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In developing information technology, you want assurance 
that systems are secure and reliable, but you cannot have 
assurance or security without correctness. We discuss methods 
used to achieve correctness, focusing on weaknesses and 
approaches that management might take to increase belief in 
correctness. Formal methods, simulation, testing, and process 
modeling are addressed in detail. Structured programming, 
life-cycle modeling like the spiral model, use of CASE tools, 
use of formal methods, object-oriented design, reuse of exist- 
ing code are also mentioned. Reliance on these methods 
involves some element of belief since no validated metrics on 
the effectiveness of these methods exist. Suggestions for using 
these methods as the basis for managerial decisions conclude 
the paper. 
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1. Introduction 
i‘ 

E ngineers today, like Galileo three and a half 
centuries ago, are not superhuman. They 

make mistakes in their assumptions, in their cal- 
culations, in their conclusions. That they make 
mistakes is forgivable; that they catch them is 

*A condensed version was previously published in the 
Proceedings of the 27th National Computer Security Conference 
(USA) under the title “Belief in Correctness.” 

imperative. Thus it is the essence of modern engi- 
neering not only to be able to check one’s own 
work, but also to have one’s work checked and to 
be able to check the work of others” [ 11. 

1 .I Security and software engineering 
Security engineering is part of computer, or Informa- 
tion Technology (IT), engineering, encompassing 
elements of hardware, firmware, and software. 
There is a delicate balance in focusing on the 
security specialization to the exclusion of related 
fields. More progress in the security specialization 
probably results from the tight focus, but some 
relevant events in related fields may not receive 
the deserved attention. This paper attempts to cor- 
rect such myopia concerning the software engi- 
neering topic of correctness or trustworthiness. Most 
of what we have to say in this paper is well known 
to the software engineer. At the same time, much 
of it is new, challenging, and perhaps controversial 
to the security engineer. In order to substantiate 
our position and provide sufficient pointers for 
further study, we have perhaps been excessive in 
the reference citations provided. 

1.2 Abstraction layers 
One way of thinking about the various technolo- 
gies upon which security builds is a series of 
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abstraction layers, conceptually illustrated in Table 
1. The security engineer must understand that the 
device designer, circuit designer, and operating 
system architect have different viewpoints. Each 
specialist assumes that the interface provided to 
him or her by the underlying layer is primitive 
and trustworthy. This trust is a consequence of 
specialization. Engineers working at one techno- 
logical level of abstraction are usually not prepared 
to investigate and determine the trustworthiness 
of the resources with which they work. For 
example, software experts rarely know about hard- 
ware design. However, they tend to view hard- 
ware as a monolithic entity and to trust it. This 
trust may or may not be warranted. The hardware 
may be failure prone due to errors in design or 
fabrication, the assumptions upon which the hard- 
ware is being used may be false, or it may also 
have been built with malicious intent to sustain 
the same kinds of attacks as are commonly imple- 
mented in software, such as viruses and Trojan 
horses. See [2] for further discussion. 

Similarly, software experts who build trusted 
computing bases or communications protocol 
interpreters are users of supporting software, such 
as compilers and editors. They assume that this 
supporting software is trustworthy. While this is 
usually the case, Thompson [3] eloquently advises 
that one should be careful about extending trust. 
Recent work has described critical issues related to 
software trust and has proposed a set of criteria 
classes for measuring and comparing trust [4]. 

Addressing the trustworthiness of these layers is a 
matter of risk management. Absolute risk avoid- 
ance would address every possible level of risk. 
Risks might exist in the design of the chips, the 

TABLE 1. Abstraction layers 

Applications 
Security subsystem 
Operating system 
Compilers, loaders, etc. 
Circuit design and fabrication 
Semiconductor chip design 

side-effects of instruction set design (especially 
unimplemented instructions in complex instruc- 
tion set architectures), or the security flaws in all 
supporting software. It has been common when 
confidentiality was the only security policy to 
assume that mass-produced bedrock was a suffi- 
ciently low risk that it could be ignored. Con- 
sideration of integrity and availability as security 
policies may justift- reconsideration. 

1.3 The gods have clay feet-the emperor is naked 
This paper tends to proclaim that the gods have 
clay feet or that the emperor is naked. These are 
never popular sentiments. They are presented as 
constructively as possible, but we humbly 
acknowledge that we have no completely satisfac- 
tory answer. Our overall challenge to the commu- 
nity is the traditional engineer’s problem of 
finding cost-effective ways of applying the knowl- 
edge and skill base to the solution of social prob- 
lems and requirements. This paper looks at the 
practical application of research results and finds a 
lack of evidence to support the very strong beliefs 
in the efficacy of various methods for increasing 
IT security. 

1.4 Assurance, effectiveness and correctness 
Assurance is defined3 as “the confidence that may 
be held in the security provided by a target of 
evaluation.” Informally, assurance is a “warm 
fuzzy feeling” that the system can be relied upon 
to reduce residual risk to the predetermined level. 
Without delving into psychology, we observe that 
effectiveness and correctness both contribute to 
assurance. Efictiveness is determined by analysis of 
the functional requirements; the environment in 
which the system will be used, the risks, threats, 
and vulnerabilities; and all the countermeasures, 
including physical, administrative, procedural, per- 
sonnel, and technical. The system is considered 
effective if the result of this analysis is an accept- 
able residual risk. Correctness is determined by 

‘Definitions of assurance, correctness, and effectiveness are taken 
from the Information Technology Security Evaluation Criteria 
(ITSEC) (51. Better definitions may be available by the time 
this paper is published. 

720 



Computers & Security, Vol. 14, No. 8 

comparing the implementation of the counter- 
measures with their specification. The system is 
considered correct if the implementation is suffi- 
ciently close to its specification. Note that this 
definition of correctness is compatible with the 
concept of risk management and is closer to the 
concept of trustworthy than to error-free. 

1.5 Major methods and panaceas 
This paper exhibits methods used to establish cor- 
rectness. All current methods contributing to 
correctness have shortcomings that make it 
impossible to establish correctness beyond reason- 
able doubt. That is, establishing correctness 
becomes a matter of belief, not proof. For each 
technique we describe attributes for these tech- 
niques and show its strengths and weaknesses. We 
show how to best use that method for increasing 
our belief in the trustworthiness of our system. 
Under conditions of belief, we caution fiscal pru- 
dence in resources invested in assuring correct- 
ness. The major methods addressed in this paper 
are mathematical models, simulation, testing, 
process models and procedures. Prior panaceas, 
called silver bullets, include structured program- 
ming, the spiral model, computer-aided software 
engineering (CASE) tools, formal methods, 
object-oriented (00) programming, reusing exist- 
ing code, and process maturity. Cost benefit is 
offered as a measure for selecting which belief 
system to embrace. We recommend hedging one’s 
investments by using more than one method. We 
regret being unable to offer better guidance. We 
can only suggest that the lack of a definitive 
answer is characteristic of many management 
problems where decisions must be made based on 
insufficient evidence. Perhaps it would be worth- 
while if a consensus could be developed in the 
security engineering community as to what con- 
stitutes good practice at the present time. 

Security-critical information technology (IT) sys- -. . , 

tion and not do anything that is not so specified. 
Correctness of software always has to be with 
respect to a specijication. 

Various methods may be used to demonstrate cor- 
rectness, but all are less than perfect and involve 
some element of belief in relying on the results of 
using that method. That is, it cannot be proven 
that a method is “good” or “better”. The methods 
are complementary in contributing to correctness 
itself as well as in contributing to belief in correct- 
ness. There is a growing consensus that, to say the 
least, no one technique can provide adequate 
assurance (see, for example, [6]). David Parnas 
[7], among others, has suggested that an “assur- 
ance tripod” is required: the combination of rigor- 
ous testing, evaluation of the process and 
personnel used to develop the system, and a thor- 
ough review and analysis of various products pro- 
duced during development as a way to minimize 
risk. In the pragmatic end, managerial judgment 
determines resource allocation to correctness and 
assurance. Being unable to offer any substantive 
justification, we observe that recommendations, 
such as Parnas’, are often unsubstantiated and 
contentious. The mechanism for reaching a con- 
sensus is not obvious. Thoughtful discussion, 
such as this paper, are certainly part of the scien- 
tific and technical tradition. In this paper, we 
focus on practical product correctness and the 
various problems one has in achieving this 
correctness. 

1.6 Understanding complex systems 
We should learn from branches of natural science 
and engineering that have been trying to under- 
stand complex systems far longer than computers 
have existed. One important objective is to recog- 
nize when simplifying assumptions are valid and 
when they are dangerous. One of the authors 
learned as a sophomore that “the essence of engi- 

terns4 are extremely dependent on correctness. In 
systems involving human life and safety, correct- 
ness is paramount. A security-critical IT system 
must do exactly what is identified in its specifica- 

‘The term IT system includes all sizes of computer systems, 
from super mainframes to desktop units to embedded 
components and controllers, as well as networks and 
distributed systems. 
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neering is to make enough assumptions so that 
you can solve the problem, without assuming the 
problem away.” 

Let us consider whether formal theories of pro- 
gramming are good approximations of real pro- 
grams executing on actual hardware. Although the 
theories are relatively simple, applying them to 
realistic programs vastly complicates the model. 
You cannot even assume simple axioms like “For 
all integers i, i + 1 >i” on fured wordsize com- 
puters since integer i may “overflow” and have an 
unspecified, negative, zero, or the same value, 
depending upon the particular hardware executing 
the program. Mathematical models of computer 
programs generally do not accurately represent the 
subtlety of programs in an environment (i.e. exe- 
cution on real hardware). The mathematics of 
computer modeling belongs in the realm of 
applied rather than pure mathematics. 

When we use Ohm’s law, Kirchhoff’s rules, etc., 
to design an electronic circuit or use Newton’s 
Laws to predict the orbit of a satellite, no one is 
saying that they have “proven” that the circuit 
works or that the satellite will be exactly where 
the model predicts it would be. These laws are 
empirical observations that have stood the “test of 
time” to represent physical reality. However, 
when we model a computer program using some 
method such as Hoare’s [8] we have some con- 
fidence that the program when executed will 
behave much as we predict, but perhaps not 
exactly like we predict (e.g. integer overflow). To 
accurately model a program’s execution requires 
that even simple programs have complex proofs in 
order to show that the mathematical properties of 
the program behave as desired. Simple formalisms 
for programs are too complex to accurately repre- 
sent most programs in execution on physical 
machines. 

This insight shows that formalisms in program- 
ming are very different from formalisms in the 
natural sciences. In natural science, you have a 
theory (e.g. laws of motion) that is a good approx- 

imation to the physical interactions among objects. 
In physics, a sufficiently accurate approximation 
gives useful results. In contrast, for programming, 
you must approximate the program and the hard- 
ware (e.g. assume integers are infinite) in order to 
have any relationship to the formal model. A key 
difference is luck ofcontinuity. In programming, dis- 
astrous examples of integer overflow and other 
discontinuities show that the supposed approxi- 
mations are not necessarily close. Use of discrete 
logic to model these leads to expressions of enor- 
mous complexity [9]. Alternatively, models could 
incorporate known characteristics and limitations 
of the computer to increase their veracity. We do 
not wish to compare good models of physics with 
bad models of computers. Newton’s Laws do not 
work well for speeds close to the speed of light or 
for objects that are not in inertial frames of refer- 
ence. Likewise, a Hoare model of computer 
system behavior is a poor representation if the 
integer values are near overflow conditions. One 
would need to modify the model to accommodate 
the overflow behavior. Having done so, the model 
would be better. 

Several methods have been developed and been 
accepted over time to demonstrate the correctness 
of computer programs. None of these are true in 
the sense that they portray absolute infallibility of 
the method. Each has proponents and detractors. 
In the next section, we describe these methods, 
explore ways in which each accomplishes its task, 
and draw some conclusions from this analysis. 

2. Correctness methods 

Several techniques are regularly employed to show 
that a computer program does exactly what it is 
supposed to do and nothing else. The first two 
described below, formal methods and simulation, 
analyze the program to derive properties about it. 
The third, testing, experiments with program 
behavior, perhaps using some information derived 
by application of the first two techniques. The 
fourth technique, process models and procedures, 
looks at the development process itself under the 
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assumption that good development practices result 
in good software. 

Each method is described briefly, emphasizing its 
advantages, disadvantages, and contributions to 
our belief system. A common distraction with all 
methods is the complexity of execution. The 
steps, processes, or manipulations that constitute 
the practice of the method can be so overwhelm- 
ing that perspective is lost. We agree with Ham- 
ming (101 that “the purpose of computing is 
insight” and that it is difficult to retain perspective 
and insight in the face of complexity. It is very 
easy to get caught up with all the mechanics of 
employing a method so that in practice the 
mechanics get emphasized at the expense of 
understanding. 

“When you can measure what you are speaking 
about, and express it in numbers, you know 
something about it; but when you cannot measure 
it, when you cannot express it in numbers, your 
knowledge is of a meager and unsatisfactory kind” 
[ 111. Metrics of correctness need to be developed 
and applied to individual methods and combina- 
tions of methods. We need to replace belief with 
analysis if at all possible. While early work on the 
capability maturity model [ 121 and the experience 
factory [13] show the role of metrics in the devel- 
opment process, more needs to be done to totally 
build an effective measurement model into the 
development process. 

2.1 Formal methods 
The use of formalisms stems from two related 
observations: natural language tends to be impre- 
cise, and in achieving precision, there is the 
potential for automation. Mathematical notation 
has the advantage of precision and is associated 
with rigorous, logical thinking that assists in 
reducing ambiguity. In principle, formal models 
of IT systems can support all phases of the system 
development process: articulation of policy for 
use, high-level architecture, design, and imple- 
mentation. Formal methods have long been asso- 
ciated with security-related software [ 141. Today, 

formal models of security policy help perfect 
understanding and development, especially of new 
policies. While formal specifications have made 
some impact in Europe, they have not made much 
of an impact in the United States. No language is 
likely to be a cure-all in achieving higher levels of 
abstraction, and more natural models of problem 
spaces, for all problem spaces. 

In discussing formal methods, we have to be sure 
to differentiate them from formalized methods, such 
as computer-assisted software engineering (CASE) 
tools, structured analysis, and other mechanized 
techniques for developing source programs [ 151. 
In using formal methods, one traditionally begins 
with a formal description of the specification of a 
software system according to some underlying 
mathematical model and realizes (i.e. builds) that 
specification as a concrete design or source code 
implementation. This does not preclude the use 
of automated tools or an automated deduction 
system to participate directly in the construction 
of later design and implementation stages. Using 
mathematical logic, one shows that the program 
agrees with the model. For example, axiomatic 
verification, perhaps the oldest of the formal tech- 
niques, assumes we have a program S, a precondi- 
tion (specification) P that is true before the 
execution of S, and a postcondition (output speci- 
fication) Q. We must develop a proof that demon- 
strates: (1) the relationship among S, P, and Q 
that determines the effect program S has on P to 
assure that Q will be true after execution termi- 
nates; and (2) program S does indeed terminate if 
P is true initially [8]. If we derive a set of axioms 
for each statement type in our language (e.g. rules 
for describing the behavior of the if statement, the 
while statement, the assignment statement), then 
we have tied program correctness to the problems 
of generating correct mathematical proofs. But we 
still have not proven that the program when exe- 
cuted on a specific computer is correct because of 
the very problems raised earlier. At best we have 
shown that the formal description of the program 
satisfies its specification (i.e. produces the given 
postcondition when the precondition is true) [ 161. 
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Our confidence in the correctness of the program 
is dependent on our confidence that our target 
computer is accurately represented by the formal 
model. 

2.1.1 Models of complex systems 
As described previously, when we use formal 
models we need to suppress details to make the 
models tractable. Unfortunately, many of the 
details suppressed in the formal models are imple- 
mentation dependent and security relevant. For- 
mal models are losing ground to the complexity of 
networked and distributed systems. A distributed 
application usually has multiple components with 
a multiplicity of entrance and exit paths. Describ- 
ing the pre- and postconditions for such systems 
becomes unmanageable. It is difficult to scale up 
the traditional use of formal methods to large 
complex systems. While they may appear to work 
satisfactorily on small “toy” problems, there has 
been little evidence that they scale up very well 

[91. 

One failure of the “formal methods community” 
in developing such models is that the models 
often are not grounded in the very problems that 
software engineers have in developing correct pro- 
grams. “Doing our work in isolation, and then 
trying to impose our ideas on the real world is 
bound to fail” states Hare1 [ 171. The models that 
the theorists need to use to base their theories on 
must be grounded in the problems that program- 
mers face in developing correct software. 

“Larger examples are necessary to demonstrate 
how these concepts scale up” [ 181. Formal models 
are often applied to complex systems combined 
with other belief systems. For example, variants of 
the Bell-LaPadula security policy model [19] are 
often cited as the basis of operating system 
security, but the actual implementations also 
include security-relevant processes, called trusted or 
privileged, that are not formally modeled. Belief 
that security is preserved after introduction of 
these processes is often established by non-formal 

means. Evaluation of moderate assurance general 
purpose products by NSA today require a model 
interpretation if the implementation violates the 
model, so that the developer can provide justifica- 
tion, through analysis, that the model violation 
does not violate the security policy. The justifica- 
tion at least requires the developer to think about 
the problem before violating the formal model, 
but it is still an informal plausibility argument that 
still needs to be accepted with skepticism. The 
value of the rigor of the formal model is seriously 
diminished by the informal argument. 

2.7.2 Assumptions and simplifications 
Practitioners of formal modeling sometimes 
appear to forget about the assumptions and sim- 
plifications that were made to make their models 
tractable and fail to caveat the applicability of their 
results to the real world. This is an error on the 
part of the practitioners. A great deal of the sim- 
plifying assumptions are made because the mod- 
elers simply do not know how to model some of 
these features (although many are certainly sus- 
ceptible to being modeled), or the resources avail- 
able do not permit modeling the necessary details. 
Brunnstein [20] puts it this way: “any abstraction 
makes simplifying assumptions whose consistency 
with reality is impossible to prove; therefore, for- 
mal models reflect only syntactic-semantic levels, 
they never reflect pragmatic levels.” 

Within the limits imposed by the simplifications 
and assumptions made for the sake of tractability, 
formalism can be used both to determine correct- 
ness of the implementation and adherence of the 
system to certain properties. We can prove that a 
given procedure must return a certain value and 
also show that certain policies are never violated. 
Many observers believe that formal policy models 
have their maximum benefit in removing incon- 
sistencies, ambiguities, and contradictions in the 
natural language policy statement. The process of 
formalizing the policy aids in clarifying the policy. 
This process then has the secondary benefit of 
making a clearer statement of policy to the 
implementers. 
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Although formal methods are based on mathe- 
matical proofs, we must realize that even 
mathematical proofs may have flaws. “Outsiders 
see mathematics as a cold, formal, logical, 
mechanical, monolithic process of sheer intel- 
lection . . . [however] Stanislaw Ulam estimates 
that mathematicians publish 200,000 theorems 
every year. A number of these are subsequently 
contradicted or otherwise disallowed, others are 
thrown into doubt, and most are ignored. Only 
a tiny fraction come to be understood and 
believed by any sizable group of mathemati- 
cians” [21]. Although mathematicians do not 
like to admit it, correctness can be likened to a 
social process-it is only the test of time where 
no flaw has been discovered that builds a con- 
fidence in the ultimate truth of a theorem. All 
scientific processes have flaws. Petroski [l] 
argues that failure is an important part of engi- 
neering design. It is only when things fail that 
we understand how to make them better. How 
well would we be designing bridges if none 
ever collapsed? Either we have overbuilt them 
to a point of economic stupidity, or we have 
never stressed them sufficiently. The Tacoma 
Narrows bridge that went into harmonic oscil- 
lation (Fig. 1) is a classic case. We hope that by 
our continuing (unsuccessful) attempts to 
model software, we are learning something. 

Fig. 1. Tacoma Narrows bridge in oscillation. 

This discussion is not to imply that formal 
methods have no place in software develop- 
ment; it is only to show that putting too much 
faith in that process can still pose great risks for 
the success of the project. 

Formal methods can be used to develop high- 
level design concepts. For example, the Bell- 
LaPadula security policy model can be used to 
model the top-level security policy of a system. 
However, as details are added, the complexity 
of the formal model becomes too complex to 
rely on this method as the sole means of 
verification. 

For highly critical programs that are small, 
verification can be used as an aid in correctness. 
The operative word here is “small” since formal 
proofs get quite complex quite easily. 

Formal methods deal best with discrete data. 
Discrete security labels, small integral values 
and Boolean data can often be handled by for- 
mal means. Use of formal models to verify pro- 
grams employing real data (e.g. floating point 
values of distances) and programs using charac- 
ter data are harder to manage with formal 
models. 

It often helps if the underlying program design 
is based upon a formal model. For example, 
language compilers usually have finite state 
automata and context free languages as the basis 
of their parsing algorithms. This permits prop- 
erties of those models to be used in the formal 
proof of correctness. If the underlying program 
design is not based upon a formal mathematical 
object, the proof is hard to develop. 

Formal methods can be an aid in program test- 
ing (see below). In sections which are easy to 
verify we have a higher degree of confidence in 
their trustworthiness than sections which are 
more difficult to verify. Conversely, sections 
which are hard to verify need greater testing in 
order to satisfy our need for trustworthiness. 
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2.2 Simulation 
Simulation is the development of a simplified ver- 
sion of a system’s specification by eliminating 
non-critical attributes to develop a system that 
exhibits relevant properties. By ignoring certain 
properties, it is often possible to quickly and inex- 
pensively build simpler versions of a system. 
Using this simulation, security-related principles 
can be more readily developed and examined. 
This increases our belief in the ultimate specifica- 
tion since we have demonstrated the existence of 
an implementation that already has the desired 
properties. 

Related to simulation is the concept of “executable 
specifications.” Using an appropriate higher level 
language, the interfaces to a system are specified, a 
simulation of that interface is demonstrated, and 
then the executable specification provides the 
framework for the eventual source program that 
will implement that functionality. Examples of 
such methods include requirements languages 
such as Paisley [22], so-called “Fourth Generation 
Languages” (4GLs) such as FORTH, and user 
interface generators such as Serpent and Chiron. 
Use of these systems increases our confidence 
level since demonstration of the “proof of con- 
cept” by executing the simulation provides for an 
automatic conversion of this concept into the out- 
line of an executable program to implement that 
concept. Just as we rarely question the correctness 
of a compiler in generating appropriate machine 
language for a given programming language state- 
ment, use of such executable specification gen- 
erators obviates the need for some of the next 
level of design. 

While we can simulate a system to test the 
security policies, the interaction of these policies 
with the assumed-away specifications of the com- 
plete system severely lowers our belief in the cor- 
rectness of the overall system with respect to 
security. By definition, one is “abstracting away” 
non-essential aspects of the system when doing 
simulation and modeling-yet it is very hard to 
develop “non-interference proofs” for those miss- 

ing aspects, so that you have confidence that they 
really won’t change the behavior of interest in the 
“real” system. It is only by testing (and/or formal- 
ism) applied to the complete system that adds to 
our belief in this product-although the existence 
of a simulation that implements our security pol- 
icy does provide a sort of existence proof on pol- 
icy and increases our confidence (i.e. belief) in a 
complete implementation. (See spiral model dis- 
cussion, below.) 

Simulation is most effective when performance of 
the system is not well understood; simulation pro- 
vides an early indicator of whether the system will 
meet performance requirements. Simulation is 
useful when the overall design allows use of one 
of the above-mentioned application generators. 
This permits initial simulation of the top-level 
design as well as minimizing the chances of addi- 
tional errors as the top-level design is translated 
into some other implementation language. 

2.3 Testing 
Testing demonstrates behavior by executing a 
system using a selected set of data points to show 
that the system executes correctly on those points. 
The assumption is made that if the set of data 
points is chosen appropriately, then the behavior 
of the system for other data points will be 
analogous to the selected data points. If we believe 
that the selected data points are representative of 
the domain of data in which we are interested, we 
have confidence in the correctness of our imple- 
mentation. Choosing the selected data points and 
the best method of testing our program are our 
major decision steps toward determining our 
belief in the correctness of this system. Knowl- 
edge gained from formal methods, code analysis, 
and simulation can help focus the selection. As 
pointed out by Leveson [23], “testing researchers 
have defined theoretical ways of comparing testing 
strategies both in terms of cost and effectiveness 
(for example, [24]), f ormal criteria for evaluating 
testing strategies (for example, [25]), and axioms 
or properties that any adequacy criterion (rule to 
determine when testing can stop) should satisfy 
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(for example, [26]).” Analytic results can also 
indicate when statistically significant measurement 
results have been obtained [27]. 

2.3.1 Functional and penetration testing 
Testing methods can be divided into functional, 
performance, failure-mode, and, for security, pen- 
etration. Functional testing includes testing against 
a catalog of flaws previously discovered in this or 
other systems. The major thrust of security testing 
is in penetrating (i.e. violating the security policy), 
thereby measuring the resistance to anticipated 
threats. The presence of anticipated threat actions, 
possibly by a malicious adversary, distinguishes 
the security concerns in a system. 

Testing functional specifications is usually ach- 
ieved by black-box testing, in which the tester 
only has access to the specifications of the pro- 
gram, while testing specific program behavior by 
understanding the design is achieved by glass-box 
(a.k.a. white-box) testing, in which the tester has 
access to the internal source code of the program. 
Security testing of high-assurance systems is 
usually a glass-box strategy using extensive 
documentation of design and implementation. 
Varying degrees of assurance are obtained accord- 
ing to the information available to the testers, 
including security kernel code, design documenta- 
tion, and formal models. The value of penetration 
testing depends on the experience of the testers 
and the methodology employed. IV&V (independ- 
ent verification and validation), where a group 
independent from the developers is charged with 
testing a system, is sometimes effective in finding 
errors that developers who are too familiar with 
the source program may overlook. As with many 
of the methods addressed in this paper, the cost- 
benefit of this added level of assurance must be 
analyzed [ 281. 

2.3.2 Exhaustive testing 
The classical example by Dijkstra shows that 
exhaustive testing cannot prove correctness of any 
implementation. To prove the correctness of 
“a + b = CT’ on 32-bit computers would require 

232 x 232 = 2@ or over 1019 tests. At a rate of even 
10’ tests per second, that would require 1011 sec- 
onds or over 3000 years. Perhaps we should ask 
ourselves whether we really have so little under- 
standing of the operation of a computer that we 
have to test addition, for example, for all possible 
addends to be convinced that the addition func- 
tion is working correctly or can we assume the 
level of hardware abstraction that addition 
implies? Under what conditions can we state a 
general argument that works in the face of over- 
flow? Although it is recognized that testing cannot 
be exhaustive, testing has a very strong intuitive 
appeal and constitutes a very strong basis for belief 
in correctness. 

Testing always involves comparing the actual 
results of execution with anticipated results. One 
way to capture anticipated results is to test an 
executable specification of a prototype. Once this 
is done, it is possible to automatically execute the 
system being tested and its specification in paral- 
lel, and to automatically compare the results, 
thereby greatly increasing the number of feasible 
test cases [29]. 

Testing is the oldest form of support for belief in 
correctness. But since it represents the most 
expensive phase of development, there is a strong 
desire to eliminate testing from the software 
development life cycle-but it is still with us. 
Testing is needed in the following circumstances: 

??Always! For all but the most trivial programs, 
testing is needed for validation that the program 
does behave as expected on at least the well- 
chosen test data. Even with formally verified 
programs, testing is needed to demonstrate that 
the underlying assumptions used to abstract the 
program’s specifications were valid. However, 
one should not rely only on testing for a thor- 
ough belief in correctness. 

??End-to-end integration testing should always be 
performed on complex systems. That is, after 
each component of a system “checks out”, it is 
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still necessary to integrate the total system and 
perform tests on its overall behavior. NASA’s 
experience with the Hubble Space Telescope is 
a classic example of that. Since each component 
of the telescope checked out on the ground, it 
was only in orbit when it was discovered that 
the $2B machine did not work as designed and 
a $650M f= had to be developed. It could be 
argued that actually each component did not 
really “check out” and that the flaw in the lens 
was actually observed-but misinterpreted and 
ignored-with ground-based testing; however, 
that is the reality we have to deal with daily in 
developing software. 

0 Unit (e.g. component) testing may or may not 
be needed, depending upon the context of the 
development environment. For example, clean- 
room software development eliminates the need 
for some unit testing, but not for integration 
testing. 

Finally, you cannot rely only on testing. Other 
methods must be used as additional aids in believ- 
ing the correctness of complex systems. 

2.4 Process models and procedures 
All of the previous techniques depend upon sub- 
jecting a program to one of the discussed methods 
to increase confidence that the program exhibits 
correct behavior. However, as we have frequently 
stated, this is extremely difficult to do. As an alter- 
native, perhaps it is easier to understand the 
mechanisms used in developing the program 
under the belief that correct methods yield correct 
programs. The idea underlying process models is 
that understanding what you are doing is a neces- 
sary step to improvement. By using a simple, 
well-understood process to develop software, we 
have belief that the ultimate product best meets 
our needs. Two process models currently enjoy 
favor: waterfall and spiral. The United States 
Department of Defense (DOD) standards imply 
(but do not require) use of the former in manage- 
ment of software development. 

The waterfall model [30] (Fig. 2) conceives of soft- 
ware development as a linear process based upon a 
set of deliverable artifacts. There are easily recog- 
nized milestones between steps in the process. 
Although the mechanisms of the process are gen- 
erally obscure-only the results of the process are 
visible. Therefore, the waterfall model uses these 
products-a specifications document, a design 
document, a source file, and the results of testing, 
for example. These milestones can support a 
management strategy of schedules and reviews. 
Recognition that the process is not perfect led to 
the introduction of feedback paths in the model. 
If drawn as a waterfall of steps, the feedback paths 
suggest salmon swimming upstream. The feed- 
back paths represent knowledge gained in later 
steps that affect activities and decisions made 
earlier. It may be necessary to adjust, or even 
abandon, earlier work as a consequence of feed- 
back. In practice, schedules tend to not allow for 
such corrective action. Non-technical project 
managers are often determined to meet their 
schedules, no matter what the consequences [31]. 

Because of all of these deficiencies, belief in the 
waterfall model as a useful methodology for 
developing software that satisfies its specification 
has been slowly decreasing, and an alternative spi- 
ral model (Fig. 3) has been gaining favor [32]. The 
spiral model emphasizes the process of developing 
software rather than the resulting products. It is 
also called a risk-reducing model, since the basic 
premise is to develop and prototype a solution, 
evaluate the risks of adding specifications, and 
repeat the process. Each cycle of the model creates 
a more complex version of the system, with the 
ultimate prototype being the final system itself. At 
each stage, we use Occam’s razor to simplify our 
solution, we make the process of development as 
visible as possible, and we try to quantify the risks 
involved in continuing development. Thus, our 
belief in the solution should be higher than with 
the hidden processes inherent in the waterfall 
model. The spiral model emphasizes the repeti- 
tion of basic activities at progressive stages of a 
project. The exact activities change as the project 
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Fig. 2. The waterfall model of software development. 

matures, but such activities as design, implemen- 
tation, testing, evaluation, and planning are 
related. Changing requirements are more easily 
accommodated. The cost is represented by the 
radial distance in a polar coordinate system and 
the activities occur at a specified polar angle. Prog- 
ress is assumed proportional, or at least related to, 
cost. While the theory of the spiral model accom- 
modates redesign and backtracking, the imposition 
of schedules can have exactly the same effect as on 
the waterfall model. 

Despite proper procedures, things will go wrong. 
Returning to civil engineering, we call your atten- 
tion to the Citicorp Center built in New York 
City in 1994 [33]. The discovery and patching of 
a design/implementation flaw that had the poten- 
tial to cause the building to collapse disastrously 
under high winds was surprising only in that it 
was so recent; there were some unique properties 

to this building. The question is not so much how 
to prevent problems but how to respond and 
recover. Prevention is only an optimization of this 
process and should not overwhelm the process. 

Cleanroom sojiware development represents an inter- 
esting variation on the traditional waterfall model 
[34]. The concept is to embed formal methods 
into a practical development strategy. All software 
is verified (at least informally) during the design 
and development stage, and no unit testing is per- 
formed. The formal proof represents all the vali- 
dation that is done before the program undergoes 
integration testing. Surprisingly, by eliminating 
unit testing, quality goes up, not down. 

The reasons for this have more to do with human 
nature than with the science of programming. 
Programmers as people often look for easy solu- 
tions. As such, understanding the logic of a diffi- 
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Fig. 3. The spiral model of software development. 

cult algorithm is often delayed with the comment 
“I’ll find the error in testing.” With cleanroom, 
since there is no testing phase, the logic must be 
understood as it is written. While this slows down 
coding somewhat (which upsets unenlightened 
management), it has the effect of forcing the pro- 
grammer to truly understand the program. This 
has the beneficial effect of greatly eliminating later 
costly integration testing errors. 

Within the software engineering community 
today, the concept ofprocess improvement is of great 
importance. The Software Engineering Institute 
has developed the capability maturity model 
(CMM) [12] as a means to assess an organiza- 
tion’s process and as a means to suggest improve- 
ments to that process. 

The CMM is based somewhat on hardware analo- 
gies; however, we have to be careful in applying 

hardware rules to software. For example, within 
the manufacturing domain, international standard 
IS 9000 governs the way products are manufac- 
tured in order to assess consistent manufacturing 
quality. For example, the typical home light bulb 
will burn within a few per cent of 1100 hours. 
The quality of this light bulb is outside of the 
domain of the standard. Whether 1100 hours is 
good quality or bad quality is not so specified. 
However, within software development there is 
the implied assumption that a good development 
process means a good resulting product. All that 
the CMM (and related process models) attempt to 
assure is that the process is repeatable. We need to 
look outside of the development process to get 
greater confidence in the developed products. 

Process models do have a place. The problem 
today is that most organizations have no formal 
procedures for developing software, for develop- 
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ing requirements, for testing, for performing 
maintenance and enhancements on their products. 
As former President Eisenhower said after World 
War II “plans are worthless, but planning is every- 
thing” [35]. We need to encourage planning, and 
understanding process models at least forces orga- 
nizations to undergo some initial planning. Going 
from CMM level 1 to CMM level 2 causes orga- 
nizations to undergo the indispensable planning 
mentioned almost 50 years ago by Eisenhower and 
should prove to be effective. However, whether 
“walking up the CMM ladder” from level 1 
through level 5 increases product quality at each 
level still needs to be determined. 

3. Choosing among alternative beliefs 

Software engineers promote one technique after 
another as the “silver bullet” [36] solution to all 
our problems, This section examines the most 
popular silver bullets. 

3.1 Tarnished silver bullets 
To address correctness in system development, 
many techniques have been proposed as potential 
solutions (e.g. see [37, 381). All techniques 
involved a measure of belief as groups of pro- 
fessionals argued among themselves regarding the 
appropriateness of their favorite method. None 
has completely provided the warm fuzzy feelings 
we want, although all have their value as part of a 
coordinated approach towards trustworthiness: 

0 Structured programming (e.g. “goto-less pro- 
gramming” of the 1970s) makes programming 
easy and correct. Twenty years of experience 
have shown that quality has improved, but not 
to the level initially proposed. There is a rela- 
tionship between the restrictions imposed by 
using only the appropriate control structures 
and formal verification of the source code pro- 
duced; however, errors still occur in such pro- 
grams [39]. For the most part, this concept is 
now a “non-issue.” Students are all taught 
structured programming and the goto statement 
is fast becoming an artifact of history. However, 

we need to do more to remove all program- 
ming errors. 

The spiral model described earlier is superior to 
the waterfall model. The spiral model was an 
improvement in that it emphasized the process 
of software development with attendant interest 
in the management, risk evaluation and reduc- 
tion, and prototyping aspects of the process. 
Note that this is an example of Petroski’s 
theses. Because the waterfall methodology was 
perceived inadequate to produce good software, 
a new methodology (spiral) has been intro- 
duced. When it is determined that the spiral 
also is inadequate, creative people will develop a 
new system. Since we do not have good meas- 
ures of correctness, it is difficult to know how 
to make the process better. Note also that the 
spiral model and the waterfall model that it 
replaced both represent a similar set of practices 
as actually implemented by many organizations. 
We so far have little experimental data compar- 
ing both techniques, and in reality, both models 
have many elements in common. 

CASE tools will supplement the intelligence 
lacking in today’s programmers. Unfortunately, 
the tools have not added much intelligence and 
today’s programmers could still use additional 
help. CASE tools suffer from the same problem 
as the other software we are discussing: they 
have errors (all software has errors), and they 
are only as smart as their developers. One dan- 
ger of CASE is that it has been oversold in 
industry. Since it has not proven to eliminate 
all errors, many managers avoid all CASE prod- 
ucts-both good and bad. Current interest in 
environment design and the ability to integrate 
tools upon an infrastructure platform of envi- 
ronmental services holds promise for develop- 
ing effective CASE tools in the near future 

[JOI. 

Formal methods applied informally (e.g. lan- 
guages like VDM and Z) can improve the proc- 
ess. While this seems to be true, it has yet to be 
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demonstrated that this approach results in the 
correctness that we need for security-related 
systems. It is not clear that our belief in these 
specification techniques will be high enough to 
eliminate the need for alternate mechanisms. 
Nor is it clear that our beliefs are the only ones 
that count. See [41] for a discussion of mathe- 
matical arguments that qualify as proof in a 
court of law. 

??Object-oriented (00) programming and design 
will replace conventional design techniques, 
and languages that implement such processes 
(e.g. C++) will replace other languages (e.g. 
Pascal, Ada, FORTRAN). This concept repre- 
sents one of the newer trends in program 
design. We do not have enough evidence to 
judge the effects of 00 design on security. 
This technique does encapsulate some of the 
formal data-structuring mechanisms into the 
programming language; however, it must still 
be observed what effects it will have on overall 
system correctness. (Note that this is just the 
current version of the traditional silver bullet, 
“Language X will make programming easier.” 
In the 1960s we had COBOL and then PUI, 
in the 1970s we had Pascal, in the 1980s we had 
Ada, and now we have C + + .) Each language is 
perceived to have failed in achieving some 
objective. Hence, someone develops a new lan- 
guage to correct the flaws. This cycle will prob- 
ably never end, as it is not likely that any one 
language will be perfect for all applications. 

Jones [42] identifies four risks in using an 
object-oriented design model: (1) while much 
of the literature asserts substantial productivity 
gains using 00 techniques, most publications 
do not provide quantitative data to back up 
those claims; (2) productivity improvement 
results from reduced defect insertion and 
improved defect removal. It is claimed that 00 
inheritance and reuse lowers the defect inser- 
tion process, but there is no empirical evidence 
to back up that claim (although there is no 
counterevidence either); (3) 00 proponents 

claim vastly increased levels of reuse, but there 
is little published data in this area; and (4) any 
technique has limitations, yet there are few 
published instances of projects where an 00 
design was abandoned and deemed inappropri- 
ate. 00 technology may indeed prove to be 
beneficial; however, until we have a body of 
empirical evidence generated under recognized 
scientific principles, there is still a level of risk 
in madly adhering to an 00 process without a 
good analysis of the problem first. 

Furthermore, encapsulation, the 00 theory 
that is most attractive from a security view- 
point, has often not been implemented in prac- 
tice; Gemstone is one exception. For example, 
[43] points out: “First, and most seriously, 
C ++ encapsulates classes rather than objects; 
that is, a method on a C ++ object o can access 
the private state of any object in class (0). Sec- 
ond, some models assume that the methods can 
write only in ways mediated by the OODBMS, 
but method code is usually allowed to invoke 
any system capability. Finally, for high-assur- 
ance systems, verifying that a language’s encap- 
sulation is enforced may require assuring a 
substantial part of the compiler.” 

??Reusing existing code is the solution. Since 
code proven correct once need not be so 
proven again, one only needs to create a library 
of reusable components. Of course, the effec- 
tiveness determination needs to be made anew, 
but that is outside the scope of this paper. 
While reusing existing code is an admirable goal 
and is quite successful in limited application 
domains, we still do not have the technology to 
implement this process on a larger scale. While 
we can create write-only libraries of reusable 
components, we have no process available that 
enables us to determine the specifications of an 
existing library component and whether it ful- 
fils the specifications for another application. 
Current interests in domain-specific architec- 
tures and faceted classification schemes are both 
attempts at understanding the functionality of 
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reusable components. We reuse hardware com- 
ponents all the time, in the sense that we man- 
ufacture identical copies of circuit packages and 
other components. Each component conforms 
to some specification of performance and 
behavior that is described in components man- 
uals. Why can’t we do something similar with 
software? 

?? Process maturity improvement is today’s salva- 
tion [ 121. Current thinking is that improving 
only the process without looking at the ultimate 
product being produced is all that is necessary 
to produce quality software. A CMM evaluation 
collects no data on the quality of the products 
that are being produced by the development 
organization. While a capability evaluation and 
changes suggested by it should greatly improve 
the production of software from many organi- 
zations that currently have y10 such process, as 
shown often in the past, this is a naive approach 
to producing correct software. 

We do not mean to say that the above techniques 
are failures. All, to some extent, improve upon the 
quality and correctness of the resulting program 
that is produced. Programming as taught in the 
universities and practiced in industry today is 
radially different from that of the 1960s. However, 
the important point is that none of them achieves 
the level of correctness that would support our 
belief in that technique over all others. 

3.2 Just build hardware 
An alternative approach to the correctness of soft- 
ware problem has often been expressed by the 
sentiment “since hardware is easy to build and is 
correct, we should eliminate software and build 
only hardware.” Although often said in jest, many 
deeply believe that this may indeed pose a solu- 
tion to the trustworthiness issue. In reality, how- 
ever, the distinction between software and 
hardware is moving in the opposite direction. 

Today microprocessors are becoming increasingly 
complex with today’s processors often containing 

over 4 million transistor-equivalents per chip. It is 
rare, today, to see a new microprocessor that is 
not first delayed in introduction or quickly mod- 
ified due to initial errors in its fabrication. The 
hardware design process often includes many of 
the following steps [44]: 

?? Breadboarding (prototyping) a design and test- 
ing it, although that is becoming increasingly 
difficult as the number of circuits per chip 
increases. 

??Designing a chip using abstraction and a divide- 
and-conquer strategy to define each functional 
unit on the chip. 

??Using design automation tools (e.g. design lan- 
guages) to describe circuit functionality. 

?? Simulating chip-level functionality. 

??Verifying formal timing constraints and func- 
tional correctness of circuits [45]. 

This list looks surprisingly like the list of software 
correctness methods we have been describing in 
this paper. Hardware design is rapidly taking on 
the structure of software design, and with the 
increasing size and complexity of such circuits, 
hardware correctness is becoming as much a prob- 
lem as its software counterpart. 

3.3 Trustworthiness is just risk management 
Resources must be allocated among the correct- 
ness methodologies. While management has been 
described as the art of making decisions based on 
inadequate information, the quality of decisions is 
often improved by providing more information. 
Installation and use of security-critical IT systems 
cannot wait for proofs of efficacy or development 
of metrics for determining cost-benefit. Managers 
will need to continue to make decisions whether 
or not to employ IT. The managerial authoriza- 
tion and approval granted to an IT system to proc- 
ess sensitive data in an operational environment is, 
in theory, made on the basis of analysis and certi- 
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fication of the extent to which design and imple- 
mentation of the system meet pre-specified 
requirements for achieving adequate security. 
Security objectives can be met by a combination 
of technical means within the system and physical 
and procedural means outside the system. In this 
theory, when management accredits the system, 
management is accepting the residual risk. 

How can we address this residual risk? While we 
have no clearly defined metric for this, we do have 
examples of systems that seem to adequately 
address our security concerns. One avenue of 
research is increased study of these “artifacts”- 
the systems, designs, and specifications that have 
helped produce acceptable solutions. This knowl- 
edge should enable us to produce better models in 
the future. However, today there is no way to 
measure the residual risk, nor is there a metric for 
cost-benefit. So, how is a decision made? Since 
computer and management science cannot help 
verify a decision, the experienced manager’s intu- 
ition cannot be dismissed. Experience probably 
includes comparison with previous efforts, the 
correctness of which has become better known 
over time. One must be careful to distinguish 
between management saying “I did this before and 
it worked” versus “I feel safe using this since I 
used it before, while this new technique is 
unknown to me.” The first statement encapsulates 
the experiences of good management, while the 
second statement reinforces unscientific prejudi- 
ces. The real problem is how to differentiate 
among good science, common sense, and stub- 
born stupidity. 

Missing from most of this discussion are the 
quantifiable results of using the various methods 
which are necessary in order to apply Lord Kel- 
vin’s definition of science given earlier. Measure- 
ment research in software development is 
relatively rare and there are only a few long-range 
studies of the development process. The NASA/ 
Goddard Space Flight Center Software Engineer- 
ing Laboratory has been studying software 

development activities since 1976 [46], but there 
are few other groups involved in such long-range 
evaluations of the software process. Many more 
such activities need to be funded and undertaken. 

We do not imply that only software has such a 
poor track record in building reliable products. 
On 17 July 1981 the skywalk of the Hyatt 
Regency Hotel in Kansas City collapsed, killing 
over 100. The problem was ultimately traced to a 
problem that is typical in the software domain- 
poor translation from specifications to design. In 
this case, the design called for a single rod to 
thread through two layers of skywalk (Fig. 4(a)) 
whereas it was implemented as segmented rods 
(Fig. 4(b)), thus causing undue stress where the 
two segments met [ 11. 

Problems in translation between specification and 
implementation is something software people are 
all too familiar with. The problem with software 
is just that failures occur so often when compared 
to mature technologies such as bridge building. 
The difficulties of achieving correct results are 
common to all engineering fields. But software 
engineering hasn’t the long history and empirical 
database of civil engineering. Whenever new or 
novel solutions are attempted the probability of 
failure increases. We should not be surprised that 
since security engineering appears to be trying to 
solve new problems very frequently; the probabil- 
ity of achieving correctness is small. 

3.4 The prudent manager 
Without such quantifiable results, in deciding 
which belief system to embrace, the prudent man- 
ager probably hedges by using more than one 
system. Various combinations of formalism, test- 
ing, simulation, and process may be employed. 
Since cost is one of the attributes we need to 
address in evaluating the overall quality of the 
product, it is prudent that management should 
adequately choose from among the techniques 
those that meet required cost constraints yet still 
meet functional requirements for the product. 
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I (a) Specification (b) Implementation 

Fig. 4. Details of Hyatt skywalk: (a) as specified; (b) as implemented. 

4. Recommendations 

Given the absence of metrics for any of the belief 
systems, the inherent difficulty in using any of 
them, and the lack of repository of correctness 
artifacts to study and evaluate, the authors do not 
propose to solve this problem with a pronounce- 
ment of correct technique. Our focus is to 
increase the awareness of the technical and mana- 
gerial segments of the IT security community to 
the limitations of each of these techniques. We 
attempt to increase understanding of the need to 
address more than one solution to the multifac- 
eted correctness problem. We are disappointed 
that we cannot end this paper on a stronger note, 
but think that we have presented a realistic assess- 
ment of the situation as it stands today. There are 
many points of dispute; we would be delighted to 
learn that the situation is better than we thought. 
Table 2 summarizes the salient points we wish to 
leave with the reader. Reflecting the subjective 
nature of the value judgments presented in this 
paper, the symbols used in the table are vague and 
imprecise. 

We view the glass as being half full. We do not 
advocate that anyone abjure his belief(s) in cor- 
rectness. Rather, we suggest that attempts to prove 
beliefs are bottomless pits. Unless some break- 
through occurs, we advocate treating this aspect of 
software engineering pragmatically. Just as engi- 
neers built steam engines (see [23] for further 
analogy) before the science of thermodynamics 
was developed, the software engineering commu- 
nity can build software systems based on intuitive 
and pragmatic notions of how to attain correctness 
and other aspects of quality. At least now, we 
should acknowledge practicing an empirical 
discipline. 

At the risk of appearing cautiously optimistic, we 
hesitantly endorse four interrelated strategies. The 
exact allocation of resources among the strategies 
remains a technical management decision. Look- 
ing at the mature methods available today, we 
tend to agree with the perceived consensus that a 
combination of the following should be 
employed: 
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TABLE 2. Characteristics of correctness methods 

Method When Skill cost cost Applicable to 
used required effectiveness complexity 

Formal methods All A A V V 
Simulation All A A . r 
Testing After T . . * 
Process modeling Before, during T T ?? A 
Structured programming During . . . A 
CASE tools During A V . A 
Object-oriented methods Before, during ?? ?? . A 
Code reuse During A ?? R A 

Key: design tool, during coding, after completion, during all stages A above average, rare ??average v below average, common. 

Evaluation of process, personnel, and abilities to 
identify and reinforce positive attributes. 

Thorough review and analysis of intermediate 
products during development with sufficient 
time and resources allocated to correct 
deficiencies. 

Rigorous testing based on the preceding 
analysis. 

Recognition of critical points in system devel- 
opment. This includes understanding of risk of 
failure and cost/benefit analysis of reducing this 
risk further: 
-point of diminishing return for application 

of any method 
-when a development should be terminated 

for cause or to stop hemorrhaging. 

Looking forward, we see promise in combining 
aspects of program reuse and object orientation. 
The possibility of employing object self-protection 
in security architecture should be considered. 

Each of the techniques described in this paper has 
an aspect that helps increase our belief in the cor- 
rectness of an implementation, yet each is fraught 
with some dangers. Each technique comes with 
some, generally high, cost for its use. It is imper- 
ative that management addresses each as aids in 
developing security-critical IT systems and not 

arbitrarily dismiss any of them. We should: 

Be cognizant of the limitations of each: 
-belief in correctness should be relative. 

Be prudent in establishing realistic assurance 
requirements for a given system that are meas- 
urable, achievable, and cost-effective. 

Resist the temptation of unachievable elegance 
and perfection. 

Differentiate between research and operations: 
- define achievable specifications 
- understand risks involved, costs to decrease 

those risks, and accept residual risk. 
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