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1 Introduction

Spin [2] is a veri�cation system that supports the design and veri�cation of
�nite state asynchronous process systems. Programs are formulated in the
Promela programming language, which is quite similar to an ordinary pro-
gramming language, except for certain non-deterministic speci�cation oriented
constructs. Processes communicate either via shared variables or via message
passing through bu�ered channels. Properties to be veri�ed are stated in the
linear temporal logic Ltl. The Spin model checker can automatically determine
whether a program satis�es a property, and in case the property does not hold,
an error trace is generated.

This report documents an application of Spin to formally verify a multi{
threaded plan execution programming language (a library really). The plan ex-
ecution language is one component of NASA's New Millennium Remote Agent
(RA) [6], an arti�cial intelligence based spacecraft control system architecture
that is scheduled to launch in December of 1998 as part of the Deep Space

1 mission to Mars. The language is concretely named Esl (Executive Support
Language) and is basically a language designed to support the construction of
reactive control mechanisms for autonomous robots and space crafts. It o�ers ad-
vanced control constructs for managing interacting parallel goal-and-event driven
processes, and is currently implemented as an extension to a multi-threaded
Common Lisp.

Esl is used to program the RA Executive, a sub-component of the RA,
responsible for executing jobs safely on board. To analyze a language like Esl,
which is generic in its nature, we have set up a special situation called the
model { really a small example RA Executive { with a �xed number of tasks all
using constructs of the language, and then observed whether this model satis�es
various desired properties. The e�ort has consisted of hand translating parts of
the Lisp code for Esl into the Promela language of Spin. A total of 5 errors
have in fact been identi�ed, 4 of which are important. This is regarded as a
very successful result. According to the RA programming team the e�ort has
had a major impact, locating errors that would probably not have been located
otherwise and identifying a major design aw not yet resolved at the time of
writing.

The report is attempted made self{contained in the sense that the reader
is not assumed to be familiar with Spin, nor with Esl and the RA Executive.
Section 2 contains a condensed Spin tutorial. Section 3 contains an informal
description of the RA Executive, while section 4 describes its formalization in
Promela. Section 5 presents the veri�cation results by �rst stating the prop-
erties to be veri�ed, and then by describing the errors found by applying the
model checker to the model and these properties. Each error is described by
an error trace leading from the initial system state to a state that breaks the
particular property being veri�ed. Finally, chapters 6 and 7 contain the RA pro-
gramming team's evaluation of the project, and our own conclusions respectively.
Our own conclusions concern issues such as tool support for model building; and
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Promela's capabilities seen as a speci�cation notation. Appendix A contains
the full Promela model.

Acknowledgements We would like to thank Erann Gat, who has programmed
Esl, for his useful responses to our error reports, and for providing the basic
contents of the evaluation in section 6. When we occasionally refer to the RA
programming team's response to our work, it is his response that is referred to.
We also want to thank Ron Keesing and Barney Pell who are members of the
RA programming team. Their comments were more related to explaining the
model and suggesting properties to be veri�ed.

5



2 A Condensed Spin Tutorial

In this section, we shall give a short presentation of the Spin system. Spin is a
tool for analyzing the correctness of �nite state concurrent systems with respect
to formally stated properties. A particular concurrent system is formalized in
the C-inspired Promela programming language, and properties to be veri�ed
are formalized in the temporal logic Ltl3 (Linear Temporal Logic). The Spin
tool provides a so-called model checker, which automatically can decide whether
a Promela program satis�es an Ltl property. The Spin tool also provides a
simulator, with which Promela programs may be executed in a step-by-step
manner. This can in particular be used to re-run error traces generated by the
model checker for properties that are not satis�ed.

Although Promela is a kind of programming language, it can be used to
formalize any concurrent system involving software, hardware and physical ob-
jects. As an example, the physical world that surrounds a space craft, and which
can inuence its behaviour, can be formulated as a Promela process, which
spontaneously can execute and thereby change the system state. A Promela

program can be said to denote a set of reachable states { the state space: those
that can be reached from the initial state by executing the program. In order to
allow for automatic veri�cation, this state space has to be �nite and small, and
the Promela programmer must make sure this is the case by abstracting from
real world complexity.

This presentation is supposed to be minimal in the sense that it should just
make a novice able to read and understand the formalization of the RA Exec-
utive. We focus on the Promela language, since the Ltl logic is quite simple,
and since the facilities of the Spin tool are less important for understanding the
RA Executive formalization. The description is a highly condensed version of [2],
with those language elements omitted that have not been used. Due to certain
inconveniences in the Promela language { for example lack of procedural ab-
straction { we have extended the syntax slightly for presentation purposes. These
extensions are also described. Hence, the presentation will be divided into three
subsections, corresponding to the Promela language; the syntactic extensions;
and the Ltl logic.

2.1 The Promela Programming Language

An executing Promela program consists of a collection of processes that com-
municate via bu�ered channels and shared variables. Figure 1 illustrates a pro-
gram with two processes P and Q, which communicate over a channel c and via
the shared variable x.

3 In fact, Ltl formulae are translated into test automata, a more general speci�cation

formalism, which we shall, however, not use.
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Fig. 1. Example of a Promela program

Process P sends values to c (c!5) and process Q reads values from c into the
variable y (c?y). In addition, process Q assigns a value to x (\=" means assign-
ment in Promela) and process P reads the value of x (\==" means equality test
in Promela). The �gure illustrates the 3 major components of a Promela pro-
gram: variables, channels and processes. These will be described in turn below.

2.1.1 Datatypes and Variables The basic types over which variables can
range are int (integers of 32 bits), byte (integers of 8 bits) and bool (one bit
ags). The following declarations declare a byte variable x, two integer variables
i and j, and a boolean variable b.

byte x;

int i,j;

bool b;

Variables are by default initialized to 0, and are updated by assignment state-
ments like:

x = x + 1;

x++;

b = (x == 5)

Note that \=" means assignment in Promela, while equality is represented
by \==". The �rst two statements have the same e�ect. Processes are basically
made up of statements that are executed sequentially. Statements themselves can
contain expressions, as x + 1 and x == 5 above. We shall return to statements
and expressions below.
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In addition to basic type variables, arrays of a �xed size can also be declared,
as demonstrated by the following declaration, which declares an integer array
named state of size 5.

int state[5];

the individual elements of this array are accessed as state[0], state[1], . . . ,
state[4]. For example, the following statement updates the state variable in
its �rst �eld by assigning to this the value of its last �eld incremented once.

state[0] = state[4] + 1

In addition to basic types and array types, Promela also supports record types.
These have to be introduced in special typedef declarations like for example the
following declaration of a record type, the elements of which are 2-�eld records,
the �rst �eld named status and holding an integer, and the second �eld named
b and holding a boolean array of size 5:

typedef Infof
int status;

bool b[5]g

Variables can now be declared of this type. The following two declarations declare
a single variable and an array of this type, respectively.

Info i;

Info many[4]

The individual �elds of a record variable are then accessed with dot-notation and
can occur in expressions as well as on left-hand sides of assignment statements:

i.status

i.b[4]

many[3].status

many[3].b[4]

2.1.2 Channels A channel is a \�rst in �rst out" (FIFO) bu�er capable of
containing a speci�ed maximal number of messages of a given type. Processes
can communicate with each other by writing messages to, respectively read-
ing messages from such bu�ers. The following declaration introduces a channel
named c, capable of holding up to 10 messages, each of type int.

chan c = [10] of fintg;
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In the scope of this declaration, a process P can for example send a value to this
channel by executing:

c!5

and another process can then read the bu�er and store the result in the variable
y as follows:

c?y

If a channel is full (contains 10 messages in the above example), then a send-
statement (like c!5) will block. Similarly, if the channel is empty, a read-
statement (like c?y) will block. A collection of operations are provided with
which the status of a channel can be examined: empty(c) returns true if the
channel is empty; nempty(c) returns true is the channel is non-empty, and
len(c) returns the number of messages in the channel. Noting that non{equality
in Promela is expressed as \!=", the operations empty and nempty can be ex-
pressed in terms of len:

empty(c) == (len(c) == 0)

nempty(c) == (len(c) != 0)

As mentioned, c?y extracts the �rst element written to a channel (FIFO princi-
ple). The statement c??y extracts an arbitrary element from the channel, non-
deterministically chosen. Furthermore, in case the channel c contains the mes-
sage k (which must be a constant and not a variable), then c??k will extract
that message, no matter where it is placed in the bu�er (in case of several such
messages, one will be extracted). Two test-operations exist to check the contents
of a channel without retrieving its elements. Assume k is some constant (and
not a variable), then c?[k] will return true if the �rst element inserted equals
k, and c??[k] will return true if some element equals k.

2.1.3 Processes Processes are declared using the proctype keyword. For

example, assume that two integer valued channels in and out have been declared,
then the following process { named Add, and parameterized with an integer k {
will read a value from in into its local variable x and then output on out the
result of adding k:

proctype Add(int k)

f int x;

in?x;

out!(x + k)

g

A process of this type can then be spawned in a run statement as follows:
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run Add(7);

Several processes can be spawned of the same type, even dynamically during
program execution. Hence, process creation is dynamic in the sense that the
number of processes that a program generates cannot generally be statically
determined. Of course, if several processes are spawned of the above type, they
will all communicate on the same channels, which may cause confusion. For
that reason processes may be parameterized with channels, a technique we have
however not used.

In general the body of a proctype declaration consists of a declaration part
(introducing local variables) and a statement part describing the process's be-
haviour. In what follows, we shall explain what are possible statements.

2.1.4 Expressions and Statements

Expressions Statements are build from expressions. Expressions are either bi-
nary or unary. Binary expressions have the form expr1�expr2 where � is one of
the operators: + (plus), � (minus), > (greater than), � (greater than or equal), <
(less than), � (less than or equal), & and && (both representing logical and), and
�nally j and jj (both representing logical or). In addition, the unary expression
!expr means \not expr".

In general, expressions may occur as statements, even though they have no
e�ect on the state. In case an expression occurs as a statement, it is only executed
if it evaluates to a value di�erent from 0. Note that 0 represents false, and
hence, an expression is executable as a statement only of it evaluates to true (a
value di�erent from 0). This is typically used as a synchronization mechanism: a
process can wait for an event to happen by waiting for some statement to become
executable. For example if a process Q is supposed to assign the value 22 to a
variable x, then another process P can wait for this to happen by attempting to
execute the statement (expression):

x == 22

The statement skip in fact stands for the expression 1 and hence represents the
always executable statement that has no e�ect.

Sequential Composition Statements are sequentially composed with semi-
colon \;". The arrow \->" has exactly the same meaning as \;", and is often
used in connection with statements that may block, for example channel input
statements, in order to indicate the blocking nature. For example, the following
two statements have the same meaning:

c?x -> v = x + 1

c?x ; v = x + 1

10



Conditional Statements The Promela equivalent to if-statements in tradi-
tional programming languages is illustrated by the following statement, which
executes one of two statements S1 or S2 depending on the value of a variable x
{ S1 is executed if x equals 0, and S2 is executed if not:

if

:: x == 0 -> S1

:: x != 0 -> S2

fi

The general form of a Promela if-statement is a sequence of statements, each
preceded by a double-colon:

if

:: stmt_1

:: stmt_2

...

:: stmt_n

fi

Only one of the statements is executed, and only such a one where the �rst sub-
statement { called the guard (e.g. x == 0 in the above example) { is executable.
Which statement to be executed in case several have executable guards is non-
deterministic. In case no guard is executable, the if{statement blocks (is not
executable).

The above example can be written using instead the special else guard, as
follows:

if

:: x == 0 -> S1

:: else -> S2

fi

The else branch will only be chosen in case none of the other branches can be
chosen (none of the other guards are executable).

There is no restriction on the kind of statements that can be used as guards. As
an example the following statement non-deterministically adds either 1 or 2 to
the variable x:

if

:: x = x + 1

:: x = x + 2

fi
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The following statement reads from channel c in case it is non-empty, continuing
with S { otherwise it just terminates.

if

:: c?x -> S

:: empty(c)

fi

Iteration Quite similar to the if{statement, there is a do{statement, which
basically works as the if{statement, except that its contents is repeatedly ex-
ecuted until the special break statement is executed. For example, the above
if{statement that reads from a channel once can be turned into a loop that
continues reading until the channel becomes empty:

do

:: c?x -> S

:: empty(c) -> break

od

The general form of the do{construct is:

do

:: stmt_1

:: stmt_2

...

:: stmt_n

od

Interrupts A special construct is provided for modeling interrupts, namely the
unless{construct. It has the form:

S1 unless S2

with the semantics that statement S1 is executed, step-by-step, to its end, unless
the statement S2 becomes executable, in which case the rest of S1 is immediately
ignored and S2 is executed to its end. This can be used to monitor S1's own
operation, or it can be used to monitor and react to events coming from the
surrounding environment. Note that the unless construct only works within a
single process. That is, in the following piece of code S will never get executed,
not even if it gets executable during the execution of P:

frun P()g unless S
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Atomic Statements Normally, when given a sequence of statements S1; S2;

...; Sn within a process, their execution may be interleaved by the execution
of statements within other processes, sometimes leading to undesired results.
To avoid such undesired interleavings one can group the statements together
with the atomic construct, indicating that they must be executed in one atomic
transition, without the interleaving from other processes:

atomicfS1; S2; ...; Sng

This construct can be used to model what is often referred to as critical sec-
tions/regions. Note that an outer unless construct may interrupt an atomic

construct in the middle of its execution. Also, if an atomic construct blocks,
then other processes are allowed to execute, and if the blocking condition even-
tually becomes true at some later point, the atomic construct may resume its
execution, and continue atomically to its end, or until it gets blocked again.
Note, however, it is not forced to resume immediately when the blocking condi-
tion becomes true.

Assertions Promela provides a construct { the assert{statement { for pro-
voking the abortion of a program in case a certain property does not hold. The
assert{statement has the form:

assert(boolean-expr)

It is always executable, and has no e�ect if the boolean valued expression is true.
If on the other hand the expression evaluates to false, Spin will produce an
error report. Hence, this construct can be used to formulate certain correctness
properties. For example, verifying a program with the following process will tell
us whether Q will always receive positive numbers or not.

proctype Q()

f do

:: c?x -> assert(x > 0); S

:: empty(c) -> break

od

g

In case not, an error trace will be produced which explains the sequence of states
that leads from the initial state to a state that breaks the assertion. Note that
the Spin model checker will examine all possible execution traces.

13



Initialization A Promela program must contain an initialization section, cor-
responding to the main section of a C{program. Typically, the init-statement
will contain initialization of variables, and spawning of processes. For example:

initf
x = 100;

run P(x);

run Q()

g

2.2 Macros and a Way to Avoid Them in Our Presentation

The source text of a Promela program is processed by the C preprocessor [3]
for macro{expansion. Hence, C's general macro-de�nition language is available.
This means that one for example can de�ne a constant as follows:

#define MAX 10

and a procedure as follows:

#define swap(x,y) n
int t; n
t = x; n
x = y; n
y = t

Note that there is absolutely no typechecking performed on macro parameters.
Also, local variables to macros are not really local, since the call of a macro
will just expand the body. This results in a variable name clash when a macro
is called twice in the same scope. Furthermore, the SPIN tool is not able to
identify line numbers within macros, which makes �nding syntax errors and
bugs virtually impossible. Finally, it appears annoying to write \n" at the end
of macro de�nition lines.

Since we �nd macros to be unpleasant as a programming notation, we have
decided to \extend" Promela with procedures and functions, and some extra
forms of constant and type de�nitions. This will allow us to present the RA
formalization without the use of macros, in a notation closer to traditional pro-
gramming notation. Note that these extensions are not supported by the Spin
tool, and are only introduced here as for presentation purposes. Appendix A
contains the full model using the original macro-notation. The extensions can
be regarded as a suggestion for extending Promela. Figure 2 shows the 5 ex-
tensions and their mapping into macro de�nitions.

Extension 1 is a simple constant de�nition. Extension 2 is a simple type
equation, where a new name, here Num is introduced for an already existing

14



Number New syntax Corresponding macro de�nition

1 const MAX = 10 #define MAX 10

2 type Num = byte #define Num byte

3 type Ev = fA,B,Cg #define Ev byte

#define A 0

#define B 1

#define C 2

4 procedure p(int x;wr bool b) #define p(x,b) stmt

fstmtg

5 function f(int x):bool #define f(x) expr

fexprg

Fig. 2. Syntactic extensions to Promela

name, here byte. Such type equations are used to give more meaningful names
to types. Extension 3 is an enumerated type de�nition, where the type Ev is
de�ned to contain exactly the three elements A, B and C. The corresponding set of
macro de�nitions introduce the type and the three constants. Finally, extensions
4 and 5 de�ne procedures, respectively functions using C-like syntax. Note that
parameter types are not translated. Also, note that we use the convention to
pre�x a parameter type with the keyword wr to indicate that it is modi�ed by
a procedure.

2.3 The Ltl Property Language

A program may exhibit many execution sequences, depending on the non-
determinism appearing in the program. Non-determinism may either be caused
by non-deterministic constructs within a single process, such as an if{construct
with several overlapping guards (that may all be executable), or it may be caused
by the fact that several processes run in parallel and thereby may interleave in
di�erent ways. Consider for example the program:

int x;

proctype P()

fdo
:: x == 10 -> x = 0

:: x < 10 -> x = x + 1

od

g

proctype Q()

fdo
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:: x == 1 -> x = x - 1

od

g

initfrun P(); run Q()g

The two processes may interleave in various ways, and two examples of (initial
pre�xes of) execution traces are shown in Figure 3, where states are shown as
black circles, and the transitions between states have labels, each showing the
statement executed, and which process that executes it.

x == 0 x == 0 x == 1 x == 1 x == 0 x == 0 x == 1

P:x=x+1 Q:x==1 Q:x=x-1 P:x<10 P:x=x+1P:x<10

x == 0 x == 0 x == 1 x == 1 x == 2

P:x<10 P:x=x+1 P:x<10 P:x=x+1

Fig. 3. Possible execution traces

Spin provides a logic for stating properties about such execution traces. There
are basically two kinds of formulae: \[]P" { meaning always P, and \<>P" {
meaning eventually P. That is, a given execution trace satis�es the formula []P,
if P is true in every state of that trace4. Likewise, a given execution trace satis�es
the formula <>P, if in some state of the trace, P is true5. These formulae can
be nested. At the top{level, a program satis�es a formula, if all the program's
execution traces satisfy the formula. The model checker of Spin will in fact
examine all possible traces.

Suppose for example that we now want to verify two properties: that x is
always non-negative, and that once x becomes strictly greater than 1, then even-
tually it will become 10. These properties can be stated as follows6:

[] x >= 0

[] x > 1 -> <> x == 10

4 Strictly speaking a trace satis�es []P if all su�x-traces satisfy P.
5 Strictly speaking, if some su�x-trace satis�es P.
6
Spin does in fact only allow macro calls to occur as arguments to the temporal

operators, hence the predicates x >= 0, x > 1 and x == 10 must be named with the

#define construct.

16



In fact, when applying the model checker to these properties, the �rst one is
rejected, perhaps surprisingly to the reader, while the second is veri�ed as being
correct. The reason the �rst is rejected is, that process Q at some point may
decide to decrement x since x == 1, but it waits with the decrement statement
x = x - 1 until after process P has increased x to 10 and there after reset it to 0.
At that point Q executes x = x - 1, and x becomes �1. The Spin tool discovers
this, and yields an error trace, which can then be executed in the simulator in a
step-by-step manner.
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3 Informal Description of the RA Executive

In this section, we give an informal description of the RA Executive. After an
overview follows a description of the datatypes and the processes of the system.

3.1 Overview

The RA Executive, Figure 4, is designed to support safe execution of software
controlled tasks on board the space craft. A task may for example be to run
and survey a camera. A task often requires speci�c properties to hold in order
to execute correctly. For example, the camera{surveying task may require the
camera to be turned on throughout task execution. When a task is started
(dynamically), it �rst tries to achieve the properties on which it depends; where
after it starts performing its main function. The camera{surveying task will for
example try to turn on the camera before running the camera. Properties may,
however, be unexpectedly broken (e.g. camera may be turned o�) and tasks
depending on such broken properties must then be interrupted.
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Task

Maintain Properties
Daemon
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Database

Property LocksTasks
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Property

Event
Lock

Event

Fig. 4. Remote Agent Executive Resource Manager

To simplify the programming of the individual tasks, the RA Executive mod-
els the spacecraft devices in terms of the various properties that they may have,
and stores these in a database. The executive provides mechanisms for both
achieving and maintaining these properties, and uses locks to prevent tasks with
incompatible requests from executing concurrently. Executing concurrently with
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the tasks is a \maintain properties" daemon that monitors the database rep-
resenting the state of the spacecraft. If there is an inconsistency between the
database and the locks { meaning that a locked property no longer holds in
the database { the daemon suspends all tasks subscribed to the property while
some action is taken to re-achieve the property. The daemon is normally inactive
unless certain events happen, such as a change of the database or the lock table.

The Executive permits various achieve methods to be associated with a prop-
erty. Then, when a task makes a request for a property to be achieved, the Ex-
ecutive calls the achieve method that is appropriate for the current state of the
system. This aspect will, however, not be subjected to veri�cation, and hence
we shall downplay it. Instead, we shall regard the tasks as being able to achieve
properties directly themselves.

3.2 Data Types

The Properties A property describes some state of the space craft. In terms
of programming jargon, it basically states that some variable, called the memory
property, has some value, called the memory value. For example, the following
is a property:

Camera is On

It states that the memory property Camera has the memory value On. Hence,
a property p is a pairing of a memory property mp and a memory value mv:
p = (mp;mv). The property above can be written as (Camera,On).

The Database The state of the space craft is constantly monitored, and stored
in a database. Since the current state can be regarded as the set of properties
that currently hold, the database is basically a set of such properties.

The Property Lock Table As mentioned, a task can lock a property to prevent
other tasks requiring incompatible properties from executing concurrently. Two
properties p1 = (mp;mv1) and p2 = (mp;mv2) are incompatible, if they have
the same memory property (mp) but di�erent memory values (mv1 6= mv2).
The property lock table contains those properties that have been locked. In
addition, it contains information for each property about which tasks subscribe
to it (rely on it) and whether it has been achieved or not. That is, the property
lock table can be regarded as a set of locks, where a lock is a triple of the form:
(p; subscribers; achieved)7.

If there is an inconsistency between the database and the locks, the daemon
suspends all tasks subscribed to the property. An inconsistency occurs if the lock
table contains a lock l = (p; sub; true) with a property p that has been achieved
(achieved �eld is true) but is not in the database.

7 The �gure only shows the properties of the lock table.
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The Events Whenever the lock table or the database is changed, this is sig-
nalled to the daemon so that it can examine the renewed system state. In gen-
eral, application tasks may also wait for such events to happen as described
below. For this purpose, event lists are introduced, one for each instance of
event: Snarf Event (representing a change of the lock table { to snarf is im-
plementers jargon for to lock) and Memory Event (representing a change of
the database). Any process (task or daemon) wanting to wait for an event to
happen calls a wait procedure, which hooks up the process to the corresponding
list. Whenever changes happen to these datastructures, the corresponding event
lists are signaled, via the signal procedure, resulting in the waiting processes
being restarted - for example the daemon.

3.3 Processes

The Tasks Before a task executes its main job, it will try to achieve the prop-
erties that the execution depends on. First, however, it will lock the properties
in the lock table { this activity is called snar�ng by implementers. The snar�ng
of a property can, however, only succeed if it is compatible with the existing
locks, and in case it's not, the task is aborted. If there are not conicting locks,
the task will create the lock, if it is not already there. Note that some other task
may have locked the exact same property already, and this is not de�ned as a
conict. If it succeeds, the task also puts itself into the subscribers list of the
lock, indicating that now this task depends on this property.

The creator of a lock is called the owner, in contrast to tasks that subscribe
later to the same property. The owner is responsible for achieving the prop-
erty, resulting in the database being updated. Upon successful achievement, the
achieved �eld in the lock is set to true. If the achievement fails, the task is
aborted. Other tasks that subscribe later than the owner must wait for the owner
to achieve the property. This is done by simply waiting for a Memory Event

which successfully achieves the property. Hence, the wait procedure takes a prop-
erty as argument in addition to the event to be waited for.

Once a task has �rst snarfed and then achieved its required properties, it
executes its main job, relying on the properties to be maintained throughout job
execution.

Before a task terminates, it releases its locks. That is, it removes itself from
the subscribers list, and in case this then becomes empty (no other subscribers),
it removes the lock completely. In case there are other subscribers, the lock must
of course be maintained.

The \Maintain Properties" Daemon The purpose of this daemon is to
guarantee that achieved properties are maintained while subscribing tasks are
executing. A once achieved property in the property lock table is said to be
maintained as long as it is contained in the database (and hence is a property of
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the space craft). Hence, from the perspective of a task, the maintained properties
are invariants while the task is executing { and the task is aborted by the daemon
if not.

The daemon is normally in \sleeping" mode, waiting for an event that modi-
�es the database (Memory Event) or the property lock table (Snarf Event).
This is implemented by letting the daemon wait in the corresponding event lists.
Once started, it examines all locks in the property lock table, and for each lock
where the achieved �eld is true, it checks whether the property is contained in
the database. If the property is not in the database all tasks in the lock's sub-
scribers list are interrupted, and a recovering procedure is initiated which will
re-achieve the property. After having examined all locks, the daemon goes into
sleep again by waiting for another Memory Event or Snarf Event.
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4 Formalization in Promela

In this section we present the Promela model of the RA Executive. The basic
datatype of Lisp is that of lists, and we therefore begin our exposition by out-
lining how we have modeled lists in Promela. Then the presentation is divided
into subsections corresponding to the following topics: the state space (constants,
types and global variables), the operations on events, the tasks, the daemon, the
environment that may introduce violations, and �nally a section explaining how
the system state is initialized.

Note that the Lisp program that we want to model in Promela is highly
structured using procedural abstraction, and hence is divided into a collection
of relatively small-sized procedures and functions. We have tried to maintain
the same level of structuring, using Spin's macro concept, here disguised as
procedures and functions as explained in section 2.2. This choice has a drawback,
namely that the Spin simulator does not really support macros in a satisfactory
way. More speci�cally, it cannot distinguish line numbers within a macro8. We
have, however, chosen to stay as close as possible to the procedural structuring
in the Lisp program.

Note that all communication between processes basically takes place via
shared variables, since this is how the Lisp implementation works. Channels
are used to represent lists though, as will be described in the next section.

4.1 Modeling Lists

The fundamental datatype in Lisp is that of lists. Lists are used heavily in the
program, and hence we have tried to �nd a convenient way to represent them
in Promela. One solution is to de�ne an abstract datatype, implementing lists
as arrays and de�ning the classical operations like add an element, remove an
element, etc. as macros. We didn't do this, mainly due to an early attempt to
avoid macros since they are not well integrated into Spin; they do for example
not support local variables very well.

As an experiment (rather than a choice of best solution) we decided early
to model lists as channels. Channels have some of the same properties as lists:
one can easily add elements, and remove them (following the FIFO{principle
though). In addition, channels make some operations that we need easy. That
is, questions like \does list l contain element x?", and operations like \remove
element x from the list l { no matter where it is in the list". We shall shortly
describe the technique.

First, with the macro de�nition \#define list chan" we de�ne a new sym-
bol list to stand for the symbol chan, which is the Promela keyword for

8 In particular, when activating the simulator's \Time Sequence Panel" with the \One

Window per Process" option, normally the currently executed code{line will be high-

lighted at each step. In case of a macro call, however, only the calling line will be

highlighted throughout the macro's execution, and not its contents.
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declaring channels. This de�nition makes it possible to declare a \list variable"
as follows:

list numbers = [5] of fintg

The \list variable" numbers is intended to contain lists with a length smaller
than or equal to 5. A number of operations are now de�ned upon lists, which
we shall only give the signatures for, see Figure 5. The type list[Elem] used
as formal parameter type is supposed to represent all lists of elements of type
Elem, the type Elem here supposed to be some polymorphic type.

procedure append(Elem e; wr list[Elem] l);

procedure remove(Elem e; wr list[Elem] l);

procedure copy(list[Elem] l1; wr list[Elem] l2);

procedure next(wr list[Elem] l, wr Elem x)

Fig. 5. Signatures for list operations

Informally, the procedures and functions do the following9. The procedure
append appends an element to the front of a list; remove removes a particular
element (assuming it is there); copy copies one list (l1) into another (l2); next
removes the �rst element inserted (FIFO principle) and stores this in the re-
sult variable x (assuming the list is not empty). Suppose we have the following
declarations:

int x;

list numbers = [5] of fintg;
list temp = [5] of fintg;

Then Figure 6 illustrates the use of the list operations, and their e�ect on
the variables x, numbers and temp. All statements execute, hence boolean valued
expressions evaluate to true.

9 Somewhat more formally, the procedures perform the following channel operations:

append(e,l) does l!e; remove(e,l) does l??e; copy(l1,l2) does combinations of

l1?x and l2!x; and next(l,x) does l?x. Note however, that some of these Promela

channel operators do not allow variables as arguments, only constants, hence the

implementations of these procedures are sometimes more elaborated.
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x numbers temp

0 [] []

append(1,numbers); [1]

append(2,numbers); [2,1]

append(3,numbers); [3,2,1]

next(numbers,x) 1 [3,2]

x == 1;

copy(numbers, temp); [3,2] [3,2]

remove(3,temp); [2]

next(temp,x); 2 []

x == 2

Fig. 6. Examples of list operations

4.2 The State Space

Three constants de�ne the bounds of the system, Figure 7. That is, they de�ne
the size of the state space, an important factor for obtaining e�cient model
checking.

const

NO_PROPS = 2;

NO_EVENTS = 2;

NO_TASKS = 3;

Fig. 7. The constants

The constant NO PROPS de�nes the number of memory properties, and hence
the size of the property lock table and database, which each have an entry for
each memory property. We shall work with two memory properties: 0 and 1. The
constant NO EVENTS de�nes the number of events, 2 in our case: MEMORY EVENT

and SNARF EVENT as will be formalized below. Finally, the constant NO TASKS

de�nes the number of tasks in the system, including the daemon. This number
is set to 3 corresponding to a daemon and two application tasks.

A number of types are de�ned, see Figure 8. The type EventId is an enumer-
ated type de�ning the two forms of events. TaskId is the type of task identi�ers.
Note, that there are 3 tasks (NO TASKS = 3): the daemon, which is given identity
0 and two application tasks, given identity 1 and 2 respectively.
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type

EventId = fMEMORY_EVENT,SNARF_EVENTg;
TaskId = byte;

type

Memory_Property = byte;

Memory_Value = byte;

typedef Propertyf
Memory_Property memory_property;

Memory_Value memory_valueg;

typedef Lockf
Memory_Value memory_value;

list subscribers = [NO_TASKS] of TaskId;

bool achievedg;

typedef Eventf
byte count;

list pending_tasks = [NO_TASKS] of TaskIdg;

typedef Taskf
State state;

list waiting_for = [NO_EVENTS] of EventId;

Property event_arg_testg;

type

State = fSUSPENDED,RUNNING,ABORTED,TERMINATEDg;

Fig. 8. Types

The type Memory Property contains the memory properties, of which there
are two (NO PROPS = 2): 0 and 1. Correspondingly, the type Memory Value con-
tains the memory values. There is no constant de�ning the maximal number
of memory values, since this bound is not needed for declaring the state space
(beyond declaring it as a byte). Finally, a Property is then de�ned as a record
containing two entries: a memory property and a memory value.

Now, as we shall see, the property lock table will be modeled as a mapping
from memory properties to locks in the type Lock10. Hence each memory prop-
erty is mapped to a record containing the following three �elds: the memory
value it is supposed to have; the list of tasks subscribing to the lock; and �nally,
a ag indicating whether it has been achieved or not.

10 In the Lisp program a property lock table is represented as a list, but we have found

the mapping representation to be more convenient from a modeling point of view;

although thereby we risk to overlook potential errors.
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Each event (MEMORY EVENT and SNARF EVENT) is associated with a status
record of the type Event containing two �elds: a counter that is increased each
time the event is signaled (used by the daemon); and a list of pending tasks
waiting for the event to signaled, and which then will be re-started. Correspond-
ingly, each task is associated with a status record of the type Task containing the
following three �elds: the state of the task (SUSPENDED, RUNNING, ABORTED, or
TERMINATED); a list of those events it waits for in case the state is SUSPENDED; and
�nally a property called event arg test. This last property represents a condi-
tion that has to be satis�ed before the task can be re-started in case it waits for
an event. It's relevant when a task is not the owner of a lock, and hence some
other task is supposed to achieve the property. Then the task must wait for this
property to be achieved, hence the property becomes such a condition.

The state space of the model can now be declared, see Figure 9. The database
is represented by the variable db, which is an array mapping memory proper-
ties into memory values. The property lock table is represented by the variable
property locks, which is an array mapping memory properties into locks. In
the Lisp code, the property lock table is represented as a list of (memory prop-
erty, lock) pairs. Hence, in the Lisp program, the existence of a lock l on a
memory property p is represented by the fact that the pair (p; l) is in the list.
Since we model the property lock table as a mapping from memory properties to
locks, the memory property p will always have an entry, and we therefore have
to model the non-existence of a lock di�erently. We have reserved the memory
value 0 for those locks that are \non-existent". That is, if a memory property
maps to a lock with memory value 0, it means it is not locked (corresponding to
not being in the list in the Lisp program). The constant:

const

undef_value = 0

is introduced to denote this unde�ned memory value.

Two variables are introduced which store the status of the events and the
tasks. The variable Ev maps events into event status records, and similarly, the
variable active tasks maps task identi�ers into task status records.

4.3 Events

Two operations are de�ned on events, corresponding to waiting for an event
and signaling an event. These operations are represented by the procedures
wait for event until11, Figure 10, and signal event, Figure 11.

The procedure wait for events until takes three parameters: the pa-
rameter this (type TaskId) identi�es the task that calls the procedure, and

11 A procedure wait for events also exists, but it is very similar to

wait for events until.
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Memory_Value

db[NO_PROPS];

Lock

property_locks[NO_PROPS];

Event

Ev[NO_EVENTS];

Task

active_tasks[NO_TASKS];

Fig. 9. Variables

procedure wait_for_event_until(TaskId this; EventId a; Property p)

f
atomic f

append(this,Ev[a].pending_tasks);

append(a,active_tasks[this].waiting_for);

active_tasks[this].event_arg_test.memory_property =

p.memory_property;

active_tasks[this].event_arg_test.memory_value =

p.memory_value;

active_tasks[this].state = SUSPENDED;

active_tasks[this].state == RUNNING g
g

Fig. 10. wait for event until

hence the task that wants to wait for an event to happen. The parame-
ter a (type EventId) identi�es the event to be waited for; and �nally the
parameter p (type Property) represents a property that must be satis�ed
in addition to the occurrence of the event before the calling task can be
re-started. For example, when a task wants to wait for some other task
to achieve the property CAMERA ON12, then it calls this procedure as fol-
lows: wait for events until(this,MEMORY EVENT,CAMERA ON). We shall refer
to this property as the restart condition.

The body of the procedure is executed atomically, as within a critical section.
First, the calling task is appended to the event's list of pending tasks (those
waiting for the event to occur). Second, the event is appended to the task's list of
events it is waiting for. Third, the restart condition p is stored in the task's status
record in the event arg test �eld. Note that since Promela does not allow
for assignments to record variables, each �eld has to be updated individually.
Finally, the task is suspended by updating the task's state �eld. The waiting
itself is realized by executing the statement:

12 That is, the memory property CAMERA must have the value ON.
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procedure signal_event(EventId a)

f
TaskId t;

EventId e;

list pending = [NO_EVENTS] of EventId;

Ev[a].count = Ev[a].count + 1;

copy(Ev[a].pending_tasks,pending);

do

:: next(pending,t) ->

if

:: (active_tasks[t].event_arg_test.memory_value == undef_value ||

db_query(active_tasks[t].event_arg_test) ) ->

do

:: next(active_tasks[t].waiting_for,e) ->

remove(t,Ev[e].pending_tasks)

:: empty(active_tasks[t].waiting_for) -> break

od;

active_tasks[t].state = RUNNING

:: else

fi

:: empty(pending) -> break

od

g

Fig. 11. signal event

active_tasks[this].state == RUNNING

This is a boolean valued expression (without side e�ects), and according to the
semantics of Promela, it can only execute, and terminate, if its value is true.
Hence, the calling task will wait until it becomes true, the intention being that
the signal event procedure at some later point will assign the value RUNNING

to active tasks[this].state.

The procedure signal event takes one single parameter, namely the event
a (type EventId) to be signaled, and then basically restarts all tasks waiting for
that event, if their restart condition is satis�ed that is. Three local variables are
declared: t, e and pending, the last intended to hold the list of tasks waiting for
the event. First, the event counter in incremented. The event counter is used by
the daemon to determine whether a new, and untreated, signal has arrived, see
Figure 25 page 39. Then the event's list of pending tasks is copied into the local
pending variable, which hereafter in a loop is examined, task by task. Each task
is extracted by the statement next(pending,t), and hence stored in the local
variable t.

Now, for each such waiting task t, if the task's restart condition
event arg test is satis�ed it is restarted. The restart condition is satis�ed,
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if either its memory value is unde�ned (equals undef value), or if it indeed is
satis�ed in the database. The latter is the case if the expression:

db_query(active_tasks[t].event_arg_test)

evaluates to true. The function db query, Figure 12, takes as parameter a prop-
erty p, and returns true if the database satis�es it (the property's memory prop-
erty denotes the property's memory value).

function db_query(Property p):bool

f
db[p.memory_property] == p.memory_value

g

Fig. 12. db query

Hence, in case the restart condition is satis�ed, an (inner) loop is entered, in
which all events in the task's waiting for list are examined, and for each such
event: the task is removed from the event's list of pending tasks. In other words,
the task is removed from all events since it's now restarted.

In the Lisp code, the body of the signal event procedure is embedded
within a critical section. A direct modeling of this in Promela would result in
an atomic construct around the body. This has not been done, however, since
Promela at the time of writing does not allow nested atomic constructs, and
since all signal event calls occur within atomic constructs.

4.4 The Tasks

Tasks are modeled as Promela processes. Before we de�ne what a task
is, we shall, however, introduce a collection of procedures. The procedure
fail if incompatible, Figure 13, is called by a task just before it tries to snarf
a property, in order to check whether or not this is in conict with already exist-
ing locks. The procedure takes as parameter the property p (type Property) to
be snarfed, and returns true if some other task has already snarfed the memory
property, but with a di�erent, and therefore incompatible, memory value. Recall
that if the memory property denotes a value di�erent (!=) from undef value

in the lock table, then it has been locked.The result of this test is stored in the
return variable err, which we shall see is used to direct control in the calling
context.

The procedure snarf property lock, Figure 14, is called by a task to snarf
a property. The procedure takes as parameter the identity, this (type TaskId),
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procedure fail_if_incompatible_property(Property p; wr bool err)

f
if

:: (property_locks[p.memory_property].memory_value != undef_value &

property_locks[p.memory_property].memory_value != p.memory_value)

-> err = 1

:: else

fi

g

Fig. 13. fail if incompatible property

procedure snarf_property_lock(TaskId this; Property p; wr bool err)

f
atomicf

fail_if_incompatible_property(p,err);

append(this,property_locks[p.memory_property].subscribers);

if

:: property_locks[p.memory_property].memory_value == undef_value ->

property_locks[p.memory_property].memory_value = p.memory_value;

property_locks[p.memory_property].achieved = db_query(p)

:: else

fi;

signal_event(SNARF_EVENT)g
g

Fig. 14. snarf property lock

of the calling task; and the property, p (type Property), to be snarfed. The
success of the operation is written back into the result variable err.

The procedure �rst checks whether the operation is compatible with the
already existing locks. That is, there must not be a lock with the same memory
property, but with a di�erent memory value. Note that the result of this check
is written into the err variable. In the calling context, Figure 20, we shall later
see the e�ect of this result variable becoming true: an interrupt will occur and
terminate the task. The task is then appended to the list of subscribers to the
property: those that want it to become true. Then, in case the property is in
fact not already in the lock table, it is \inserted": the memory property of p is
set to denote the memory value of p; and the achieved �eld is set to true if the
property already holds in the database (call of db query), otherwise to false.
Finally, the SNARF EVENT is signaled with the result that the daemon will be
restarted if waiting.

After having snarfed the property, it is now up to the task to achieve the
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property { if it is the owner that is. A task is the owner of a property, if it was
the �rst to subscribe to it, and hence the �rst element in the property's subscriber
list in the lock table. The procedure find owner, Figure 15, determines this. It
takes as parameter the property p (type Property), and returns in the result
variable owner (type TaskId) the owner of that property in the lock table.

procedure find_owner(Property p; wr TaskId owner)

f
if

:: property_locks[p.memory_property].subscribers?[1] ->

owner = 1

:: property_locks[p.memory_property].subscribers?[2] ->

owner = 2

:: property_locks[p.memory_property].subscribers?[3] ->

owner = 3

:: property_locks[p.memory_property].subscribers?[4] ->

owner = 4

fi

g

Fig. 15. �nd owner

When a task �nally wants to achieve a property, it calls the procedure
achieve lock property, Figure 16. The procedure takes as parameter the iden-
tity, this (type TaskId), of the calling task; and the property, p (type Property),
to be achieved. The result (success) of the operation is stored in the result vari-
able err (type bool). The task can only achieve the property if it's the owner.
Hence, �rst it is determined which task is the owner of the property p: the pro-
cedure call find owner(p,owner) stores the owner in the result variable owner.
In case the owner equals the calling task (this), the property is achieved by a
call of the procedure achieve (de�ned in Figure 17 and described below); and
the achieved �eld is set to true. On the other hand, if the task is not owner, it
must wait for the owner (some other task) to achieve the property. This waiting
is initiated by a call of wait for event until with the property p as restart
condition. That is, the calling task will only be restarted on a memory event, if
also the property p has been achieved, and hence is satis�ed in the database.

The procedure achieve, Figure 17, is the one that really achieves the prop-
erty by updating the database in case the property is not already satis�ed in the
database. The procedure takes as parameter the property p (type Property) to
be achieved. If the property is already satis�ed in the database { i.e. db query(p)

evaluates to true { the procedure returns successfully13. Otherwise (else), in
case the property is not already satis�ed, a non-deterministic choice is made

13 The �rst if{branch is equivalent to db query(p) -> skip.
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procedure achieve_lock_property(TaskId this; Property p; wr bool err)

f
TaskId owner;

find_owner(p,owner);

if

:: owner == this ->

achieve(p,err);

property_locks[p.memory_property].achieved = true

:: else ->

wait_for_event_until(this,MEMORY_EVENT,p);

fi

g

Fig. 16. achieve lock property

between success : updating the database to achieve the property, and failure :
setting the boolean result variable err to true. This non-determinism reects
the fact that achievement can fail, and we abstract away from the details about
the possible causes of failure.

procedure achieve(Property p; wr bool err)

f
if

:: db_query(p)

:: else ->

if

:: db[p.memory_property] = p.memory_value

:: err = 1

fi

fi

g

Fig. 17. achieve

Once the task has achieved the property, it is ready to execute its real job
while assuming that the property is invariantly satis�ed. The damon must in-
tervene and stop the task if this is not the case. The procedure closure, Figure
18, represents this job. Its body is simple: a non-deterministic choice between
just a skip statement and false. In case the �rst if{branch is chosen, skip is
executed, and the procedure returns immediately. In case, on the other hand, the
second branch is chosen, the execution of false will make the calling task block,
since false cannot execute and terminate due to the semantics of Promela.
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This blocking is supposed to simulate a time consuming computation, and is
needed later in order to conveniently formulate a certain correctness property
to be veri�ed. The correctness property basically says that in case the property
is broken (i.e.: is no longer in the database), the task will be terminated. Now,
suppose closure always terminated, this property would be trivially satis�ed
{ hence the blocking alternative, allowing us to verify that the damon really
explicitly and violently aborts the task.

procedure closure

f
if

:: true -> skip

:: true -> false

fi

g

Fig. 18. closure

Assume that the task now has called the closure, and that this terminates
{ either by choosing the skip branch, or because it has been aborted by the
daemon. In this case the snarfed property no longer needs to be satis�ed in the
database, at least so far as what concerns this task. Hence, our task must release
the property, meaning that it must be removed from the property lock table.
This will allow other tasks to snarf and lock the same memory property but
with di�erent memory values. The releasing is done by a call of the procedure
release lock, Figure 19. It takes as parameter the identity, this (type TaskId),
of the calling task; and the property, p (type Property), to be released.

procedure release_lock(TaskId this; Property p)

f
atomicf

remove(this,property_locks[p.memory_property].subscribers);

if

:: empty(property_locks[p.memory_property].subscribers) ->

property_locks[p.memory_property].memory_value = undef_value

:: nempty(property_locks[p.memory_property].subscribers)

fi g
g

Fig. 19. release lock
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Its body is embedded within an atomic to model a critical section in the Lisp
code. The procedure basically removes the task from the memory property's
subscriber list in the lock table, since the task no longer subscribes to it. In case
the subscriber list thereby becomes empty { no other tasks subscribe { the lock
must be removed completely from the lock table. This is done by assigning the
undef value as memory value to the memory property in the table. Recall, that
this is the way we model the absence of a lock (a memory property maps to
undef value), whereas in the Lisp program, the lock would simply be removed
from the list of locks.

We can now �nally de�ne the top-level procedure
funcall with maintained property, Figure 20 { called by a task { which snarfs
the property to be maintained, achieves it, executes the body, and �nally releases
the property again. The procedure takes as parameter the identity, this (type
TaskId), of the task; the property, p (type Property), to be achieved and there-
after maintained to the end of the task; and �nally the job, c (type Closure),
to be executed.

procedure funcall_with_maintained_property(TaskId this;

Property p; Closure c)

f
bool err = 0;

f snarf_property_lock(this,p,err);

achieve_lock_property(this,p,err);

c

g unless ferr || active_tasks[this].state == ABORTEDg;

active_tasks[this].state = TERMINATED;

frelease_lock(this,p)g unless factive_tasks[this].state == ABORTEDg
g

Fig. 20. funcall with maintained property

We have up until now seen the variable err occurring as result parame-
ter to most of our procedures. This variable is declared as a local variable at
this outermost level, and hence passed as actual parameter to the procedures
snarf property lock and achieve lock property. The calls of these two pro-
cedures are embedded within an unless construct of the form

fsnarf;achieve;jobg unless fconditiong.

where the condition is that either err is true, or (||) the task has been aborted
by the daemon: active tasks[this].state == ABORTED. As we shall see in the
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next section, the daemon aborts a task exactly by assigning the value ABORTED to
the state �eld in the tasks status record. The semantics of the unless construct
is such that the snar�ng, achieving and job is performed to the end, unless the
condition becomes true, in which case the whole statement terminates abruptly.
Hence, in the case that either the snar�ng or the achievement goes wrong (err
becomes true), or in the case that the task is aborted by the daemon { the whole
operation terminates.

Once the snar�ng, achieving and job has been terminated, either normally
or abnormally, the statement:

active_tasks[this].state = TERMINATED;

is executed. This is part of the modeling of the Lisp unwind-protect construct.
The purpose of the assignment is to \restore" the value of the state �eld in case
the task has been aborted by the daemon; and hence this �eld had got the value
ABORTED. Restoring here means assigning a value di�erent from ABORTED, since
the value ABORTED will result in an immediate termination of the statement that
follows. The last statement namely releases the property from the lock table, but
is abruptly terminated in case the state �eld has, or gets the value ABORTED by
the daemon, in case the daemon at this point discovers a violation. This is hence
the second example of how the Promela unless interrupt construct is used to
model task abortion.

We are now able to de�ne the process type Achieving Task, Figure 21, of
which a process is spawned/instantiated for each task. It takes as parameter its
own identity, this (type TaskId), which will be determined in the initialization
section, Figure 28. A local variable p is declared, which is assigned the property to
be snarfed and achieved by the task. In order to reduce the state space to model
check, we have focused on memory property 0 (p.memory property = 0), and
we arbitrarily let the task achieve a memory value which is identical to the task's
identity: 1 or 2 since, as we shall see, only two tasks will be spawned. Finally
the main procedure is called, which performs the snar�ng, achievement, job and
release. Note that all tasks in this model perform the same job (closure). This

is an example of an abstraction from the Lisp code, where details regarded as
unimportant for the veri�cation have been omitted.

4.5 The Daemon

The daemon is responsible for detecting whether violations of locks occur in the
database. That is, it must react in case a memory property mp in the lock table
is locked to a memory value mv1, and the corresponding achieved �eld is set
to true (hence a task relies on it and is executing its job), but mp denotes a
value mv2 6= mv1 in the database. In that case the daemon must interrupt the
tasks relying on the property (mp;mv1) and repair the violation by updating the
database, assigning mv1 to mp again. The procedure interrupt task, Figure
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proctype Achieving_Task(TaskId this)

f Property p;

p.memory_property = 0;

if

:: this == 1 -> p.memory_value = 1;

:: this == 2 -> p.memory_value = 2

fi;

funcall_with_maintained_property(this,p,closure)

g

Fig. 21. Achieving Task

procedure interrupt_task(TaskId t)

f
active_tasks[t].state = ABORTED

g

Fig. 22. interrupt task

22, takes as parameter a task, t (type TaskId), to be aborted, and does this by
simply assigning the value ABORTED to the state �eld of the task's status record.
This will cause the relevant unless construct to terminate the task (Figure 20).

The procedure lock property violated, Figure 23, is used to determine
whether locks have been violated. It is called for each memory property having
an entry in the lock table (0 and 1 in our reduced case), and takes as parameter
this memory property mp (type Memory Property); returning the result back
into the variable lock violation (type bool). The body consists of a single
assignment to the result variable, which becomes true i�. the memory property
is locked (memory value is de�ned), has been achieved, but has a memory value
di�erent from the one in the database.

The procedure lock property violated is called from the procedure
check locks, Figure 24, which checks the whole property lock table for vio-
lations. This is done in a loop that iterates over all the memory properties
f0 : : :NO PROPS� 1g. In fact, there are two such loops, each of the form:

mp = 0;

do

:: mp < NO_PROPS ->

lock_property_violated(mp,lock_violation);

if

:: lock_violation ->

HANDLE_VIOLATION
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procedure lock_property_violated(Memory_Property mp;

wr bool lock_violation)

f
lock_violation =

(property_locks[mp].memory_value != undef_value &

property_locks[mp].achieved &

db[mp] != property_locks[mp].memory_value)

g

Fig. 23. lock property violated

:: else

fi;

mp++

:: else -> break

od;

where the generic slot HANDLE VIOLATION is executed for each violation. In a
language with for{loops and traditional if{statements this could be formulated
as:

For mp := 0 To NO_PROPS - 1 Do

lock_property_violated(mp,lock_violation);

If lock_violation Then

HANDLE_VIOLATION

End;

End;

In the �rst loop, in case of a memory property mp being violated (denoting
something di�erent in the database than in the lock table), all the subscribers
to that memory property are interrupted. This is done by �rst taking a copy of
this subscriber list, storing it in the local variable sub, and then extracting each
task t from sub, one by one (next(sub,t)), and interrupting it.

In the second loop, HANDLE VIOLATION is a break, meaning that the second
loop terminates as soon as a violation is found, the purpose being just to examine
whether there are any violations left. This result is returned in the result variable
lock violation of the check locks procedure. The result will then be used in
the calling context to decide whether the database should be recovered.

The two loops are also present in the Lisp code, and since they result in an
unexpected behaviour found during veri�cation, to be explained in section 5.4,
we quote Erann Gat's explanation of the code:

The structure of this code is complicated by the design requirement that
an external process may be responsible for restoring violated properties.
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procedure check_locks(wr bool lock_violation)

f
Memory_Property mp;

list sub = [NO_TASKS] of TaskId;

TaskId t;

mp = 0;

do

:: mp < NO_PROPS ->

lock_property_violated(mp,lock_violation);

if

:: lock_violation ->

atomicfcopy(property_locks[mp].subscribers,sub)g;
do

:: next(sub,t) -> interrupt_task(t);

:: empty(sub) -> break

od

:: else

fi;

mp++

:: else -> break

od;

mp = 0;

do

:: mp < NO_PROPS ->

lock_property_violated(mp,lock_violation);

if

:: lock_violation -> break

:: else

fi;

mp++

:: else -> break

od

g

Fig. 24. check locks

(In the case of the DS1 RA this is the MIR process.) So tasks need to
be able to decide, when a property that they want maintained is violated,
if they want to wait for the external process to restore the property or
if they want to fail right away. If all the tasks that rely on a violated
property fail right away then there is no need to restore the property,
since no one is relying on it any more. So check-locks makes one pass
through the property locks and injects failures into all tasks that rely
on violated properties. It then yields to give all those tasks a chance to
abort themselves if they choose to. Then it checks to see if there are any
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violated properties left. This is returned as a boolean to the �rst part of
the maintain-properties-daemon, which runs in an in�nite loop.

The daemon process itself will be an instance of the process type
Maintain Properties Daemon, Figure 25, which as parameter takes its own
identity, this (type TaskId). It declares three local variables: lock violation,
to hold the result of check locks; event count, to keep track of new events;
and first time, which is true only when the daemon starts. The body consists
of an in�nite loop, which for each iteration does the following. The procedure
check locks is called to determine if there are any violations. If there are, the
procedure do automatic recovery is called, which has not been shown here,
but which basically repairs the database by making it consistent with the lock
table. That is, do automatic recovery performs the update db[mp] = mv for
each memory property mp, where the lock table maps mp to mv, but the database
db does not.

proctype Maintain_Properties_Daemon(TaskId this)

f
bit lock_violation;

byte event_count = 0;

bit first_time = true;

do

:: check_locks(lock_violation);

if

:: lock_violation ->

do_automatic_recovery

:: else

fi;

if

:: (!first_time &&

Ev[MEMORY_EVENT].count + Ev[SNARF_EVENT].count != event_count)

->

event_count = Ev[MEMORY_EVENT].count + Ev[SNARF_EVENT].count

:: else ->

first_time = false;

wait_for_events(this,MEMORY_EVENT,SNARF_EVENT)

fi

od

g

Fig. 25. Maintain Properties Daemon

Then, in the second if{construct, it is decided whether the daemon
should stop and wait for a new memory or snarf event to occur (call of
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wait for events), or whether it should continue with yet another iteration,
calling check locks and perhaps do automatic recovery. Another iteration is
needed if a memory event or a snarf event has occurred since the daemon was
restarted last time. This is expressed as follows: when first time is true, the
daemon simply calls wait for events, and then waits for either a MEMORY EVENT

or a SNARF EVENT to occur. The procedure wait for events has not been shown,
but is like wait for event until, Figure 10, except that not one { but either
of two events are waited for. A second di�erence is that a boolean variable
daemon ready is set to true as the last thing before the daemon starts waiting.
This is used during initialization, Figure 28, as we shall see. Now, in case it's
not the �rst iteration, the test:

Ev[MEMORY_EVENT].count + Ev[SNARF_EVENT].count != event_count

is executed. It evaluates to true in case the event counter event count dif-
fers from the sum of the event counters for the memory and snarf events. If
there is a di�erence, it means that there has been an event since last time
event count was updated, and this must result in yet another iteration before
calling wait for events. Before this extra iteration, the event count variable
is, however, updated.

4.6 The Environment

Violations are introduced by the environment, here modeled by the process type
Environment, Figure 26. An instantiation of this will run in parallel with the
tasks and the daemon, and may cause a database change at any moment in time.
The change is here �xed to memory property 0 getting memory value 0. This
will introduce a violation in case a lock has been created for memory property
0 with a value di�erent from 0. The MEMORY EVENT is furthermore signaled to
wake up the daemon, in case it's not already running. The daemon shall then
hopefully discover the violation just introduced.

proctype Environment()

f atomicf
db[0] = 0;

signal_event(MEMORY_EVENT)

g
g;

Fig. 26. Environment
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4.7 Initialization

All processes, the daemon and the tasks, are all instantiated with the
procedure spawn, which takes as parameter the parameterized task (type
Process(TaskId) represents14 the type of processes parameterized with a task
id) to be spawned; and as a second parameter it takes the task identity t (type
TaskId) of the task to be spawned. The second parameter is then fed as actual
parameter to the �rst parameter in a run statement. Before that happens, the
task's state �eld gets the value RUNNING.

procedure spawn(Process(TaskId) task; TaskId t)

f
atomicf

active_tasks[t].state = RUNNING;

run task(t)g
g

Fig. 27. spawn

Finally, the system is initialized by spawning the daemon with identity 0, the
two tasks with identity 1 respectively 2, and then the environment, see Figure 28.
Before the tasks are spawned, however, the daemon is waited for to terminate its
own local initialization. This is done by waiting for the variable daemon ready

to become true. In fact, this models the fact that the daemon will be started
before any other task in the system.15

14 Note that we use our own informal notation instead of macro de�nitions.
15 In an early model, the tasks were spawned without waiting for the daemon, but that

lead to the discovery of an error by the model checker. The error was basically that

a lock violation could occur before the daemon got to its initial waiting point, which

the �rst time is unconditional!; and hence the daemon would just ignore the violation

and call wait for events.
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init

f spawn(Maintain_Properties_Daemon,0);

daemon_ready == true;

spawn(Achieving_Task,1);

spawn(Achieving_Task,2);

run Environment()

g

Fig. 28. initialization

5 Analysis wrt. Selected Properties

5.1 Identifying Properties to be Veri�ed

The model has been analyzed wrt. the following two properties, here expressed
informally:

Release Property: A task releases all its locks before it terminates.

Abort Property: If an inconsistency occurs between the database and an entry
in the lock table, then all tasks that rely on the lock will be terminated, either by
themselves or by the daemon in terms of an abort.

In the following we shall demonstrate how we have formulated these prop-
erties in terms of Promela assertions (assert{statements) and Ltl formulae,
and we shall show the results of applying the Spin model checker to verify these
properties. It turns out that none of them are satis�ed in the presented model,
a discovery that has lead the RA programmers to make corrections in the Lisp
code.

The veri�cation of the two properties lead to the direct discovery of four
errors (wrong code) { one breaking the Release property, and three breaking
the Abort property. All of these errors are classical in the sense that they
arise due to processes interleaving in unexpected ways. Hence, for example, two
errors can be corrected by introducing critical sections around the troubled code.
Furthermore, a less serious, but at that time yet undiscovered e�ciency error
(code executed twice instead of once) was discovered just by observing generated
traces from the model checking. Hence, a total of �ve errors were identi�ed in
the Lisp code, four of which being important. In addition to this, a veri�cation
\highlighted the need for a mechanism to insure that the daemon has reached
`steady state' before proceeding". Although this was not considered as a direct
error, we have reported it here.

Each discovered error is illustrated by showing that fragment of the imple-
mented code which causes the error to occur. Although the implementation is
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in Lisp, we shall for reasons of con�dentiality present these program fragments
in a pseudo-code notation invented for the purpose.

5.2 Error 1 { The Release Property

Release Property: A task releases all its locks before it terminates.

5.2.1 Formalizing The Property In order to formalize this property, we
need to de�ne what it means for a task to have released its locks. The function
not subscriber in Figure 29 returns true if task t does not subscribe to memory
property mp16, hence has released it's lock on mp.

function not_subscriber(TaskId t; Memory_Property mp)f
(t == 1 -> !property_locks[mp].subscribers??[1] :

(t == 2 -> !property_locks[mp].subscribers??[2] : true))g

Fig. 29. not subscriber

To state the Release property, we modify the de�nition of the pro-
cess Achieving Task, Figure 21, adding an assert{statement after the call of
funcall with maintained property. This modi�cation is shown in Figure 30.

proctype Achieving_Task(TaskId this)

f Property p;

p.memory_property = 0;

if

:: this == 1 -> p.memory_value = 1;

:: this == 2 -> p.memory_value = 2

fi;

funcall_with_maintained_property(this,p,closure);

assert(not_subscriber(this,p.memory_property)) -- assertion added

g

Fig. 30. Formalization of Release property

16 Due to the semantics of Promela, it is necessary to write the body of the function as

a conditional over t, since the arguments to the ??[] operator have to be constants

(and not names).
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When a task terminates (end of funcall with maintained property), we
expect that it is no longer subscriber of the memory property it has snarfed
(p.memory property), and hence we expect the assertion to be satis�ed.

5.2.2 Error Detection Running the Spinmodel checker on the modi�ed pro-
gram yields an error trace illustrating that the assertion is not always satis�ed.
The trace (shortened) describes the following sequence of events:

1. A task starts, running process Achieving Task in Figure 30. This implies a
call of the procedure funcall with maintained property, de�ned in Figure
20.

2. The procedure funcall with maintained property does the snar�ng, the
achieving, the closure call, and then
executes the active tasks[this].state = TERMINATED statement, ready
to release its lock by calling the release lock procedure.

3. At this point, just before the call of release lock, the Environment, de-
�ned in Figure 26, introduces an inconsistency in the database such that the
memory value of memory property 0 becomes 0 in the database, while it is
expected to be di�erent from 0 by the running task.

4. The Daemon, Figure 25, detects this inconsistency and aborts the task in the
check locks procedure, Figure 24, by calling the procedure interrupt task

de�ned in Figure 22. That is, the status of the task becomes ABORTED.

The way the funcall with maintained property is programmed, this abor-
tion will at this point result in an exit of this procedure, hence skipping
release lock. This is caused by the Promela semantics of the unless con-
struct as occurring in (Figure 20):

frelease_lock(this,p)g unless factive_tasks[this].state == ABORTEDg

Hence, even though the snar�ng, achieving, and closure is protected against
abortion (if an abort occurs there, release locks will be called anyway), the
lock releasing itself is not protected: if an abort occurs here, the lock releasing
is abandoned.

The implemented version of funcall with maintained property is
sketched in Figure 31. It shows how the snar�ng, achieving and closure all occur
within a Protect construct, where the second argument after the Exit keyword
is the statement release locks(locks).

A statement of the form \Protect P Exit Q End" executes P and then Q,
with the addition, that if an abort occurs during the execution of P, the remainder
of P is skipped, and Q gets executed. Hence, the idea is that Q always gets
executed, even if an abort occurs during the execution of P. The unexpected
situation is that an abort can occur during the execution of Q, with the result
that the rest of Q will not be executed. The snar�ng is performed within a critical
section, meaning that other tasks are blocked.
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Procedure funcall_with_maintained_properties(props : Property list;

closure : Task)

Begin

Var locks : Lock list;

Protect

Critical

locks := snarf property locks(props)

End;

achieve lock properties(locks);

closure();

Exit

release locks(locks)

End

End

Fig. 31. Implemented version of funcall with maintained property

5.2.3 Error Correction The identi�ed error can be corrected by protecting
the lock releasing itself against abortion. This we have done in a modi�ed version
of the Promela model17, such that lock releasing cannot be aborted. Hereafter
the Release property is veri�ed correct using the Spin model checker. How
the modi�cation is done in the Lisp program is beyond the scope of the present
report.

5.3 Error 2 { The Abort Property

As already mentioned, three veri�cations of this property were performed, each
demonstrating an error in the model causing the falsi�cation of the property.
We will present the �rst veri�cation in this section.

Abort Property: If an inconsistency occurs between the database and an entry
in the lock table, then all tasks that rely on the lock will be terminated, either by
themselves or by the daemon in terms of an abort.

5.3.1 Formalizing The Property Our veri�cation will be concrete in that
we shall focus on task 1. We shall state, that if task 1 has snarfed and achieved
memory property 0, assuming it to denote memory value 1 in the database (as
stated in Figure 21) then if this assumption is broken by the environment, task
1 will be terminated. First of all, we formally de�ne what it means for task 1's
assumption to be broken, and what it means for task 1 to be terminated. Figure
32 shows two such predicates.

17 Basically by removing the unless construct attached to the call of release lock.
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function task1_property_brokenf
(property_locks[0].memory_value == 1 &

property_locks[0].achieved &

db[0] == 0)g

function task1_terminatedf
(active_tasks[1].state == TERMINATED ||

active_tasks[1].state == ABORTED)g

Fig. 32. Predicates used to formalize the Abort property

The predicate task1 property broken returns true in case of an inconsis-
tency between property locks (mapping 0 to 1) and db (mapping 0 to 0) in a
situation where the task assumes the property to have been achieved. The pred-
icate task1 terminated is true when the state of task 1 is either TERMINATED,
set by itself, or ABORTED, set by the daemon. The Abort property can now be
stated as an Ltl formula as shown in Figure 33. The property states that \in
all states ([]), if task1 property broken holds, then eventually (<>), at some
future point in time, task1 terminated will hold".

[](task1_property_broken -> <>task1_terminated)

Fig. 33. Formalization of Abort property

It's relevant here to note that this property only makes sense to verify if
task 1 has the potential of not terminating at all in case it's not aborted. This
is the reason why the closure passed to funcall with maintained property in
Figure 21 is de�ned as in Figure 18. The closure can arbitrarily choose the true
-> false branch whereby it will hang on the false expression without being
able to progress according to the semantics of Promela. Of course, in the real
Lisp program a task will probably always terminate, and we are therefore really
interested in the task being terminated within a certain time frame. However,
since Promela cannot deal explicitly with time, we have chosen only to focus
on the distinction between termination (at some future unspeci�ed time) and
non-termination.

5.3.2 Error Detection Applying the Spin model checker to the above prop-
erty yields an error trace demonstrating, that the property is not satis�ed in the
model. The trace illustrates the following sequence of events.
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1. The daemon, Figure 25, starts and reaches a waiting position. That is, it
calls wait for events, where after it waits for an event to occur.

2. A task, Figure 21, starts; snarfs and achieves successfully, thereby signalling
SNARF EVENT from snarf property lock, Figure 14, and then starts execut-
ing its closure. This closure chooses the true -> false branch. Hence if it
is not aborted it will never terminate (corresponding to a time consuming
computation in a real setting).

3. The daemon has been woken up by the signalling of the SNARF EVENT. No
inconsistencies are found, and the daemon then decides to wait again. That
is, it takes the decision to call wait for events, but delays a bit before
doing it. Note the delay between \decision" and \action" here. The decision
to wait is taken in the Promela model in Figure 25 at the last else branch.

4. The environment, Figure 26, introduces an inconsistency, and signals the
MEMORY EVENT. However, this signal will not a�ect the daemon since it al-
ready has decided to call wait for events. It will for example not check
whether the event counters have been updated.

5. The daemon now calls wait for events unconditionally, and hence, starts
waiting. The task hence does not get aborted, and continues with its \big"
computation.

The implemented version of Maintain Properties Daemon is shown in Fig-
ure 34. We can point to the problem in the code: the decision to wait is taken
in the second If construct, but some inconsistency may be introduced between
this decision and the call of wait for events.

Procedure Maintain_Properties_Daemon();

Begin

Loop

If check_locks Then

do_automatic_recovery

End;

If Not changed(event_count(memory_event) +

event_count(pl_snarf_event))

Then

wait_for_events(memory_event,pl_snarf_event)

End

End

End

Fig. 34. Implemented version of Maintain Properties Daemon

5.3.3 Error Correction A solution to the detected problem is to em-
bed the decision to wait and the waiting itself into a critical section, that
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cannot be interrupted by other processes. In Promela, the atomic con-
struct can be used to de�ne a critical section, and Figure 35 shows how the
Maintain Properties Daemon has been extended with such a critical section
around the code portion that decides whether to wait or not (the last if{
statement).

proctype Maintain_Properties_Daemon(TaskId this)

f
bit lock_violation;

byte event_count = 0;

bit first_time = true;

do

:: check_locks(lock_violation);

if

:: lock_violation ->

do_automatic_recovery

:: else

fi;

atomicf -- added

if

:: (!first_time &&

Ev[MEMORY_EVENT].count+Ev[SNARF_EVENT].count != event_count)

->

event_count = Ev[MEMORY_EVENT].count+Ev[SNARF_EVENT].count

:: else ->

first_time = false;

wait_for_events(this,MEMORY_EVENT,SNARF_EVENT)

fi

g
od

g

Fig. 35. Correction of Maintain Properties Daemon

Reapplying the Spin model checker to verify the Abort property formulated
in Figure 33 for the modi�ed model, however, shows that there is still an error
in the system, as described in the next section.

5.4 Error 3 { The Abort Property

With the corrected model, we re-apply the Spin model checker to the same
property, hoping that it now holds. As already mentioned and as will be demon-
strated, it still does not hold.
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5.4.1 Formalizing The Property The property to be veri�ed is as before,
namely the one pictured in Figure 33.

5.4.2 Error Detection Applying the Spin model checker yields an error
trace demonstrating, that the property is not satis�ed in the model. The trace
illustrates the following sequence of events.

1. The daemon, Figure 35, starts and reaches a waiting position. That is, it
calls wait for events, where after it waits for an event to occur.

2. A task, Figure 21, starts; snarfs and achieves successfully, thereby signalling
SNARF EVENT from snarf property lock, Figure 14, and then starts execut-
ing its closure. This closure chooses the true -> false branch. Hence if it
is not aborted it will never terminate (corresponding to a time consuming
computation in a real setting).

3. The daemon, Figure 35, has been awakened by the signalling of the
SNARF EVENT, and calls check locks18, Figure 24. Now check locks con-
sists of two loops, one executed before the other. The �rst loop looks for
violations and interrupts tasks depending on violated properties. The sec-
ond loop just checks for violations (and does not interrupt tasks). Hence, the
daemon executes the �rst loop { �nds no violation { and then is now ready
for executing the second loop.

4. The environment, Figure 26, introduces an inconsistency, and signals the
MEMORY EVENT. However, the daemon is already running. Hence, the only
e�ect is that the MEMORY EVENT counter is increased.

5. The daemon now executes the second loop of check locks, and �nds the vi-
olation. Hence, it calls do automatic recovery, which repairs the violation
by updating the database.

6. Due to the signalling of the MEMORY EVENT in item 4 by the environment, the
MEMORY EVENT counter has been increased, and hence the daemon will ex-
ecute check locks again. However, since the violation has been repaired,
the daemon will not �nd anything wrong, and will therefore �nally call
wait for events and then wait for a new event to occur. The task is still
executing, and has not been aborted.

The implemented version of check locks is shown in Figure 36. One ob-
serves the two ForEach loops in between which the environment modi�es the
database. The �rst loop hence discovers nothing, while the second loop discovers
the introduced inconsistency, and executes \Return true", with the result that
do automatic recovery is called. Then check locks is called again, but this
time the inconsistency has been repaired and the �rst loop therefore discovers
nothing, and no tasks are interrupted.

18 In fact, check locks is called twice, see section 5.6, and it's the second { and last {

call which is referred to.
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Function check_locks():bool

Begin

ForEach lock In property_locks Do

If lock_property_violated(lock) Then

ForEach task In lock.subscribers Do

interrupt_task(task)

End;

End;

End;

ForEach lock In property_locks Do

If lock_property_violated(lock) Then

Return true

End;

End;

Return false

End;

Fig. 36. Lisp version of check locks

5.4.3 Error Correction At the time when this error trace was generated,
we believed that it was in fact an intended behaviour, and only later was it
con�rmed to be an unexpected and undesired behaviour { an error. Hence, we
did not correct it; and even with the knowledge we have now, it is not evident
for us how to correct this.

5.5 Error 4 { The Abort Property

5.5.1 Formalizing The Property Since we originally did not regard the
above situation as an error, we continued the veri�cation as if it was a correct
behaviour. That is, in order to investigate the existence of additional errors,
we had to reformulate the Abort property such that the above situation was
allowed19. Hence, since the model may repair an inconsistency without aborting
tasks, the property shall state this: in case of a broken property, then either this
is repaired by the daemon, or the task is terminated (by itself or the daemon).
For this purpose we introduce the predicate task1 property repaired in Figure
37. This predicate returns true if the database and the lock table match wrt. to
memory property 0 (recall that we have focused on task 1 that snarfs memory
property 0).

The new correctness property using this new predicate is shown in Figure 38.
The property states that \in all states, if task1 property broken holds, then
eventually either task1 terminated or task1 property repaired will hold".

19 Even, when it later was con�rmed as an error, we did not know how to correct it, and

hence a reformulation of the property was still needed in order to avoid the repair

situation to be identi�ed by the model checker as an error.

50



function task1_property_repairedf
(property_locks[0].memory_value == db[0])g

Fig. 37. Additional predicate used to formalize the Abort property

[](task1_property_broken ->

<>(task1_terminated || task1_property_repaired))

Fig. 38. Re-formalization of Abort property

5.5.2 Error Detection Applying the Spin model checker to the above prop-
erty yields an error trace demonstrating, that the property is not satis�ed in the
model. The trace illustrates the following sequence of events.

1. Task 1, Figure 21, starts, and eventually calls achieve lock property, Fig-
ure 16. This procedure contains the two lines:

achieve(p,err);

property_locks[p.memory_property].achieved = true

That is, a call of achieve, which updates the database, and then an assign-
ment to the achieved �eld. In the trace, the achieve procedure is called, and
then the task execution is delayed, hence, the assignment to the achieved

�eld is delayed.
2. At this point, the Environment, Figure 26, introduces an inconsistency in

the database such that the memory value of memory property 0 becomes 0
in the database, hence, destroys the just achieved property.

3. The daemon, Figure 35, awakened by the environment change starts looking
for an inconsistency, but �nds none since the achieved �eld has not been set
yet, and the daemon requires this to be true in order for an inconsistency to
be existing, see the de�nition of procedure lock property violated Figure
23. Hence, the daemon discovers nothing and goes to sleep again.

4. The task from above now assigns true to the achieved �eld, and continues
as if everything was consistent.

Hence, an inconsistency has been introduced, but it has not been discovered
by the daemon, and hence, is not repaired, neither is the task aborted.

The implemented version of achieve lock property is shown in Figure 39.
It shows how the two lines marked are unprotected in the sense, that other code
may execute in between them. To prevent this, they need to be embedded in a
critical section, and this is what is demonstrated in the next section.
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Procedure achieve_lock_properties(locks : Lock list)

Begin

Var

p : Property;

owner : TaskId;

ForEach lock In locks Do

p := lock.property;

owner := first_inserted(lock.subscribers);

If owner = this_task Then

achieve(p); -- line 1

lock.achieved := true -- line 2

Else

memory-wait(p)

End

End

End

Fig. 39. Lisp version of achieve lock property

5.5.3 Error Correction As stated, a solution to the problem is the embed-
ding of the two lines of code in the achieve lock property procedure into a
critical section, such that updating the database and the achieved �eld is al-
ways done in one indivisible action. For this purpose we introduce an atomic

construct around the two lines in the Promela model, as shown in Figure 40.

The Spin model checker now certi�es that the Abort property in Figure 38
is satis�ed in this new model.

5.6 Error 5 { An E�ciency Problem

During the examination of the error traces generated by the veri�cations above,
yet a �fth error has been discovered in the Lisp code. In the Promela model
it concerns the process Maintain Properties Daemon in Figure 25.

It occurs that check locks is called twice whenever the daemon has hung
after a call of wait for events, and then is restarted after a signal to one of
the events it waits for. That is, when one of these events is signalled by a call
of signal event, Figure 11, the event counter for that event is incremented in
addition to the restart of waiting tasks. This means that when the daemon has
executed check locks (and perhaps do automatic recovery) once, then the
test:

Ev[MEMORY_EVENT].count + Ev[SNARF_EVENT].count != event_count

will evaluate to true, and hence another iteration of the loop is begun, re-
executing check locks. In the implemented code, Figure 34, this corresponds to
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procedure achieve_lock_property(TaskId this; Property p; wr bool err)

f
TaskId owner;

find_owner(p,owner);

if

:: owner == this ->

atomicf -- added

achieve(p,err);

property_locks[p.memory_property].achieved = true

g
:: else ->

wait_for_event_until(this,MEMORY_EVENT,p);

fi

g

Fig. 40. Correction of achieve lock property

the changed{expression to evaluate to true, hence causing an unintended extra
call of check locks. The RA programming team has con�rmed this as an error,
although one of low priority.

5.7 A Daemon{Ready Flag Perhaps Needed

In an early model, the tasks were spawned without waiting for the daemon to
initialize itself. That lead to the discovery of an error by the model checker. The
error was basically that a lock violation could occur before the daemon got to
its initial waiting point, which the �rst time is unconditional!; and hence the
daemon would just ignore the violation and call wait for events. This was not
considered an error, because the daemon will always start before everything else.
However, the following response from Erann Gat shows that a change to the Lisp
program could be needed.

This would be a problem if the daemon were started late. However,
I don't think this is a problem in practice because all the daemons
are started long before anything else happens. But this does highlight
the need for a mechanism to insure that all the daemons have reached
\steady state" before proceeding.

Hence, we don't consider this as a caught error, but we regard it as an increased
insight given to the RA programming team.
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6 Evaluation by the RA Programming Team

This section contains Erann Gat's evaluation of our work. His comments were
given during email communications, which were not originally intended to be
published. He, however, later approved their publication.

A �rst sub{section contains his responses to our error reports. A second sub{
section contains his responses to three general questions posed after our work
had been terminated.

6.1 The Programmer's Remarks to Our Error Reports

In this section we quote Erann Gat on his remarks to our error reports. That
is, for each error we discovered, and which has been explained in section 5, we
quote his response to our report to him. We present the quotations in the order
they appeared in time, although this in certain cases di�ers from the order of
presentation in section 5.

Error 1 { Release Property (section 5.2):

I think this is a real error. It would only arise if a task gets a timer
interrupt in between exiting the body of the unwind-protect and entering
the critical section of the release-locks, but I don't know of any reason
why that should not happen on occasion. This is a particularly pernicious
bug. It arises only because you are in a multi-threaded environment, and
only in very obscure circumstances that are very unlikely to arise during
testing. Congratulations! You have just converted me into a believer in
formal methods.

Error 4 { Abort Property (section 5.5):

Ah, good point. You are correct, this is a bug. I'm impressed! This makes
two bugs you guys have discovered through formal methods that we almost
certainly would never have caught any other way.

Error 2 { Abort Property (section 5.3):

Yep, another bug. This one is an instance of a classic pattern: not wrap-
ping a conditional wait-for-events inside a critical section. This sort of
mistake is very easy to make and happens all the time in our code. Thanks
for catching this one!

Error 5 { Efficiency Problem (section 5.6):
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No, it's a bug, but since it's just an e�ciency problem it's pretty low
priority.

Error 3 { Abort Property (section 5.4):

You have, however, found a (already known) design aw. There can be
a signi�cant time lag between a property being violated and a task be-
ing informed of the violation. The property lock daemons should really
reside in the property database and be triggered automatically whenever
contradictory information is asserted. This is on the list of things to do.

Question: Is it not the case, that a task might never be informed?

Ah, good point! I had neglected to consider the case where a new assertion
that violates a lock happens in the middle of check-locks. It's hard to get
out of a single-threaded mindset! Thanks for pointing this out.

Question: But is it an error? Or is it \just" unexpected?

. . . internal joke . . . Seriously though, the intent was that tasks would
be noti�ed whenever a locked property was violated after initial achieve-
ment. In some cases this can be important. For example, if a pointing
constraint is violated it might be important to know, even if the constraint
is automatically restored.

6.2 The Programmer's Answers to 3 General Questions

We asked Erann Gat three general questions about the model checking e�ort we
had carried out. Below we quote his answers to each of them.

Question 1:

Did our work have any impact on your work?

Answer:

You've found a number of bugs that I am fairly con�dent would not have
been found otherwise. One of the bugs revealed a major design aw (which has
not been resolved yet). So I'd say you have had a substantial impact. If nothing
else you have helped us improve the quality of our product well beyond what we
otherwise would have produced.

Question 2:

How serious were the errors we found? Any examples of what could have
gone wrong? Would they only occur rarely or be harmless?
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Answer:

The errors you found were the sort that would manifest themselves only un-
der very particular sets of circumstances involving precise timing, so these errors
rarely manifest themselves. This makes them both more and less serious { less
serious because they are unlikely to actually occur, more serious because if they
occur at all they are likely to occur for the �rst time under actual ight condi-
tions. The overall architecture is designed to be robust in the face of such errors
(we have multiple layers of software redundancy) so it is unlikely that these errors
would have caused problems more serious than lost time, but one never knows.
Every bug is potentially a mission-killer, and generally the ones that do kill the
mission do so in ways that one never imagines until it happens.

Question 3:

What was/is your general attitude towards formal methods, before and after
this exercise?

Answer:

I used to be very skeptical of the utility of formal methods. This is at least
partly due to the fact that I had a misconception about the way in which for-
mal methods would be used. I thought that formal-methods advocates wanted to
\prove correctness" of software systems. I believed (and still believe) that that is
impossible. However, what you have been doing is �nding places where software
violates design assumptions, which is not the same thing as proving correctness.
To me you have demonstrated the utility of this approach beyond any question.
I would like very much to learn more about your work.
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7 Conclusion

In this report the results of verifying the RA Executive have been described, and
we shall now try to present some of our derived reections.

7.1 Analysis of the Modeling and Veri�cation E�ort

The major e�ort without doubt went into the modeling, hence in obtaining
a Promela program from the Lisp program. This modeling activity can be
regarded as consisting of three sub-activities: comprehension, abstraction and
translation, see Figure 41. By abstraction we mean the activity of reducing the
program to become a �nite state system, small enough for e�cient veri�cation.
This task consists of removing irrelevant code, replacing in�nite types with in-
terval types, limiting the number of tasks running, etc. By translation we mean
the activity of writing the actual Promela code, for example mapping the prop-
erty lock list in the Lisp program into an array representation in the Promela
program. A pre-requisite for modeling is a certain comprehension of the source
program, the Lisp program in this case. That is, an understanding of the pro-
gram that makes it possible to perform good abstractions.

abstraction

translation

modeling

LISP programcomprehension

PROMELA program

Fig. 41. Modeling = comprehension + abstraction + translation

The comprehension activity was clearly the hardest, since the Lisp program
used many macro-de�nitions, and since we did not have direct access to the pro-
grammer for explanations. The translation phase was also non-trivial due to the
strength of the Lisp language compared to the weaker Promela language. Basi-
cally, as we shall return to, Lisp is probably one of the most powerful languages
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around since it provides a combination of untyped functional programming and
imperative object oriented programming, while the strongly typed Promela

is probably weaker than most existing programming languages (for example, it
does not have procedural abstraction). Hence, the mapping often resulted in
code \blow up". Interestingly enough, the abstraction activity was the easiest.
Once a piece of code was understood, deciding what to keep and what to remove
was often quite clear.

Of course, the notion of translation is only relevant in the situation where
model checking is applied to an already existing program, as was the case here.
When model checking is instead applied during the early design phases, before a
program is written, modeling becomes much more like traditional programming
activity.

The modeling e�ort took 2 people about 6{8 weeks. The veri�cation e�ort
was in contrast small, about a week. Once the model was formulated, it was
easy to formulate the properties to be veri�ed, either in terms of assertions or
in terms of Ltl formulae. The model checker found the 5 errors right away.

7.2 Tool Considerations

Even though manual translation was regarded harder than manual abstraction,
we believe that translation can be mostly fully automated, whereas abstraction
requires some human guided interactive tool support. Hence, the above expe-
riences suggest that the translation activity should be automated as much as
possible; perhaps a model checker could even come with the programming lan-
guage, as part of a debugging package. Abstraction, however, is not likely to be
easily automated, and we therefore suggest an interactive tool, an abstraction{
workbench, for supporting such abstractions. With such a tool, one could for
example annotate a complete program with abstraction information, such as:

1. Putting a maximal bound on number of iterations in a loop.

2. Limiting an in�nite (or big) type to a �nite (and small) subtype.

3. Changing the type of a variable, and changing all related operations.

4. Omitting, replacing, adding code.

Such a tool should in addition support strong version control, since such
annotations may be changed quite often in the early phases of the veri�cation
activity. We imagine that the tool will allow the user to make arbitrary modi-
�cations to his program, and not just such modi�cations that are \correct" in
some sense. In other words, it is important to note, that we have not proved the
abstracted Promela program to be \correct" wrt. to the Lisp program. That
is, we have not shown that if a property holds in the Promela program it also
holds in the Lisp program. Such abstraction proofs are of course of big interest,
and computer aided support for such correct abstractions is obviously desirable.
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Theorem proving can for example be used for this purpose, see [1]. Such proofs
are very hard to create, however, and we believe, that just the above mentioned
abstraction{workbench could be extremely useful, although simpler in purpose.
Interestingly enough this simpler approach is not even yet state of the art. We
believe that a decent purpose of applying model checking is to �nd errors rather
than to prove correctness, and for this purpose such a simpler tool is useful.

7.3 Language Considerations

Promela was chosen as the modeling language due to its support of dynamic
process creation. RA tasks are created and deleted dynamically over time, and
we initially considered this as being important. As it turns out however, our
veri�cations only involve a static number of processes (2). As an alternative to
using Spin, we considered theMurphi model checker [4], which only allows for a
static number of processes, although dynamic process creation can be modeled.
At a higher level, an option is to use for example the Pvs interactive theorem
prover [5], which has a very nice and general higher order logic, allowing speci-
�cation and veri�cation of general in�nite state transition systems. Particularly
interesting is the current e�ort to e�ectively integrate model checking into Pvs
(as described in [5]). A number of veri�cation experiments combining theorem
proving and model checking are described in [1].

The Promela language seen as a notation represents very much the state of
the art in model checking languages, and is acceptable for the problem. However,
a few highly recommended improvements for the language can be suggested. First
of all, the lack of procedural abstraction has been felt as a clear drawback. Macros
can be used, but they don't very well support local variables nor parameter type
checking (not to mention typing \n" at the end of each macro de�nition line).
Furthermore, the Spin tool set does not support macros very well, since the type
checker as well as the simulator cannot refer to lines within macros. This means
that when for example simulating the result of a veri�cation, one cannot really
follow what goes on, and one has to examine instead the error trace in an ad
hoc way (loading it into emacs for example). The advantage of macros is that
there is no overhead in using them: macro calls are simply expanded out before
the model checker is applied.

In [2] it is described how procedures can be modeled in terms of processes
that are spawned, and which communicate their result back on a channel. That
is, a procedure is modeled as a process, and each time the procedure is called,
such a process is spawned. We tried this solution, but it turned out to cause two
problems. First of all, Spin has a limit on the number of processes allowed to be
created, and this limit (256) is quickly reached in a program using a lot of pro-
cedural abstraction. The problem is, that in Spin processes are not killed when
they terminate. Due to an email conversation with Gerard Holzmann, Spin was
changed such that processes were killed and removed from the memory upon
termination. However, this did not remove the second problem, that modeling
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procedure calls as process spawning is expensive, and slows down veri�cation
considerably. That is, when we went over to using macros, veri�cations termi-
nated an order of magnitude faster.

A third solution is to model each procedure by a process, which is spawned
only once, and where each procedure call then is modeled solely by a communi-
cation to that process. Hence, there is only one (1) spawning for each procedure
declaration, in contrast to each procedure call as suggested in [2]. We have not
experimented with this solution.

Our general suggestion is an extension of Promela with procedures and
functions, explaining them in terms of macros along the lines sketched in section
2.2. The hardest part of this work seems to be the treatment of local variables,
parameter type checking, and adaption of the simulator (which for the moment
cannot show the body of a macro). Local variables should not really be a problem
since a unique static copy of each such variable can be made for each call,
forbidding recursion that is.

Of further things one could want from Promela is: modules, nested atomic{
constructs, enumerated types, type equations, and constant de�nitions. Gener-
ally, a complete avoidance of macro de�nitions would be preferable. Finally, on
page 37 it is shown how a Promela loop of 12 lines can be written using 6
lines in a normal programming language having a for{loop and a traditional if{
statement. Hence, why not have a modeling language supporting a general high
level programming language? One could even consider an object oriented mod-
eling language. One should mention Murphi for its nice notation, supporting
general datatypes, procedures and functions. Murphi is rule oriented, however,
a notation di�ering from traditional programming notation.

7.4 Closing Remarks

We regard the exercise as highly successful in the sense that we found �ve errors
quite easily, once the model was constructed. The errors were all classical con-
currency related errors, where unforeseen interleavings between processes caused
undesired events to happen. According to the RA programming team, the e�ort
has had a major impact, locating errors that would probably not have been lo-
cated otherwise, and identifying a major design aw not yet resolved at the time
of writing. Furthermore, personnel (Erann Gat) in the RA team seems to have
changed attitude drastically toward formal methods, from being very skeptical
to being believer.

The major e�ort consisted in building the model, but we claim that this ac-
tivity can be made much more e�cient by providing translation and abstraction
tools. Furthermore, the better the modeling language, the easier the modeling.
Especially if one considers using a model checker in the early stages of systems
design, before programming is begun, a nice notation is absolutely a must.
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A Promela Model of the Deep Space 1 RA Executive

This appendix contains the complete Promela model of the RA Executive.
Backslashes \n" ending lines of macro de�nitions have, however, been removed
for readability.

/***************************************/

/* */

/* PROMELA Model of the */

/* DEEP-SPACE 1 Remote Agent Executive */

/* */

/* Klaus Havelund */

/* Mike Lowry */

/* John Penix */

/* */

/* NASA Ames Research Center */

/* */

/* August 5, 1997 */

/* */

/***************************************/

/*********************/

/* System Parameters */

/*********************/

#define NO_PROPS 2

#define NO_TASKS 3

#define NO_EVENTS 3

/*********************/

/* Boolean Constants */

/*********************/

#define false 0

#define true 1

/*********************/

/* EventId Constants */

/*********************/

#define MEMORY_EVENT 0

#define SNARF_EVENT 1
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/*******************/

/* State Constants */

/*******************/

#define SUSPENDED 0

#define RUNNING 1

#define ABORTED 2

#define TERMINATED 3

/**************************/

/* Memory_Value Constants */

/**************************/

#define undef_value 0

/**********************/

/* Type Abbreviations */

/**********************/

#define TaskId byte

#define EventId byte

#define State byte

#define Memory_Property byte

#define Memory_Value byte

#define list chan

/********************/

/* Type Definitions */

/********************/

typedef Propertyf
Memory_Property memory_property;

Memory_Value memory_valueg;

typedef Lockf
Memory_Value memory_value;

list subscribers = [NO_TASKS] of fTaskIdg;
bool achievedg;

typedef Eventf
byte count;
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list pending_tasks = [NO_TASKS] of fTaskIdgg;

typedef Taskf
State state;

list waiting_for = [NO_EVENTS] of fEventIdg;
Property event_arg_testg;

/********************************/

/* Global Variable Declarations */

/********************************/

Memory_Value db[NO_PROPS];

Lock property_locks[NO_PROPS];

Event Ev[NO_EVENTS];

Task active_tasks[NO_TASKS];

bool daemon_ready;

/*********************/

/* Lists as channels */

/*********************/

/* append(byte e; wr list[byte] x) */

#define append(e,x) x!e

/* copy(list[byte] x; wr list[byte] y) */

#define copy(x,y)

byte count,ce;

count = len(x);

do

:: (count > 0) ->

x?ce;

x!ce;

y!ce;

count = count - 1

:: (count == 0) -> break

od

/* remove(byte e; wr list[byte] x) */
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#define remove(e,x)

assert(e <= 4);

if

:: e == 0 & x??[0] -> x??0

:: e == 1 & x??[1] -> x??1

:: e == 2 & x??[2] -> x??2

:: e == 3 & x??[3] -> x??3

:: e == 4 & x??[4] -> x??4

:: else

fi

/* next(list[byte] x; wr byte e) */

#define next(x,e) x?e

/* end lists as channels */

/*******************************************/

/* "Maintain_Properties_Daemon" Procedures */

/*******************************************/

/* wait_for_events(TaskId this; EventId a,b) */

#define wait_for_events(this,a,b)

atomic f
append(this,Ev[a].pending_tasks);

append(this,Ev[b].pending_tasks);

append(a,active_tasks[this].waiting_for);

append(b,active_tasks[this].waiting_for);

active_tasks[this].state = SUSPENDED;

daemon_ready = 1;

active_tasks[this].state == RUNNING

g

/* wait_for_event_until(TaskId this; EventId a; Property p) */

#define wait_for_event_until(this,a,p)

atomic f
append(this,Ev[a].pending_tasks);

append(a,active_tasks[this].waiting_for);

active_tasks[this].event_arg_test.memory_property = p.memory_property;

active_tasks[this].event_arg_test.memory_value = p.memory_value;

active_tasks[this].state = SUSPENDED;
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active_tasks[this].state == RUNNING

g

/* signal_event(EventId a) */

#define signal_event(a)

TaskId t;

EventId e;

list pending = [NO_EVENTS] of fEventIdg;
Ev[a].count = Ev[a].count + 1;

copy(Ev[a].pending_tasks,pending);

do

:: next(pending,t) ->

if

:: (active_tasks[t].event_arg_test.memory_value == undef_value ||

db_query(active_tasks[t].event_arg_test) ) ->

do

:: next(active_tasks[t].waiting_for,e) ->

remove(t,Ev[e].pending_tasks)

:: empty(active_tasks[t].waiting_for) -> break

od;

active_tasks[t].state = RUNNING

:: else

fi

:: empty(pending) -> break

od

/* interrupt_task(TaskId t) */

#define interrupt_task(t)

active_tasks[t].state = ABORTED

/* lock_property_violated(Memory_Property mp; result bool lock_violation) */

#define lock_property_violated(mp,lock_violation)

atomicf
lock_violation =

(property_locks[mp].memory_value != undef_value &

property_locks[mp].achieved &

db[mp] != property_locks[mp].memory_value)

g
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/* check_locks(result bool lock_violation) */

#define check_locks(lock_violation)

Memory_Property mp;

list sub = [NO_TASKS] of fTaskIdg;
TaskId t;

mp = 0;

do

:: mp < NO_PROPS ->

lock_property_violated(mp,lock_violation);

if

:: lock_violation ->

atomicfcopy(property_locks[mp].subscribers,sub)g;
do

:: next(sub,t) -> interrupt_task(t);

:: empty(sub) -> break

od

:: else

fi;

mp++

:: else -> break

od;

mp = 0;

do

:: mp < NO_PROPS ->

lock_property_violated(mp,lock_violation);

if

:: lock_violation -> break

:: else

fi;

mp++

:: else -> break

od

/* do_automatic_recovery() */

#define do_automatic_recovery

bool locks_consistent;

byte lock_counter;

do

:: lock_counter = 0;

locks_consistent = true;

do
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:: lock_counter < NO_PROPS ->

if

:: property_locks[lock_counter].achieved ->

locks_consistent =

locks_consistent &&

(property_locks[lock_counter].memory_value == db[lock_counter])

:: else

fi;

lock_counter++

:: else -> break

od;

if

:: locks_consistent -> break

:: else ->

if

:: property_locks[0].achieved &&

!(property_locks[0].memory_value == db[0]) ->

db[0] = property_locks[0].memory_value;

:: property_locks[1].achieved &&

!(property_locks[1].memory_value == db[1]) ->

db[1] = property_locks[1].memory_value;

fi

fi

od

/*******************************************/

/* "with_maintained_properties" Procedures */

/*******************************************/

/* db_query(Property p) */

#define db_query(p)

db[p.memory_property] == p.memory_value

/* fail_if_incompatible_property(Property p; result bool err) */

#define fail_if_incompatible_property(p,err)

if

:: (property_locks[p.memory_property].memory_value != undef_value &

property_locks[p.memory_property].memory_value != p.memory_value) ->

err = 1

:: else
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fi

/* snarf_property_lock(TaskId this; Property p; result bool err) */

#define snarf_property_lock(this,p,err)

atomicf
fail_if_incompatible_property(p,err);

append(this,property_locks[p.memory_property].subscribers);

if

:: property_locks[p.memory_property].memory_value == undef_value ->

property_locks[p.memory_property].memory_value = p.memory_value;

property_locks[p.memory_property].achieved = db_query(p)

:: else

fi;

signal_event(SNARF_EVENT)

g

/* achieve(Property p; result bool err) */

#define achieve(p,err)

if

:: db_query(p)

:: else ->

if

:: db[p.memory_property] = p.memory_value

:: err = 1

fi

fi

/* find_owner(Property p; result TaskId owner) */

#define find_owner(p,owner)

if

:: property_locks[p.memory_property].subscribers?[1] ->

owner = 1

:: property_locks[p.memory_property].subscribers?[2] ->

owner = 2

:: property_locks[p.memory_property].subscribers?[3] ->

owner = 3

:: property_locks[p.memory_property].subscribers?[4] ->

owner = 4

fi
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/* achieve_lock_property(TaskId this; Property p; result bool err) */

#define achieve_lock_property(this,p,err)

TaskId owner;

find_owner(p,owner);

if

:: owner == this ->

achieve(p,err);

property_locks[p.memory_property].achieved = true

:: else ->

wait_for_event_until(this,MEMORY_EVENT,p);

fi

/* release_lock(TaskId this; Property p) */

#define release_lock(this,p)

atomicf
remove(this,property_locks[p.memory_property].subscribers);

if

:: empty(property_locks[p.memory_property].subscribers) ->

property_locks[p.memory_property].memory_value = undef_value

:: nempty(property_locks[p.memory_property].subscribers)

fi

g

#define hang 0

/* closure() */

#define closure if :: true -> skip :: true -> hang fi

/* funcall_with_maintained_property(TaskId this; Property p; Closure c) */

#define funcall_with_maintained_property(this,p,c)

bool err = 0;

f
snarf_property_lock(this,p,err);

achieve_lock_property(this,p,err);

c

g
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unless

ferr || active_tasks[this].state == ABORTEDg;
active_tasks[this].state = TERMINATED;

frelease_lock(this,p)g
unless

factive_tasks[this].state == ABORTEDg

/*****************/

/* Task Spawning */

/*****************/

/* spawn(Process(TaskId) task; TaskId t) */

#define spawn(task,t)

atomicf
active_tasks[t].state = RUNNING;

run task(t)

g

/*************/

/* Processes */

/*************/

proctype Environment()

f atomicf
db[0] = 0;

signal_event(MEMORY_EVENT)

g
g;

proctype Maintain_Properties_Daemon(TaskId this)f
bit lock_violation;

byte event_count = 0;

bit first_time = true;

do

:: check_locks(lock_violation);

if

:: lock_violation ->

do_automatic_recovery

:: else

fi;

if
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:: (!first_time &&

Ev[MEMORY_EVENT].count + Ev[SNARF_EVENT].count != event_count ) ->

event_count = Ev[MEMORY_EVENT].count + Ev[SNARF_EVENT].count

:: else ->

first_time = false;

wait_for_events(this,MEMORY_EVENT,SNARF_EVENT)

fi

od

g;

proctype Achieving_Task(TaskId this)

f Property p;

p.memory_property = 0;

if

:: this == 1 -> p.memory_value = 1;

:: this == 2 -> p.memory_value = 2

fi;

funcall_with_maintained_property(this,p,closure);

g;

/******************/

/* Initialization */

/******************/

init

f
spawn(Maintain_Properties_Daemon,0);

daemon_ready == true;

spawn(Achieving_Task,1);

spawn(Achieving_Task,2);

run Environment()

g
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