to a form where it meets the LL(1) condition? (and can be parsed predictively with a single token lookahead?)

Answer

Given a CFG that doesn’t meet the LL(1) condition, it is undecidable whether or not an equivalent LL(1) grammar exists.

Example

\{a^n 0 b^n | n \geq 1\} \cup \{a^n 1 b^{2n} | n \geq 1\} has no LL(1) grammar

Language that Cannot Be LL(1)

Example

\{a^n 0 b^n | n \geq 1\} \cup \{a^n 1 b^{2n} | n \geq 1\} has no LL(1) grammar

\[G \rightarrow aAb \]

\[\quad | aBB \]

\[A \rightarrow aAb \]

\[\quad | 0 \]

\[B \rightarrow aBB \]

\[\quad | 1 \]

Problem: need an unbounded number of a characters before you can determine whether you are in the A group or the B group.