A Comparison of Techniquesfor Extracting I nfor mation from Software
Project Data

Roseanne Tesoriero
Department of Electrical Engineering &
Computer Science
The Catholic University of America
Washington, DC 20064
202-319-5019
tesoriero@cua.edu

Abstract

In order to compare a hew software development to
previous developments one usudly has to characterize the
existing environment and determine the characteristics
governing that environment. Often a basdline mode is
built that is empiricaly determined by colleding data from
aprevious classof projeds, and a ampaosite model is built
that represents the class of projeds. However, if you can
develop a theoretical modd of how a basdline should
behave and yau coll e basdli ne data from a set of projeds,
then you can determine whether the empiricd basdine
agrees with the theoretica modd. In this paper we will use
the WebME data visudization tod to investigate this
question. We will look at various classes of data (e.g.,
effort data, error data) taken from the NASA Software
Engineering Laboratory (SEL) and determine whether red
projed data ayrees with the theoreticd characterization of
that data.

Keywords: Characterization,
colledion, Visualization

Measurement, Data

1.0 Introduction

In order to compare a new software development to
previous developments one usudly has to characterize the
existing environment and determine the characteristics
governing that environment. How are resources gent over
time?How are errors found and fixed? How are personnel
used? These ae al questions that must be answered so
that the risk can be identified, i.e, deviations from that
model can signify an event (bath good and bed) that
management must react to. Is this development on track?
Must additional resources be added for testing? Must the
schedule be lengthened due to dlippage? Answering these
questions gives management a better handle on how the
new task compares to standard tasks from the past.

Marvin Zelkowitz

Department of Computer Science &

Institute for Advanced Computer Studies
University of Maryland
College Park, M D 20742
and
Fraunhofer Center

for Experimental Software Engineering

College Park, M D 20742
301-405-2690
mvz@cs.umd.edu

Often a basdine modd is empiricdly determined by
colleding data from a previous class of projeds, and a
composite modd is built that represents that class of
projeds. This colledive model is used as the basis for
comparing al new developments. However, in order for
this basdline modd to be dfective, it must represent the
same set of assumptions and operating conditions as the
new projed being measured.

Colleding empiricd data, however, has the danger that the
colleded projects do not truly refled the same
characterigtics as a new project. However, if you can
develop a quantitative theory of how a basdline should
behave and yau coll e basdli ne data from a set of projeds,
then you can determine whether the empiricd basdine
agrees with this theoretical model. If this is , then you
have increased confidence that your model of the process
agrees with redlity, and you can more readily use this
model in other situations.

Various methods exist for computing basdine data A
common approach isaregresson model where an equation
is developed that minimizes the error between a predicted
value aad an actual value We can develop regresson
models for linea equations, quadratic equations, or any
other predefined rdationship that we wish. The danger
here is that we do not redly understand if the given data
refleds that relationship, only that the set of colleded data
does fit the expeded mathematicd relationship.

A more sophisticated model would use a ¢ustering
relationship first to isolate subsets of data that have similar
characterigtics, and then use a regresson approach to
generate a best approximation to the underlying
relationship. In this case, we have first identified separate
categories of projeds via the clustering algorithm. By now
using a regresson model, we have (it is assumed) chosen
those projeds that have dSmilar development
characterigtics, so the resulting regresson line more
readily represents the underlying relationship.

Aswe discusslater, we have been working on an approach
similar to this, but rather than using a common regresson
process we previoudy developed a basdine
characterization mode cdled the characterigtic curve that
attempts to determine trend changes in the data. This
signifies changes in the underlying development process
which provides a method to ater the underlying
relationship during different phases of the development
cycle. For example, measuring source @de erors has a
radicdly different growth characteristic during the design
phase (with no source ®de to yield errors), during the
coding phase (when source @de erors ocaur often) to the
testing phase (when new errors should be rare and exigting
errors sart to disappea). This led us to the question of
what are the underlying equetions, if any, that govern such
basdli ne characterizations?

In this paper, we will ook at various assumptions that
underlie baseline characterizations and we will try to
correlate those asumptions with data clleded from a
variety of software development projects. Does this
colledive moddl med any idealized norm? Do resource
usage ad reliability measurements agree with some
underlying theoretical foundation? For example, in the late
197G there was considerable interest in resource usage
(eg., effort data) and its relation to the Rayleigh curve
(y=2 K at exp(-a t)) as a formal effort model. In this
paper we will investigate this previous work on formal
development models for bath resource usage and error
data.

We will demonstrate this anadysis using the @pabilities of
the tod WebME, explained in the next sedion, which can
aid in this anaysis. We show how a powerful plotting
package can aid in analyzing basdline characterigtics and
presenting information back to the devel oper.

1.1 The Software Engineering Laboratory
Environment

The data that we will present comes from the Software
Engineering Laboratory (SEL) at NASA Goddard Space
Flight Center. The SEL was organized in 197% to study
flight dynamics ftware, and snce that time it has had a
significant impact on software development activities
within the Flight Dynamics Branch (since January 1998
the Information Systems Center). Many technologies have
been studied (e.g., defect anadysis, resource usage, Ada,
cleanroom, V&V, COTS, OO design) and have been
reported elsewhere[2].

As a brief overview of SEL operations, the SEL has
colleded and archived data on over 150 software
developments. The data ae also used to huild typical
projed basdines againg which ongoing projeds can be
compared and evaluated. Projeds range in size from
approximately 10K lines of source code to 300K to 500K

at the high end. Projects involve from 6 to 15 programmers
and typically take from 12 to 24 months to complete.
FORTRAN was the original devel opment language, with a
movement to Adain the late 1980s and then to C and C++
in the 1990s.

1.2 Datavisualization

In order to aid in understanding the wlleded data, the SEL
has developed two data visualization tods. The Software
Management Environment (SME) [4] provided quesi-red-
time feadback on projed data. Data would be entered in a
database within two to three weeks of it being colleded,
and then a program was run to extract that data for entry
into the SME database. Management could then use SME
to display growth rates of certain projed attributes (e.g.,
lines of code, staff hours, errors found) and compare them
to previous projects with similar characteristics.

The weakness of SME, however, was that knowledge of
software development is built staticdly into the tod. That
is, certain characterigics of the basdine modd were
inherent in the design of SME. For example, only two
development models were included -- the large attitude
systems written in Fortran and the smaler onboard
simulators written in Ada. All projeds were dassfied
according to either of these models, even it if didn't fit
those parameters. While gpropriate for the SEL
environment of the ealy 198G, it didn't fit the changing
role of flight dynamics ftware in the late 198G and
199Gs.

To dleviate this probdem, a second tod, WebME (Web-
based Measurement Environment) was built to
dynamically basdline aset of previous projeds that "look
like" a given development in order to characterize a new
projedt [6]*. This colledive mode is used as the baseline
for comparing all new developments. In the anaysis that
follows, we use WebME as our tod for processing the
model s we wish to investigate.

2.0 Calibration using effort data

As a first step, we first cdibrated our process using
WebME on effort data. Tracking resource expendituresisa
relatively standard process by many organizations and a
fairly extensive literature eists to compare our results
aganst.

The SEL colleded effort reports as hours of activity per
week on each projed. An important concen is to

! WebME has other characteristics, principally the ability
to colled data across a distributed development
environment using the world wide web. However, the
dynamic modeling of basdline data is of primary concern
in this paper.

understand if the effort on a projed is tracking according
to premnceved pans. However, real-world data is
generally characterized as noisy. For example, Figure 1
represents the saff hours by week for one particular SEL
projed. As shown, there seams to ke little structure in the
data.

T
COBEAGSS.EFF ¢

L
[28 48] 28 108 128
Heek

Figure 1. Resour ce data as hour s per week

An important goa for basdline characterizeion is to
determine whether there is an underlying mode that
structures this data. We can apply various snocthing
techniques to achieve some structure. For example, Figure
2 represents 3 methods for determining the structure for
the data of Figure 1:

We @n compute a moving average (e.g., average of
successve data points). This causes local
perturbationsto dsappea. The jagged line of Figure 2
represents this approach.

We @n compute an approximation of the data. Earlier we
developed a mode called the characteristic aurve [5].
The 9-sedion segmented line of Figure 2 represents
the results of applying this approach. In this case we
try to determine trend changes in the data, as signified
by changes in the line segments. We cdl these points
pivot points, and claim that they represent changes in
the underlying model of the data. In this case we are
building a formal model empirically by looking at the
data itsdlf.

In bath of the above 2 cases, however, we are creding a
basdline ohed that is based upon the empirical
information that is present. Work in the 1970s
identified the Rayleigh curve

y=2 K at exp(-at’)
as an approximation of resource usage on software
development projects [1]. The theory of the Rayleigh
curve grew out of hardware reliability theory. The
effort neaded to work on a software development is
proportional to the number of modules that still need

to be written. But this is related to the number of
modules that already exist. The solution to this is a
second order differentiad eguetion with the Rayleigh
curve as its lution. It is often given in its integral
form as:

Cost = K exp(-at?),
with periodic resource expenditures asits derivative.

This curve has 2 parameters: K, which is the aea
under the airve (i.e., the entire st of the project in
hours) and a, which represents the skewness of the
curve. If Ty represents the time & which the arrve is
maximal, then a=1/ T, If we normalize the aea
under the arrve to ke 1 (i.e, the arve represents a
probability distribution), then each point represents
the percent of effort that ocaurs during a given time
period. We have then reduced resource use to the
single parameter, a, which is only a function of the
time when expenditures reach a maximum?.

CCCOBEAGESY. EFF —

Rayleightlods I'COBEAGSSY . EFF —

Figure 2. M odeled resour ce data

The question that neals to be asked is which of these
models (or any other you care to develop from the original
data) represents the “true” meaning o the scatterplot of
Figure 1? As Figure 2 shows, al 3 are reasonable
approximations of the data. However, each has a different
interpretation.

2 An interesting siddlight to this study is that in our original
1978Rayleigh curve analysis [1], it took approximately 12
hours to anadyze and dot the Rayleigh estimators. In this
current study it todk about 1 hour to analyze and prototype
the Rayleigh model for WebME, about 30 minutes to write
the WebME instrument (exeautable program) to pot the
points and 15 minutes to write the script to add the model
to WebME. Each graph now takes a single menu click and
about 10 seandsto plot.

The average curve represents redlity for this particular
projed. It simply records what has happened. Thereis no
way to determine whether this can be onsidered a normal
or abnorma plot. We @n colled several projeds and
compute an average of those as a basdine. We can
comparethe original projed average and this baseline only
if we @n be sure they represent the same projed
characteristics.

The characteristic curve represents cetan dedsion
pointsin the data. It isa best-fit set of line segments whose
end points (i.e., pivot points) represent local minima and
maxima (i.e., zero first derivatives in the original data).
These indicae trend changes. Unlike the above averages
baseling, the use of derivative trend changes imposes a
structure (abeit an assumption that we ae making in how
the model behaves) on the data that is missng from the
previous averages model. Whereas the averages basdlineis
purely driven by the data that is present, the use of the
characteristic curve imposes a structure on the meaning of
the data

Therefore, this class of modd is more of a descriptive or
evaluation model. Colleding a basdline of similar projeds
has more meaning than before. If we again colled several
projeds and compute the characteristic curve of the
average among this coll edion, differences between the two
indicate different trends and indicae different operating
characteritics between the set of baseline projeds and the
new projed.

The Rayleigh curve is the only estimator of the threethat
is firmly based upon a theoreticd mode independent of
the actua data. The mputation of T4 is the only
computation needed to fit the arve to the data. This is
more of a prediction model without the need to first
compute a basdine. We can use the Rayleigh curve to
predict resource use into the future. If we build a baseline
from a set of projeds and it agrees with the Rayleigh
estimator, then we have an empiricd validation that the
Rayleigh curve @n be a estimator of resource
expenditures. In addition, the use of a theoreticd model
allows usto huild a “theoretical basdling” before we have a
colledion of projects to study. That is, we @n compare a
new devel opment to this theoretical model before we have
several projeds to compare it to. This would be useful in
the arrent SEL environment as the old Flight Dynamics
Division has given way to the newer Information Systems
Center.

Using WebME we evauated the dfediveness of the
Rayleigh curve as a predictor of resource usage. Figure 3
represents this data. It plots the Rayleigh curve estimator
of Figure 1 with the average of the 8 projeds’ that

3 For this analysis, we are using WebME with a subset of
the SEL database which includes 18 projeds.

WebME's cluster anadysis determined to be in the same
basdine dass As down, bah curves have similar
profiles, which gves credence to using a Rayleigh curve
estimator.

AUGCEXEFF —

COBEAGSS.EFF @

[] 48 &6 gz} 188 128

Figure 3. Basline data

The original SME implementation used a static definition
for basdine projeds, which reduced to simply the
implementation language as the discriminator. Large
ground support systems were al written in Fortran and
smaller on-board smulators were dl written in Ada
Therefore only two basdlines were built. For WebME we
dynamically created basdines by looking at similar
projeds, based upon the data. A clustering algorithm was
developed [3] and dl projeds with Euclidean distances
closest to the given projed were part of the baseline.

It should be mentioned that the algorithm we used ensures
that al basdine projeds look somewhat like the original
projed, so it is not too surprising that the average for the
basdline is smewhat like the average for a single projed,
and hence similar to the Rayleigh estimator. However, the
degree of similarity to the Rayleigh curve still makes the
equation a good estimator. In fact, we obtained the
following "distances" from our clustering algorithm for the
following estimators for the projed in Figure 3 and for 3
others in our database. (Numbers represent average
separation between the estimating basdline arve and the
original data, in hours per week for the effort data of the
following table):

Estimator Fig.3 | ProjA | ProjB | Proj C*
Moving average of | 939* | 117.9+ | 64.8* 364
all raw data points
Characteristic 985+ | 107.9* | 713+ 30.0*
curve
Rayleigh model 943 | 1172 66.4 55.3+
* Best fit
+ Worgt fit

All three models give approximately the same predsion,
with the Rayleigh estimator generally falling between the
other two.

In Figure 4 (a-c) we apply the same Rayleigh estimator
and clustering baseline on 3 different projeds. We get
reasonable results, except for projeds where dfort peaks
later in the development cycle (Figure 4(c)). In this case,
the Rayleigh curve underestimates resource use.
Apparently a different process is happening on these
projeds, which requires further study.

In each case the basdine arves are dynamicdly
developed by clustering those projects that have a similar
development cycle. Figure 4(a) baseline includes 9
projeds, as does Figure 4(b). The Figure 4(c) baseline only
includes 7 similar projects.

3. Size characteristics

3.1 Estimating size

asaumptions behind the Rayleigh curve as an effort
estimator, we believe that the same set of assumptions
govern program size. That is the number of lines of code
(e.g.., modules) that can be written at a given point in time
depends upon how many other lines of code already exist.
This leads to the same solution as in the previous effort
estimators.

In order to test this hypothesis with WebME, we had to
make a smple change, however, to ou WebME Rayleigh
curve model. In most developments, source @de
production does not begin until several time units (e.g.,
months) have passd. We modified the model to ignore
those initial zero points and to estimate Ty and a once
source @de production started.

Using this modified model, we plotted several projeds,
giving bath the Rayleigh estimator and the moving average
(Figures 5(a) and 5(b)). As shown, the Raleigh curve
remains a reiable etimator of code production on a
projed, and could provide a reasonable estimate on overall
projed size that can be mmpared to aher estimators that a
projed manager may use.

3.2 Productivity

Program sizeisnot the only size estimator of use to projed
management. Measuring productivity provides another
measure of overall performance However, most modeling
of productivity hides important characteristics hidden in
the data. For example, Figure 5 shows lines of code
production by week. We a@n, in Figure 6(a) exhibit
productivity by week by dividing by the dfort for that

GOESAGSS.EFF o

(@

(b) (c)

Figure 4. Rayleigh curve vs. Baselines on 3 projects

After studying effort data, we moved our attention to size
data, principally lines of code. In looking at the

4 As we eplain for Figure 8 later, the poor fit for the
Rayleigh curve here can be explained by the problems that
this project had in finding and fixing defeds.

week. However, each weekly total by itself does not shed
much light on the process In Figure 6(b) we plot the
growth of a project each week. In this case we @n
compute productivity plotting the total size of the projed
by week and then by dividing the size of the projed by the
total effort to date. However, this too hides details of the

process s$nce it appeas to be mostly a monotonicdly
growing curve.

We solved this in WebME by plotting Figure 6(b)
normalizing effort by week. That is, we plotted total
system size in lines of code divided by total effort on a
weekly basis. Figure 7 shows the results of this where we
can seeoverall productivity on aweek by week basis.

An entirely new attribute now shows up in Figure 7. We
seethat productivity remains O until week 33, when it rises
rapidly. This corresponds to the start of the ading phase.
Maximum productivity of 5.04 lines per hour isreached in
week 57, where it peaks and then gtartsto drop. It dropsto
a point of 3.075 lines per hour in week 115 which
representsthe end o the project.

This clealy shows that week 57 isatransition point in the
projed. Maximum source @de production is reached in
week 57 and the projed enters the testing phase where
generation of new lines of code is scondary to removing
defeds. Corroborating this are the facts that week 56 is a
pivot point for effort (Figure 2) with a maximal value of
621 hours of effort and week 57 is a maximal pivot point
for source @de production (not shown) of 7021 lines of
code produced. By developing this weekly productivity
estimator with WebME from the data for this project, we
were esily able to show changes in the devel opment
behavior in this project.

16808

T
EMA(COBERGSSY . LOC —

14000 | comeagssiLoc o+
12008 -
FLEEERS
caee [

€089 - [

4m08

.
.
.
2aee [@) - |
%
£ .
* T Pt v,
» S - e
LR F T o A LVE T ey = T
=

-zpEn -

~4mBn -

@ Pr dj ect A

Figure5. Lines of Code estimators

25800

T T
EMACERES).LOC —

ERES.LOC &

20000 |
15008

10000 |

e
FHA: Wy
247 &

Y

S

S s

} L et t
g

a o == 2 ey o

(b) Project B

Figure5 (cont). Linesof Code estimators

T T
EMACCOBERGSS) . LinesPerHour ——

COBEAGSS.LinesPerHaur &

(a) Lineshour by week

190000

Rayleightfods 1dCORERESS) , LoC —

160600 |- e
J

ses0se |-
5 ssases |
I coses |

esess |-

aemeE |- [

L L
[2 a0 & a8 188 20

(b) Total lines by week
Figure 6. Productivity

The dope of the line in Figure 7 from weeks 57 through
115is negative productivity and shows the dfort expended
in testing and fixing defeds. Any testing phase will by
necessty incur some loss in productivity, which

management should monitor. The dope of this line is a
predictor of poor performance

RaylsighMadsl (COBEAGSS), glinsPgHaur ——

GOEEAGSS. nilestones —

L
e

Figure 7. Productivity by week

Not every project, however, has the "cliff” shape of Figure
7. Figure 8 presents the productivity from another projed.
Note that there ae productivity "dips' throughout the
second half of the projed. This means that there were
significant time periods throughout the process where new
code production stopped and defect repair took a major
effort. Rather than coding throughout the coding phase,
significant time was gent in repair and redesign, probably
due to poor initia design. Looking at defect rates for this
projed shows that some of thisasaumption istrue.

T T T T
Rauleightfode1{ERESH, gl ifePgHour —

Figure 8. Less structured project

Figure 9(a) represents atypical SEL projed. Here we plot
both the moving average and Rayleigh estimator of
defeds. In this case the Rayleigh estimator is
approximately the same as the moving average. Thus the
red data (eg., defect rates) agrees fairly closely with the
theory. Defects are found fairly early in the testing process
and reach apeak in week 69; about 3 months after the end

of the coding phase in week 57. As with effort and size
data, the Rayleigh curve is again areasonable estimator of
defed rates.

T
EMACCOBEAGSS? . RER ——

COBERGSS.RER ©

x A,
a ‘{f g ..‘Qt,\ |
) :ff ° \\!\‘r\‘\ @#\
- AT - Y Dy
ot 4 oy

(@) Defect ratesfrom Figure 7

T T
EMACERES). RER ——

ERBS.RER

(b) Defect ratesfrom Figure 8
Figure 9. Defect Rates

However, the defed rates of Figure 9(b) show the same
chaotic behavior of Figure 8. The moving average has a
greder value than the Rayleigh estimator later in the
development cycle. In this case, weekly defed rates reach
about 15 aweek by week 63 and remain at that level until
week 89, a span of 6 months. It seams like the probem
would have been more apparent earlier in the devel opment
cycle by reporting data as in productivity measures as in
Figure 8 rather than as simply error countsasin Figure 9.

4. Conclusions

In this paper we have looked at the process of building
models of development data according to three citeria:

1. Basng models upon the data itself. The moving
average is a wmmon approach that is used. This
model provides no predictive apabilities; it is sSmply
an acoounting of what happened. Predicting using this
model depends upon choasing projeds with the same
characterigtics, something we only know how to do
poorly.

2. Badng models on empirical characteristics of the
data. We previousy developed the characteristic
curve as a means of determining trends in the data.
Thisimposes ome structure on the data that is absent
from the purely empirical approach. The characteristic
curve, for example, is less predse than the moving
average, but its implied asumptions allow for
interpreting the data from other projeds more
effedively than with the moving average moddl.

3. Basing modelson atheoretical foundation. We have
been using the Rayleigh curve from hardware
reliability theory as an underlying model for software
growth. This model provides less information about
the spedfic projed, but all ows the model to be used as
a predictive model of future behavior.

Basing models purdly on the data lacks a predictive nature
to the characterizing baselines. However, the latter two
techniques allow us to evaluate and predict future behavior
with some degree of predsion. We have found that the
Rayleigh curve seems appropriate in our environment.

Displaying productivity data, as given in Figures 7 and 8
as projed productivity by week, alows us to view
characterigtics of the projed that are not readily apparent
in other ways. In particular, the shape (or lack thereof) of
the productivity curve in Figures 7 and 8 indicate potential
problems before other data indicates the same problem.
The dope of this curve (negative productivity) indicates
the anount of testing in a projed, and further study to
indicate the relationship of this dope to overall testing
costs and length seans warranted.

Finaly, this analysis could not have been accomplished
without a tod such as WebME. The ability to easly
develop models of a process and then have those models
applied to any given projed within a matter of seconds
adlows projed management to easily compare a given
projed to aher projedsin a system database as ared-time
projed management tod. It is this instant feedback that is
often lacking with other metrics and data @lledion
activities. Tod s like WebME could provide the inspiration
to get management "on board" and agreeto colled relevant
data. This is often the hardest part of metrics analysis --
getting management "buy in" to the process The esy
interface to the database and near red-time analysis may
be all that isnecessry.

Acknowledgment

This research was supported in part by NASA grant NCC
5-170 from NASA Goddard Space Flight Center to the
University of Maryland.

Bibliography

[1] Basili V. R. and M. V. Zelkowitz, Analyzing medium
scale software development, Third International Conf. on
Software Engineging, Atlanta, Ga. (May 1978 116-123.

[2] Basli V., M. Zdkowitz, F. McGarry, J. Page, S.
Waligora, and R. Pgerski, SEL's software process
improvement program, |EEE Software 12, 6 (19%) 83-87.

[3] Li N. R. and M. V. Zelkowitz, An Information Model
for Use in Software Management Estimation and
Prediction, Seand International Conf. on Information and
Knowledge Management, Washington, DC, (November
1993 481-489.

[4] Hendrick R., D. Kidtler, and J. Valett, Software
management environment (SME) components and
algorithms, NASA/GSFC Technical Report SEL-94-001,
(February 1994.

[5] Tesoriero R. and M. V. Zdkowitz, A Mode of Noisy
Software Engineging Data (Status Report), International
Conf. on Soft. Eng., Kyoto Japan, (April 1998 461-464.

[6] Tesoriero R. and M. Zelkowitz, WebME: A web-based
tod for data andysis and presentation IEEE Internet
Computing 2, 5, (September 1998 63--69.

