Data flow analysis

- Compile-time - reasoning about the run-time
 - Flow of values in the program
 - Represent facts about run-time behavior
 - Represent effect of executing each basic block
 - Propagate facts around control flow graph

- Formulated as a set of simultaneous equations
 - Sets attached to the nodes and edges
 - Lattice to describe relation between values
 - Usually represented as bit or bit vector

- Limitations
 - Answers must be conservative
 - Often need to approximate information
 - Assume all possible paths can be taken

Common subexpressions

- Both a and b-c are common subexpressions (CSE)
 - Compute same value
 - Should compute the value once
 - A simple and general form of code improvement

\[a + a \times (b - c) + (b - c) \times d \]

The directed acyclic graph is a useful representation for such expressions.

The \textit{dag} clearly exposes the cses
Directed acyclic graph

- A directed acyclic graph is a tree with sharing
 - A tree is a directed acyclic graph where each node has at most one parent
 - A dag allows multiple parents for each node
 - Both a tree and a dag have a distinguished root
 - No cycles in the graph!

- To find common subexpressions within a statement
 - Build the dag
 - Generate code from the dag
 - This should lead to faster evaluation

- How do we build a dag for an expression?
 - Use construction primitives for building trees
 - Teach primitives to catch cses
 - Mkleaf() and mknode()
 - Hash on <op, l, r>
 - Unique name for each node – its value number

- Anywhere we build a tree, we could build a dag
 - Initialize hash table for each expression
 - Catch only cses within expressions

- What about assignment?
 - Complicates cse detection
 - Each value has a unique node
 - Add subscripts to variables

- While building the dag, an assignment
 - Creates new nodes for lhs – a new xi
 - Kills all nodes built from xi-1

- Example: a₁ = a₀ + b
 - Can we go beyond a single statement?
 - Use a single dag for an entire basic block

- A dag for a basic block has labeled nodes
 - Leaves are labeled with unique identifiers (either variable names or constants) (Leaves represent values on entry)
 - Interior nodes are labeled with operators
 - Nodes have optional identifier labels
 - Interior nodes represent computed values
 - Identifier label represents assignment
Example

- Code
 \[
 \begin{align*}
 a &= b + c \\
 b &= a - d \\
 c &= b + c \\
 d &= a - d
 \end{align*}
 \]

- After renaming
 \[
 \begin{align*}
 a_0 &= b_0 + c_0 \\
 b_1 &= a_0 - d_0 \\
 c_1 &= b_1 + c_0 \\
 d_1 &= a_0 - d_0
 \end{align*}
 \]

Building a dag

- \text{node(<id>)} \rightarrow \text{current dag for <id>}

1. Set node(y) to undefined for each symbol y
2. for each statement \(x = y \text{ op } z \), repeat steps 3, 4, and 5
3. If node(y) is undefined,
 > create a leaf for y
 > set node(y) to the new node
 > do the same for z
4. if \(<\text{op, node(y), node(z)}>\) doesn't exist, create it and let n point to that node
5. delete x from the list of labels for node(x)
 > append x to the list of labels for n
 > set node(x) to n
Common subexpressions

- Going beyond basic blocks
 - Can no longer build dags
 - Must consider control flow

- Examples
 - Use
 - C = A + B
 - D = A + B
 - Intervening kill
 - C = A + B
 - A = ...
 - D = A + B
 - Possible use
 - C = A + B
 - If (...)
 - D = A + B
 - Possible kill
 - C = A + B
 - If (...)
 - A = ...
 - D = A + B
 - Possible gen
 - If (...)
 - C = A + B
 - D = A + B
 - Multiple gen
 - If (...)
 - C = A + B
 - Else
 - D = A + B

We generalize these conditions as data flow analysis.

Algorithm

- build control flow graph (CFG)
 - initial (local) data gathering
 - propagate information around the graph
 - post-processing (if needed)

- Example control flow graph

```plaintext
a := 1
if (b) then
  c := a+b
else
  b := 1
  c := a+b
  ...
```
Available expressions

- An expression is *defined* at point p if its value is computed at p.
- An expression is *killed* at a point p if one of its argument variables is defined at p.
- An expression e is *available* at a point p in a procedure if every path leading to p contains a prior definition of e that is not killed between its definition and p.

Global common subexpression elimination

- If, at some definition point for p = e, e is available with name x, we can replace the evaluation with a reference to x.
- Requires a global naming scheme and a natural analog to parts of value numbering

Available expressions

For a block b

- let $\text{AVAIL}(b)$ be the set of expressions available on entry to b.
- let $\text{KILL}(b)$ be the set of expressions killed in b.
- let $\text{GEN}(b)$ be the set of expressions defined in b and not subsequently killed in b.

Note: $\text{GEN}(b)$ can be calculated from the list of live expressions from DAG construction.

- $\text{KILL}(b)$ is harder to construct, since it requires knowledge of all potential expressions in the program.

- Now, AVAIL can be defined as:
 \[
 \text{AVAIL}(b) = \bigcap_{x \in \text{pred}(b)} (\text{GEN}(x) \cup (\text{AVAIL}(x) - \text{KILL}(x)))
 \]
- Note: initializations must be conservative.
Available expression example

- \(\text{AVAIL}(A) = \emptyset \)
- \(\text{AVAIL}(B) = \text{GEN}(A) \cup (\text{AVAIL}(A) - \text{KILL}(A)) = \emptyset \cup (\emptyset - \{a+b\}) = \emptyset \)
- \(\text{AVAIL}(C) = \text{GEN}(A) \cup (\text{AVAIL}(A) - \text{KILL}(A)) = \emptyset \cup (\emptyset - \{a+b\}) = \emptyset \)
- \(\text{AVAIL}(D) = (\text{GEN}(B) \cup (\text{AVAIL}(B) - \text{KILL}(B))) \cap (\text{GEN}(C) \cup (\text{AVAIL}(C) - \text{KILL}(C))) \)
 \[= (\{a+b\} \cup (\emptyset - \emptyset)) \cap (\{a+b\} \cup (\emptyset - \{a+b\})) = \{a+b\} \]

Partial redundancy elimination

- **Partial redundancy elimination** (PRE) is an optimization that
 - Discovers partially redundant expressions
 - Converts them to fully redundant expressions
 - Removes redundant expressions

- Intuition
 - PRE moves computation back (against the control flow) as far as possible to make their effects universal as possible,

- How does it work?
 - Anticipability \(\rightarrow \) expression can be precomputed at point \(p \)
 - Use data-flow analysis to find availability and anticipability
 - Solve a data-flow problem to discover where to insert code
 - Insert the code and remove redundant expression
Redundant expressions

- An expression ϵ is redundant at point p if every path to p:
 - ϵ is evaluated before reaching p, and
 - None of the constituent values of ϵ are redefined before p.

```
a ← b+c
```

Partially redundant expressions

- An expression is partially redundant at p if it is available on some, but not all paths reaching p.

```
b ← b+1
```
PRE equations

\[\text{avon}(b) = \begin{cases} \text{false} & \text{if } b \text{ is an entry block} \\ \cap_{w \in \text{pred}(b)} \text{avon}(w) & \text{otherwise} \end{cases} \]

\[\text{avout}(b) = \cap_{w \in \text{pred}(b)} \cup (\text{avout}(b) \cap \text{transp}(b)) \]

\[\text{pavon}(b) = \begin{cases} \text{false} & \text{if } b \text{ is an entry block} \\ \cup_{w \in \text{pred}(b)} \text{pavon}(w) & \text{otherwise} \end{cases} \]

\[\text{pavout}(b) = \cup_{w \in \text{pred}(b)} \cup (\text{pavout}(b) \cap \text{transp}(b)) \]

\[\text{antout}(b) = \begin{cases} \text{false} & \text{if } b \text{ is an exit block} \\ \setminus_{\text{succ}(b)} \text{avout}(x) & \text{otherwise} \end{cases} \]

\[\text{antin}(b) = \text{antin}(b) \cup (\text{out}(b) \cap \text{transp}(b)) \]

\[\text{ppout}(b) = \begin{cases} \text{false} & \text{if } b \text{ is an exit block} \\ \setminus_{\text{succ}(b)} \text{ppin}(x) & \text{otherwise} \end{cases} \]

\[\text{ppin}(b) = \text{antin}(b) \cap \text{pavin}(b) \cap (\text{ppout}(b) \cup (\text{ppin}(b) \cap \text{transp}(b)))) \]

\[\text{insert}(b) = (\text{ppin}(b) \cap \text{transp}(b)) \cap \text{ppout}(b) \cap \text{avout}(b) \]

\[\text{delete}(b) = \text{avon}(b) \cap \text{antin}(b) \]

Solving data flow equations

- Iterative algorithm

 change = true;
 while (change)
 change = false;
 for each basic block b // faster in reverse PostOrder
 solve data-flow equations for b
 if old != new then change = true;
 end for
 end while

- Speed of solution
 > Node may change only if some predecessor changes
 > Try to visit node after all its predecessors
 > Reverse PostOrder propagates information quickly
 > Programs usually converge after 3-4 passes
 > Use bit vectors for more efficiency
PostOrder and reverse PostOrder

- **Step 1: PostOrder**
  ```
  Main()
  count = 1;
  visit (root);
  visit(n)
  mark n as visited
  for each successor s of n not yet visited, visit(s);
  PostOrder(n) = count;
  count = count+1;
  ```

- **Step 2: Reverse Postorder(rPostOrder)**
  ```
  For each node n
  rPostOrder(n) = NumNodes – PostOrder(n)
  ```

Depth-first search ~ rPostOrder

Data-flow analysis framework

- Use same framework for all data-flow problems
 - Given local information Gen, Kill
 - Start with some initial values for In, Out
 - Iterate through nodes in the flow graph, recompute transfer functions until sets stabilize

- Framework has 3 components
 - Domain of values: L
 - Operator for combining values: Λ
 - A set of transfer functions (L→L): F

- Usefulness of unified framework
 - Defines a collection of properties that guarantee correctness and convergence
 - Can describe speed of convergence and precision of result for a family of analysis problems
 - Can reuse code to solve new analysis problems
Iterative algorithm

- What about loops?
 - Circular dependencies between blocks
 - Can initialize solutions, then solve repeatedly

- Example

  ```
  c = a+b
  L:
  d = a+b
  a= ...
  if (...) goto L
  ```

- Termination
 - Goal is for solutions to converge to a fixed point (x = f(x))
 - Can stop once solution stops changing
 - Is this guaranteed?
 → If system is monotone (i.e., f(x ∧ y) ≤ f(x) ∧ f(y))