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Abstract

In order to compare a new software development to
previous developments one usually has to characterize the
existing environment and determine the characteristics
governing that environment. Often a baseline model is
built that is empiricall y determined by collecting data from
a previous class of projects, and a composite model is built
that represents the class of projects. However, if you can
develop a theoretical model of how a baseline should
behave and you collect baseline data from a set of projects,
then you can determine whether the empirical baseline
agrees with the theoretical model. In this paper we will use
the WebME data visualization tool to investigate this
question. We wil l look at various classes of data (e.g.,
effort data, error data) taken from the NASA Software
Engineering Laboratory (SEL) and determine whether real
project data agrees with the theoretical characterization of
that data.

Keywords: Characterization, Measurement, Data
collection, Visualization

1.0 Introduction

In order to compare a new software development to
previous developments one usually has to characterize the
existing environment and determine the characteristics
governing that environment. How are resources spent over
time? How are errors found and fixed? How are personnel
used?  These are all questions that must be answered so
that the risk can be identified, i.e., deviations from that
model can signify an event (both good and bad) that
management must react to. Is this development on track?
Must additional resources be added for testing? Must the
schedule be lengthened due to slippage? Answering these
questions gives management a better handle on how the
new task compares to standard tasks from the past.

Often a baseline model is empiricall y determined by
collecting data from a previous class of projects, and a
composite model is buil t that represents that class of
projects. This collective model is used as the basis for
comparing all new developments. However, in order for
this baseline model to be effective, it must represent the
same set of assumptions and operating conditions as the
new project being measured.

Collecting empirical data, however, has the danger that the
collected projects do not truly reflect the same
characteristics as a new project. However, if you can
develop a quantitative theory of how a baseline should
behave and you collect baseline data from a set of projects,
then you can determine whether the empirical baseline
agrees with this theoretical model. If this is so, then you
have increased confidence that your model of the process
agrees with reality, and you can more readily use this
model in other situations.

Various methods exist for computing baseline data. A
common approach is a regression model where an equation
is developed that minimizes the error between a predicted
value and an actual value. We can develop regression
models for linear equations, quadratic equations, or any
other predefined relationship that we wish. The danger
here is that we do not reall y understand if the given data
reflects that relationship, only that the set of collected data
does fit the expected mathematical relationship.

A more sophisticated model would use a clustering
relationship first to isolate subsets of data that have similar
characteristics, and then use a regression approach to
generate a best approximation to the underlying
relationship. In this case, we have first identified separate
categories of projects via the clustering algorithm. By now
using a regression model, we have (it is assumed) chosen
those projects that have similar development
characteristics, so the resulting regression line more
readily represents the underlying relationship.
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As we discuss later, we have been working on an approach
similar to this, but rather than using a common regression
process, we previously developed a baseline
characterization model called the characteristic curve that
attempts to determine trend changes in the data. This
signifies changes in the underlying development process,
which provides a method to alter the underlying
relationship during different phases of the development
cycle. For example, measuring source code errors has a
radicall y different growth characteristic during the design
phase (with no source code to yield errors), during the
coding phase (when source code errors occur often) to the
testing phase (when new errors should be rare and existing
errors start to disappear). This led us to the question of
what are the underlying equations, if any, that govern such
baseline characterizations?

In this paper, we will l ook at various assumptions that
underlie baseline characterizations and we will try to
correlate those assumptions with data collected from a
variety of software development projects. Does this
collective model meet any idealized norm? Do resource
usage and reliability measurements agree with some
underlying theoretical foundation? For example, in the late
1970s there was considerable interest in resource usage
(e.g., effort data) and its relation to the Rayleigh curve
(y=2 K a t exp(-a t2)) as a formal effort model. In this
paper we will investigate this previous work on formal
development models for both resource usage and error
data.

We will demonstrate this analysis using the capabil ities of
the tool WebME, explained in the next section, which can
aid in this analysis. We show how a powerful plotting
package can aid in analyzing baseline characteristics and
presenting information back to the developer.

1.1 The Software Engineering Laboratory
Environment

The data that we will present comes from the Software
Engineering Laboratory (SEL) at NASA Goddard Space
Flight Center. The SEL was organized in 1976 to study
flight dynamics software, and since that time it has had a
significant impact on software development activities
within the Flight Dynamics Branch (since January 1998,
the Information Systems Center). Many technologies have
been studied (e.g., defect analysis, resource usage, Ada,
cleanroom, IV&V, COTS, OO design) and have been
reported elsewhere [2].

As a brief overview of SEL operations, the SEL has
collected and archived data on over 150 software
developments. The data are also used to build typical
project baselines against which ongoing projects can be
compared and evaluated. Projects range in size from
approximately 10K lines of source code to 300K to 500K

at the high end. Projects involve from 6 to 15 programmers
and typicall y take from 12 to 24 months to complete.
FORTRAN was the original development language, with a
movement to Ada in the late 1980s and then to C and C++
in the 1990s.

1.2 Data visualization

In order to aid in understanding the collected data, the SEL
has developed two data visualization tools. The Software
Management Environment (SME) [4] provided quasi-real-
time feedback on project data. Data would be entered in a
database within two to three weeks of it being collected,
and then a program was run to extract that data for entry
into the SME database. Management could then use SME
to display growth rates of certain project attributes (e.g.,
lines of code, staff hours, errors found) and compare them
to previous projects with similar characteristics.

The weakness of SME, however, was that knowledge of
software development is built staticall y into the tool. That
is, certain characteristics of the baseline model were
inherent in the design of SME. For example, only two
development models were included -- the large attitude
systems written in Fortran and the smaller onboard
simulators written in Ada. All projects were classified
according to either of these models, even it if didn't fit
those parameters. While appropriate for the SEL
environment of the early 1980s, it didn't fit the changing
role of flight dynamics software in the late 1980s and
1990s.

 To alleviate this problem, a second tool, WebME (Web-
based Measurement Environment) was buil t to
dynamically baseline a set of previous projects that "look
li ke" a given development in order to characterize a new
project [6]1. This collective model is used as the baseline
for comparing all new developments. In the analysis that
follows, we use WebME as our tool for processing the
models we wish to investigate.

2.0 Calibration using effort data

As a first step, we first calibrated our process using
WebME on effort data. Tracking resource expenditures is a
relatively standard process by many organizations and a
fairly extensive literature exists to compare our results
against.

The SEL collected effort reports as hours of activity per
week on each project. An important concern is to
                                                       
1 WebME has other characteristics, principall y the ability
to collect data across a distributed development
environment using the world wide web. However, the
dynamic modeling of baseline data is of primary concern
in this paper.
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understand if the effort on a project is tracking according
to preconceived plans. However, real-world data is
generally characterized as noisy. For example, Figure 1
represents the staff hours by week for one particular SEL
project. As shown, there seems to be lit tle structure in the
data.

Figure 1. Resource data as hours per week

An important goal for baseline characterization is to
determine whether there is an underlying model that
structures this data. We can apply various smoothing
techniques to achieve some structure. For example, Figure
2 represents 3 methods for determining the structure for
the data of Figure 1:

We can compute a moving average (e.g., average of
successive data points). This causes local
perturbations to disappear. The jagged line of Figure 2
represents this approach.

We can compute an approximation of the data. Earlier we
developed a model called the characteristic curve [5].
The 9-section segmented line of Figure 2 represents
the results of applying this approach. In this case we
try to determine trend changes in the data, as signified
by changes in the line segments. We call these points
pivot points, and claim that they represent changes in
the underlying model of the data. In this case we are
building a formal model empirically by looking at the
data itself.

In both of the above 2 cases, however, we are creating a
baseline object that is based upon the empirical
information that is present. Work in the 1970s
identified the Rayleigh curve

y=2 K a t exp(-a t2)
as an approximation of resource usage on software
development projects [1]. The theory of the Rayleigh
curve grew out of hardware reliability theory. The
effort needed to work on a software development is
proportional to the number of modules that still need

to be written. But this is related to the number of
modules that already exist. The solution to this is a
second order differential equation with the Rayleigh
curve as its solution. It is often given in its integral
form as:

Cost = K exp(-a t2),
with periodic resource expenditures as its derivative.

This curve has 2 parameters: K, which is the area
under the curve (i.e., the entire cost of the project in
hours) and a, which represents the skewness of the
curve. If Td represents the time at which the curve is
maximal, then a=1/ Td

2. If we normalize the area
under the curve to be 1 (i.e., the curve represents a
probabilit y distribution), then each point represents
the percent of effort that occurs during a given time
period. We have then reduced resource use to the
single parameter, a, which is only a function of the
time when expenditures reach a maximum2.

Figure 2. Modeled resource data

The question that needs to be asked is which of these
models (or any other you care to develop from the original
data) represents the “true” meaning of the scatterplot of
Figure 1? As Figure 2 shows, all 3 are reasonable
approximations of the data. However, each has a different
interpretation.

                                                       
2 An interesting sidelight to this study is that in our original
1978 Rayleigh curve analysis [1], it took approximately 12
hours to analyze and plot the Rayleigh estimators. In this
current study it took about 1 hour to analyze and prototype
the Rayleigh model for WebME, about 30 minutes to write
the WebME instrument (executable program) to plot the
points and 15 minutes to write the script to add the model
to WebME. Each graph now takes a single menu click and
about 10 seconds to plot.
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The average curve represents reality for this particular
project. It simply records what has happened. There is no
way to determine whether this can be considered a normal
or abnormal plot. We can collect several projects and
compute an average of those as a baseline. We can
compare the original project average and this baseline only
if we can be sure they represent the same project
characteristics.

The characteristic curve represents certain decision
points in the data. It is a best-fit set of line segments whose
end points (i.e., pivot points) represent local minima and
maxima (i.e., zero first derivatives in the original data).
These indicate trend changes. Unlike the above averages
baseline, the use of derivative trend changes imposes a
structure (albeit an assumption that we are making in how
the model behaves) on the data that is missing from the
previous averages model. Whereas the averages baseline is
purely driven by the data that is present, the use of the
characteristic curve imposes a structure on the meaning of
the data.

Therefore, this class of model is more of a descriptive or
evaluation model. Collecting a baseline of similar projects
has more meaning than before. If we again collect several
projects and compute the characteristic curve of the
average among this collection, differences between the two
indicate different trends and indicate different operating
characteristics between the set of baseline projects and the
new project.

The Rayleigh curve is the only estimator of the three that
is firmly based upon a theoretical model independent of
the actual data. The computation of Td is the only
computation needed to fit the curve to the data. This is
more of a prediction model without the need to first
compute a baseline. We can use the Rayleigh curve to
predict resource use into the future. If we build a baseline
from a set of projects and it agrees with the Rayleigh
estimator, then we have an empirical validation that the
Rayleigh curve can be an estimator of resource
expenditures. In addition, the use of a theoretical model
allows us to build a “theoretical baseline” before we have a
collection of projects to study. That is, we can compare a
new development to this theoretical model before we have
several projects to compare it to. This would be useful in
the current SEL environment as the old Flight Dynamics
Division has given way to the newer Information Systems
Center.

Using WebME we evaluated the effectiveness of the
Rayleigh curve as a predictor of resource usage. Figure 3
represents this data. It plots the Rayleigh curve estimator
of Figure 1 with the average of the 8 projects3 that

                                                       
3 For this analysis, we are using WebME with a subset of
the SEL database which includes 18 projects.

WebME’s cluster analysis determined to be in the same
baseline class. As shown, both curves have similar
profiles, which gives credence to using a Rayleigh curve
estimator.

Figure 3. Baseline data

The original SME implementation used a static definition
for baseline projects, which reduced to simply the
implementation language as the discriminator. Large
ground support systems were all written in Fortran and
smaller on-board simulators were all written in Ada.
Therefore only two baselines were buil t. For WebME we
dynamically created baselines by looking at similar
projects, based upon the data. A clustering algorithm was
developed [3] and all projects with Euclidean distances
closest to the given project were part of the baseline.

It should be mentioned that the algorithm we used ensures
that all baseline projects look somewhat like the original
project, so it is not too surprising that the average for the
baseline is somewhat like the average for a single project,
and hence similar to the Rayleigh estimator. However, the
degree of similarity to the Rayleigh curve still makes the
equation a good estimator.  In fact, we obtained the
following "distances" from our clustering algorithm for the
following estimators for the project in Figure 3 and for 3
others in our database. (Numbers represent average
separation between the estimating baseline curve and the
original data, in hours per week for the effort data of the
following table):
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Estimator Fig. 3 Proj A Proj B Proj C4

Moving average of
all raw data points

93.9* 117.9+ 64.8* 36.4

Characteristic
curve

98.5+ 107.9* 71.3+ 30.0*

Rayleigh model 94.3 117.2 66.4 55.3+
* Best fit
+ Worst fit

All three models give approximately the same precision,
with the Rayleigh estimator generally fall ing between the
other two.

In Figure 4 (a-c) we apply the same Rayleigh estimator
and clustering baseline on 3 different projects. We get
reasonable results, except for projects where effort peaks
later in the development cycle (Figure 4(c)). In this case,
the Rayleigh curve underestimates resource use.
Apparently a different process is happening on these
projects, which requires further study.

In each case the baseline curves are dynamicall y
developed by clustering those projects that have a similar
development cycle. Figure 4(a) baseline includes 9
projects, as does Figure 4(b). The Figure 4(c) baseline only
includes 7 similar projects.

3. Size characteristics

3.1 Estimating size

After studying effort data, we moved our attention to size
data, principall y lines of code. In looking at the

                                                       
4 As we explain for Figure 8 later, the poor fit for the
Rayleigh curve here can be explained by the problems that
this project had in finding and fixing defects.

assumptions behind the Rayleigh curve as an effort
estimator, we believe that the same set of assumptions
govern program size. That is the number of lines of code
(e.g.., modules) that can be written at a given point in time
depends upon how many other lines of code already exist.
This leads to the same solution as in the previous effort
estimators.

In order to test this hypothesis with WebME, we had to
make a simple change, however, to our WebME Rayleigh
curve model. In most developments, source code
production does not begin until several time units (e.g.,
months) have passed. We modified the model to ignore
those initial zero points and to estimate Td and a once
source code production started.

Using this modified model, we plotted several projects,
giving both the Rayleigh estimator and the moving average
(Figures 5(a) and 5(b)). As shown, the Raleigh curve
remains a reliable estimator of code production on a
project, and could provide a reasonable estimate on overall
project size that can be compared to other estimators that a
project manager may use.

3.2 Productivity

Program size is not the only size estimator of use to project
management. Measuring productivity provides another
measure of overall performance. However, most modeling
of productivity hides important characteristics hidden in
the data. For example, Figure 5 shows lines of code
production by week. We can, in Figure 6(a) exhibit
productivity by week by dividing by the effort for that

week. However, each weekly total by itself does not shed
much light on the process. In Figure 6(b) we plot the
growth of a project each week. In this case we can
compute productivity plotting the total size of the project
by week and then by dividing the size of the project by the
total effort to date. However, this too hides details of the

(a) (b) (c)
Figure 4. Rayleigh curve  vs. Baselines on 3 projects
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process since it appears to be mostly a monotonicall y
growing curve.

We solved this in WebME by plotting Figure 6(b)
normalizing effort by week. That is, we plotted total
system size in lines of code divided by total effort on a
weekly basis. Figure 7 shows the results of this where we
can see overall productivity on a week by week basis.

An entirely new attribute now shows up in Figure 7. We
see that productivity remains 0 until week 33, when it rises
rapidly. This corresponds to the start of the coding phase.
Maximum productivity of 5.04 lines per hour is reached in
week 57, where it peaks and then starts to drop. It drops to
a point of 3.075 lines per hour in week 115, which
represents the end of the project.

This clearly shows that week 57 is a transition point in the
project. Maximum source code production is reached in
week 57 and the project enters the testing phase where
generation of new lines of code is secondary to removing
defects. Corroborating this are the facts that week 56 is a
pivot point for effort (Figure 2) with a maximal value of
621 hours of effort and week 57 is a maximal pivot point
for source code production (not shown) of 7021 lines of
code produced. By developing this weekly productivity
estimator with WebME from the data for this project, we
were easil y able to show changes in the development
behavior in this project.

(a) Project A

Figure 5. Lines of Code estimators

(b) Project B

Figure 5 (cont). Lines of Code estimators

(a) Lines/hour by week

(b) Total lines by week

Figure 6. Productivity

The slope of the line in Figure 7 from weeks 57 through
115 is negative productivity and shows the effort expended
in testing and fixing defects. Any testing phase will by
necessity incur some loss in productivity, which
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management should monitor. The slope of this line is a
predictor of poor performance.

Figure 7. Productivity by week

Not every project, however, has the "cliff” shape of Figure
7. Figure 8 presents the productivity from another project.
Note that there are productivity "dips" throughout the
second half of the project. This means that there were
significant time periods throughout the process where new
code production stopped and defect repair took a major
effort. Rather than coding throughout the coding phase,
significant time was spent in repair and redesign, probably
due to poor initial design. Looking at defect rates for this
project shows that some of this assumption is true.

Figure 8. Less structured project

Figure 9(a) represents a typical SEL project. Here we plot
both the moving average and Rayleigh estimator of
defects. In this case the Rayleigh estimator is
approximately the same as the moving average. Thus the
real data (e.g., defect rates) agrees fairly closely with the
theory. Defects are found fairly early in the testing process
and reach a peak in week 69; about 3 months after the end

of the coding phase in week 57. As with effort and size
data, the Rayleigh curve is again a reasonable estimator of
defect rates.

(a) Defect rates from Figure 7

(b) Defect rates from Figure 8

Figure 9. Defect Rates

However, the defect rates of Figure 9(b) show the same
chaotic behavior of Figure 8. The moving average has a
greater value than the Rayleigh estimator later in the
development cycle. In this case, weekly defect rates reach
about 15 a week by week 63 and remain at that level until
week 89, a span of 6 months. It seems like the problem
would have been more apparent earlier in the development
cycle by reporting data as in productivity measures as in
Figure 8 rather than as simply error counts as in Figure 9.

4. Conclusions

In this paper we have looked at the process of building
models of development data according to three criteria:
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1. Basing models upon the data itself. The moving
average is a common approach that is used. This
model provides no predictive capabilities; it is simply
an accounting of what happened. Predicting using this
model depends upon choosing projects with the same
characteristics; something we only know how to do
poorly.

2. Basing models on empirical characteristics of the
data. We previously developed the characteristic
curve as a means of determining trends in the data.
This imposes some structure on the data that is absent
from the purely empirical approach. The characteristic
curve, for example, is less precise than the moving
average, but its implied assumptions allow for
interpreting the data from other projects more
effectively than with the moving average model.

3. Basing models on a theoretical foundation. We have
been using the Rayleigh curve from hardware
reliabil ity theory as an underlying model for software
growth. This model provides less information about
the specific project, but allows the model to be used as
a predictive model of future behavior.

Basing models purely on the data lacks a predictive nature
to the characterizing baselines. However, the latter two
techniques allow us to evaluate and predict future behavior
with some degree of precision. We have found that the
Rayleigh curve seems appropriate in our environment.

Displaying productivity data, as given in Figures 7 and 8
as project productivity by week, allows us to view
characteristics of the project that are not readily apparent
in other ways. In particular, the shape (or lack thereof) of
the productivity curve in Figures 7 and 8 indicate potential
problems before other data indicates the same problem.
The slope of this curve (negative productivity) indicates
the amount of testing in a project, and further study to
indicate the relationship of this slope to overall testing
costs and length seems warranted.

Finally, this analysis could not have been accomplished
without a tool such as WebME. The abilit y to easil y
develop models of a process and then have those models
applied to any given project within a matter of seconds
allows project management to easil y compare a given
project to other projects in a system database as a real-time
project management tool. It is this instant feedback that is
often lacking with other metrics and data collection
activities. Tools li ke WebME could provide the inspiration
to get management "on board" and agree to collect relevant
data. This is often the hardest part of metrics analysis --
getting management "buy in" to the process. The easy
interface to the database and near real-time analysis may
be all that is necessary.
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