
Computers & Security, 14 (1995) 719-738

0167-4048(95)00022-4

Striving for
correctness*
Marshall D. Abram& and
Marvin V. Zelkowitz2
‘The MITRE Corporation, 7525 Colshire Drive, McLean, VA 22102,
USA (abrams@mitre.org)
*Institutefor Advanced Computer Studies and Department of Computer
Science, University of Maryland, College Park, MD 20742, USA
(mvz@cs.umd.edu)

In developing information technology, you want assurance
that systems are secure and reliable, but you cannot have
assurance or security without correctness. We discuss methods
used to achieve correctness, focusing on weaknesses and
approaches that management might take to increase belief in
correctness. Formal methods, simulation, testing, and process
modeling are addressed in detail. Structured programming,
life-cycle modeling like the spiral model, use of CASE tools,
use of formal methods, object-oriented design, reuse of exist-
ing code are also mentioned. Reliance on these methods
involves some element of belief since no validated metrics on
the effectiveness of these methods exist. Suggestions for using
these methods as the basis for managerial decisions conclude
the paper.

Keywords: Assurance, Belief, Correctness, Formal methods,
Mathematical models, Metrics, Process models, Risk manage-
ment, Security testing, Simulation, Silver bullets,
Trustworthiness.

1. Introduction
i‘

E ngineers today, like Galileo three and a half
centuries ago, are not superhuman. They

make mistakes in their assumptions, in their cal-
culations, in their conclusions. That they make
mistakes is forgivable; that they catch them is

*A condensed version was previously published in the
Proceedings of the 27th National Computer Security Conference
(USA) under the title “Belief in Correctness.”

imperative. Thus it is the essence of modern engi-
neering not only to be able to check one’s own
work, but also to have one’s work checked and to
be able to check the work of others” [11.

1 .I Security and software engineering
Security engineering is part of computer, or Informa-
tion Technology (IT), engineering, encompassing
elements of hardware, firmware, and software.
There is a delicate balance in focusing on the
security specialization to the exclusion of related
fields. More progress in the security specialization
probably results from the tight focus, but some
relevant events in related fields may not receive
the deserved attention. This paper attempts to cor-
rect such myopia concerning the software engi-
neering topic of correctness or trustworthiness. Most
of what we have to say in this paper is well known
to the software engineer. At the same time, much
of it is new, challenging, and perhaps controversial
to the security engineer. In order to substantiate
our position and provide sufficient pointers for
further study, we have perhaps been excessive in
the reference citations provided.

1.2 Abstraction layers
One way of thinking about the various technolo-
gies upon which security builds is a series of

0167-4048/95/$9.50 0 1995, Elsevier Science Ltd 719

IV, D. Abrams and IV. K Zelkowitz/Striving for correctness

abstraction layers, conceptually illustrated in Table
1. The security engineer must understand that the
device designer, circuit designer, and operating
system architect have different viewpoints. Each
specialist assumes that the interface provided to
him or her by the underlying layer is primitive
and trustworthy. This trust is a consequence of
specialization. Engineers working at one techno-
logical level of abstraction are usually not prepared
to investigate and determine the trustworthiness
of the resources with which they work. For
example, software experts rarely know about hard-
ware design. However, they tend to view hard-
ware as a monolithic entity and to trust it. This
trust may or may not be warranted. The hardware
may be failure prone due to errors in design or
fabrication, the assumptions upon which the hard-
ware is being used may be false, or it may also
have been built with malicious intent to sustain
the same kinds of attacks as are commonly imple-
mented in software, such as viruses and Trojan
horses. See [2] for further discussion.

Similarly, software experts who build trusted
computing bases or communications protocol
interpreters are users of supporting software, such
as compilers and editors. They assume that this
supporting software is trustworthy. While this is
usually the case, Thompson [3] eloquently advises
that one should be careful about extending trust.
Recent work has described critical issues related to
software trust and has proposed a set of criteria
classes for measuring and comparing trust [4].

Addressing the trustworthiness of these layers is a
matter of risk management. Absolute risk avoid-
ance would address every possible level of risk.
Risks might exist in the design of the chips, the

TABLE 1. Abstraction layers

Applications
Security subsystem
Operating system
Compilers, loaders, etc.
Circuit design and fabrication
Semiconductor chip design

side-effects of instruction set design (especially
unimplemented instructions in complex instruc-
tion set architectures), or the security flaws in all
supporting software. It has been common when
confidentiality was the only security policy to
assume that mass-produced bedrock was a suffi-
ciently low risk that it could be ignored. Con-
sideration of integrity and availability as security
policies may justift- reconsideration.

1.3 The gods have clay feet-the emperor is naked
This paper tends to proclaim that the gods have
clay feet or that the emperor is naked. These are
never popular sentiments. They are presented as
constructively as possible, but we humbly
acknowledge that we have no completely satisfac-
tory answer. Our overall challenge to the commu-
nity is the traditional engineer’s problem of
finding cost-effective ways of applying the knowl-
edge and skill base to the solution of social prob-
lems and requirements. This paper looks at the
practical application of research results and finds a
lack of evidence to support the very strong beliefs
in the efficacy of various methods for increasing
IT security.

1.4 Assurance, effectiveness and correctness
Assurance is defined3 as “the confidence that may
be held in the security provided by a target of
evaluation.” Informally, assurance is a “warm
fuzzy feeling” that the system can be relied upon
to reduce residual risk to the predetermined level.
Without delving into psychology, we observe that
effectiveness and correctness both contribute to
assurance. Efictiveness is determined by analysis of
the functional requirements; the environment in
which the system will be used, the risks, threats,
and vulnerabilities; and all the countermeasures,
including physical, administrative, procedural, per-
sonnel, and technical. The system is considered
effective if the result of this analysis is an accept-
able residual risk. Correctness is determined by

‘Definitions of assurance, correctness, and effectiveness are taken
from the Information Technology Security Evaluation Criteria
(ITSEC) (51. Better definitions may be available by the time
this paper is published.

720

Computers & Security, Vol. 14, No. 8

comparing the implementation of the counter-
measures with their specification. The system is
considered correct if the implementation is suffi-
ciently close to its specification. Note that this
definition of correctness is compatible with the
concept of risk management and is closer to the
concept of trustworthy than to error-free.

1.5 Major methods and panaceas
This paper exhibits methods used to establish cor-
rectness. All current methods contributing to
correctness have shortcomings that make it
impossible to establish correctness beyond reason-
able doubt. That is, establishing correctness
becomes a matter of belief, not proof. For each
technique we describe attributes for these tech-
niques and show its strengths and weaknesses. We
show how to best use that method for increasing
our belief in the trustworthiness of our system.
Under conditions of belief, we caution fiscal pru-
dence in resources invested in assuring correct-
ness. The major methods addressed in this paper
are mathematical models, simulation, testing,
process models and procedures. Prior panaceas,
called silver bullets, include structured program-
ming, the spiral model, computer-aided software
engineering (CASE) tools, formal methods,
object-oriented (00) programming, reusing exist-
ing code, and process maturity. Cost benefit is
offered as a measure for selecting which belief
system to embrace. We recommend hedging one’s
investments by using more than one method. We
regret being unable to offer better guidance. We
can only suggest that the lack of a definitive
answer is characteristic of many management
problems where decisions must be made based on
insufficient evidence. Perhaps it would be worth-
while if a consensus could be developed in the
security engineering community as to what con-
stitutes good practice at the present time.

Security-critical information technology (IT) sys- -. . ,

tion and not do anything that is not so specified.
Correctness of software always has to be with
respect to a specijication.

Various methods may be used to demonstrate cor-
rectness, but all are less than perfect and involve
some element of belief in relying on the results of
using that method. That is, it cannot be proven
that a method is “good” or “better”. The methods
are complementary in contributing to correctness
itself as well as in contributing to belief in correct-
ness. There is a growing consensus that, to say the
least, no one technique can provide adequate
assurance (see, for example, [6]). David Parnas
[7], among others, has suggested that an “assur-
ance tripod” is required: the combination of rigor-
ous testing, evaluation of the process and
personnel used to develop the system, and a thor-
ough review and analysis of various products pro-
duced during development as a way to minimize
risk. In the pragmatic end, managerial judgment
determines resource allocation to correctness and
assurance. Being unable to offer any substantive
justification, we observe that recommendations,
such as Parnas’, are often unsubstantiated and
contentious. The mechanism for reaching a con-
sensus is not obvious. Thoughtful discussion,
such as this paper, are certainly part of the scien-
tific and technical tradition. In this paper, we
focus on practical product correctness and the
various problems one has in achieving this
correctness.

1.6 Understanding complex systems
We should learn from branches of natural science
and engineering that have been trying to under-
stand complex systems far longer than computers
have existed. One important objective is to recog-
nize when simplifying assumptions are valid and
when they are dangerous. One of the authors
learned as a sophomore that “the essence of engi-

terns4 are extremely dependent on correctness. In
systems involving human life and safety, correct-
ness is paramount. A security-critical IT system
must do exactly what is identified in its specifica-

‘The term IT system includes all sizes of computer systems,
from super mainframes to desktop units to embedded
components and controllers, as well as networks and
distributed systems.

721

M. D. Abrams and M. V. ZelkowitzlStriving for correctness

neering is to make enough assumptions so that
you can solve the problem, without assuming the
problem away.”

Let us consider whether formal theories of pro-
gramming are good approximations of real pro-
grams executing on actual hardware. Although the
theories are relatively simple, applying them to
realistic programs vastly complicates the model.
You cannot even assume simple axioms like “For
all integers i, i + 1 >i” on fured wordsize com-
puters since integer i may “overflow” and have an
unspecified, negative, zero, or the same value,
depending upon the particular hardware executing
the program. Mathematical models of computer
programs generally do not accurately represent the
subtlety of programs in an environment (i.e. exe-
cution on real hardware). The mathematics of
computer modeling belongs in the realm of
applied rather than pure mathematics.

When we use Ohm’s law, Kirchhoff’s rules, etc.,
to design an electronic circuit or use Newton’s
Laws to predict the orbit of a satellite, no one is
saying that they have “proven” that the circuit
works or that the satellite will be exactly where
the model predicts it would be. These laws are
empirical observations that have stood the “test of
time” to represent physical reality. However,
when we model a computer program using some
method such as Hoare’s [8] we have some con-
fidence that the program when executed will
behave much as we predict, but perhaps not
exactly like we predict (e.g. integer overflow). To
accurately model a program’s execution requires
that even simple programs have complex proofs in
order to show that the mathematical properties of
the program behave as desired. Simple formalisms
for programs are too complex to accurately repre-
sent most programs in execution on physical
machines.

This insight shows that formalisms in program-
ming are very different from formalisms in the
natural sciences. In natural science, you have a
theory (e.g. laws of motion) that is a good approx-

imation to the physical interactions among objects.
In physics, a sufficiently accurate approximation
gives useful results. In contrast, for programming,
you must approximate the program and the hard-
ware (e.g. assume integers are infinite) in order to
have any relationship to the formal model. A key
difference is luck ofcontinuity. In programming, dis-
astrous examples of integer overflow and other
discontinuities show that the supposed approxi-
mations are not necessarily close. Use of discrete
logic to model these leads to expressions of enor-
mous complexity [9]. Alternatively, models could
incorporate known characteristics and limitations
of the computer to increase their veracity. We do
not wish to compare good models of physics with
bad models of computers. Newton’s Laws do not
work well for speeds close to the speed of light or
for objects that are not in inertial frames of refer-
ence. Likewise, a Hoare model of computer
system behavior is a poor representation if the
integer values are near overflow conditions. One
would need to modify the model to accommodate
the overflow behavior. Having done so, the model
would be better.

Several methods have been developed and been
accepted over time to demonstrate the correctness
of computer programs. None of these are true in
the sense that they portray absolute infallibility of
the method. Each has proponents and detractors.
In the next section, we describe these methods,
explore ways in which each accomplishes its task,
and draw some conclusions from this analysis.

2. Correctness methods

Several techniques are regularly employed to show
that a computer program does exactly what it is
supposed to do and nothing else. The first two
described below, formal methods and simulation,
analyze the program to derive properties about it.
The third, testing, experiments with program
behavior, perhaps using some information derived
by application of the first two techniques. The
fourth technique, process models and procedures,
looks at the development process itself under the

722

Computers & Security, Vol. 14, No. 8

assumption that good development practices result
in good software.

Each method is described briefly, emphasizing its
advantages, disadvantages, and contributions to
our belief system. A common distraction with all
methods is the complexity of execution. The
steps, processes, or manipulations that constitute
the practice of the method can be so overwhelm-
ing that perspective is lost. We agree with Ham-
ming (101 that “the purpose of computing is
insight” and that it is difficult to retain perspective
and insight in the face of complexity. It is very
easy to get caught up with all the mechanics of
employing a method so that in practice the
mechanics get emphasized at the expense of
understanding.

“When you can measure what you are speaking
about, and express it in numbers, you know
something about it; but when you cannot measure
it, when you cannot express it in numbers, your
knowledge is of a meager and unsatisfactory kind”
[111. Metrics of correctness need to be developed
and applied to individual methods and combina-
tions of methods. We need to replace belief with
analysis if at all possible. While early work on the
capability maturity model [121 and the experience
factory [13] show the role of metrics in the devel-
opment process, more needs to be done to totally
build an effective measurement model into the
development process.

2.1 Formal methods
The use of formalisms stems from two related
observations: natural language tends to be impre-
cise, and in achieving precision, there is the
potential for automation. Mathematical notation
has the advantage of precision and is associated
with rigorous, logical thinking that assists in
reducing ambiguity. In principle, formal models
of IT systems can support all phases of the system
development process: articulation of policy for
use, high-level architecture, design, and imple-
mentation. Formal methods have long been asso-
ciated with security-related software [141. Today,

formal models of security policy help perfect
understanding and development, especially of new
policies. While formal specifications have made
some impact in Europe, they have not made much
of an impact in the United States. No language is
likely to be a cure-all in achieving higher levels of
abstraction, and more natural models of problem
spaces, for all problem spaces.

In discussing formal methods, we have to be sure
to differentiate them from formalized methods, such
as computer-assisted software engineering (CASE)
tools, structured analysis, and other mechanized
techniques for developing source programs [151.
In using formal methods, one traditionally begins
with a formal description of the specification of a
software system according to some underlying
mathematical model and realizes (i.e. builds) that
specification as a concrete design or source code
implementation. This does not preclude the use
of automated tools or an automated deduction
system to participate directly in the construction
of later design and implementation stages. Using
mathematical logic, one shows that the program
agrees with the model. For example, axiomatic
verification, perhaps the oldest of the formal tech-
niques, assumes we have a program S, a precondi-
tion (specification) P that is true before the
execution of S, and a postcondition (output speci-
fication) Q. We must develop a proof that demon-
strates: (1) the relationship among S, P, and Q
that determines the effect program S has on P to
assure that Q will be true after execution termi-
nates; and (2) program S does indeed terminate if
P is true initially [8]. If we derive a set of axioms
for each statement type in our language (e.g. rules
for describing the behavior of the if statement, the
while statement, the assignment statement), then
we have tied program correctness to the problems
of generating correct mathematical proofs. But we
still have not proven that the program when exe-
cuted on a specific computer is correct because of
the very problems raised earlier. At best we have
shown that the formal description of the program
satisfies its specification (i.e. produces the given
postcondition when the precondition is true) [161.

723

M. D. Abrams and M. V. Zelkowitz/Striving for correctness

Our confidence in the correctness of the program
is dependent on our confidence that our target
computer is accurately represented by the formal
model.

2.1.1 Models of complex systems
As described previously, when we use formal
models we need to suppress details to make the
models tractable. Unfortunately, many of the
details suppressed in the formal models are imple-
mentation dependent and security relevant. For-
mal models are losing ground to the complexity of
networked and distributed systems. A distributed
application usually has multiple components with
a multiplicity of entrance and exit paths. Describ-
ing the pre- and postconditions for such systems
becomes unmanageable. It is difficult to scale up
the traditional use of formal methods to large
complex systems. While they may appear to work
satisfactorily on small “toy” problems, there has
been little evidence that they scale up very well

[91.

One failure of the “formal methods community”
in developing such models is that the models
often are not grounded in the very problems that
software engineers have in developing correct pro-
grams. “Doing our work in isolation, and then
trying to impose our ideas on the real world is
bound to fail” states Hare1 [171. The models that
the theorists need to use to base their theories on
must be grounded in the problems that program-
mers face in developing correct software.

“Larger examples are necessary to demonstrate
how these concepts scale up” [181. Formal models
are often applied to complex systems combined
with other belief systems. For example, variants of
the Bell-LaPadula security policy model [19] are
often cited as the basis of operating system
security, but the actual implementations also
include security-relevant processes, called trusted or
privileged, that are not formally modeled. Belief
that security is preserved after introduction of
these processes is often established by non-formal

means. Evaluation of moderate assurance general
purpose products by NSA today require a model
interpretation if the implementation violates the
model, so that the developer can provide justifica-
tion, through analysis, that the model violation
does not violate the security policy. The justifica-
tion at least requires the developer to think about
the problem before violating the formal model,
but it is still an informal plausibility argument that
still needs to be accepted with skepticism. The
value of the rigor of the formal model is seriously
diminished by the informal argument.

2.7.2 Assumptions and simplifications
Practitioners of formal modeling sometimes
appear to forget about the assumptions and sim-
plifications that were made to make their models
tractable and fail to caveat the applicability of their
results to the real world. This is an error on the
part of the practitioners. A great deal of the sim-
plifying assumptions are made because the mod-
elers simply do not know how to model some of
these features (although many are certainly sus-
ceptible to being modeled), or the resources avail-
able do not permit modeling the necessary details.
Brunnstein [20] puts it this way: “any abstraction
makes simplifying assumptions whose consistency
with reality is impossible to prove; therefore, for-
mal models reflect only syntactic-semantic levels,
they never reflect pragmatic levels.”

Within the limits imposed by the simplifications
and assumptions made for the sake of tractability,
formalism can be used both to determine correct-
ness of the implementation and adherence of the
system to certain properties. We can prove that a
given procedure must return a certain value and
also show that certain policies are never violated.
Many observers believe that formal policy models
have their maximum benefit in removing incon-
sistencies, ambiguities, and contradictions in the
natural language policy statement. The process of
formalizing the policy aids in clarifying the policy.
This process then has the secondary benefit of
making a clearer statement of policy to the
implementers.

724

Computers & Security, Vol. 74, No. 8

Although formal methods are based on mathe-
matical proofs, we must realize that even
mathematical proofs may have flaws. “Outsiders
see mathematics as a cold, formal, logical,
mechanical, monolithic process of sheer intel-
lection . . . [however] Stanislaw Ulam estimates
that mathematicians publish 200,000 theorems
every year. A number of these are subsequently
contradicted or otherwise disallowed, others are
thrown into doubt, and most are ignored. Only
a tiny fraction come to be understood and
believed by any sizable group of mathemati-
cians” [21]. Although mathematicians do not
like to admit it, correctness can be likened to a
social process-it is only the test of time where
no flaw has been discovered that builds a con-
fidence in the ultimate truth of a theorem. All
scientific processes have flaws. Petroski [l]
argues that failure is an important part of engi-
neering design. It is only when things fail that
we understand how to make them better. How
well would we be designing bridges if none
ever collapsed? Either we have overbuilt them
to a point of economic stupidity, or we have
never stressed them sufficiently. The Tacoma
Narrows bridge that went into harmonic oscil-
lation (Fig. 1) is a classic case. We hope that by
our continuing (unsuccessful) attempts to
model software, we are learning something.

Fig. 1. Tacoma Narrows bridge in oscillation.

This discussion is not to imply that formal
methods have no place in software develop-
ment; it is only to show that putting too much
faith in that process can still pose great risks for
the success of the project.

Formal methods can be used to develop high-
level design concepts. For example, the Bell-
LaPadula security policy model can be used to
model the top-level security policy of a system.
However, as details are added, the complexity
of the formal model becomes too complex to
rely on this method as the sole means of
verification.

For highly critical programs that are small,
verification can be used as an aid in correctness.
The operative word here is “small” since formal
proofs get quite complex quite easily.

Formal methods deal best with discrete data.
Discrete security labels, small integral values
and Boolean data can often be handled by for-
mal means. Use of formal models to verify pro-
grams employing real data (e.g. floating point
values of distances) and programs using charac-
ter data are harder to manage with formal
models.

It often helps if the underlying program design
is based upon a formal model. For example,
language compilers usually have finite state
automata and context free languages as the basis
of their parsing algorithms. This permits prop-
erties of those models to be used in the formal
proof of correctness. If the underlying program
design is not based upon a formal mathematical
object, the proof is hard to develop.

Formal methods can be an aid in program test-
ing (see below). In sections which are easy to
verify we have a higher degree of confidence in
their trustworthiness than sections which are
more difficult to verify. Conversely, sections
which are hard to verify need greater testing in
order to satisfy our need for trustworthiness.

725

M. D. Abrams and M. K ZelkowitzlStriving for correctness

2.2 Simulation
Simulation is the development of a simplified ver-
sion of a system’s specification by eliminating
non-critical attributes to develop a system that
exhibits relevant properties. By ignoring certain
properties, it is often possible to quickly and inex-
pensively build simpler versions of a system.
Using this simulation, security-related principles
can be more readily developed and examined.
This increases our belief in the ultimate specifica-
tion since we have demonstrated the existence of
an implementation that already has the desired
properties.

Related to simulation is the concept of “executable
specifications.” Using an appropriate higher level
language, the interfaces to a system are specified, a
simulation of that interface is demonstrated, and
then the executable specification provides the
framework for the eventual source program that
will implement that functionality. Examples of
such methods include requirements languages
such as Paisley [22], so-called “Fourth Generation
Languages” (4GLs) such as FORTH, and user
interface generators such as Serpent and Chiron.
Use of these systems increases our confidence
level since demonstration of the “proof of con-
cept” by executing the simulation provides for an
automatic conversion of this concept into the out-
line of an executable program to implement that
concept. Just as we rarely question the correctness
of a compiler in generating appropriate machine
language for a given programming language state-
ment, use of such executable specification gen-
erators obviates the need for some of the next
level of design.

While we can simulate a system to test the
security policies, the interaction of these policies
with the assumed-away specifications of the com-
plete system severely lowers our belief in the cor-
rectness of the overall system with respect to
security. By definition, one is “abstracting away”
non-essential aspects of the system when doing
simulation and modeling-yet it is very hard to
develop “non-interference proofs” for those miss-

ing aspects, so that you have confidence that they
really won’t change the behavior of interest in the
“real” system. It is only by testing (and/or formal-
ism) applied to the complete system that adds to
our belief in this product-although the existence
of a simulation that implements our security pol-
icy does provide a sort of existence proof on pol-
icy and increases our confidence (i.e. belief) in a
complete implementation. (See spiral model dis-
cussion, below.)

Simulation is most effective when performance of
the system is not well understood; simulation pro-
vides an early indicator of whether the system will
meet performance requirements. Simulation is
useful when the overall design allows use of one
of the above-mentioned application generators.
This permits initial simulation of the top-level
design as well as minimizing the chances of addi-
tional errors as the top-level design is translated
into some other implementation language.

2.3 Testing
Testing demonstrates behavior by executing a
system using a selected set of data points to show
that the system executes correctly on those points.
The assumption is made that if the set of data
points is chosen appropriately, then the behavior
of the system for other data points will be
analogous to the selected data points. If we believe
that the selected data points are representative of
the domain of data in which we are interested, we
have confidence in the correctness of our imple-
mentation. Choosing the selected data points and
the best method of testing our program are our
major decision steps toward determining our
belief in the correctness of this system. Knowl-
edge gained from formal methods, code analysis,
and simulation can help focus the selection. As
pointed out by Leveson [23], “testing researchers
have defined theoretical ways of comparing testing
strategies both in terms of cost and effectiveness
(for example, [24]), f ormal criteria for evaluating
testing strategies (for example, [25]), and axioms
or properties that any adequacy criterion (rule to
determine when testing can stop) should satisfy

726

Computers & Security, Vol. 14, No. 8

(for example, [26]).” Analytic results can also
indicate when statistically significant measurement
results have been obtained [27].

2.3.1 Functional and penetration testing
Testing methods can be divided into functional,
performance, failure-mode, and, for security, pen-
etration. Functional testing includes testing against
a catalog of flaws previously discovered in this or
other systems. The major thrust of security testing
is in penetrating (i.e. violating the security policy),
thereby measuring the resistance to anticipated
threats. The presence of anticipated threat actions,
possibly by a malicious adversary, distinguishes
the security concerns in a system.

Testing functional specifications is usually ach-
ieved by black-box testing, in which the tester
only has access to the specifications of the pro-
gram, while testing specific program behavior by
understanding the design is achieved by glass-box
(a.k.a. white-box) testing, in which the tester has
access to the internal source code of the program.
Security testing of high-assurance systems is
usually a glass-box strategy using extensive
documentation of design and implementation.
Varying degrees of assurance are obtained accord-
ing to the information available to the testers,
including security kernel code, design documenta-
tion, and formal models. The value of penetration
testing depends on the experience of the testers
and the methodology employed. IV&V (independ-
ent verification and validation), where a group
independent from the developers is charged with
testing a system, is sometimes effective in finding
errors that developers who are too familiar with
the source program may overlook. As with many
of the methods addressed in this paper, the cost-
benefit of this added level of assurance must be
analyzed [281.

2.3.2 Exhaustive testing
The classical example by Dijkstra shows that
exhaustive testing cannot prove correctness of any
implementation. To prove the correctness of
“a + b = CT’ on 32-bit computers would require

232 x 232 = 2@ or over 1019 tests. At a rate of even
10’ tests per second, that would require 1011 sec-
onds or over 3000 years. Perhaps we should ask
ourselves whether we really have so little under-
standing of the operation of a computer that we
have to test addition, for example, for all possible
addends to be convinced that the addition func-
tion is working correctly or can we assume the
level of hardware abstraction that addition
implies? Under what conditions can we state a
general argument that works in the face of over-
flow? Although it is recognized that testing cannot
be exhaustive, testing has a very strong intuitive
appeal and constitutes a very strong basis for belief
in correctness.

Testing always involves comparing the actual
results of execution with anticipated results. One
way to capture anticipated results is to test an
executable specification of a prototype. Once this
is done, it is possible to automatically execute the
system being tested and its specification in paral-
lel, and to automatically compare the results,
thereby greatly increasing the number of feasible
test cases [29].

Testing is the oldest form of support for belief in
correctness. But since it represents the most
expensive phase of development, there is a strong
desire to eliminate testing from the software
development life cycle-but it is still with us.
Testing is needed in the following circumstances:

??Always! For all but the most trivial programs,
testing is needed for validation that the program
does behave as expected on at least the well-
chosen test data. Even with formally verified
programs, testing is needed to demonstrate that
the underlying assumptions used to abstract the
program’s specifications were valid. However,
one should not rely only on testing for a thor-
ough belief in correctness.

??End-to-end integration testing should always be
performed on complex systems. That is, after
each component of a system “checks out”, it is

727

M. D. Abrams and M. V. Zelkowitz/Striving for correctness

still necessary to integrate the total system and
perform tests on its overall behavior. NASA’s
experience with the Hubble Space Telescope is
a classic example of that. Since each component
of the telescope checked out on the ground, it
was only in orbit when it was discovered that
the $2B machine did not work as designed and
a $650M f= had to be developed. It could be
argued that actually each component did not
really “check out” and that the flaw in the lens
was actually observed-but misinterpreted and
ignored-with ground-based testing; however,
that is the reality we have to deal with daily in
developing software.

0 Unit (e.g. component) testing may or may not
be needed, depending upon the context of the
development environment. For example, clean-
room software development eliminates the need
for some unit testing, but not for integration
testing.

Finally, you cannot rely only on testing. Other
methods must be used as additional aids in believ-
ing the correctness of complex systems.

2.4 Process models and procedures
All of the previous techniques depend upon sub-
jecting a program to one of the discussed methods
to increase confidence that the program exhibits
correct behavior. However, as we have frequently
stated, this is extremely difficult to do. As an alter-
native, perhaps it is easier to understand the
mechanisms used in developing the program
under the belief that correct methods yield correct
programs. The idea underlying process models is
that understanding what you are doing is a neces-
sary step to improvement. By using a simple,
well-understood process to develop software, we
have belief that the ultimate product best meets
our needs. Two process models currently enjoy
favor: waterfall and spiral. The United States
Department of Defense (DOD) standards imply
(but do not require) use of the former in manage-
ment of software development.

The waterfall model [30] (Fig. 2) conceives of soft-
ware development as a linear process based upon a
set of deliverable artifacts. There are easily recog-
nized milestones between steps in the process.
Although the mechanisms of the process are gen-
erally obscure-only the results of the process are
visible. Therefore, the waterfall model uses these
products-a specifications document, a design
document, a source file, and the results of testing,
for example. These milestones can support a
management strategy of schedules and reviews.
Recognition that the process is not perfect led to
the introduction of feedback paths in the model.
If drawn as a waterfall of steps, the feedback paths
suggest salmon swimming upstream. The feed-
back paths represent knowledge gained in later
steps that affect activities and decisions made
earlier. It may be necessary to adjust, or even
abandon, earlier work as a consequence of feed-
back. In practice, schedules tend to not allow for
such corrective action. Non-technical project
managers are often determined to meet their
schedules, no matter what the consequences [31].

Because of all of these deficiencies, belief in the
waterfall model as a useful methodology for
developing software that satisfies its specification
has been slowly decreasing, and an alternative spi-
ral model (Fig. 3) has been gaining favor [32]. The
spiral model emphasizes the process of developing
software rather than the resulting products. It is
also called a risk-reducing model, since the basic
premise is to develop and prototype a solution,
evaluate the risks of adding specifications, and
repeat the process. Each cycle of the model creates
a more complex version of the system, with the
ultimate prototype being the final system itself. At
each stage, we use Occam’s razor to simplify our
solution, we make the process of development as
visible as possible, and we try to quantify the risks
involved in continuing development. Thus, our
belief in the solution should be higher than with
the hidden processes inherent in the waterfall
model. The spiral model emphasizes the repeti-
tion of basic activities at progressive stages of a
project. The exact activities change as the project

728

Computers 6 Security, Vol. 14, No. 8

System Requirements &view (SRR)

System Dmign Review (SDR)

Software
Requirements + Software Speclflcation Review (SSR)

Analysis
*

softwale
preliminary + Preliminary Ddgn Revhv (PDR)

Design
*

Software
Detalled -) Critical Ddgn Rwlew (CDR)

Fig. 2. The waterfall model of software development.

matures, but such activities as design, implemen-
tation, testing, evaluation, and planning are
related. Changing requirements are more easily
accommodated. The cost is represented by the
radial distance in a polar coordinate system and
the activities occur at a specified polar angle. Prog-
ress is assumed proportional, or at least related to,
cost. While the theory of the spiral model accom-
modates redesign and backtracking, the imposition
of schedules can have exactly the same effect as on
the waterfall model.

Despite proper procedures, things will go wrong.
Returning to civil engineering, we call your atten-
tion to the Citicorp Center built in New York
City in 1994 [33]. The discovery and patching of
a design/implementation flaw that had the poten-
tial to cause the building to collapse disastrously
under high winds was surprising only in that it
was so recent; there were some unique properties

to this building. The question is not so much how
to prevent problems but how to respond and
recover. Prevention is only an optimization of this
process and should not overwhelm the process.

Cleanroom sojiware development represents an inter-
esting variation on the traditional waterfall model
[34]. The concept is to embed formal methods
into a practical development strategy. All software
is verified (at least informally) during the design
and development stage, and no unit testing is per-
formed. The formal proof represents all the vali-
dation that is done before the program undergoes
integration testing. Surprisingly, by eliminating
unit testing, quality goes up, not down.

The reasons for this have more to do with human
nature than with the science of programming.
Programmers as people often look for easy solu-
tions. As such, understanding the logic of a diffi-

729

M. D. Abrams and M. V. ZelkowifilStriving for correctness

Determine Objectives
Alternatives and
Constraints

Revkvd
Commitment
Partition

Plan next phases

Evaluate alternatives,
identify, resolve risks

Design valkhuon
and varlkatkn

next-level product

Fig. 3. The spiral model of software development.

cult algorithm is often delayed with the comment
“I’ll find the error in testing.” With cleanroom,
since there is no testing phase, the logic must be
understood as it is written. While this slows down
coding somewhat (which upsets unenlightened
management), it has the effect of forcing the pro-
grammer to truly understand the program. This
has the beneficial effect of greatly eliminating later
costly integration testing errors.

Within the software engineering community
today, the concept ofprocess improvement is of great
importance. The Software Engineering Institute
has developed the capability maturity model
(CMM) [12] as a means to assess an organiza-
tion’s process and as a means to suggest improve-
ments to that process.

The CMM is based somewhat on hardware analo-
gies; however, we have to be careful in applying

hardware rules to software. For example, within
the manufacturing domain, international standard
IS 9000 governs the way products are manufac-
tured in order to assess consistent manufacturing
quality. For example, the typical home light bulb
will burn within a few per cent of 1100 hours.
The quality of this light bulb is outside of the
domain of the standard. Whether 1100 hours is
good quality or bad quality is not so specified.
However, within software development there is
the implied assumption that a good development
process means a good resulting product. All that
the CMM (and related process models) attempt to
assure is that the process is repeatable. We need to
look outside of the development process to get
greater confidence in the developed products.

Process models do have a place. The problem
today is that most organizations have no formal
procedures for developing software, for develop-

730

Computers & Security, Vol. 14, No. 8

ing requirements, for testing, for performing
maintenance and enhancements on their products.
As former President Eisenhower said after World
War II “plans are worthless, but planning is every-
thing” [35]. We need to encourage planning, and
understanding process models at least forces orga-
nizations to undergo some initial planning. Going
from CMM level 1 to CMM level 2 causes orga-
nizations to undergo the indispensable planning
mentioned almost 50 years ago by Eisenhower and
should prove to be effective. However, whether
“walking up the CMM ladder” from level 1
through level 5 increases product quality at each
level still needs to be determined.

3. Choosing among alternative beliefs

Software engineers promote one technique after
another as the “silver bullet” [36] solution to all
our problems, This section examines the most
popular silver bullets.

3.1 Tarnished silver bullets
To address correctness in system development,
many techniques have been proposed as potential
solutions (e.g. see [37, 381). All techniques
involved a measure of belief as groups of pro-
fessionals argued among themselves regarding the
appropriateness of their favorite method. None
has completely provided the warm fuzzy feelings
we want, although all have their value as part of a
coordinated approach towards trustworthiness:

0 Structured programming (e.g. “goto-less pro-
gramming” of the 1970s) makes programming
easy and correct. Twenty years of experience
have shown that quality has improved, but not
to the level initially proposed. There is a rela-
tionship between the restrictions imposed by
using only the appropriate control structures
and formal verification of the source code pro-
duced; however, errors still occur in such pro-
grams [39]. For the most part, this concept is
now a “non-issue.” Students are all taught
structured programming and the goto statement
is fast becoming an artifact of history. However,

we need to do more to remove all program-
ming errors.

The spiral model described earlier is superior to
the waterfall model. The spiral model was an
improvement in that it emphasized the process
of software development with attendant interest
in the management, risk evaluation and reduc-
tion, and prototyping aspects of the process.
Note that this is an example of Petroski’s
theses. Because the waterfall methodology was
perceived inadequate to produce good software,
a new methodology (spiral) has been intro-
duced. When it is determined that the spiral
also is inadequate, creative people will develop a
new system. Since we do not have good meas-
ures of correctness, it is difficult to know how
to make the process better. Note also that the
spiral model and the waterfall model that it
replaced both represent a similar set of practices
as actually implemented by many organizations.
We so far have little experimental data compar-
ing both techniques, and in reality, both models
have many elements in common.

CASE tools will supplement the intelligence
lacking in today’s programmers. Unfortunately,
the tools have not added much intelligence and
today’s programmers could still use additional
help. CASE tools suffer from the same problem
as the other software we are discussing: they
have errors (all software has errors), and they
are only as smart as their developers. One dan-
ger of CASE is that it has been oversold in
industry. Since it has not proven to eliminate
all errors, many managers avoid all CASE prod-
ucts-both good and bad. Current interest in
environment design and the ability to integrate
tools upon an infrastructure platform of envi-
ronmental services holds promise for develop-
ing effective CASE tools in the near future

[JOI.

Formal methods applied informally (e.g. lan-
guages like VDM and Z) can improve the proc-
ess. While this seems to be true, it has yet to be

731

M. D. Abrams and M. V. Zelkowitz/Striving for correctness

demonstrated that this approach results in the
correctness that we need for security-related
systems. It is not clear that our belief in these
specification techniques will be high enough to
eliminate the need for alternate mechanisms.
Nor is it clear that our beliefs are the only ones
that count. See [41] for a discussion of mathe-
matical arguments that qualify as proof in a
court of law.

??Object-oriented (00) programming and design
will replace conventional design techniques,
and languages that implement such processes
(e.g. C++) will replace other languages (e.g.
Pascal, Ada, FORTRAN). This concept repre-
sents one of the newer trends in program
design. We do not have enough evidence to
judge the effects of 00 design on security.
This technique does encapsulate some of the
formal data-structuring mechanisms into the
programming language; however, it must still
be observed what effects it will have on overall
system correctness. (Note that this is just the
current version of the traditional silver bullet,
“Language X will make programming easier.”
In the 1960s we had COBOL and then PUI,
in the 1970s we had Pascal, in the 1980s we had
Ada, and now we have C + + .) Each language is
perceived to have failed in achieving some
objective. Hence, someone develops a new lan-
guage to correct the flaws. This cycle will prob-
ably never end, as it is not likely that any one
language will be perfect for all applications.

Jones [42] identifies four risks in using an
object-oriented design model: (1) while much
of the literature asserts substantial productivity
gains using 00 techniques, most publications
do not provide quantitative data to back up
those claims; (2) productivity improvement
results from reduced defect insertion and
improved defect removal. It is claimed that 00
inheritance and reuse lowers the defect inser-
tion process, but there is no empirical evidence
to back up that claim (although there is no
counterevidence either); (3) 00 proponents

claim vastly increased levels of reuse, but there
is little published data in this area; and (4) any
technique has limitations, yet there are few
published instances of projects where an 00
design was abandoned and deemed inappropri-
ate. 00 technology may indeed prove to be
beneficial; however, until we have a body of
empirical evidence generated under recognized
scientific principles, there is still a level of risk
in madly adhering to an 00 process without a
good analysis of the problem first.

Furthermore, encapsulation, the 00 theory
that is most attractive from a security view-
point, has often not been implemented in prac-
tice; Gemstone is one exception. For example,
[43] points out: “First, and most seriously,
C ++ encapsulates classes rather than objects;
that is, a method on a C ++ object o can access
the private state of any object in class (0). Sec-
ond, some models assume that the methods can
write only in ways mediated by the OODBMS,
but method code is usually allowed to invoke
any system capability. Finally, for high-assur-
ance systems, verifying that a language’s encap-
sulation is enforced may require assuring a
substantial part of the compiler.”

??Reusing existing code is the solution. Since
code proven correct once need not be so
proven again, one only needs to create a library
of reusable components. Of course, the effec-
tiveness determination needs to be made anew,
but that is outside the scope of this paper.
While reusing existing code is an admirable goal
and is quite successful in limited application
domains, we still do not have the technology to
implement this process on a larger scale. While
we can create write-only libraries of reusable
components, we have no process available that
enables us to determine the specifications of an
existing library component and whether it ful-
fils the specifications for another application.
Current interests in domain-specific architec-
tures and faceted classification schemes are both
attempts at understanding the functionality of

732

Computers 6 Security, Vol. 14, No. 8

reusable components. We reuse hardware com-
ponents all the time, in the sense that we man-
ufacture identical copies of circuit packages and
other components. Each component conforms
to some specification of performance and
behavior that is described in components man-
uals. Why can’t we do something similar with
software?

?? Process maturity improvement is today’s salva-
tion [121. Current thinking is that improving
only the process without looking at the ultimate
product being produced is all that is necessary
to produce quality software. A CMM evaluation
collects no data on the quality of the products
that are being produced by the development
organization. While a capability evaluation and
changes suggested by it should greatly improve
the production of software from many organi-
zations that currently have y10 such process, as
shown often in the past, this is a naive approach
to producing correct software.

We do not mean to say that the above techniques
are failures. All, to some extent, improve upon the
quality and correctness of the resulting program
that is produced. Programming as taught in the
universities and practiced in industry today is
radially different from that of the 1960s. However,
the important point is that none of them achieves
the level of correctness that would support our
belief in that technique over all others.

3.2 Just build hardware
An alternative approach to the correctness of soft-
ware problem has often been expressed by the
sentiment “since hardware is easy to build and is
correct, we should eliminate software and build
only hardware.” Although often said in jest, many
deeply believe that this may indeed pose a solu-
tion to the trustworthiness issue. In reality, how-
ever, the distinction between software and
hardware is moving in the opposite direction.

Today microprocessors are becoming increasingly
complex with today’s processors often containing

over 4 million transistor-equivalents per chip. It is
rare, today, to see a new microprocessor that is
not first delayed in introduction or quickly mod-
ified due to initial errors in its fabrication. The
hardware design process often includes many of
the following steps [44]:

?? Breadboarding (prototyping) a design and test-
ing it, although that is becoming increasingly
difficult as the number of circuits per chip
increases.

??Designing a chip using abstraction and a divide-
and-conquer strategy to define each functional
unit on the chip.

??Using design automation tools (e.g. design lan-
guages) to describe circuit functionality.

?? Simulating chip-level functionality.

??Verifying formal timing constraints and func-
tional correctness of circuits [45].

This list looks surprisingly like the list of software
correctness methods we have been describing in
this paper. Hardware design is rapidly taking on
the structure of software design, and with the
increasing size and complexity of such circuits,
hardware correctness is becoming as much a prob-
lem as its software counterpart.

3.3 Trustworthiness is just risk management
Resources must be allocated among the correct-
ness methodologies. While management has been
described as the art of making decisions based on
inadequate information, the quality of decisions is
often improved by providing more information.
Installation and use of security-critical IT systems
cannot wait for proofs of efficacy or development
of metrics for determining cost-benefit. Managers
will need to continue to make decisions whether
or not to employ IT. The managerial authoriza-
tion and approval granted to an IT system to proc-
ess sensitive data in an operational environment is,
in theory, made on the basis of analysis and certi-

733

M. 0. Abrams and M. V. ZelkowifilStriving for correctness

fication of the extent to which design and imple-
mentation of the system meet pre-specified
requirements for achieving adequate security.
Security objectives can be met by a combination
of technical means within the system and physical
and procedural means outside the system. In this
theory, when management accredits the system,
management is accepting the residual risk.

How can we address this residual risk? While we
have no clearly defined metric for this, we do have
examples of systems that seem to adequately
address our security concerns. One avenue of
research is increased study of these “artifacts”-
the systems, designs, and specifications that have
helped produce acceptable solutions. This knowl-
edge should enable us to produce better models in
the future. However, today there is no way to
measure the residual risk, nor is there a metric for
cost-benefit. So, how is a decision made? Since
computer and management science cannot help
verify a decision, the experienced manager’s intu-
ition cannot be dismissed. Experience probably
includes comparison with previous efforts, the
correctness of which has become better known
over time. One must be careful to distinguish
between management saying “I did this before and
it worked” versus “I feel safe using this since I
used it before, while this new technique is
unknown to me.” The first statement encapsulates
the experiences of good management, while the
second statement reinforces unscientific prejudi-
ces. The real problem is how to differentiate
among good science, common sense, and stub-
born stupidity.

Missing from most of this discussion are the
quantifiable results of using the various methods
which are necessary in order to apply Lord Kel-
vin’s definition of science given earlier. Measure-
ment research in software development is
relatively rare and there are only a few long-range
studies of the development process. The NASA/
Goddard Space Flight Center Software Engineer-
ing Laboratory has been studying software

development activities since 1976 [46], but there
are few other groups involved in such long-range
evaluations of the software process. Many more
such activities need to be funded and undertaken.

We do not imply that only software has such a
poor track record in building reliable products.
On 17 July 1981 the skywalk of the Hyatt
Regency Hotel in Kansas City collapsed, killing
over 100. The problem was ultimately traced to a
problem that is typical in the software domain-
poor translation from specifications to design. In
this case, the design called for a single rod to
thread through two layers of skywalk (Fig. 4(a))
whereas it was implemented as segmented rods
(Fig. 4(b)), thus causing undue stress where the
two segments met [11.

Problems in translation between specification and
implementation is something software people are
all too familiar with. The problem with software
is just that failures occur so often when compared
to mature technologies such as bridge building.
The difficulties of achieving correct results are
common to all engineering fields. But software
engineering hasn’t the long history and empirical
database of civil engineering. Whenever new or
novel solutions are attempted the probability of
failure increases. We should not be surprised that
since security engineering appears to be trying to
solve new problems very frequently; the probabil-
ity of achieving correctness is small.

3.4 The prudent manager
Without such quantifiable results, in deciding
which belief system to embrace, the prudent man-
ager probably hedges by using more than one
system. Various combinations of formalism, test-
ing, simulation, and process may be employed.
Since cost is one of the attributes we need to
address in evaluating the overall quality of the
product, it is prudent that management should
adequately choose from among the techniques
those that meet required cost constraints yet still
meet functional requirements for the product.

734

Computers 6 Security, Vol. 14, No. 8

I (a) Specification (b) Implementation

Fig. 4. Details of Hyatt skywalk: (a) as specified; (b) as implemented.

4. Recommendations

Given the absence of metrics for any of the belief
systems, the inherent difficulty in using any of
them, and the lack of repository of correctness
artifacts to study and evaluate, the authors do not
propose to solve this problem with a pronounce-
ment of correct technique. Our focus is to
increase the awareness of the technical and mana-
gerial segments of the IT security community to
the limitations of each of these techniques. We
attempt to increase understanding of the need to
address more than one solution to the multifac-
eted correctness problem. We are disappointed
that we cannot end this paper on a stronger note,
but think that we have presented a realistic assess-
ment of the situation as it stands today. There are
many points of dispute; we would be delighted to
learn that the situation is better than we thought.
Table 2 summarizes the salient points we wish to
leave with the reader. Reflecting the subjective
nature of the value judgments presented in this
paper, the symbols used in the table are vague and
imprecise.

We view the glass as being half full. We do not
advocate that anyone abjure his belief(s) in cor-
rectness. Rather, we suggest that attempts to prove
beliefs are bottomless pits. Unless some break-
through occurs, we advocate treating this aspect of
software engineering pragmatically. Just as engi-
neers built steam engines (see [23] for further
analogy) before the science of thermodynamics
was developed, the software engineering commu-
nity can build software systems based on intuitive
and pragmatic notions of how to attain correctness
and other aspects of quality. At least now, we
should acknowledge practicing an empirical
discipline.

At the risk of appearing cautiously optimistic, we
hesitantly endorse four interrelated strategies. The
exact allocation of resources among the strategies
remains a technical management decision. Look-
ing at the mature methods available today, we
tend to agree with the perceived consensus that a
combination of the following should be
employed:

735

M. 0. Abrams and M. K Zelkowitz/Striving for correctness

TABLE 2. Characteristics of correctness methods

Method When Skill cost cost Applicable to
used required effectiveness complexity

Formal methods All A A V V
Simulation All A A . r
Testing After T . . *
Process modeling Before, during T T ?? A
Structured programming During . . . A
CASE tools During A V . A
Object-oriented methods Before, during ?? ?? . A
Code reuse During A ?? R A

Key: design tool, during coding, after completion, during all stages A above average, rare ??average v below average, common.

Evaluation of process, personnel, and abilities to
identify and reinforce positive attributes.

Thorough review and analysis of intermediate
products during development with sufficient
time and resources allocated to correct
deficiencies.

Rigorous testing based on the preceding
analysis.

Recognition of critical points in system devel-
opment. This includes understanding of risk of
failure and cost/benefit analysis of reducing this
risk further:
-point of diminishing return for application

of any method
-when a development should be terminated

for cause or to stop hemorrhaging.

Looking forward, we see promise in combining
aspects of program reuse and object orientation.
The possibility of employing object self-protection
in security architecture should be considered.

Each of the techniques described in this paper has
an aspect that helps increase our belief in the cor-
rectness of an implementation, yet each is fraught
with some dangers. Each technique comes with
some, generally high, cost for its use. It is imper-
ative that management addresses each as aids in
developing security-critical IT systems and not

arbitrarily dismiss any of them. We should:

Be cognizant of the limitations of each:
-belief in correctness should be relative.

Be prudent in establishing realistic assurance
requirements for a given system that are meas-
urable, achievable, and cost-effective.

Resist the temptation of unachievable elegance
and perfection.

Differentiate between research and operations:
- define achievable specifications
- understand risks involved, costs to decrease

those risks, and accept residual risk.

Acknowledgments

We appreciate the contributions from the follow-
ing individuals on previous drafts of this paper:
Rochelle Abrams, Sharon Fletcher, Lester Fraim,
John Gannon, David Gomberg, Ronald Gove, Bill
Herndon, Chuck Howell, Jay Kahn, Carl Land-
wehr, John McLean, Jonathan Millen, Jonathan
Moffett, Jim Purtilo, Jim Williams, John P. L.
Woodward, and the anonymous reviewers.
Research support on this activity for Marshall
Abrams was provided by the National Security
Agency under contract DAAB07-94-C-H601, and
for Marvin Zelkowitz was partially provided by
NASA grant NSG-5123 from NASA/Goddard

736

Computers 8 Security, Vol. 14, No. 8

Space Flight Center to the University of
Maryland.

References

[ll

PI

131

[41

151

[61

[71

[81

[91

[lOI

[ill
1121

1131

[141

H. Petroski, To Engineer is Hunzan: The Role of Failure in
Successful Design, St. Martin’s Press, 1985.
V.E. Hampel and C.F. Bender, Covert corruption of
integrated circuits and possible strategies for correction,
in Proceedings of the First Conference on Hostile Intelligence
Threat to Software, Firmware and Algorithms Embedded in
U.S. Army Weapon Systems, Defense Technical Informa-
tion Center, Alexandria, VA, 1988.
K Thompson, Reflections on trusting trust, Communica-
tions of the ACM, 27 (8) (Aug. 1984) 761-763.
E. Amoroso, T. Nguyen, J. Weiss, J. Watson, P. Lapiska
and T. Starr, Toward an approach to measuring software
trust, in Proceedings of the 1991 IEEE Symposium on
Research in Security and Privacy, Oakland, CA, May 1991,
IEEE Computer Society Press, pp. 198-218.
Commission of the European Communities, Information
Technology Security Evaluation Criteria (ITSEC): Provisional
Harmonized Criteria, Luxembourg, Of&e for Official
Publications of the European Communities, Version 1.2,
1991.
R.W. Butler and G.B. Finelli, The infeasibility of quanti-
fying the reliability of life-critical real-time software,
IEEE Transactiorrc on Soffware Engineering, 19 (1) (Jan.
1993) 3-12.
D.L. Parnas, A. John van Schouwen and Shu PO Kwan,
Evaluation of safety-critical software, Communications of
the ACM, 33 (6) (June 1990) 636-648.
C.A.R. Hoare, An axiomatic basis for computer pro-
gramming, Communications of the ACM, 12 (10) (Oct.
1969) 576-583.
D.L. Parnas, Software aspects of strategic defense sys-
tems, Communirations of the ACM, 28 (12) (Dec. 1985)
1326-1335.
R. Hamming, Numerical Methods for Scientists and Engi-
neers, McGraw Hill, 1962.
W.T. Kelvin, Popular Lectures and Addresses, 1881-1884.
M.C. Paulk, B. Curtis, M.B. Chrissis and C.V. Weber,
Capability maturity model for software, Version 1.1,
IEEE Sojware, 10 (4) (July 1993) 18-27.
V.R. Basili, G. Caldiera and G. Cantone, A reference
architecture for the component factory, ACM Transac-
tions on Sojware Engineering and Methodology, 1 (l), 53-80.
C. Landwehr, Formal models for computer security,
ACM Computing Surveys, 13 (3) (Sept. 1981) 247-278.
J. Rushby, Formal Methods and the Cert$cation of Critical
Systems, Technical Report C3L-93-7, Stanford Research
Institute, Dec. 1993.

Cl51

[16] J.H. Fetzer, Program verification: the very idea, Com-
munications of the ACM, 31 (9) (Sept. 1988) 1048-1063.

t171

[181

[191

1201

[211

[221

~231

[241

D. Harel, Will I be Pretty, will I be rich? ACM Sympo-
sium on Principles of Database Systems (May 1994) l-3.
C. Youngblut, B.R. Brykczynski, J. Salasin, RD. Gordon
and R.N. Meeson, SDS Sojiware Testing and Evaluation:
View of the State-of--the-Art in Software Testing and Evalu-
ation with Recommended RGD Tasks, Institute for Defense
Analysis Report IDA-P 2132 (Feb. 1989).
D.E. Bell and L. J. LaPadula, Secure Computer Systems:
Unijied Exposition and MULTICS Interpretation, MTR
2997, The MITRE Corporation, Bedford, MA, 1974.
Available from National Technical Information Service,
AD/A 020 445.
K Brunnstein, University of Hamburg, private com-
munication, 1994.
R. DeMillo, R. Lipton and A. Perlis, Social processes
and proofs of theorems and programs, Communication of
the ACM, 22 (5) (May 1990) 271-280.
P. Zave, An operational approach to requirements speci-
fication for embedded systems, IEEE Transactions on Soft-
ware Engineering, 8 (3) (1982) 250-269.
N.G. Leveson, High-pressure steam engines and com-
puter software, Computer, (Oct. 1994) 65-73.
E. J. Weyuker, S. Weiss and D. Hamlet, Comparison of
program testing strategies, Proceedings of the Fourth Sympo-
sium on Software Testing, Analysis and Verification (TAV4),
Victoria, B.C., Canada, Oct. 1991, pp. l-10.

[25] J.B. Goodenough and S. Gerhart, Toward a theory of
test data selection, IEEE Transactions on Software Engineer-
ing, SE-l (2) (June 1975).

[261 E. J. Weyuker, Axiomatizing software test data adequacy,
IEEE Transactions on SojIware Engineering, SE-12 (12)
(Dec. 1986) 1128-1138.

~271 S.A. Mamrak and M.D. Abrams, A taxonomy for valid
test workload generation, Computer (Dec. 1979) 60-65.

PI G. Page, F.E. McGarry and D.N. Card, Evaluation of an
Independent Verification and Validation Methodology for Flight
Dynamics, NASA/GSFC Technical Report SEL 81-110,
1985.

[291 T. Taylor, FTLS-based security testing for LOCK, in
Proceedings of the 12th National Computer Security Confer-
ence, Oct. 1989, pp. 136-145.

[301 W.W. Royce, Managing the development of large soft-
ware systems: concepts and techniques, in Proceedings
IEEE Wescon, Los Angeles, CA, 25-28 August 1970, pp.
l-9.

[311 R. Stillman, Software Development: Neither Economics
Nor Engineering, Keynote Address, Third Annual Soft-
ware Engineering Economics Conference, The MITRE
C orporation, 22 March 1993.

~321 B. Boehm, A spiral model of software development and
enhancement, IEEE Computer, 21 (5) (May 1988) 61-72.

[33] J. Morgenstern, The fifty-nine-story crisis, 7’he New
Yorker, LXU (14) (29 May. 1995) 45-53.
H.D. Mills, M. Dyer and R.C. Linger, Cleanroom soft-
ware engineering, IEEE Software, 4 (5) (1987) 19-25.

[341

737

M. D. Abrams and M. V. ZelkowitzlStriving for correctness

[35] D.D. Eisenhower, National Defense Executive Reserve
Conference, 14 November 1967.

[36] F. Brooks, No silver bullet: essence and accidents of
software engineering, IEEE Computer, 20 (4) (1987)
10-19.

[37] C. Chang, Is existing software engineering obsolete?
IEEE Sojwure, 10 (5) (Sept. 1993) 4-5.

[38] A. Davis, Software lemmingineering, IEEE Software, 10
(Sept. 1993) 79-84.

[39] M.V. Zelkowitz, A functional model of program verifica-
tion, IEEE Computer, 23 (11) (Nov. 1990) 30-39.

[40] M.V. Zelkowitz, Use of an environment classification
model, in Proceedings of the ACM/IEEE 15th International
Conf: on Soj. Eng., Baltimore, MD, May 1993, pp.
348-357.

[41] D. MacKenzie, Computers, formal proofs, and the law
courts, Notices of the American Mathematical Society, 39 (9)

(Nov. 1992) 1066-1069.
[42] C. Jones, Gaps in the object-oriented paradigm, IEEE

Computer, 27 (6) (1994) 90-91.
[43] A. Rosenthal, W. Herndon, J. Williams and B. Thur-

aisingham, A fine-grained access control model for
object-oriented DBMSs, in Proceedings of the 8th IHI’
Working Conference on Database Security, Hildesheim, Ger-
many, Aug. 1994.

(441 W.M. van Cleemput and H. Ofek, Design automation
for digital systems, IEEE Computer, 17 (10) (Oct. 1984)
114-122.

[45] R.E. Bryant, Symbolic Boolean manipulation with
ordered binary-decision diagrams, ACM Computing S’ur-
veyx, 24 (3) (Sept. 1992) 293-318.

[46] V. Basili, M. Zelkowitz, F. McGarry, J. Page, S. Waligora
and R. Pajerski, SEE’s software process-improvement
program, IEEE Sojware, 12 (6) (1995) 83-87.

738

