Consider the following nondeterministic finite state automata:

1. [10] Give the regular grammar that accepts the same set.
2. [10] Give the deterministic finite state automaton that accepts the same set.
3. [10] Give the minimal state deterministic finite state automaton that accepts the same set.
4. [48] Consider the following grammar:
 \[
 S \rightarrow X \mid aYS \\
 X \rightarrow bX \mid b \\
 Y \rightarrow cY \mid c
 \]
 For each grammar class below determine if the grammar belongs to that class. If it belongs to that class, give the parsing table, if not explain why not [1 point for correct yes/no answer, 7 points for correct table or proof of why it is not of that class.]
 (a) LL(0)
 (b) LL(1)
 (c) LR(0)
 (d) LR(1)
 (e) SLR(1)
 (f) LALR(1)
5. [7] Show that the set of binary integers containing the string 010 is regular.
6. [7] Show that the set of binary integers not containing the string 010 is regular.
7. [7] Show that a grammar that is ambiguous cannot be LL(1).
8. [1] What is your TA's name?