Register Allocation

Part of the compiler’s back end

Critical properties
• Produce correct code that uses \(k \) (or fewer) registers
• Minimize added loads and stores
• Minimize space used to hold spilled values
• Operate efficiently
 \(O(n), O(n \log_2 n) \), maybe \(O(n^2) \), but not \(O(2^n) \)

Global Register Allocation

The big picture

At each point in the code
1. Determine which values will reside in registers
2. Select a register for each such value

The goal is an allocation that “minimizes” running time

Most modern, global allocators use a graph-coloring paradigm
• Build a “conflict graph” or “interference graph”
• Find a \(k \)-coloring for the graph, or change the code to a nearby problem that it can \(k \)-color
Global Register Allocation

What's harder across multiple blocks?
- Could replace a load with a move
- Good assignment would obviate the move
- Must build a control-flow graph to understand inter-block flow
- Can spend an inordinate amount of time adjusting the allocation

A more complex scenario
- Block with multiple predecessors in the control-flow graph
- Must get the “right” values in the “right” registers in each predecessor
- In a loop, a block can be its own predecessors
This adds tremendous complications
Global Register Allocation

Taking a global approach
- Abandon the distinction between local & global
- Make systematic use of registers or memory
- Adopt a general scheme to approximate a good allocation

Graph coloring paradigm (Lavrov & (later) Chaitin)

1. Build an interference graph G_i for the procedure
 - Computing LIVE is harder than in the local case
 - G_i is not an interval graph
2. (try to) construct a k-coloring
 - Minimal coloring is NP-Complete
 - Spill placement becomes a critical issue
3. Map colors onto physical registers

Graph Coloring (A Background Digression)

The problem

A graph G is said to be k-colorable iff the nodes can be labeled with integers $1\ldots k$ so that no edge in G connects two nodes with the same label

Examples

2-colorable

3-colorable

Each color can be mapped to a distinct physical register
Building the Interference Graph

What is an “interference”? (or conflict)

- Two values interfere if there exists an operation where both are simultaneously live
- If \(x \) and \(y \) interfere, they cannot occupy the same register

To compute interferences, we must know where values are “live”

The interference graph, \(G_i \)

- Nodes in \(G_i \) represent values, or live ranges
- Edges in \(G_i \) represent individual interferences
 > For \(x, y \in G_i \), \(\langle x, y \rangle \in E \) if \(x \) and \(y \) interfere
- A \(k \)-coloring of \(G_i \) can be mapped into an allocation to \(k \) registers

Building the Interference Graph

To build the interference graph

1. Discover live ranges
 > Build SSA form
 > At each \(\phi \)-function, take the union of the arguments

2. Compute LIVE sets for each block
 > Use an iterative data-flow solver
 > Solve equations for LIVE over domain of live range names

3. Iterate over each block
 > Track the current LIVE set
 > At each operation, add appropriate edges & update LIVE
 - Edge from result to each value in LIVE
 - Remove result from LIVE
 - Edge from each operand to each value in LIVE
What is a Live Range?

- A set LR of definitions \(\{d_1, d_2, \ldots, d_n\} \) such that for any two definitions \(d_i \) and \(d_j \) in LR, there exists some use \(u \) that is reached by both \(d_i \) and \(d_j \).
- How can we compute live ranges?
 > For each basic block \(b \) in the program, compute \(\text{REACHESOUT}(b) \) — the set of definitions that reach the exit of basic block \(b \)
 \[\rightarrow d \in \text{REACHESOUT}(b) \text{ if there is no other definition on some path from } d \text{ to the end of block } b \]
 > For each basic block \(b \), compute \(\text{LIVEIN}(b) \) — the set of variables that are live on entry to \(b \)
 \[\rightarrow v \in \text{LIVEIN}(b) \text{ if there is a path from the entry of } b \text{ to a use of } v \text{ that contains no definition of } v \]
 > At any block where control flow joins, for each live variable \(v \), merge the live ranges associated with definitions in \(\text{REACHESOUT}(p) \), for all predecessors of \(b \), that assign a value to \(v \).

Computing LIVE Sets

A value \(v \) is live at \(p \) if \(\exists \) a path from \(p \) to some use of \(v \) along which \(v \) is not re-defined

Data-flow problems are expressed as simultaneous equations

\[
\begin{align*}
\text{LIVEOUT}(b) &= \bigcup_{s \in \text{succ}(b)} \text{LIVEIN}(s) \\
\text{LIVEIN}(b) &= (\text{LIVEOUT}(b) \cap \text{NOTDEF}(b)) \cup \text{IN}(b)
\end{align*}
\]

where

- \(\text{IN}(x) \) is the set of names used before redefinition in block \(x \)
- \(\text{NOTDEF}(x) \) is the set of names not redefined in \(x \)

As output,

- \(\text{LIVEOUT}(x) \) is the set of names live on exit from block \(x \)
- \(\text{LIVEIN}(x) \) is the set of names live on entry to block \(x \)
Computing LIVE Sets

The compiler solves the equations with an iterative algorithm.

\[
\text{WorkList} \leftarrow \{ \text{all blocks} \}
\]
while (WorkList \neq \emptyset)
remove a block b from WorkList
Compute LIVEOUT(b) Compute LIVEIN(b)
if LIVEIN(b) changed
then add \text{pred}(b) to WorkList

Why does this work?
• \text{LIVEOUT}, \text{LIVEIN} \subseteq \mathcal{P}(\text{Name})
• \text{IN}, \text{NOTDEF} are constant for b
• Equations are monotone
• Finite chains in the lattice
⇒ will reach a fixed point!

Speed of convergence depends on the order in which blocks are “removed” & their sets recomputed.

This is the world’s quickest introduction to data-flow analysis!

Observation on Coloring for Register Allocation

- Suppose you have \(k \) registers—try to color the graph with \(k \) colors.
- Any vertex \(n \) that has fewer than \(k \) neighbors in the interference graph \((\text{\(n^{\circ} < k\)})\) can always be colored!
 - Pick any color not used by its neighbors — there must be one.
- Idea for Chaitin’s algorithm:
 - Pick any vertex \(n \) such that \(n^{\circ} < k \) and put it on the stack.
 - Remove that vertex and all edges incident from the interference graph.
 → This may make some new nodes have fewer than \(k \) neighbors.
 - At the end, if some vertex \(n \) still has \(k \) or more neighbors, then spill the live range associated with \(n \).
 - Otherwise successively pop vertices off the stack and color them in the lowest color not used by some neighbor.
Chaitin’s Algorithm

1. While there are vertices with fewer than \(k \) neighbors remaining in the interference graph \(G_i \):
 - Pick any vertex \(n \) such that \(n^i < k \) and put it on the stack
 - Remove that vertex and all edges incident to it from \(G_i \)
 - This may cause additional vertices to have fewer than \(k \) neighbors

2. If any vertices remain in the interference graph \(G_i \) (all such vertices have \(k \) or more neighbors) then:
 - Pick a vertex \(n \) (using some heuristic condition) and spill the live range associated with \(n \)
 - Remove vertex \(n \) from \(G_i \), along with all edges incident to it and put it on the stack
 - If this causes some vertex in \(G_i \) to have fewer than \(k \) neighbors, then go to step 1; otherwise, repeat step 2

3. Successively pop vertices off the stack and color them in the lowest color not used by some neighbor

Chaitin’s Algorithm in Practice

3 Registers

Stack

- 1
- 2
- 3
- 4
- 5
Chaitin’s Algorithm in Practice

3 Registers

Stack

Chaitin’s Algorithm in Practice

3 Registers

Stack
Chaitin’s Algorithm in Practice

3 Registers

Stack

Colors:
1:
2:
3:

CMSC430 Spring 2007
Chaitin’s Algorithm in Practice

3 Registers

Stack

Colors:
1:
2:
3:

Chaitin’s Algorithm in Practice

3 Registers

Stack

Colors:
1:
2:
3:
Chaitin’s Algorithm in Practice

3 Registers

Stack

Colors:
1: ○
2: ●
3: □

Chaitin’s Algorithm in Practice

3 Registers

Stack

Colors:
1: ○
2: ●
3: □
Chaitin’s Algorithm in Practice

3 Registers

Colors:
1: \[\text{Color 1} \]
2: \[\text{Color 2} \]
3: \[\text{Color 3} \]

Improvement in Coloring Scheme

- Due to Briggs, Cooper, Kennedy, and Torczon
- Instead of stopping at the end when all vertices have at least \(k \) neighbors, put each on the stack according to some priority
 > When you pop them off they may still color!

2-Colorable

2 Registers:
Chaitin-Briggs Algorithm

1. While there are vertices with fewer than \(k \) neighbors remaining in the interference graph \(G_i \):
 - Pick any vertex \(n \) such that \(n^i < k \) and put it on the stack.
 - Remove that vertex and all edges incident to it from \(G_i \).
 - This may create vertices with fewer than \(k \) neighbors.

2. If any vertices remain in the interference graph \(G_i \) (all such vertices have \(k \) or more neighbors) then:
 - Pick a vertex \(n \) (using some heuristic condition), put it on the stack and remove vertex \(n \) from \(G_i \), along with all edges incident to it.
 - If this causes some vertex in \(G_i \) to have fewer than \(k \) neighbors, then go to step 1; otherwise, repeat step 2.

3. Successively pop vertices off the stack and color them in the lowest color not used by some neighbor:
 - If some vertex cannot be colored, then pick a live range to spill, spill it, and restart at step 1.

Chaitin Allocator
(Bottom-up Coloring)

- **renumber**
- **build**
- **coalesce**
- **spill costs**
- **simplify**
- **select**
- **spill**

Build SSA, build live ranges, rename

Build the interference graph

Fold unneeded copies

\[LR_x \rightarrow LR_y, \text{ and } < LR_x, LR_y > \notin G_i \Rightarrow \text{combine } LR_x \& LR_y \]

Estimate cost for spilling each live range

While stack is non-empty:

- **pop** \(n \), insert \(n \) into \(G_i \), & try to color it

- **spill** uncolored definitions & uses

While stack is non-empty:

- **pop** \(n \), insert \(n \) into \(G_i \), & try to color it

- **spill** uncolored definitions & uses

while \(N \) is non-empty:

- **push** \(n \) onto stack

- **remove** \(n \) from \(G_i \)
Chaitin-Briggs Allocator *(Bottom-up Coloring)*

1. **renumber**
 - Build SSA, build live ranges, rename

2. **build**
 - Build the interference graph

3. **coalesce**
 - Fold unneeded copies

 \[\text{LR}_x \rightarrow \text{LR}_y, \text{and } < \text{LR}_x, \text{LR}_y> \notin G \Rightarrow \text{combine LR}_x \text{ & LR}_y \]

4. **spill costs**
 - Estimate cost for spilling each live range

5. **simplify**
 - Remove nodes from the graph

6. **select**
 - While stack is non-empty
 - pop n, insert n into GI, & try to color it
 - Spill uncolored definitions & uses

7. **spill**

Briggs’ algorithm *(1989)*

Picking a Spill Candidate

When \(\exists n \in G_n, n \geq k \), simplify must pick a spill candidate

Chaitin’s heuristic

- Minimize spill cost + current degree
- If LR has a negative spill cost, spill it pre-emptively
 > Cheaper to spill it than to keep it in a register
- If LR has an infinite spill cost, it cannot be spilled
 > No value dies between its definition & its use

Spill cost is weighted cost of loads & stores needed to spill x

Bernstein *et al.* Suggest repeating simplify, select, & spill with several different spill choice heuristics & keeping the best
Other Improvements to Chaitin-Briggs

Spilling partial live ranges
- Bergner introduced interference region spilling
- Limits spilling to regions of high demand for registers

Splitting live ranges
- Simple idea — break up one or more live ranges
- Lets allocator use different registers for distinct subranges
- Lets allocator spill subranges independently \(\text{(use 1 spill location)}\)

Conservative coalescing
- Combining \(L_{Rx} \rightarrow L_{Ry}\) to form \(L_{Rxy}\) may increase register pressure
- Limit coalescing to case where \(L_{Rxy} < k\)
- Iterative form tries to coalesce before spilling

Chaitin-Briggs Allocator (Bottom-up Global)

Strengths & weaknesses
- \(\uparrow\) Precise interference graph
- \(\uparrow\) Strong coalescing mechanism
- \(\uparrow\) Handles register assignment well
- \(\uparrow\) Runs fairly quickly
- \(\downarrow\) Known to overspill in tight cases
- \(\downarrow\) Interference graph has no geography
- \(\downarrow\) Spills a live range everywhere
- \(\downarrow\) Long blocks devolve into spilling by use counts

Is improvement possible?
- With rising spill costs, aggressive transformations, & long blocks
What about Top-down Coloring?

- The Big Picture
 - Use high-level priorities to rank live ranges
 - Allocate registers for them in priority order
 - Use coloring to assign specific registers to live ranges

- The Details
 - Separate constrained from unconstrained live ranges
 - A live range is constrained if it has \(\geq k \) neighbors in \(G \)
 - Color constrained live ranges first
 - Reserve pool of local registers for spilling (or spill & iterate)
 - Chow split live ranges before spilling them
 - Split into block-sized pieces
 - Recombine as long as \(^{\leq} k \)

Tradeoffs in Global Allocator Design

- Top-down versus bottom-up
 - Top-down uses high-level information
 - Bottom-up uses low-level structural information

- Spilling
 - Reserve registers versus iterative coloring

- Precise versus imprecise graph
 - Precision allows coalescing
 - Imprecision speeds up graph construction

Big-iron ⇒ precise, iterated, bottom-up
JIT ⇒ imprecise, reserve, b-u or t-d
Regional Approaches to Allocation

Hierarchical Register Allocation (Koblenz & Callahan)

• Analyze control-flow graph to find hierarchy of tiles
• Perform allocation on individual tiles, innermost to outermost
• Use summary of tile to allocate surrounding tile
• Insert compensation code at tile boundaries (LR_x→LR_y)

Strengths
→ Decisions are largely local
→ Use specialized methods on individual tiles
→ Allocator runs in parallel

Weaknesses
→ Decisions are made on local information
→ May insert too many copies
Still, a promising idea

• Anecdotes suggest it is fairly effective
• Target machine is multi-threaded multiprocessor (Tera MTA)

Proportional Register Allocation (Proebsting & Fischer)

• Attempt to generalize from Best’s algorithm (bottom-up, local)
• Generalizes “furthest next use” to a probability
• Perform an initial local allocation using estimated probabilities
• Follow this with a global phase
 > Compute a merit score for each LR as (benefit from x in a register = probability it stays in a register)
 > Allocate registers to LRs in priority order, by merit score, working from inner loops to outer loops
 > Use coloring to perform assignment among allocated LRs

• Little direct experience (either anecdotal or experimental)
• Combines top-down global with bottom-up local
Regional Approaches to Allocation

Register Allocation via Fusion (Lueh, Adl-Tabatabi, Gross)

- Use regional information to drive global allocation
- Partition CFGs into regions & build interference graphs
- Ensure that each region is k-colorable
- Merge regions by fusing them along CFG edges
 - Maintain k-colorability by splitting along fused edge
 - Fuse in priority order computed during the graph partition
- Assign registers using int. graphs
 \(i.e., \) execution frequency

Strengths
- Flexibility
- Fusion operator splits on low-frequency edges

Weaknesses
- Choice of regions is critical
- Breaks down if region connections have many live values

List Scheduling

\[
\begin{align*}
\text{Cycle} & \leftarrow 1 \\
\text{Ready} & \leftarrow \text{leaves of } P \\
\text{Active} & \leftarrow \emptyset \\
\text{while} \ (\text{Ready} \cup \text{Active} \neq \emptyset) & \\
\text{if} \ (\text{Ready} \neq \emptyset) & \text{then} \\
& \text{remove an op from Ready} \\
& \text{S(op)} \leftarrow \text{Cycle} \\
& \text{Active} \leftarrow \text{Active} \cup \text{op} \\
\text{Cycle} & \leftarrow \text{Cycle} + 1 \\
\text{for each op} & \in \text{Active} \\
\text{if} \ (\text{S(op)} + \text{delay(op)} \leq \text{Cycle}) & \text{then} \\
& \text{remove op from Active} \\
\text{for each successor s of op in P} & \\
\text{if} \ (s \text{ is ready}) & \text{then} \\
& \text{Ready} \leftarrow \text{Ready} \cup s
\end{align*}
\]

Removal in priority order

Note: only one op per cycle

Op has completed execution

If successor’s operands are ready, put it on Ready
Detailed Scheduling Algorithm I

Idea: Keep a collection of worklists $W[c]$, one per cycle

> We need $MaxC = \text{max delay} + 1$ such worklists

Code:

```plaintext
for each $n \in \mathbb{N}$ do begin
    count[$n$] := 0; earliest[$n$] = 0 end
for each ($n_1,n_2) \in \mathbb{E}$ do begin
    count[$n_2$] := count[$n_2$] + 1;
    successors[$n_1$] := successors[$n_1$] $\cup$ {n2};
end
for i := 0 to $\text{MaxC} - 1$ do
    $W[i]$ := $\emptyset$;
    $Wcount$ := 0;
for each $n \in \mathbb{N}$ do
    if count[$n$] = 0 then begin
        $W[0]$ := $W[0]$ $\cup$ {n}; $Wcount$ := $Wcount$ + 1;
    end
$c := 0$; // $c$ is the cycle number
$cW := 0$; // $cW$ is the number of the worklist for cycle $c$
instr[$c$] := $\emptyset$;

Idea: Keep a collection of worklists $W[c]$, one per cycle

We need $MaxC = \text{max delay} + 1$ such worklists

**Detailed Scheduling Algorithm II**

```plaintext
while $Wcount > 0$ do begin
 while $W[cW] = \emptyset$ do begin
 $c := c + 1$; instr[c] := \emptyset; $cW := \text{mod}(cW+1,MaxC)$;
 end
 nextc := $\text{mod}(c+1,MaxC)$;
 while $W[cW] \neq \emptyset$ do begin
 select and remove an arbitrary instruction x from $W[cW]$;
 if \exists free issue units of type(x) on cycle c then begin
 instr[c] := instr[c] \cup {x}; $Wcount$:= $Wcount$ - 1;
 for each $y \in \text{successors}[x]$ do begin
 count[y] := count[y] - 1;
 earliest[y] := max(earliest[y], $c+$delay(x));
 if count[y] = 0 then begin
 loc := $\text{mod}(\text{earliest}[y],MaxC)$;
 $W[loc]$:= $W[loc]$ \cup {y}; $Wcount$:= $Wcount$ + 1;
 end
 end
 end
 else $W[nextc] := W[nextc] \cup \{x\}$;
 end
end
```

**Priority**
**Instruction Scheduling** *(revisited)*

In an earlier lecture, we introduced list scheduling

- Efficient, greedy, local heuristic
- Technique of choice for more than 20 years

How can the compiler improve on local list scheduling?

- Different priority functions & tie breakers
- Use forward & backward list scheduling (Figures 12.4 & 12.5)
- Increase size of region fed to scheduler *(classic answer)*
- Try other algorithms

Little success with other algorithms on code written by humans

- Some compiler generated code defeats the list scheduler

---

**What About OOO Execution?**

Out-of-order microprocessors should simplify scheduling

- Processor looks at a window in the instruction stream
- Processor executes operations as they are ready
- Processor (typically) renames registers for correctness

Does this eliminate the need for instruction scheduling?

- For any finite window, ∃ a worst case schedule
  - 100 operation window ⇒ 110 for FU₁, 110 for FU₂
- Schedule need not be perfect, but must be not bad
- OOO can compensate for mild variations in latency
  - Cache miss, infrequent stall, ...

Depth-first schedule!
Other Priority Functions

Computing Ranks

- Maximum path length containing it
  - Favors critical path; tends towards depth-first
- Number of immediate successors in P
  - Favors longer ready queue; tends toward breadth-first
- Total number of descendants in P
  - Favors heavily used values; tends toward breadth-first
- Add latency to node’s rank
  - Favors long operations to cover their latencies
- Increment rank of if node contains a last use
  - Tends to shorten live ranges & decrease register pressure

These can be used as priorities or as tie-breakers
  - Use randomization & repetition

Forward versus Backward List Scheduling

Folk wisdom has long suggested doing both

- Some blocks amenable to forward scheduling
- Some blocks amenable to backward scheduling
- Conventional approach is to try both & keep best result

Does it matter?

- Takes dependence graph that is both wide & deep
- Depends on detailed knowledge of the specific block
- See Figures 12.4 & 12.5 in EAC for a real example

Advice

- Use several forward & several backward passes
- Use different priorities & tie breakers, or use randomization
How Well Does List Scheduling Do?

Non-optimal list schedules (%) versus available parallelism
1 functional unit, randomly generated blocks of 10, 20, 50 ops

At the peak, compiler should apply other techniques
- Measure parallelism in list scheduler
- Invoke stronger techniques when high-probability of payoff

Scheduling over Larger Scopes

Basic idea is simple
- Longer sequence of operations ⇒ more opportunities
- Pick a multi-block path & treat it as a single block
- Add compensation code for other exits (& entries)

Several distinct scopes
- Extended basic blocks
  - A sequence $b_1, b_2, ..., b_n$ where $b_i$ has 1 predecessor, $1 < i \leq n$
- Traces
  - An arbitrary acyclic path, usually chosen from trace data
- Loops
  - Think of source-language loop, can find arbitrary loops
**Extended Basic Blocks**

An example

Extended Basic Blocks

→ b₁, b₂, b₄
→ b₁, b₃
→ b₅
→ b₆
Both b₅ and b₆ have > 1 predecessors

Scheduling EBBs
- Treat EBB as a block
- Moving an operation across boundary can necessitate compensation code
- Can restrict motion to zero growth case with 12 to 13% improvement [LCTES 98]

**Traces**

Technique developed for the Multiflow Computer

1 Identify high-frequency path
2 Schedule it as if a single block
3 Insert compensation code
4 Schedule next important path

Results
- Fast trip through common path
- Off-path quality declines
- Compensation code \(\Rightarrow\) growth
Loop Scheduling (Software Pipelining)

Loops deserve special attention

- Their bodies execute frequently
- They do most of the work in time-critical computations
- They often contain major holes & interlocks

The ideas

- Schedule multiple iterations together
- Run several iterations concurrently
- Shorten “initiation interval” for overall speed
  - Cycles between initiation of different iterations
  - $= \text{length of computation kernel}$

Example

```
loadI r0,0 ⇒ r1
loadI r0,400 ⇒ r2
floatAI r0,c ⇒ fr1
10 floatAI r1,a ⇒ fr2
11 fadd fr2,fr1 ⇒ fr2
12 floatAE fr2 ⇒ r1,b
13 addI r1,8 ⇒ r1
14 cmp_LE r1,r2 ⇒ r3
15 chr r1 ⇒ 10,16
```

2 cycle delay

3 cycle delay

How fast (in cycles per iteration) can we execute this loop?
Minimum Number of Cycles in Kernel

• Machine resource constraint:
  - \( N_u \) is the number of units of type \( u \)
  - \( I_u \) is the number of instructions requiring a unit of type \( u \)
  - \( \left\lfloor \frac{I_u}{N_u} \right\rfloor \) is the minimum number of cycles required for one iteration of the loop based on unit \( u \)
  - \( \max_u \left\lfloor \frac{I_u}{N_u} \right\rfloor \) is the minimum number of cycles required for all units

• Slope constraint
  - If the loop computes a recurrence over \( k_r \) cycles
  - And the total delay along the recurrence cycle is \( d_r \)
  - Then each iteration is going to require \( \frac{d_r}{k_r} \) cycles to execute
  - \( \max_r \left\lfloor \frac{d_r}{k_r} \right\rfloor \) is the minimum number of cycles per iteration to compute recurrences

Example

```plaintext
loadI r0,0 ⇒ r1
loadI r0,400 ⇒ r2
floadAI r0,c ⇒ fr1
10 floadAI r1,a ⇒ fr2
11 fadd fr2,fr1 ⇒ fr2
12 fistoreAI fr2 ⇒ r1,b
13 addI r1,8 ⇒ r1
14 cmp_LT r1, r2 ⇒ r3
15 chr r3 ⇒ 10,16
```

Floating Pt Unit: 1 instruction
Load/Store Unit: 2 instructions
Integer Unit: 3 instructions

⇒ 3 cycles minimum
Loop Scheduling

Mechanics

• Determine lower bound on initiation interval
  > Number of issue slots
  > Longest dependence chain
  \[\text{Register constraint, too}\]

• Lay out a schedule of appropriate length

• Use list scheduling with a modulo cycle count
  > Could fail — just try with one more cycle per iteration

• Add a pre-loop & a post-loop to “fill” & “drain” the pipeline

It gets pretty intricate!

• Conditional control flow complicates matters even more

Example

```
loadI r0, 0 => r1
loadI r0, 400 => r2
floatAI r0,c => fr1
10 floatAI r1,a => fr2
11 fadd fr2,fr1 => fr2
12 fstoreAI fr2 => r1,b
13 addI r1,8 => r1
14 cmp_LE r1,r2 => r3
15 cbrr r1 => l0,l6
```

Floating Point Unit
Integer Unit
Load/Store Unit

<table>
<thead>
<tr>
<th>Load/Store Unit</th>
<th>Integer Unit</th>
<th>Floating Point Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>floatAI r1,a =&gt; fr2</td>
<td>addI r1,8 =&gt; r1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cmp LE r1,r2 =&gt; r3</td>
<td></td>
</tr>
<tr>
<td>fstoreAI fr3 =&gt; r1,b-16</td>
<td>cbrr r3 =&gt; 10,16</td>
<td>fadd fr2,fr1 =&gt; fr3</td>
</tr>
</tbody>
</table>

2 cycle delay
3 cycle delay
**Final Code**

    ld  r1,0
    ld  r2,400
    flid fr1, c
p1    flid fr2,a(r1);   ai  r1,r1,8
p2    comp r1,r2
p3    beq  e1;    fadd  fr3,fr2,fr1
k1    flid fr2,a(r1);   ai  r1,r1,8
k2    comp r1,r2
k3    fst fr3,b-16(r1); blek1;   fadd  fr3,fr2,fr1
e1    nop
e2    nop
e3    fst fr3,b-8(r1)