
Comput. Lang. Vol. 13, No. 3/4, pp. 109-123, 1988 0096-0551/88 $3.00 + 0.00
Printed in Great Britain. All rights reserved Copyright ~ 1988 Pergamon Press plc

PROGRAM COMPLEXITY USING HIERARCHICAL
ABSTRACT COMPUTERS

WILLIAM G. BAIL 1 and MARVIN V. ZELKOWITZ 2
qntermetrics Inc., Bethesda, MD, U.S.A.

2Computer Science Department, University of Maryland, College Park, MD 20742, U.S.A. and Institute
for Computer Sciences and Technology, National Bureau of Standards, Gaithersburg, MD 20899, U.S.A.

(Received 18 February 1988; revision received 6 July 1988)

Abstract---A model of program complexity is introduced which combines structural control flow measures
with data flow measures. This complexity measure is based upon the prime program decomposition of
a program written for a Hierarchical Abstract Computer. It is shown that this measure is consistent with
the ideas of information hiding and data abstraction. Because this measure is sensitive to the linear form
of a program, it can be used to measure different concrete representations of the same algorithm, as in
a structured and an unstructured version of the same program. Application of the measure as a model
of system complexity is given for "upstream" processes (e.g. specification and design phases) where there
is no source program to measure by other techniques.

CASE tools Complexity Environments Measurement Prime programs

1. I N T R O D U C T I O N

The ease o f deve lop ing correct p r o g r a m s has been re la ted to the s t ructura l complex i ty o f the
result ing source p rog ram. There have been several a t t empt s to under s t and and measure this
complex i ty by res t r ic t ing the use o f con t ro l s t ructures in a p rog ram. F o r example , s t ruc tured
p r o g r a m m i n g is one m e t h o d by which p r o g r a m s are more easily deve loped by impos ing such
restraints . There are also me thods which are d i rec ted at m a n a g i n g d a t a s t ructure complexi t ies ,
inc luding the concepts o f da t a abs t r ac t ion and in fo rma t ion hiding. By l imit ing the scope o f da ta
to only that which is needed by a given sect ion o f the p r o g r a m , local da t a responsibi l i t ies are easier
to isola te and to main ta in .

I t is genera l ly assumed that a p r o g r a m is wel l - s t ruc tured if clusters o f da t a and cont ro l a c t M t y
are small . The pu rpose o f this p a p e r is to develop measures for bo th con t ro l and da ta s t ructure
that agree with these intui t ive no t ions and can be used to extend our knowledge o f p rog ra m
measurement . We would like to deve lop measures that can be used to classify the degree o f
structuredness with a system, so tha t such ideas can move f rom the general guidel ines concept within
the sof tware life cycle to a prac t ica l ana ly t ic tool ava i lab le to the sof tware designer, much like the
current use o f compi le rs and edi tors .

In Section 2 o f this pape r we briefly descr ibe our model o f c o m p u t a t i o n and its re la t ionship to
p r o g r a m m i n g principles. The measure is re la ted to i n fo rma t ion theoret ic issues o f r andomness and
complexi ty . We m a k e the a s sumpt ion tha t the r a ndomne ss o f a p r o g r a m (i.e. how long its source
code represen ta t ion mus t be) is a measure o f its complexi ty . In Section 3 we add the pr ime p r o g r a m
decompos i t i on o f a p r o g r a m as a mechan i sm to measure the s t ruc tured complex i ty o f an a lgor i thm.
The complex i ty measure is ac tua l ly a measure on the g raph represen ta t ion o f the p rogram;
therefore, it has app l i ca t ions to o ther g raph- re l a t ed processes. In Sect ion 4 we give several examples
o f using these :measures, bo th in the contex t o f p r o g r a m m i n g languages and in o ther processes in
the deve lopmen t cycle such as specif icat ion and design nota t ions .

We do not cons ider this measure as the u l t imate measure o f p r o g r a m complexi ty ; however , we
do believe that we have achieved a p r o t o t y p e o f a class o f interest ing measures . By merging the
i n fo rma t ion theory concept o f complex i ty with the no t ions o f s t ruc tured p r o g r a m m i n g and pr ime
p r o g r a m decompos i t ion , we have cap tu red some o f the basic ideas needed for an effective measure.

109

110 WILLIAM G. BAIL and MARVIN V. ZELKOWITZ

2. H I E R A R C H I C A L ABSTRACT COMPUTERS

We base our model of complexity on the size of the program needed to describe an algorithm.
Like Chaitin [1] we are interested in measures that describe the information content of an algorithm
by its size and then we desire transformations that reduce the size of that representation. An
algorithm is more complex if it requires more bits to represent its description. By decomposing an
algorithm into its hierarchical structure using regular components "understood" by the "hardware
interpreter", we can remove much of the complexity of a given description.

In order to compare two algorithms we first define a notation called a Hierarchical Abstract
Computer (HAC) [2]. It has instructions which depend upon the number of distinct operators
present in the particular algorithm being described. Superficially, it is similar to the software science
models [3]; however, a HAC differs significantly from the Halstead model in that control flow and
data structures are also taken into account. In the software science model, complexity is solely a
measure of the number of objects (e.g. size) of each module, while in our case the complexity of
the source program is determined by both the number of variables referenced by the module and
by the complexity of its control flow graph, something ignored by the software science model.

A HAC is modeled by a directed graph, each node of which represents a single instruction. If
a program consists of several procedures, than each procedure is a separate graph and each
procedure invocation is represented as a single node in the graph of the calling procedure. The
complete model is called a HAC program, and each procedure is called a HAC module.

2.1 Basic HAC model

A HAC instruction contains a label, an operator, and a list of operands. Each complete HAC
module defines a function (e.g. operator) which can be used as an operator within another module,
hence its hierarchical nature. Using this notation we can define several alternative representations.
The simplest is called the Direct Graph Form (DGF) which is the direct implementation of the flow
graph of a program. A program is a sequence of instructions, each instruction (representing a node
in the program graph) has the syntax:

(label): (opcode) (argument list) ((label list))

where:

(label) represents the label on that instruction (e.g., name of graph node),
(opcode) represents the instruction to be performed,
(argument list) is a sequence of data names, and
(label list) are the following instructions (i.e. the set of outgoing arcs from that node).

There is one unique label called exit signifying that execution is to halt.
Let D be the set of data objects in a program, L be the set of labels (nodes) in a program and

I be the set of operation codes (unique functions performed by the program nodes). If execution
is at label~, then opcodei is executed on data items {argument-list} and the next instruction is chosen
from one of the labels in (label_listi) until the label named exit is reached.

Figure 1 is a simple example of this model and represents the flow graph of the Absolute Value
Function ABS. Its D F G is:

LI: test x,0 (L2,L3)
L2: negassign x,abs (exit)
L3: assign x,abs (exit)

In this case,

D -- {0, X, ABS}

L = {L1, L2, L3, EXIT}

I = {Test, Assign, Negassign}
2.2 HAC complexity

Consider a machine which has the exact instruction set to execute only a single DGF. We define
the size of an instruction to be the number of bits required to encode the instruction on this

HAC complexity 111

Fig. 1. Simple ABS function.

computer and the program size to be the number of bits necessary to contain the program. I f there
are n possibilities for any instruction field, the field must be log2n bits wide, and it can be viewed
as the amount of information contained within the field [4].

We define the algorithm size (ASIZE) of a program P as the sum of the algorithm sizes of its
constituent modules M:

ASIZE = ~ ASIZE(M)
M ~ P

We define the algorithm size of a module M as the sum of the size of its constituent statements J:

ASIZE(M) = ~ ASIZE(J)
J e M

For module M, let L be the set of labels, I be the set of opcodes, and D be the set of data objects.
I f J is an instruction in M with argument list of size kj and label list of size mj, we define the size
of instruction J as:

ASIZE(J) = log2lLI + log21II + kj*log2lOl + mj*log21LI.

From the D G F of Fig. 1, we can compute the size of the HAC program necessary to represent
this program:

Each label field will be size log21LI = log24 = 2
The instruction field will be size log2 III = 1og23 = 1.58
Each argument field will be size log2 ID[= log23 = 1.58

Since instructions have the format--label: opcode, argument list (label list):

Instruction L1 has size = 2 + 1.58 + 2"1.58 + 2*2 = 10.74.
For node L2, the size is 2 + 1.58 + 2"1.58 + 2 = 8.74.
For node L3, the size is 2 + 1.58 + 2"1.58 + 2 = 8.74.
The size of the program is then 10.74 + 8.74 + 8.74 = 28.18 bits.

We believe that this model captures the actual implementation of any given program. In
particular, the model captures:

• The overall modular structure of a program in terms of the size of each module. Operation size
and label list fields are small if each module contains only a few instructions.

• The data connectivity among program modules in terms of the number of data objects. With
few data items referenced in each module, data fields in each instruction are kept to only a
few bits each.

112 WILLIAM G. BAIL and MARVIN V. ZELKOWITZ

2.3 Sequential form

As slight modification to an earlier presentation [5] we briefly describe the sequential form (SF)
by assuming that the machine automatically sequences to the next instruction. This sequencing
reduces the need for information in the instruction itself. Fall-through labels are no longer
necessary, and the size of the label set L only needs to be the number of non-sequential labels
actually referenced plus one nil label to cover sequential execution. The following represents the
SF of the program of Fig. 1:

nil: Test x,0 (L3)
nil: Negassign x,abs (exit)
L3: Assign x,abs

Only the third instruction needs a label (L3) since it is only instruction explicitly referenced (via
instruction 1); the others are sequential execution. Only instruction 2 needs an explicit exit
condition.

We compute a PSIZE (or program size) measure for this sequential form analogously to the
ASIZE measure of the DGF. This yields a size of 22.12 bits while the ASIZE for this program
was 28.18. The difference of approximately 6 bits represents information stored in the "machine"
and represents the linearity of the source program. Hence the difference between these measures
gives some indication of the "goto-ness" of the code.

It should be noted that we are actually defining a measure on a directed graph. When applied
to a graph of a program, the value of the measure is sensitive to the granularity of each
node--assembly language, programming language, specifications or requirements language. The
measure is most useful in computing objects at the same level of abstraction, e.g. between 2 Ada
modules or C modules and not, for example, between an Ada specification and its implementation.

3. PRIME P R O G R A M C O M P L E X I T Y

For the remainder of this paper, complexity will be defined in terms of a prime program
decomposition of its flow graph. The prime program was developed by Maddux as a generalization
of structured programming to define formally the unique hierarchical decomposition of a flow
graph [6].

A proper program is a graph containing one input arc, one output arc and for each node in the
graph, there is a path from the input arc through that node to the output arc. Figure 2 represents
some proper programs, and Fig. 3 presents some examples of programs which are not proper.

A prime program is a proper program of more than one node that contains no proper
subprograms of more than one node (i.e. no two arcs can be cut to extract another proper

(o) (b) (c)

Fig. 2. Proper programs.

HAC complexity l 13

(o) (b) (c)

Fig. 3. Non-proper programs.

subprogram). For example, Fig. 2(a) is a prime while Fig. 2(b) is not. In Fig. 2(b), arcs A-C and
F - G can be cut to extract proper program C - D - E - F .

The prime programs containing up to three nodes are the usual structured programming
constructs such as ~ while, and repeat statements (Fig. 4). But, the number of such primes is infinite
[e.g. Fig. 2(c) is a prime of 6 nodes]. Replacing any subprogram in a graph by a single function
node creates a unique hierachical decomposition of a graph into primes [7].

3.1 Prime program complexity

Consider the prime program decomposition of a graph so that each prime defines a unique HAC
module, and the sum of the complexities of the modules is the complexity of the entire program.
The prime sequential form (PSF) is the basis for our hierarchical complexity metric. Because of

f

(a) sequence (b) if - then (C) while do

t"

(d) repeat-untiL (e) if-then-eLse (f) do-whiLe-do

Fig. 4. Primes of up to three nodes.

114 WILLIAM G. BAIL and MARVIN V. ZELKOWITZ

M2

M1

Fig. 5. Prime decomposition.

the unique prime factorization, we can eliminate labels altogether. The next location is uniquely
determined by the particular instruction being executed--either a single operation if it is the
function of some previously defined HAC or one particular instruction within the unique prime
executed by this particular HAC. Thus instructions for the PSF are: (opcode) (argument list).
Consider the prime decomposition of the program in Fig. 5 into the two prime PSF:

M 1: test x,0
assign x,abs
else
negassign x,abs

M 2 : M 1 x,abs
assign abs,y
+ 1 y,y

The machine "knows" that following a false result from the test instruction execution continues
with the else instruction, and a fall-through of the true path to the else means to exit the prime.
With increased prime sizes, we simply need to define more special purpose instructions (opeodes)
to handle the increased number of nodes. With the PSF, we capture the degree of locality evidenced
by control flow operations and data object referencing.

For any prime program decomposition, we define the Program Complexity (CMPLX) measure.
The Program Complexity metric is sensitive to the sizes of the prime programs present within the
program modules since larger prime programs will result in larger complexity values. It is defined
analogously to the ASIZE and PSIZE metrics.

HAC complexity II 5

Let P be a program with Modules Mp, each module decomposed into primes Pp. The program
complexity (CMPLX) for a program P is:

CMPLX(P) = Y' CMPLX(Mp)
MpEP

The Program Complexity of a module Mp equals:

CMPLX(Mp)= y~ CMPLX(Pp).
Pp ~ M p

The Program Complexity of a prime program Pp equals:

CMPLX(Pp) = ~ CMPLX(J)
J~ Pp

for instructions J.
Let I = {opcodes in prime N}, D = {Data in prime N}, then the program compelexity of a HAC

instruction opcodeja~j.., a h equals:

CMPLX(J) = Log2 I I I + kj*logzlDI

As an example, consider CMPLX for the program of Fig. 5:
MI: I = {Test, Assign, ELSE, negassign} log2 I II = 2

D = {0, X, ABS} log2 [D[= 1.58

CMPLX(MI) = (2 + 2"1.58) + (2 + 2"1.58)+ (2) + (2 + 2"1.58) = 5.16+ 5.16 + 2 + 5.16 = 17.48

M2: I = {M1, Assign, Assign + 1) log2 I I] = !.58
D = {Y, ABS, X} log2 IDI = 1.58

CMPI, X(M2) = (1.58 + 2"1.58) + (1.58 + 2"1.58) + (1.58 + 2"1.58) = 4.74 + 4.74 + 4.74 = 1422

CMPLX (program) = 17.48 + 14.22 = 31.70

4. A P P L I C A T I O N S

Although defined on a sequence of linear instructions, the HAC represents a graph-based
measure on a program. Therefore, our goal is to show the applicability of HAC complexity in
graphically-based environments as a specifications or design aid. However, we first give several
examples of the usefulness of the HAC measures using textural (e.g. source program) formats, and
then describe the measure in terms of graph processes where other textual measures are not
applicable.

4.1 Examples

In this section, we demonstrate the application of these measures in several situations that shows
that they are sensitive to those features which affect complexity. In particular, we examine the
behavior of the measures when presented with data abstractions and program modularizations with
differing degrees of data coupling, and we conclude by contrasting their behavior with the McCabe
metric to demonstrate that they are consistent with previous results [8].

4.1.1 Data abstractions. Current programming practice encourages the use of data abstractions
as a means to enhance the quality of the program. The proper use of such abstractions allows the
encapsulation of clusters of data activity into small defined objects and operations. While the
practice has existed for many years, only recently have programming languages been available that
provide sufficient facilities to create the abstractions conveniently and efficiently.

Figure 6(a) contains an Ada program which adds two rational numbers. Each number is
implemented as pairs of integers. Figure 6(b) contains a modified version of the program which
contains an abstraction of the data using a new data type rational and a new operator + which
sums data objects of this new type. Figure 7 contains the HAC PSF representations of these
programs.

116 WILLIAM G . BAIL a n d MARVIN V. ZELKOWITZ

procedure add_rational(xl,x2,yl,y2: in integer; zl,z2: out integer) is
begin

zl : = xl*y2 + yl*x2 ;
z2 : - - x2*y2 ;

end add_rational;

procedure main is
xl,x2,yl,y2,zl,z2 : integer;

begin

addra t ional (xl,x2,yl,y2,zl,z2);

end main;

a. Add Rational N u m b e r s (no abstract ion)

package rational arith is
type rational is-record

numerator,denominator : integer
end record;

function "+" (x,y : in rational) return rational;
end rational arith;

package body rational arith is
function "+" (x,y : in rational) return rational is

begin
return (x.numerator*y.denominator +

y.numerator*x.denominator,
x.denominator*y.denominator);

end "+" ;
end rational_arith;

with rational arith; use rational arith;
procedure main is

x,y,z : rational ;
begin

Z:----x+y

end main;

b. Add Rational N u m b e r s (data abstract ion)

Fig. 6. Ada data abstraction example.

IvLklN :

ADD RATIONAL xl,x2,yl,y2,zl,z2 m

h,Lad N :

+ x,y,z

ADD RATIONAL:
xl,y2,tl

* x2,yl,t2
+ tl,t2,zl
* x2,y2,z2

" - i - " :
* x.num,y.den,tl
* y.num,x.den,t2
* tl,t2,z.num
* x.den,y.den,t.den

a. HAC for non-abs trac t ion program b. H A C for abstract ion program

Fig. 7. Prime sequential form for Ada example.

HAC complexity 117

By applying the complexity measure, we observe that for the initial program,
CMPLX = 15.48 + 40 = 55.48 bits, while for typed-rationals, CMPLX = 4.74 + 40 = 44.74 bits.
The called procedures in this example have the same complexity (40 bits) since they perform the
same transformation on the same data objects with the reduction in complexity due to the
abstraction in one of the calling procedures (15.48 versus 4.74 bits). The reason for this difference
is that by encapsulating the rational data type as a single concept, the program can deal with a
single data object x, instead of multiple data objects, xt and x2.

4.1.2 Data coupling. An important factor in overall program complexity is the degree of data
coupling experienced between modules within the program. Consider the diagram shown in
Fig. 8(a). There are many possible ways to modularize this structure, two of which are shown in
Figs 8(b) and 8(c). The first decomposition, however, is accompanied by 9 dependencies between
the modules implying an unnatural modularization, while the second realizes a small coupling
(2 dependencies) implying a more natural modularization and a smaller complexity. Figure 9(a)
illustrates a program which possesses this coupling pattern, Fig. 9(b) illustrates a PSF modu-
larization of this program according to the first decomposition, and Fig. 9(c) illustrates a PSF
modularization according to the second decomposition. Application of the HAC complexity on
these programs yields a complexity of 71.18 + 58.44+ 73.32 = 202.94 bits for the unnatural
decomposition and 18.24 + 49.74 + 61.18 = 129.16 bits for the more natural decomposition,
demonstrating that the measure is sensitive to this software complexity influence factor.

4.1.3 Cyclomatic complexity. The cyclomatic complexity measure of McCabe is based on the
number of linearly independent circuits through a program when represented as a graph [9].
Cyclomatic complexity, v, is defined as:

v = e - n + 2

where e is the number of edges in G, and n is the number of nodes in G. For graphs whose predicate
nodes are all binary, i.e. those nodes which emit exactly two edges, the complexity is defined as:

v = s + l

where s is the number of predicate nodes in the graph. McCabe also defines an essential complexity,
ev, as the cyclomatic complexity v of a reduced graph G, where the reduced graph is the outer
module in the prime decomposition of the original graph.

Cyclomatic complexity and CMPLX both share a sensitivity to the program control flow
structure; however, CMPLX is measured from a linear model of the program rather than from
a directed graph and is sensitive to deviations from this linear control flow. Such deviations are
strong contributors to overall program complexity.

Consider the program to compute the Fibonacci sequence given in Fig. 10(a) with flowchart in
Fig. 10(b). This program can be decomposed into three prime programs: P1, P2 and P3. The PSF
and the CMPLX measures are computed as follows:

PI: sub n,l , t
p3 l,p
sub n,2,t
p3 t,q
add p,q,fib

P2: test n, 1
assign l,fib
else
pl n,fib

P3: test n,0
assign 0,fib
else
p2 n,fib

118 WILLIAM G. BAIL and MARVIN V. ZELKOWITZ

x2 f.2

x8 ~ y

(a)

£8
r /.\t7 I

/ \

i i i \\
,,.~ . . ' " ~) -.. A ~)

1 < \ x9/ v "r-~l

L ~ x8 _ _J/ - -Y

(b)

f.9 flO

// I
/ / I

J s Y

(c)

Fig. 8. Data coupling.

HAC complexity 119

PROGRAM:

a .

LI: F1 X1,X2,X3,X4
L2:F2 X3,X4,XS,X6,X7
L3:F3 X3,X4,X5,X6,X7,X8
L4:F4 X5,Xg,X10,X11,X12
L5:F5 Xg,X10,X13,X14,X15
L6:F6 X8,X11,X12,X13,X14,X15,Y

Original Program before Decomposition

PROGRAM:

FT:

F8:

b.

F7 X1,X2,X3,X4,X5,X6,X7,Xg,XIO,X11,X12
F8 X3,X4,XS,X6,X7,X9,XIO,X11,X12,Y

F1 X1,X2,X3,X4
F2 X3,X4,X5,XS,X7
F4 X5,xg,xIO,X11,X12

F3 X3,X4,X5,X6,X7,X8
F5 X9,XIO,X13,X14,X15
F6 X8,X11,X12,X13,X14,X15,Y

Prime Decomposition of Figure 8(b)

PROGRAM:

F7:

F8:

C.

F7 X1,X2,XS,X8
F8 X5,X8,Y

F1 X1,X2,X3,X4
F2 X3,X4,XS,X6,X7
F3 X3,X4,XS,Xf,X7,X8

F4 X5,X9,XIO,X11,X12
F5 xg,X10,X13,X14,X15
F6 XS,Xll,X12,X13,X14,X15,Y

Prime Decomposition of Figure 8(e)

Fig. 9. Prime descriptions of Fig. 8.

For PI, III = 3, logsllI = 1.58
IDI7, log2 IDI2.81
CMPLX(PI) = 44.43

For P2,]II4, log2 [II = 2
ID[=3 , log2 IDI = 1.58
CMPLX(P2) = 11.48

For P3, III =4 , log2 [Ij = 2
IDI = 3, logz IDI = 1.58
CMPLX(P3) = 11.48

CMPLX = 44.43 + 11.48 + 11.48 = 67.39.

However, this program can also be represented by the flowchart of Fig. 10(c) which can be
decomposed into two prime programs-- the P1 prime of Fig. 10(b) and a more complex P4 prime.

120

P3

WILLIAM G. BAIL and MARVIN V. ZELKOWITZ

procedure fib (n) :
begin

if n = 0 then
f i b :=O

P2
else

if n - 1 then
f i b : - 1

Lse
P1

begin

p : - f ib (n - l l ;

q:,,= f ib (n - 2 l ;

fib : - p + q

end

end

(b) Structured version

P : = F I B (N - 1)
Q : = F I B (N - 2)
F I B : = , p + Q

<• I~i ~ ,
[' FI~:- I I

= 0

(C) Unstructured version

l P : - F I B (N - 1)
Q : - F IB (N - 2)
F IB :==p÷Q

i , i8o
I 1 FIB-1 I

Fig. 10. Comparison with cyclomatic complexity.

Computing the PSF and the C M P L X measures gives:

P4: test n,0
assign 0,fib
test2 n,1
assign 1,fib
branch
P1 n,fib

HAC complexity 12 !

M2

1 I i = Parser Gen

I

! .

InPUt J~Sc°°~erJ i

"4 - - - - Code Gen Optimizer F~-----] Int. Code 1-

Fig. 11. Compiler structure.

For P4, [I[= 5, log2 I I I = 2.32
ID[=4 , log2 IDI = 2
CMPLX(P4) --- 33.92

CMPLX = CMPLX(P1) + CMPLX(P4) -- 44.43 + 33.92 = 78.35.

Note that this figure of 78.35 is greater than the figure of 67.39 of the more structured program;
however, both versions of the program have the same cyclomatic complexity measure of 3.

4.2 CASE complexity

Of great interest today is the concept of integrated environments and CASE (Computer Aided
Software Engineering) tools. It is important to store knowledge of the programming process within
the computer to give the programmer or system analyst benefits from this knowledge. A common
feature for many of these tools is a graphically-based specifications methodology using data flow
diagrams, "bubble charts" or other pictorial structure [10]. Measuring the structure of these designs
would be an important analysis tool, but such measurements are lacking. Most existing measures
are based upon a textual source code representation of the program. We propose that a measure
like the HAC CMPLX measure could play a role in these environments.

Consider the structure chart of a typical compiler in Fig. 11. In this example, the compiler has
two inputs (grammatical description of the programming language and a given source program to
compile), and has one output (the machine language translation of the input source program). We
can represent this as a HAC program, convert it to its PSF and compute the CMPLX measure
on the resulting program:

(1) Convert the structure chart to a proper program by adding one input node with no input
data items that branches to the given input nodes (dashed lines in Fig. 11). Do a similar
transformation to the output data, but in this case there is only one output item already
specified.

(2) Compute the prime program decomposition of this flowgraph (dotted lines surrounding boxes
MI and M2 in Fig. 1l).

(3) Derive the PSF for each prime and compute its CMPLX measure.

For Fig. 11, we get the following decomposition:

M1 scanner module- -

Input text, char
Scanner char, token

which has [11=2, I D [= 3 , I I~[=log22+2*log23=4.16 , l I21=log22+2*log23=4.16, and
CMPLX(M 1) = 8.32.

122 WILLIAM G. BAIL and MARVIN V. ZELKOWITZ

M2 parser module--

Start
M1
Exit
ParserGen
Parser

text, grammar
text, token

grammar, production
token, production, (token, production_number)

which has III = 5, [DI = 5, LI~[= 1og25 + 2"1og25 = 6.96, 1121 = log25 + 2"1og25 = 6.96, 1131 = 1og25 =
2.32, 1141 = log25 + 2"1og25 = 6.96, [IsI = log25 + 3"1og25 = 9.28, and CMPLX(M2) = 32.48.
M3 Entire compiler--

M2 (token,production_number)
IntCode (token,production_number), triple
Optimizer triple, triple
CodeGen triple, machine_language

which has IIL=4, I D I = 3 , I l l l= log24+log23=3.58 , lI21=log24+2*log23=5.16, 1131 =
log24 + 2"1og23 = 5.16, 1141 = 1og24 + 2*logz3 = 5.16, and CMPLX(M3) = 19.06.
The total complexity of this top level design is then 8.32 + 32.48 + 19.06 = 59.86.

Using this measure, alternative designs can be evaluated early in the development cycle and give
indications of alternative strategies that can be applied. All too often the only criteria used in such
an evaluation is the experience of the designer. In this case, we have an objective measure that is
easily programmable into such a CASE environment that can be used as a design aid before source
(or even design) code has been written. With many CASE tools based upon such graphical
representations of the process, a prime decomposition measure captures its internal structure
naturally.

We do not claim that our CMPLX measure is the ultimate decider of good design; however,
we do claim that a measure, similar to the CMPLX measure on the prime decomposition of a
flowgraph, does agree with our intuitive notions of good designs, and that measures based upon
this prime decomposition will ultimately provide effective measurements in this area.

5. CONCLUSIONS

One common view of complexity is the idea that simplicity and complexity are dependent on
the number of structural features contained within an organization rather than simply on the
number of its basic elements. That is, pure size is not as strong an influence as the interrelationships
that exist among those elements. The study of algorithm and program structures reflects this view
in that the discipline of software engineering directs its energies at managing the coupling patterns
within programs by suitable partitioning of the algorithmic components. Examples of such efforts
include the structured programming methodologies, formalized specification and design techniques,
and the utilization of integrated development environments containing tools designed to aid the
management of complexity.

This paper has defined a view of algorithm structure based on a finite-state graph model. This
view allows a hierarchical decomposition of the program from its level of expression down to an
atomic, primitive level and thus reveals the entire internal organization of the algorithm as it is
actually interpreted on a physical processor. By taking this view, we have observed that there exists
a natural level to each program or operation in its distance from the atomic level. We have also
demonstrated that within this internal organization, there is the potential for recognizing patterns
or clusters of activity. Some programs do not have easily recognizable patterns, and are considered
to be inherently more complex than those that do. The programs that contain recurring patterns
can be described, using the HAC notation, in a much shorter representation than at their primitive
level. The degree of reduction in size is inversely proportional to the inherent complexity of the
program, and is directly proportional to its simplicity or capability of being remembered.

Measures were defined for several HAC program representations. These measures were
demonstrated to detect those structural features which are considered to be influential in affecting
program complexity. In particular, the model is useful for determining complexity of graphically-

HAC complexity 123

based spec i f i ca t ion a n d des ign p rocesses w h e n we do n o t yet h a v e c o n c r e t e t ex tua l r e p r e s e n t a t i o n

o f the des i red so lu t ion .

T h e p r i m e p r o g r a m d e c o m p o s i t i o n has a s t r o n g c o n n e c t i o n to the c o n c e p t o f g o o d m o d u l e

des ign, t he re fo re , we bel ieve tha t a c o m p l e x i t y m e a s u r e based u p o n this d e c o m p o s i t i o n will be a

be t t e r p r e d i c t o r o f a d h e r e n c e to g o o d s o f t w a r e e n g i n e e r i n g p r inc ip les t h a n m o r e ad hoc p r o g r a m

measu res . W e also be l ieve tha t the ove ra l l a p p r o a c h o f us ing the H A C c o m p u t a t i o n a l m o d e l to

ana lyze p r o g r a m s t ruc tu res is va l id a n d useful in t ha t it p resen t s a v iew tha t has n o t been t aken

by p r e v i o u s mode l s .

Acknowledgement--Research on this grant was partially supported by NASA grant NSG-5123 to the University of
Maryland.

R E F E R E N C E S

1. Chaitin G. J., A theory of program size formally identical to information theory. J. ACM (July 1975).
2. Bail W. and Zelkowitz M., Program complexity using hierarchical abstract computers. National Computer Conference

(1978).
3. Halstead M., Elements of Software Science. Elsevier, New York (1977).
4. Shannon C. and Weaver W., The Mathematical Theory of Communication. The University of Illinois Press (1974).
5. Bail W., Algorithmic structure analysis using hierarchical abstract computers. Ph.D. dissertation, Computer Science

Department, University of Maryland (1985).
6. Maddux R., A study of computer program structure. Ph.D. dissertation, University of Waterloo (July 1975).
7. Gannon J. D., Hecht M. S. and Herbold R. S., Prime program decomposition. 16th Hawaii International Conference

on Systems Science, pp. 25-29 (January 1983).
8. McCabe T. J., Structured testing: a software testing methodology using the cyclomatic complexity measure. NBS

Special Publication 500-99 (December 1982).
9. McCabe T. J., A complexity measure. IEEE Trans. Software Engng 2(6), 308-320 (December 1976).

10. ACM SIGSOFT/SIGPLAN Symposium on Practical Software Development Environments, Palo Alto, Calif. (December
1986). [ACM SIGPLAN Notices (January 1987).]

About the Author--WILLIAM BAIL is the Deputy Division Director for the Washington Division of
Intermetrics. His current interests include program complexity measures, language design and translation,
logic and expert systems development, and software development methodologies. Dr Bail has been with
Intermetrics since 1979 as a Senior Computer Scientist, and was a Visiting Lecturer at the University of
Maryland from 1984 to 1987. From 1966 to 1979 Dr Bail was with Vitro Laboratories. He received his
B.S. in Mathematics from Carnegie Institute of Technology in 1966, and his M.S. and Ph.D. in Computer
Science from the University of Maryland in 1973 and 1985 respectively.

About the Author--MARVIN V. ZELKOWITZ is Associate Professor of Computer Science at the University
of Maryland. He obtained the B.S. degree in Mathematics from Rensselaer Polytechnic Institute and the
M.S. and Ph.D. degrees in Computer Science from Cornell University. In the past he has had various
positions including Chairman of ACM SIGSOFT, Chairman of the Computer Society's Technical
Committee on Software Engineering, and both Associate Chairman and Acting Chairman of the
Department of Computer Science. Dr Zelkowitz's research interests include language and compiler design,
programming environments and the measurement of the programming process, a topic which led to the
work reported here.

C L I~ ~ 4 B

