
Security Testing using a Susceptibility Matrix

1. Introduction

Software testing is a cost effective method to detect faults in
software [1]. Similarly, Security testing is intended to assess
the trustworthiness of the security mechanisms and is often
regarded as a special case of system testing [2]. The emphasis
of Security testing is not to establish the functional correctness
of the software but to establish some degree of confidence in
the security mechanisms [2]. It is the single most common
technique for gaining assurance that a system operates within
the constraints of a given set of policies and mechanisms.
Presently, there is no systematic approach to security testing.
Our goal has been to devise a classification scheme to increase
testing effort in high-risk areas and help the software
community to get feedback to improve continuously.

2. Security Background

Organizations test the security of their systems, firewalls and
networks either by using commercially available vulnerability
tools, penetration testing, or by using formal methods. Other
methods for security testing have been developed, including
syntax testing, property-based testing, fault injection, mutation
testing and Gligor’s testing method. These techniques are
limited to finding specific security flaws. Also, there are the
general testing techniques like path testing, domain testing,
and data flow testing. However these techniques are not
specifically adapted for security issues. Another approach to
assess the security of the system is test for specific security
vulnerabilities. Taxonomy of vulnerabilities helps us
understand their distribution in the system. A number of flaw

taxonomies have been developed including the Protection
Analysis Taxonomy (1978), the Research in Secured
Operating Systems security taxonomy (1976), Spafford’s
taxonomy (1992), Landwehr’s taxonomy (1994), Aslam’s
taxonomy (1995), Bishop’s taxonomy (1995), Du and
Mathur’s taxonomy (1997), Brian Marick Survey (1990) and
Chillarege's Orthogonal Defect Classification. Since our goal
was to look at the impact that security flaws have on an
evolving product, how a flaw occurs, when it occurs, and its
impact appeared to be the right mix of criteria. We centered on
Landwehr’s model [1] as the basis for our work.

3. Susceptibility Matrix

We developed a 3-dimensional taxonomy (shown in Figure 1).
Cause and Location are simplified versions of Genesis and
Location dimensions of Landwehr’s model. We included a
third dimension, impact, to be able to prioritize testing effort
[2]. We classified 853 flaws found in all versions of Windows
and 160 flaws found in Red Hat Linux using this classification
scheme. Each vulnerability is associated with a triple: <cause,
location, and impact> of flaw. Using the taxonomy we
construct a Susceptibility matrix. Each entry in this matrix has
a vector of impacts. The result of this construction for
Windows is shown in Figure 4. Susceptibility matrix provides
the system developers and testers with a view of the system’s
vulnerable areas showing the impact an exploit of these
vulnerable areas would result in. We constructed a similar
Susceptibility matrix for Linux. These two matrices are
combined and shown graphically in Figure 2 with the data
given in Figure 3. The left semicircle represents Windows

Kanta Jiwnani
Department of Computer Science

University of Maryland
College Park, Maryland 20742.

kanta@cs.umd.edu

Marvin Zelkowitz
Department of Computer Science, University of Maryland

and Fraunhofer Center for Experimental Software Engineering
College Park, Maryland 20740.

marv@zelkowitz.org

Cause Location Impact
Validation Errors System Initialization Unauthorized Access

Domain Errors Memory Management Root or System Access

Serialization or aliasing errors Process Management or
Scheduling

Denial of Service

Inadequate Identification or
Authentication

Device Management Integrity Failure

Boundary and Condition Errors File Management Crash, Hang, or Exit

Trojan Horse Identification or Authentication Failure

Covert Channel Invalid State

Exploitable Logic Errors File Manipulations

 Errors due to clock changes

Figure 1. Security Flaw Taxonomy from a Security Testing Perspective.

mailto:kanta@cs.umd.edu
mailto:marv@zelkowitz.org

while the right semicircle represents Linux. Black indicated ≥
40 Windows (≥ 8 Linux) flaws while white indicates fewer
flaws using a ratio of 5:1 for relative number of Windows to
Linux flaws. Emphasizing testing on only the 5 black circles
identifies about two-thirds (67% of Windows and 63% of
Linux) of the vulnerabilities in both systems. Looking at each
system independently, the black semicircles represent 85.5%
of Windows and 68% of Linux flaws.

4. Conclusions

We have shown that using a Susceptibility Matrix, as a driver
for testing would help us identify most of the security
vulnerabilities found in real systems. The information
captured by a Susceptibility Matrix reflects the organization’s
environment and hence accurately identifies the problem areas
in its software.

5. References

[1] G. Myers, “The Art of Software Testing”, Wiley, 1979.
[2] B. Beizer, “Software Testing Techniques”, Van Nostrand
Reinhold, New York, 1990.
[3] C. E. Landwehr, A. R. Bull, J. P. McDermott, and W. S. Choi, “A
taxonomy of computer program security flaws,” ACM Computing
Surveys, Vol. 26 (3), pp. 211-254, 1994.
[4] K. Jiwnani and M. Zelkowitz, “Maintaining Software with a
Security Perspective”, IEEE International Conference on Software
Maintenance, Montreal Canada, October 2002.

Figure 2. Comparison of Windows and Linux flaws.

Density Windows Linux
 % Of Flaws % Of Flaws

Total (all) 100% 100%
Common High (black circle) 67% 62.5%
High (black semi circle) 85.5% 68%
Common Low (white circle) 9% 24%
Low (white semi circle) 16% 31%
Common Null (empty) 0% 0%

Figure 3. Percentage of total flaws.

Validation Domain
Serial /
Aliasing

Identifn /
Authen

Boundary
Violation

Exploitable
Logic

Trojan
Horse

Covert
Channel

System
Initialization
Memory
Mgmt
Process
Mgmt

Device Mgmt

File Mgmt
Identification
/ Authen

S e r ia l
/ C o v e r t

L
O
C
A
T
I
O
N

C A U S E

IMPACT

Figure 4. Susceptibility Matrix for Windows flaws.

V a lid a t io n D o m a in
A lia s i
n g

Id e n t if ic a t io n /
A u th e n t ic a t io n

B o u n d a ry
V io la t io n

E x p lo ita b le
L o g ic

T ro ja n
H o rs e

C h a n n
e l S u m R a n k s

S y s te m
In it ia l iz a t i
o n

4 8 D o S (2 M e d) , 1 9
U n a u th o r iz e d A c c e s s (1
H ig h , 6 M e d) , 1 C ra s h , 1
R o o t (1 H ig h) , 3 In v a lid ,6
F a ilu re , 5 In te g r ity
F a ilu re ,1 c lo c k

1 1 U n a u th o r iz e d
A c c e s s (1 M e d) ,
3 In te g r ity
F a i lu re , 1 D o S

1 0 9 U n a u th o r iz e d
A c c e s s (6 H ig h , 3 5
M e d) ,2 R o o t A c c e s s (1
h ig h ,4 M e d) , 1 0
D o S (2 M e d) , 2
In v a lid (1 M e d) , 5
In te g r ity F a ilu re (1
M e d) , 1 F a ilu re ,1 F ile
M a n ip u la t io n (1 M e d)

5 D o S , 1
In te g r ity
F a ilu re

1 1 5 U n a u th o r iz e d
A c c e s s (6 H ig h ,3 1
M e d) , 1 1 R o o t (2
h ig h , 3 M e d) , 8 2
D o S (1 2 M e d) , 2 5
In te g r i ty F a i lu re , 4
F a ilu re (1 M e d) ,1
in v a lid ,1 c lo c k ,3

F ile M a n ip u la t io n

2 2
U n a u th o r iz e d
a c c e s s (1 2
M e d) , 2 R o o t,
3 D o S (1
M e d) 5 0 5 1

M e m o ry
M g m t

3 4 U n a u th o r iz e d A c c e s s (8
H ig h , 1 8 M e d) ,1 6 D o S (2
M e d) , 6 R o o t(2 H ig h , 2
M e d)

1 U n a u th o r iz e d
A c c e s s , 2 D o S

1 U n a u th o r iz e d
A c c e s s , 1 D o S

1 C ra s h , 2
D o S ,1 F a ilu re 1 1 D o S (2 M e d)

2
U n a u th o r iz e d
A c c e s s (1
M e d) 7 7 3

P r o c e s s
M g m t 1 D o S (1 M e d) 1 D o S 1 D o S

1 U n a u th o r iz e d
A c c e s s (1 H ig h) , 1
D o S (1 M e d) 5 D o S 1 0 6

D e v ic e
M g m t 2 D o S

1 0 U n a u th o r iz e d
A c c e s s (1 M e d) , 2 D o S

1 R o o t A c c e s s (1
H ig h)

1
U n a u th o r iz e d
A c c e s s (1
M e d) 1 5 5

F ile M g m t

1 D o S ,1 F a ilu re , 4
U n a u th o r iz e d A c c e s s (1
M e d) , 1 F ile
M a n ip u la tio n (1 M e d) 2 D o S

3 U n a u th o r iz e d
A c c e s s (1 M e d) ,3 D o S ,
4 F ile M a n ip u la t io n (1
h ig h ,1 M e d)

1 D o S , 1
C ra s h

3 U n a u th o r iz e d
A c c e s s (1 H ig h) ,1
In v a lid ,2 D o S

1 In v a lid (1
H ig h) , 3
U n a u th o r iz e d
A c c e s s (2
H ig h) 3 1 4

Id e n t if ic a t
io n /
A u th e n

3 U n a u th o r iz e d A c c e s s , 1
F i le M a n ip u la t io n (1 M e d) ,
3 D o S (1 M e d)

1 3 R o o t A c c e s s (6
H ig h , 6 M e d) , 4 2
U n a u th o r iz e d
A c c e s s (5 H ig h , 1 8
M e d) , 2 D o S , 1
C ra s h (1 M e d) ,1
In te g r ity F a ilu re , 2
In v a lid (2 M e d)

1 3 R o o t a c c e s s (4
H ig h ,7 M e d) , 4 0
U n a u th o r iz e d
a c c e s s (4 H ig h , 1 1
M e d) , 6 D o S (2
M e d) , 1 F ile
M a n ip u la t io n

M e d) , 7 6
U n a u th o r iz e d
a c c e s s (1 1
H ig h , 2 7
M e d) , 2
In v a l id , 5
D o S (2
M e d) ,1 H a n g 2 1 5 2

S u m 1 5 5 2 1 1 2 1 8 1 2 3 2 6 1 2 0 0
R a n k s 3 5 7 2 6 1 4 8

	Security Testing using a Susceptibility Matrix
	
	
	Figure 4. Susceptibility Matrix for Windows flaws.

