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Abstract---A model of program complexity is introduced which combines structural control flow measures 
with data flow measures. This complexity measure is based upon the prime program decomposition of 
a program written for a Hierarchical Abstract Computer. It is shown that this measure is consistent with 
the ideas of information hiding and data abstraction. Because this measure is sensitive to the linear form 
of a program, it can be used to measure different concrete representations of the same algorithm, as in 
a structured and an unstructured version of the same program. Application of the measure as a model 
of system complexity is given for "upstream" processes (e.g. specification and design phases) where there 
is no source program to measure by other techniques. 
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1. I N T R O D U C T I O N  

The ease o f  deve lop ing  correct  p r o g r a m s  has been re la ted to the s t ructura l  complex i ty  o f  the 
result ing source p rog ram.  There  have been several  a t t empt s  to under s t and  and measure  this 
complex i ty  by res t r ic t ing the use o f  con t ro l  s t ructures  in a p rog ram.  F o r  example ,  s t ruc tured  
p r o g r a m m i n g  is one m e t h o d  by which p r o g r a m s  are more  easily deve loped  by impos ing  such 
restraints .  There  are also me thods  which are  d i rec ted  at  m a n a g i n g  d a t a  s t ructure  complexi t ies ,  
inc luding the concepts  o f  da t a  abs t r ac t ion  and  in fo rma t ion  hiding.  By l imit ing the scope o f  da ta  
to only that  which is needed by a given sect ion o f  the p r o g r a m ,  local da t a  responsibi l i t ies  are easier 
to isola te  and  to main ta in .  

I t  is genera l ly  assumed  that  a p r o g r a m  is wel l - s t ruc tured  if  clusters o f  da t a  and  cont ro l  a c t M t y  
are  small .  The  pu rpose  o f  this p a p e r  is to develop  measures  for  bo th  con t ro l  and  da ta  s t ructure  
that  agree with these intui t ive no t ions  and can be used to extend our  knowledge  o f  p rog ra m 
measurement .  We  would  like to deve lop  measures  that  can be used to classify the degree o f  
structuredness with a system, so tha t  such ideas can move  f rom the general  guidel ines concept  within 
the sof tware  life cycle to a prac t ica l  ana ly t ic  tool  ava i lab le  to the sof tware  designer,  much like the 
current  use o f  compi le rs  and  edi tors .  

In Section 2 o f  this pape r  we briefly descr ibe  our  model  o f  c o m p u t a t i o n  and its re la t ionship  to 
p r o g r a m m i n g  principles.  The measure  is re la ted to i n fo rma t ion  theoret ic  issues o f  r andomness  and 
complexi ty .  We  m a k e  the a s sumpt ion  tha t  the r a ndomne ss  o f  a p r o g r a m  (i.e. how long its source 
code  represen ta t ion  mus t  be) is a measure  o f  its complexi ty .  In Section 3 we add  the pr ime p r o g r a m  
decompos i t i on  o f  a p r o g r a m  as a mechan i sm to measure  the s t ruc tured  complex i ty  o f  an a lgor i thm.  
The complex i ty  measure  is ac tua l ly  a measure  on the g raph  represen ta t ion  o f  the p rogram;  
therefore,  it has app l i ca t ions  to o ther  g raph- re l a t ed  processes.  In  Sect ion 4 we give several examples  
o f  using these :measures, bo th  in the contex t  o f  p r o g r a m m i n g  languages  and  in o ther  processes in 
the deve lopmen t  cycle such as specif icat ion and  design nota t ions .  

We do not  cons ider  this measure  as the u l t imate  measure  o f  p r o g r a m  complexi ty ;  however ,  we 
do  believe that  we have achieved a p r o t o t y p e  o f  a class o f  interest ing measures .  By merging  the 
i n fo rma t ion  theory  concept  o f  complex i ty  with the no t ions  o f  s t ruc tured  p r o g r a m m i n g  and pr ime 
p r o g r a m  decompos i t ion ,  we have cap tu red  some o f  the basic  ideas needed for an effective measure.  
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110 WILLIAM G. BAIL and MARVIN V. ZELKOWITZ 

2. H I E R A R C H I C A L  ABSTRACT COMPUTERS 

We base our model of complexity on the size of the program needed to describe an algorithm. 
Like Chaitin [1] we are interested in measures that describe the information content of an algorithm 
by its size and then we desire transformations that reduce the size of that representation. An 
algorithm is more complex if it requires more bits to represent its description. By decomposing an 
algorithm into its hierarchical structure using regular components "understood" by the "hardware 
interpreter", we can remove much of the complexity of a given description. 

In order to compare two algorithms we first define a notation called a Hierarchical Abstract 
Computer (HAC) [2]. It has instructions which depend upon the number of distinct operators 
present in the particular algorithm being described. Superficially, it is similar to the software science 
models [3]; however, a HAC differs significantly from the Halstead model in that control flow and 
data structures are also taken into account. In the software science model, complexity is solely a 
measure of the number of objects (e.g. size) of each module, while in our case the complexity of 
the source program is determined by both the number of variables referenced by the module and 
by the complexity of its control flow graph, something ignored by the software science model. 

A HAC is modeled by a directed graph, each node of which represents a single instruction. If  
a program consists of several procedures, than each procedure is a separate graph and each 
procedure invocation is represented as a single node in the graph of the calling procedure. The 
complete model is called a HAC program, and each procedure is called a HAC module. 

2.1 Basic HAC model 

A HAC instruction contains a label, an operator, and a list of operands. Each complete HAC 
module defines a function (e.g. operator) which can be used as an operator within another module, 
hence its hierarchical nature. Using this notation we can define several alternative representations. 
The simplest is called the Direct Graph Form (DGF) which is the direct implementation of the flow 
graph of a program. A program is a sequence of instructions, each instruction (representing a node 
in the program graph) has the syntax: 

(label): ( opcode ) (argument list) ((label list )) 

where: 

(label) represents the label on that instruction (e.g., name of graph node), 
(opcode) represents the instruction to be performed, 
(argument list) is a sequence of data names, and 
(label list) are the following instructions (i.e. the set of outgoing arcs from that node). 

There is one unique label called exit signifying that execution is to halt. 
Let D be the set of data objects in a program, L be the set of labels (nodes) in a program and 

I be the set of operation codes (unique functions performed by the program nodes). If  execution 
is at label~, then opcodei is executed on data items {argument-list} and the next instruction is chosen 
from one of the labels in (label_listi) until the label named exit is reached. 

Figure 1 is a simple example of this model and represents the flow graph of the Absolute Value 
Function ABS. Its D F G  is: 

LI: test x,0 (L2,L3) 
L2: negassign x,abs (exit) 
L3: assign x,abs (exit) 

In this case, 

D -- {0, X, ABS} 

L = {L1, L2, L3, EXIT} 

I = {Test, Assign, Negassign} 
2.2 HAC complexity 

Consider a machine which has the exact instruction set to execute only a single DGF. We define 
the size of an instruction to be the number of bits required to encode the instruction on this 
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Fig. 1. Simple ABS function. 

computer  and the program size to be the number  of  bits necessary to contain the program. I f  there 
are n possibilities for any instruction field, the field must be log2n bits wide, and it can be viewed 
as the amount  of  information contained within the field [4]. 

We define the algorithm size (ASIZE) of a program P as the sum of the algorithm sizes of  its 
constituent modules M: 

ASIZE = ~ ASIZE(M) 
M ~ P  

We define the algorithm size of  a module M as the sum of  the size of  its constituent statements J: 

ASIZE(M) = ~ ASIZE(J) 
J e M  

For  module M, let L be the set of  labels, I be the set of  opcodes, and D be the set of  data objects. 
I f  J is an instruction in M with argument list of  size kj and label list of  size mj, we define the size 
of  instruction J as: 

ASIZE(J)  = log2lLI + log21II + kj*log2lOl + mj*log21LI. 

From the D G F  of Fig. 1, we can compute the size of  the HAC program necessary to represent 
this program: 

Each label field will be size log21LI = log24 = 2 
The instruction field will be size log2 III = 1og23 = 1.58 
Each argument  field will be size log2 ID[ = log23 = 1.58 

Since instructions have the format--label: opcode, argument list (label list): 

Instruction L1 has size = 2 + 1.58 + 2"1.58 + 2*2 = 10.74. 
For  node L2, the size is 2 + 1.58 + 2"1.58 + 2 = 8.74. 
For  node L3, the size is 2 + 1.58 + 2"1.58 + 2 = 8.74. 
The size of  the program is then 10.74 + 8.74 + 8.74 = 28.18 bits. 

We believe that this model captures the actual implementation of any given program. In 
particular, the model captures: 

• The overall modular structure of a program in terms of the size of each module. Operation size 
and label list fields are small if each module contains only a few instructions. 

• The data connectivity among program modules in terms of the number of data objects. With 
few data items referenced in each module, data fields in each instruction are kept to only a 
few bits each. 
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2.3 Sequential form 

As slight modification to an earlier presentation [5] we briefly describe the sequential form (SF) 
by assuming that the machine automatically sequences to the next instruction. This sequencing 
reduces the need for information in the instruction itself. Fall-through labels are no longer 
necessary, and the size of the label set L only needs to be the number of  non-sequential labels 
actually referenced plus one nil label to cover sequential execution. The following represents the 
SF of  the program of  Fig. 1: 

nil: Test x,0 (L3) 
nil: Negassign x,abs (exit) 
L3: Assign x,abs 

Only the third instruction needs a label (L3) since it is only instruction explicitly referenced (via 
instruction 1); the others are sequential execution. Only instruction 2 needs an explicit exit 
condition. 

We compute a PSIZE (or program size) measure for this sequential form analogously to the 
ASIZE measure of the DGF.  This yields a size of  22.12 bits while the ASIZE for this program 
was 28.18. The difference of approximately 6 bits represents information stored in the "machine" 
and represents the linearity of  the source program. Hence the difference between these measures 
gives some indication of the "goto-ness" of the code. 

It should be noted that we are actually defining a measure on a directed graph. When applied 
to a graph of  a program, the value of  the measure is sensitive to the granularity of  each 
node--assembly language, programming language, specifications or requirements language. The 
measure is most useful in computing objects at the same level of abstraction, e.g. between 2 Ada 
modules or C modules and not, for example, between an Ada specification and its implementation. 

3. PRIME P R O G R A M  C O M P L E X I T Y  

For  the remainder of  this paper, complexity will be defined in terms of  a prime program 
decomposition of its flow graph. The prime program was developed by Maddux as a generalization 
of  structured programming to define formally the unique hierarchical decomposition of a flow 
graph [6]. 

A proper program is a graph containing one input arc, one output arc and for each node in the 
graph, there is a path from the input arc through that node to the output arc. Figure 2 represents 
some proper programs, and Fig. 3 presents some examples of programs which are not proper. 

A prime program is a proper program of more than one node that contains no proper 
subprograms of more than one node (i.e. no two arcs can be cut to extract another proper 

(o) (b) (c) 

Fig. 2. Proper programs. 
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(o) (b) (c) 

Fig. 3. Non-proper programs. 

subprogram). For  example, Fig. 2(a) is a prime while Fig. 2(b) is not. In Fig. 2(b), arcs A-C and 
F - G  can be cut to extract proper program C - D - E - F .  

The prime programs containing up to three nodes are the usual structured programming 
constructs such as ~ while, and repeat statements (Fig. 4). But, the number of such primes is infinite 
[e.g. Fig. 2(c) is a prime of 6 nodes]. Replacing any subprogram in a graph by a single function 
node creates a unique hierachical decomposition of a graph into primes [7]. 

3.1 Prime program complexity 

Consider the prime program decomposition of a graph so that each prime defines a unique HAC 
module, and the sum of  the complexities of the modules is the complexity of the entire program. 
The prime sequential form (PSF) is the basis for our hierarchical complexity metric. Because of 

f 

( a ) sequence ( b ) if - then ( C ) while do 

t" 

( d )  repeat-untiL ( e )  if-then-eLse ( f ) do-whiLe-do 

Fig. 4. Primes of  up to three nodes. 



114 WILLIAM G. BAIL and MARVIN V. ZELKOWITZ 

M2 

M1 

Fig. 5. Prime decomposition. 

the unique prime factorization, we can eliminate labels altogether. The next location is uniquely 
determined by the particular instruction being executed--either a single operation if it is the 
function of some previously defined HAC or one particular instruction within the unique prime 
executed by this particular HAC. Thus instructions for the PSF are: (opcode) (argument list). 
Consider the prime decomposition of the program in Fig. 5 into the two prime PSF: 

M 1: test x,0 
assign x,abs 
else 
negassign x,abs 

M 2 : M 1  x,abs 
assign abs,y 
+ 1 y,y 

The machine "knows" that following a false result from the test instruction execution continues 
with the else instruction, and a fall-through of the true path to the else means to exit the prime. 
With increased prime sizes, we simply need to define more special purpose instructions (opeodes) 
to handle the increased number of nodes. With the PSF, we capture the degree of locality evidenced 
by control flow operations and data object referencing. 

For any prime program decomposition, we define the Program Complexity (CMPLX) measure. 
The Program Complexity metric is sensitive to the sizes of the prime programs present within the 
program modules since larger prime programs will result in larger complexity values. It is defined 
analogously to the ASIZE and PSIZE metrics. 
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Let P be a program with Modules Mp, each module decomposed into primes Pp. The program 
complexity (CMPLX) for a program P is: 

CMPLX(P) = Y' CMPLX(Mp) 
MpEP 

The Program Complexity of  a module Mp equals: 

CMPLX(Mp)=  y~ CMPLX(Pp). 
Pp ~ M p 

The Program Complexity of  a prime program Pp equals: 

CMPLX(Pp) = ~ CMPLX(J) 
J~ Pp 

for instructions J. 
Let I = {opcodes in prime N}, D = {Data in prime N}, then the program compelexity of a HAC 

instruction opcodeja~j.., a h equals: 

CMPLX(J) = Log2 I I I +  kj*logzlDI 

As an example, consider CMPLX for the program of Fig. 5: 
MI: I = {Test, Assign, ELSE, negassign} log2 I II = 2 

D = {0, X, ABS} log2 [D[ = 1.58 

CMPLX(MI)  = (2 + 2"1.58) + ( 2 +  2"1.58)+ (2) + (2 + 2"1.58) = 5.16+ 5.16 + 2 + 5.16 = 17.48 

M2: I = {M1, Assign, Assign + 1) log2 I I] = !.58 
D = {Y, ABS, X} log2 IDI = 1.58 

CMPI,  X(M2) = (1.58 + 2"1.58) + (1.58 + 2"1.58) + (1.58 + 2"1.58) = 4.74 + 4.74 + 4.74 = 1422 

CMPLX (program) = 17.48 + 14.22 = 31.70 

4. A P P L I C A T I O N S  

Although defined on a sequence of linear instructions, the HAC represents a graph-based 
measure on a program. Therefore, our goal is to show the applicability of  HAC complexity in 
graphically-based environments as a specifications or design aid. However, we first give several 
examples of the usefulness of  the HAC measures using textural (e.g. source program) formats, and 
then describe the measure in terms of  graph processes where other textual measures are not 
applicable. 

4.1 Examples 

In this section, we demonstrate the application of  these measures in several situations that shows 
that they are sensitive to those features which affect complexity. In particular, we examine the 
behavior of  the measures when presented with data abstractions and program modularizations with 
differing degrees of  data coupling, and we conclude by contrasting their behavior with the McCabe 
metric to demonstrate that they are consistent with previous results [8]. 

4.1.1 Data abstractions. Current programming practice encourages the use of data abstractions 
as a means to enhance the quality of  the program. The proper use of  such abstractions allows the 
encapsulation of clusters of  data activity into small defined objects and operations. While the 
practice has existed for many years, only recently have programming languages been available that 
provide sufficient facilities to create the abstractions conveniently and efficiently. 

Figure 6(a) contains an Ada program which adds two rational numbers. Each number is 
implemented as pairs of  integers. Figure 6(b) contains a modified version of  the program which 
contains an abstraction of the data using a new data type rational and a new operator + which 
sums data objects of  this new type. Figure 7 contains the HAC PSF representations of these 
programs. 
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procedure add_rational(xl,x2,yl,y2: in integer; zl,z2: out integer) is 
begin 

zl : =  xl*y2 + yl*x2 ; 
z2 : - -  x2*y2 ; 

end add_rational; 

procedure main is 
xl,x2,yl,y2,zl,z2 : integer; 

begin 

addra t ional  ( xl,x2,yl,y2,zl,z2 ); 

end main; 

a. Add Rational  N u m b e r s  (no abstract ion)  

package rational arith is 
type rational is-record 

numerator,denominator : integer 
end record; 

function "+"  (x,y : in rational ) return rational; 
end rational arith; 

package body rational arith is 
function "+"  (x,y : in  rational ) return rational is 

begin 
return ( x.numerator*y.denominator + 

y.numerator*x.denominator, 
x.denominator*y.denominator ); 

end "+" ; 
end rational_arith; 

with rational arith; use rational arith; 
procedure main is 

x,y,z : rational ; 
begin 

Z:----x+y 

end main; 

b. Add Rational  N u m b e r s  (data abstract ion)  

Fig. 6. Ada data abstraction example. 

IvLklN : 

ADD RATIONAL xl,x2,yl,y2,zl,z2 m 

h,Lad N : 

+ x,y,z 

ADD RATIONAL: 
xl,y2,tl  

* x2,yl,t2 
+ tl,t2,zl 
* x2,y2,z2 

" - i - "  : 
* x.num,y.den,tl 
* y.num,x.den,t2 
* tl,t2,z.num 
* x.den,y.den,t.den 

a. HAC for non-abs trac t ion  program b. H A C  for abstract ion program 

Fig. 7. Prime sequential form for Ada example. 
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By applying the complexity measure, we observe that for the initial program, 
CMPLX = 15.48 + 40 = 55.48 bits, while for typed-rationals, CMPLX = 4.74 + 40 = 44.74 bits. 
The called procedures in this example have the same complexity (40 bits) since they perform the 
same transformation on the same data objects with the reduction in complexity due to the 
abstraction in one of the calling procedures (15.48 versus 4.74 bits). The reason for this difference 
is that by encapsulating the rational data type as a single concept, the program can deal with a 
single data object x, instead of multiple data objects, xt and x2. 

4.1.2 Data coupling. An important factor in overall program complexity is the degree of data 
coupling experienced between modules within the program. Consider the diagram shown in 
Fig. 8(a). There are many possible ways to modularize this structure, two of which are shown in 
Figs 8(b) and 8(c). The first decomposition, however, is accompanied by 9 dependencies between 
the modules implying an unnatural modularization, while the second realizes a small coupling 
(2 dependencies) implying a more natural modularization and a smaller complexity. Figure 9(a) 
illustrates a program which possesses this coupling pattern, Fig. 9(b) illustrates a PSF modu- 
larization of this program according to the first decomposition, and Fig. 9(c) illustrates a PSF 
modularization according to the second decomposition. Application of the HAC complexity on 
these programs yields a complexity of 71.18 + 58.44+ 73.32 = 202.94 bits for the unnatural 
decomposition and 18.24 + 49.74 + 61.18 = 129.16 bits for the more natural decomposition, 
demonstrating that the measure is sensitive to this software complexity influence factor. 

4.1.3 Cyclomatic complexity. The cyclomatic complexity measure of McCabe is based on the 
number of linearly independent circuits through a program when represented as a graph [9]. 
Cyclomatic complexity, v, is defined as: 

v = e - n + 2  

where e is the number of edges in G, and n is the number of nodes in G. For graphs whose predicate 
nodes are all binary, i.e. those nodes which emit exactly two edges, the complexity is defined as: 

v = s + l  

where s is the number of predicate nodes in the graph. McCabe also defines an essential complexity, 
ev, as the cyclomatic complexity v of a reduced graph G, where the reduced graph is the outer 
module in the prime decomposition of the original graph. 

Cyclomatic complexity and CMPLX both share a sensitivity to the program control flow 
structure; however, CMPLX is measured from a linear model of the program rather than from 
a directed graph and is sensitive to deviations from this linear control flow. Such deviations are 
strong contributors to overall program complexity. 

Consider the program to compute the Fibonacci sequence given in Fig. 10(a) with flowchart in 
Fig. 10(b). This program can be decomposed into three prime programs: P1, P2 and P3. The PSF 
and the CMPLX measures are computed as follows: 

PI: sub n,l , t  
p3 l,p 
sub n,2,t 
p3 t,q 
add p,q,fib 

P2: test n, 1 
assign l,fib 
else 
pl n,fib 

P3: test n,0 
assign 0,fib 
else 
p2 n,fib 
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x2 f.2 

x8 ~ y  

( a )  

£8 
r /.\t7 I 

/ \ 

i i i  \\ 
,,.~ . . ' " ~ )  -.. A ~ ) 

1 < \ x9/ v "r-~l 

L ~  x8 _ _J/ - -Y  

(b) 

f.9 flO 

// I 
/ /  I 

J s Y 

(c) 

Fig. 8. Data  coupling. 
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PROGRAM: 

a .  

LI: F1 X1,X2,X3,X4 
L2:F2 X3,X4,XS,X6,X7 
L3:F3 X3,X4,X5,X6,X7,X8 
L4:F4 X5,Xg,X10,X11,X12 
L5:F5 Xg,X10,X13,X14,X15 
L6:F6 X8,X11,X12,X13,X14,X15,Y 

Original Program before Decomposition 

PROGRAM: 

FT: 

F8: 

b. 

F7 X1,X2,X3,X4,X5,X6,X7,Xg,XIO,X11,X12 
F8 X3,X4,XS,X6,X7,X9,XIO,X11,X12,Y 

F1 X1,X2,X3,X4 
F2 X3,X4,X5,XS,X7 
F4 X5,xg,xIO,X11,X12 

F3 X3,X4,X5,X6,X7,X8 
F5 X9,XIO,X13,X14,X15 
F6 X8,X11,X12,X13,X14,X15,Y 

Prime Decomposition of Figure 8(b) 

PROGRAM: 

F7: 

F8: 

C. 

F7 X1,X2,XS,X8 
F8 X5,X8,Y 

F1 X1,X2,X3,X4 
F2 X3,X4,XS,X6,X7 
F3 X3,X4,XS,Xf,X7,X8 

F4 X5,X9,XIO,X11,X12 
F5 xg,X10,X13,X14,X15 
F6 XS,Xll,X12,X13,X14,X15,Y 

Prime Decomposition of Figure 8(e) 

Fig. 9. Prime descriptions of  Fig. 8. 

For PI, III = 3, logsllI = 1.58 
IDI7, log2 IDI2.81 
CMPLX(PI)  = 44.43 

For  P2, ]II4, log2 [II = 2  
ID[ =3 ,  log2 IDI = 1.58 
CMPLX(P2) = 11.48 

For P3, III =4 ,  log2 [Ij = 2  
IDI = 3, logz IDI = 1.58 
CMPLX(P3) = 11.48 

CMPLX = 44.43 + 11.48 + 11.48 = 67.39. 

However, this program can also be represented by the flowchart of Fig. 10(c) which can be 
decomposed into two prime programs-- the  P1 prime of Fig. 10(b) and a more complex P4 prime. 
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procedure fib (n) :  
begin 

if n = 0 then 
f i b :=O 

P2 
else 

if n -  1 then 
f i b : -  1 

Lse 
P1 

begin 

p : -  f ib ( n - l l ;  

q:,,= f ib  ( n - 2 l ;  

fib : - p + q 

end 

end 

( b ) Structured version 

P : = F I B ( N - 1 )  
Q : = F I B  ( N - 2 )  
F I B : = , p + Q  

<• I~i ~ ,  
[' FI~:- I  I 

= 0  

( C ) Unstructured version 

l P : - F I B ( N - 1 )  
Q : -  F IB ( N - 2 )  
F IB :==p÷Q 

i , i8o 
I 1 FIB-1 I 

Fig. 10. Comparison with cyclomatic complexity. 

Computing the PSF and the C M P L X  measures gives: 

P4: test n,0 
assign 0,fib 
test2 n,1 
assign 1,fib 
branch 
P1 n,fib 



HAC complexity 12 ! 

M2 

1 I i = Parser Gen 

I 

! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

InPUt J~Sc°°~erJ  i 

"4 - - - -  Code Gen Optimizer F~-----]  Int. Code 1- 

Fig. 11. Compiler structure. 

For P4, [I[ = 5, log2 I I I =  2.32 
ID[ =4 ,  log2 IDI = 2  
CMPLX(P4) --- 33.92 

CMPLX = CMPLX(P1) + CMPLX(P4) -- 44.43 + 33.92 = 78.35. 

Note that this figure of 78.35 is greater than the figure of 67.39 of the more structured program; 
however, both versions of the program have the same cyclomatic complexity measure of  3. 

4.2 CASE complexity 

Of great interest today is the concept of integrated environments and CASE (Computer Aided 
Software Engineering) tools. It is important to store knowledge of the programming process within 
the computer to give the programmer or system analyst benefits from this knowledge. A common 
feature for many of these tools is a graphically-based specifications methodology using data flow 
diagrams, "bubble charts" or other pictorial structure [10]. Measuring the structure of these designs 
would be an important analysis tool, but such measurements are lacking. Most existing measures 
are based upon a textual source code representation of  the program. We propose that a measure 
like the HAC CMPLX measure could play a role in these environments. 

Consider the structure chart of  a typical compiler in Fig. 11. In this example, the compiler has 
two inputs (grammatical description of  the programming language and a given source program to 
compile), and has one output (the machine language translation of the input source program). We 
can represent this as a HAC program, convert it to its PSF and compute the CMPLX measure 
on the resulting program: 

(1) Convert the structure chart to a proper program by adding one input node with no input 
data items that branches to the given input nodes (dashed lines in Fig. 11). Do a similar 
transformation to the output data, but in this case there is only one output item already 
specified. 

(2) Compute the prime program decomposition of this flowgraph (dotted lines surrounding boxes 
MI and M2 in Fig. 1l). 

(3) Derive the PSF for each prime and compute its CMPLX measure. 

For Fig. 11, we get the following decomposition: 

M1 scanner module- -  

Input text, char 
Scanner char, token 

which has [11=2,  I D [ = 3 ,  I I~[=log22+2*log23=4.16 ,  l I21=log22+2*log23=4.16,  and 
CMPLX(M 1) = 8.32. 
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M2 parser module--  

Start 
M1 
Exit 
ParserGen 
Parser 

text, grammar 
text, token 

grammar, production 
token, production, (token, production_number) 

which has III = 5, [DI = 5, LI~[ = 1og25 + 2"1og25 = 6.96, 1121 = log25 + 2"1og25 = 6.96, 1131 = 1og25 = 
2.32, 1141 = log25 + 2"1og25 = 6.96, [IsI = log25 + 3"1og25 = 9.28, and CMPLX(M2) = 32.48. 
M3 Entire compiler-- 

M2 (token,production_number) 
IntCode (token,production_number), triple 
Optimizer triple, triple 
CodeGen triple, machine_language 

which has IIL=4, I D I = 3 ,  I l l l= log24+log23=3.58 ,  lI21=log24+2*log23=5.16, 1131 = 
log24 + 2"1og23 = 5.16, 1141 = 1og24 + 2*logz3 = 5.16, and CMPLX(M3) = 19.06. 
The total complexity of this top level design is then 8.32 + 32.48 + 19.06 = 59.86. 

Using this measure, alternative designs can be evaluated early in the development cycle and give 
indications of alternative strategies that can be applied. All too often the only criteria used in such 
an evaluation is the experience of the designer. In this case, we have an objective measure that is 
easily programmable into such a CASE environment that can be used as a design aid before source 
(or even design) code has been written. With many CASE tools based upon such graphical 
representations of the process, a prime decomposition measure captures its internal structure 
naturally. 

We do not claim that our CMPLX measure is the ultimate decider of good design; however, 
we do claim that a measure, similar to the CMPLX measure on the prime decomposition of a 
flowgraph, does agree with our intuitive notions of good designs, and that measures based upon 
this prime decomposition will ultimately provide effective measurements in this area. 

5. CONCLUSIONS 

One common view of complexity is the idea that simplicity and complexity are dependent on 
the number of structural features contained within an organization rather than simply on the 
number of its basic elements. That is, pure size is not as strong an influence as the interrelationships 
that exist among those elements. The study of algorithm and program structures reflects this view 
in that the discipline of software engineering directs its energies at managing the coupling patterns 
within programs by suitable partitioning of the algorithmic components. Examples of such efforts 
include the structured programming methodologies, formalized specification and design techniques, 
and the utilization of integrated development environments containing tools designed to aid the 
management of complexity. 

This paper has defined a view of algorithm structure based on a finite-state graph model. This 
view allows a hierarchical decomposition of the program from its level of expression down to an 
atomic, primitive level and thus reveals the entire internal organization of the algorithm as it is 
actually interpreted on a physical processor. By taking this view, we have observed that there exists 
a natural level to each program or operation in its distance from the atomic level. We have also 
demonstrated that within this internal organization, there is the potential for recognizing patterns 
or clusters of activity. Some programs do not have easily recognizable patterns, and are considered 
to be inherently more complex than those that do. The programs that contain recurring patterns 
can be described, using the HAC notation, in a much shorter representation than at their primitive 
level. The degree of reduction in size is inversely proportional to the inherent complexity of the 
program, and is directly proportional to its simplicity or capability of being remembered. 

Measures were defined for several HAC program representations. These measures were 
demonstrated to detect those structural features which are considered to be influential in affecting 
program complexity. In particular, the model is useful for determining complexity of graphically- 
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based  spec i f i ca t ion  a n d  des ign  p rocesses  w h e n  we do  n o t  yet  h a v e  c o n c r e t e  t ex tua l  r e p r e s e n t a t i o n  

o f  the  des i red  so lu t ion .  

T h e  p r i m e  p r o g r a m  d e c o m p o s i t i o n  has  a s t r o n g  c o n n e c t i o n  to  the  c o n c e p t  o f  g o o d  m o d u l e  

des ign,  t he re fo re ,  we bel ieve  tha t  a c o m p l e x i t y  m e a s u r e  based  u p o n  this d e c o m p o s i t i o n  will  be a 

be t t e r  p r e d i c t o r  o f  a d h e r e n c e  to g o o d  s o f t w a r e  e n g i n e e r i n g  p r inc ip les  t h a n  m o r e  ad hoc p r o g r a m  

measu res .  W e  also be l ieve  tha t  the  ove ra l l  a p p r o a c h  o f  us ing  the  H A C  c o m p u t a t i o n a l  m o d e l  to 

ana lyze  p r o g r a m  s t ruc tu res  is va l id  a n d  useful  in t ha t  it p resen t s  a v iew tha t  has  n o t  been  t aken  

by p r e v i o u s  mode l s .  
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