
1

EXPERIMENTAL MODELS FOR VALIDATING COMPUTER TECHNOLOGY*

Marvin V. Zelkowitz Dolores Wallace
NIST/ITL NIST/ITL

Gaithersburg, MD 20899 Gaithersburg, MD 20899
and Dept. of Computer Science

University of Maryland
College Park, MD 20742

Abstract

Experimentation is important within science for
determining the effectiveness of proposed theories and
methods. However, computer science has not developed a
concise taxonomy of methods applicable for demonstrating
the validity of a new technique. In this paper we discuss
the methods generally employed to validate an experiment
and propose a taxonomy consisting of 12 techniques that
can be used to show that a new technology achieves its
hypothesized goals. An evaluation of over 600 papers
published from 1985 through 1995 shows that the 12 methods
can be effectively applied to research papers, and we
provide some observations of how well the research
community validates its claims in these papers.

Keywords: Classification; Experimentation; Measurement; Qualitative
studies; Quantitative studies; Taxonomy; Validation

1. Experimentation

Experimentation and data collection are needed to evaluate practices
within the software engineering community as a means to understand both
software and the methods used in its construction. Data collection is
central to the NASA/GSFC Software Engineering Laboratory, the Data and
Analysis Center for Software (DACS) located at Rome Laboratories and
the Software Engineering Institute's (SEI) Capability Maturity Model
(CMM). However, there are many ways to collect information within the
software engineering community. The purpose of this paper is to explore
these methods and to understand when each is applicable toward our
understanding of the underlying software development process.

In this section we explore experimentation and why it is necessary. In
Section 2 we present our classification model of the various forms of
experiments that can be applied to software development, what data we
can collect by this experimentation, and the strengths and weaknesses
of the various methods. In Section 3 we apply this model to a
collection of some 600 published papers in order to understand how

* Contribution of the National Institute of Standards and Technology. Not
subject to copyright. To appear in IEEE Computer.

2

experimentation is being used by the software engineering community. We
then compare our results with a related study performed by Tichy [8],
who also looked at the role of experimental validation in published
papers.

1.1 Goals for Experimentation

Software engineering is concerned with techniques useful for the
development of effective software programs, where “effective” depends
upon specific problem domains. Effective software can mean software
that either is low cost, reliable, rapidly developed, safe, or has some
other relevant attribute. We make the assumption that to answer the
question “Is this technique effective?” we need some measurement of the
relevant attribute. Saying only that a technique is “good” conveys no
real information. Instead, we need a measurement applied to each
attribute so that we can say one technique is more or less effective
than another.

For some attributes, this mapping from an effective attribute to a
measurement scale is fairly straightforward. If effective means low
cost, then cost of development is such a measure. For other attributes
(e.g., reliability, safety, and security), measures may not be.
Measures like number of failures in using the product per day, errors
found during development, or MTBF (Mean Time Between Failure) indicate
reliability between two products in hardware domains. For software a
count of the number of errors found during testing does not, by itself,
indicate if there are further errors remaining to be found. While
safety is related to reliability, it is not the same. A very unreliable
program can be very safe if it can turn itself off each time the
software fails. Does security mean the time it takes to penetrate the
software to bypass its security protection, how many data protection
“items” it contains, or what level of information the program is
allowed to process?

Experimentation is a crucial part of the evaluation of these
attributes. Experimentation determines whether methods used in
accordance with some underlying theory during the development of a
product results in software being as effective as necessary. Should we
modify the underlying theory upon which the technique is based? What
predictions can we make upon future developments based upon using these
techniques?

1.2 Experimentation -- Not!

Experimentation is one of those terms frequently used incorrectly in
the computer science community. Papers are written that explain some
new technology and then “experiments” are performed to show the
technology is effective. In almost all of these cases, this means that
the creator of the technology has implemented the technology and shown
that it seems to work. Here, “experiment” really means an example that
the technology exists or an existence proof that the technique can be
employed. Very rarely does it involve any collection of data to show
that the technology adheres to some underlying model or theory of

3

software development, or that it is effective, as “effective” was
defined previously, to show that application of that technology leads
to a measurable improvement in some relevant attribute.

A typical example could be the design of a new programming language
where the ”experiment” would be the development of a compiler for the
new language and sample programs compiled on this compiler. The
designer may claim this language is better than others . However, the
“success” for the experiment may be the demonstration that the compiler
successfully compiles the sample programs, instead of providing data
that shows the value or effectiveness of this new language. A
confirming experiment would have demonstrated attributes proving
utility of the language.

Without a confirming experiment, why should industry select a new
method or tool? On what basis should another researcher enhance the
language (or extend a method) and develop supporting tools? As a
scientific discipline we need to do more than simply say, “I tried it,
and I like it.”

1.3 So, How Do We Experiment?

When one thinks of an “experiment,” one often thinks of a roomful of
subjects, each being asked to perform some task, followed by the
collection of data from each subject for later analysis. However, there
are four approaches toward experimentation [1]:

1. Scientific method. A theory to explain a phenomenon is developed. A
given hypothesis is proposed and then alternative variations of the
hypothesis are tested and data collected to verify or refute the
claims of the hypothesis.

2. Engineer ing method. A solution to a hypothesis is developed and
tested. Based upon the results of the test, the solution is
improved, until no further improvement is required.

3. Empirical method. A statistical method is proposed as a means to
validate a given hypothesis. Unlike the scientific method, there may
not be a formal model or theory describing the hypothesis. Data is
collected to verify the hypothesis.

4. Analytical method. A formal theory is developed, and results derived
from that theory can be compared with empirical observations.

The common thread of these methods is the collection of data on either
the development process or the product itself.

When we do an experiment, more properly an experiment using the
scientific method described above, we are interested in the effect that
a method or tool, called a factor, has on an attribute of interest. The
running of an experiment with a specific assignment to the factors is
called a treatment. Each agent that we are studying and collecting data
on (e.g., programmer, team, source program module) is called a subject
or an experimental unit . The goal of an experiment is to collect enough

4

data from a sufficient number of subjects, all adhering to the same
treatment, in order to obtain a statistically significant result on the
attribute of concern compared to some other treatment.

In developing an experiment to collect data on this attribute, we have
to be concerned with several aspects of data collection [7]:

1. Replication -- We have to be able to replicate the results of an
experiment to permit other researchers to reproduce the findings. To
ensure that this is so, we must not confound two effects. That is,
we must make sure that unanticipated variables are not affecting our
results. If we cannot get a homogeneous sample of subjects for all
treatments, paradoxically, we counteract this confounding effect by
randomizing the factors that we are not concerned about.

2. Local control -- Local control refers to the degree to which we can
modify the treatment applied to each subject (e.g., we usually have
little control over the treatment in a case study.) Local control is
a major problem in computer science research since many of the
treatments incur significant costs or expenditures of time. In a
blocking experiment, we assume each subject of a treatment group
comes from a homogeneous population. Thus if we randomly select
subjects from a population of students, we say that we have a
blocked experiment of students.

In a factorial design we apply every possible treatment for each
factor. Thus if there are three factors to evaluate, and each has 3
possible values, then we need to run 9 experiments, with subjects
randomly chosen from among the blocked factors.

With software development, there are two additional aspects to
consider:

1. Influence. In developing experiments involving large, complex, and
expensive methods, such as software development, we need to know the
impact that a given experimental design has on the results of that
experiment. We will call this influence and classify the various
methods as passive (viewing the artifacts of study as inorganic
objects that can be studied with no effects on the object itself) or
active (interacting with the artifacts under study often affecting
the behavior of the objects as in the case of the well-known
“Hawthorne” effect).

2. Temporal properties. Data collection may be historical (e.g.,
archaeological) or current (e.g., monitoring a current project).
Historical data will certainly be passive, but may be missing just
the information we need to come to a conclusion.

2. Validation Models

Table 1. Summary of Validation Models.

5

Validation method Description Weakness Strength
Project monitoring Collection of

development data
No specific goals Provides baseline for

future; Inexpensive
Case study Monitor project in depth Poor controls for later

replication
Can constrain one factor
at low cost

Assertion Ad hoc validation Insufficient validation Basis for future
experiments

Field study Monitor multiple projects Treatments differ across
projects

Inexpensive form of
replication

Literature search Examine previously
published studies

Selection bias;
Treatments differ

Large available
database; Inexpensive

Legacy Examine data from
completed projects

Cannot constrain
factors; Data limited

Combine multiple
studies; Inexpensive

Lessons learned Examine qualitative data
from completed projects

No quantitative data;
Cannot constrain factors

Determine trends;
Inexpensive

Static analysis Examine structure of
developed product

Not related to
development method

Can be automated;
Applies to tools

Replicated Develop multiple
versions of product

Very expensive;
“Hawthorne” effect

Can control factors for all
treatments

Synthetic Replicate one factor in
laboratory setting

Scaling up; Interactions
among multiple factors

Can control individual
factors; Costs moderate

Dynamic analysis Execute developed
product for performance

Not related to
development method

Can be automated;
Applies to tools

Simulation Execute product with
artificial data

Data may not represent
reality; Not related to
development method

Can be automated;
Applies to tools; Evaluate
in safe environment

By looking at multiple examples of technology validation, we have
developed a taxonomy for software engineering experimentation that
describes 12 different experimental approaches. We are not claiming
that this list of 12 is the ultimate list, but we have not seen any
such list before that effectively categorizes multiple instances of
experimental designs that are appropriate for our community. We believe
that this list is a good start for such an understanding of software
engineering experimentation. Table 1 summarizes these 12 models, and
the following sections describe them in greater detail.

The various data collection methods can be grouped into three broad
categories:

1. An observational method will collect relevant data as a project
develops. There is relatively little control over the development
process other than using the new technology that is being studied.

2. An historical method collects data from projects that have already
been completed. The data already exists; it is only necessary to
analyze what has already been collected.

3. A controlled method provides for multiple instances of an
observation in order to provide for statistical validity of the
results. This is the more classical method of experimental design in
other scientific disciplines.

6

2.1 Observational Methods

An observational method will collect relevant data as a project
develops. There are four such methods: Project monitoring, Case study,
Assertion, and Field study.

Project Monitoring

Project monitoring represents the lowest level of experimentation and
measurement. It is the collection and storage of data that occurs
during project development. It is a passive model since the available
data will be whatever the project generates with no attempt to
influence or redirect the development process or methods that are being
used. The assumption is made that the data will be used for some
immediate analysis. If an experimental design is constructed after the
project is finished , then we would call this an historical lessons
learned study.

A problem is the centralization of the collection process and the
capability to retrieve this information later. This solution requires
some minimal coordination among the various development activities in
an organization. A 1982 survey [9] found that although project
information was often collected, this information was “owned” by the
project manager and might not be available for future projects. The
situation is often true today in many organizations.

This method lacks any experimental goals or consistency in the data
that is collected. It is important , however, to collect this
information so that a baseline can be established later (e.g., Basili's
Quality Improvement Paradigm (QIP) [2]).

Case Study

In a case study, a project is monitored and data collected over time.
The project is often a large development and would be undertaken
whether data was to be collected or not. With a relatively minimal
addition to the costs to the project, valuable information can be
obtained on the various attributes characterizing its development.

This differs from the project monitoring method above in that data
collection is derived from a specific goal for the project. A certain
attribute is monitored (e.g., reliability, cost) and data is collected
to measure that attribute. Similar data is often collected from a
class of projects to build a baseline to represent the organization's
standard process for software development.

While project monitoring is considered passive, a case study is an
active method because of the influence we may have on the development
process itself. The very nature of filling out a certain form (e.g.,
hours worked, errors found), which, by itself, may not be intrusive to
the development group, may have the side effect of having the staff

7

think about, and react to, certain issues in order to fill out the
form.

The strength of this method is that the development is going to happen
regardless of the needs to collect experimental data, so the only
additional cost is the cost of monitoring the development and
collecting this data. There are many developments currently happening,
so if the organization is attuned to the needs for experimentation and
data collection, data from many projects can be amassed over a short
period of time.

The weakness of this method is that each development is relatively
unique, so it is not always possible to compare one development profile
with another. Determining trends and statistical validity becomes
difficult. There have been some efforts at collecting different
profiles and looking at techniques such as cluster analysis [5] or
optimized set reduction statistical techniques to combine diverse
projects.

Because case studies are often large commercial developments, the needs
of today's customer often dominate over the desire to learn how to
improve the process later. The practicality of completing a project on
time, within budget, with appropriate reliability, may mean that
experimental goals must be sacrificed. Experimentation may be a risk,
which management is not willing to undertake.

Assertion

There are many examples where the developer of the technology is both
the experimenter and the subject of the study. Sometimes this may be a
preliminary test before a more formal validation of the effectiveness
of the technology. But all too often, the experiment is a weak example
favoring the proposed technology over alternatives. As skeptical
scientists, we would have to view these as potentially biased since the
goal is not to understand the difference between two treatments, but to
show that one particular treatment (the newly developed technology) is
superior. We will refer to such experiments as assertions.

However, if the developer is using a new technology on some larger
industrial project, we will classify it as a case study since the
developer of the technology does not have the same degree of control
over experimental conditions that need to be imposed.

Field study

It is often desirable to compare several projects simultaneously. This
is related to the case study, but is less intrusive to the development
process. If the field study becomes very intrusive with a significant
involvement of the development staff in the collection of the necessary
data, then this method is a form of the replicated experiment to be
described later. Since a primary goal is often not to perturb the
activity under study, it is often impossible to collect all relevant
data.

8

Typically, survey data are collected from each activity in order to
determine the effectiveness of that activity. Often an outside group
will monitor the actions of each subject group, whereas in the case
study model, the subjects themselves perform the data collection
activities.

This model best represents an organization that wishes to measure its
development practices without changing the process to incorporate
measurement. An outside group will come and monitor the subject groups
to collect the relevant information. The method also works best for
products that are already complete. If a new tool has been established
in one organization, field study teams can monitor groups that use the
new tool and ones that do not in order to determine differences in the
effectiveness of what they produce.

2.2 Historical Methods

An historical method collects data from projects that have already been
completed using existing data. There are four such methods: Literature
search, Legacy data, Lessons learned, and Static analysis.

Literature Search

The literature search represents the least invasive and most passive
form of data collection. It requires the investigator to analyze the
results of papers and other documents that are publicly available. This
can be useful to confirm an existing hypothesis or to enhance the data
collected on one project with data that has been previously published
on similar projects (e.g., meta-analysis [6]).

This inexpensive method places no demands on a given project and
provides information across a broad range of domains. However, a major
weakness with a literature search is selection bias or the tendency of
researchers, authors, and journal editors to publish positive results.
Contradictory results often are not reported, so a meta-analysis of
previously published data may indicate an effect that is not really
present if the full set of observable data was presented.

Quantitative data is often lacking due to the proprietary nature of
much of this information. Understanding the environment of the
published experiment is crucial for interpreting the results, and such
an understanding is often lacking.

Study of Legacy Data

We often want to understand a previously completed project in order to
apply that information on a new project under development. In this
method we consider the available data to include all artifacts involved
in the product. These artifacts can include the source program,
specification, design, and testing documentation, as well as data

9

collected in its development. We assume there is a fair amount of
quantitative data available for analysis. When we do not have such
quantitative data, we call the analysis a lessons learned study
(described later). We will also consider the special case of looking at
source code and specification documents alone under the separate
category of static analysis.

Study of legacy data can be called a form of software archaeology as we
examine existing files trying to determine trends. Data mining is
another term often used for parts of this work as we try to determine
relationships buried in the collected data. Here we are not encumbered
by an ongoing project, so costs, schedules, and the needs for delivery
of a product are not involved in this activity. All interactions with
the project artifacts are passive and are not bound by the real-time
pressures of delivering a finished product according to some
contractual schedule. Much like a case study, each experiment will be
unique and it will be difficult to compare one project with another due
to great variability in the availability of the collected information.

Study of Lessons-learned

Lessons-learned documents are often produced after a large industrial
project is completed. A study of these documents often reveals
qualitative aspects which can be used to improve future developments.
If project personnel are still available, it is possible to interview
them to understand the effects of methods used.

Such data is severely limited. This form of project may indicate
various trends, but cannot be used for statistical validity of the
results. Unfortunately, lessons-learned documents are often “write
only,” and the same comments about what should have been done is
repeated in each successive document. We never seem to learn from our
previous mistakes.

Static Analysis

We can often obtain needed information by looking at the completed
product, which we call the static analysis method. This is a special
case of studying legacy data except that we centralize our concerns on
the product that was developed, whereas legacy data also included
development process measurement. In these cases, we analyze the
structure of the product to determine characteristics about it.
Software complexity and data flow research fit under this model. For
example, since we do not fully understand what the effective
measurements are, the assumption is made that products with a lower
complexity or simple data flow will be more effective. We examine the
product to learn if its complexity value is lower because of the
development method used.

This method is generally a favorite in the academic world, but it is
difficult to show that a model's quantitative definition relates
directly to the attribute of interest. Program size, for example, is
often used as a measure of program complexity, yet numerous studies

10

have shown that lines of code is only marginally related to such
complexity.

2.3 Controlled Methods

A controlled method provides for multiple instances of an observation
in order to provide for statistical validity of the results. This is
the more classical method of experimental design in other scientific
disciplines. We consider four such methods: Replicated, Synthetic
environment, Dynamic analysis, and Simulation.

Replicated Experiment

In a replicated experiment several projects (i.e., the subjects) are
staffed to perform a task in multiple ways (i.e., the treatments).
Control variables are set (e.g., duration, staff level, methods used)
and statistical validity can be more easily established than the case
study previously mentioned.

In a replicated experiment, a given task is replaced by another task
(e.g., replace Ada by C++, eliminate walkthroughs, add independent
verification and validation). Several treatments are formed that
implement products using either the old or new task. Data is collected
on both approaches, and the results are compared.

This represents the “classical” scientific experiment. If there are
enough replications, statistical validity of the method under study may
be established.

The cost of this form of experiment limits its usefulness. Industrial
programmers are expensive and even a small experiment may represent 6
months to a year of staff time. Since we need about 20 to 40
replications to ensure good statistical validity of our results, the
total costs for such an experiment can be enormous. Replications are
often limited to at most 2 to 4, which greatly increases the risk that
the results cannot be duplicated elsewhere.

The effects of performing a replicated experiment among human subjects
(i.e., the development team) perturb the experiment. Since the various
groups know that they are part of a replicated experiment, they may not
take their task as seriously as if they were developing a product that
would be delivered to a customer. This could have an adverse impact on
their care and diligence in performing their tasks, which of course
would have an impact on the observed results.

We could avoid this by having each replication represent a slightly
different product, each one required by a different customer. This then
becomes a variation of the case study method described earlier.

Synthetic Environment Experiments

11

In software development, projects are usually large and the staffing of
multiple projects (e.g., the replicated experiment) in a realistic
setting is usually prohibitively expensive. For this reason, most
software engineering replications are performed in a smaller artificial
setting, which only approximates the environment of the larger
projects. We call these synthetic environment experiments.

Such experiments often appear as a human factors study investigating
some aspect in system design or use. Typically, a large group of
individuals (e.g., students or industrial programmers) work at some
task for several hours, leading to data being collected on this task. A
relatively small objective is identified and all variables are fixed
except for the control method being modified. Personnel are often
randomized from a homogeneous pool of subjects, duration of the
experiment is fixed, and as many variables as possible are monitored.

A task involving a large group of 20 or 30 people cannot be effectively
tested in an experimental setting involving only 2 or 3programmers. The
scaling-up problem of transferring a result covering a few subjects may
not apply to large groups of individuals. Often such experiments are
conducted because they are easy to conduct and lead to statistical
validity. We often lose sight of the fact that the experiment itself
has little value since it doesn't relate to problems actually
encountered in an industrial setting.

Dynamic Analysis

The controlled methods we have so far discussed generally evaluate the
development process. We can also look at controlled methods that
execute the product itself. We call these dynamic analysis methods.
Many instrument the given product by adding debugging or testing code
in such a way that features of the product can be demonstrated and
evaluated when the product is executed.

For example, a tool which counts the instances of certain features in
the source program (e.g., number of if statements) would be a static
analysis of the program, whereas a tool which executed the program to
test its execution time would be a dynamic analysis method.

The major advantage of this method is that scripts can be used to
compare different products with similar functionality. The dynamic
behavior of product can be determined often without a need to
understand the design of the product itself. Benchmarking suites are
examples of dynamic analysis techniques. These are used to collect
representative execution behavior across a broad set of similar
products.

There are two major weaknesses with dynamic analysis. One is the
obvious problem that if we instrument the product by adding source
statements, we may be perturbing its behavior in unpredictable ways.
Also, executing a program shows its behavior for that specific data
set, which cannot often be generalized to other data sets. The
tailoring of performance benchmarks to favor one vendor's product over
another is a classic example of the problems with this method of data
collection.

12

Simulation

Related to dynamic analysis is the concept of simulation . We can
evaluate a technology by executing the product using a model of the
real environment. In this case we hypothesize, or predict, how the real
environment will react to the new technology. If we can model the
behavior of the environment for certain variables, we often can ignore
other harder-to-obtain variables and obtain results more readily using
a simulated environment rather than real data.

By ignoring extraneous variables, a simulation is often easier, faster,
and less expensive to run than the full product in the real
environment. We can often test a technology without the risk of failure
on an important project, and we will not be adversely affected by the
needs of project personnel to complete a project.

The real weakness in a simulation is a lack of knowledge of how well
the synthetic environment we have created models reality. Although we
can easily obtain quantitative answers, we are never quite certain how
relevant these values are to the problem we are trying to solve.

2.4 Which model to use

When we design an experiment (e.g., to test a new tool), data can be
collected that conforms to several of our data collection models. The
sidebar shows how we can collect data evaluating a tool that addresses
each of our collection models. In fact, for just about any technology,
a data collection method can be devised to collect relevant data on
that technology that conforms to any one of the twelve given data
collection methods.

Our twelve methods are not the only way to classify data collection,
although we believe it is the most comprehensive. For example, Basili
[3] calls an experiment in vivo, at a development location, or in
vitro, in an isolated controlled setting (e.g., in a laboratory). A
project may involve one team of developers or multiple teams, and an
experiment may involve one projector multiple projects. This permits 8
different experiment classifications. Kitchenham [4] considers 9
classifications of experiments divided into 3 general categories: a
quantitative experiment to identify measurable benefits of using a
method or tool, a qualitative experiment to assess the features
provided by a method or tool, and performance benchmarking.

Sidebar. Data collection example .

The following represent uses of the evaluation methods to test a new
tool:

• Project monitoring. Use the new tool in a project and collect the
usual accounting data from the project.

13

• Case study. Use the tool as part of new development; Collect data to
determine if the developed product is easier to produce than similar
projects in the past.

• Assertion. Use the tool to test a simple 100 line program to show
that it finds all errors.

• Field study. Distribute the tool across several projects; Collect

data on the impact that the tool had.

• Literature search. Find other published studies that analyze the
behavior of similar tools.

• Legacy data. Find a previously-completed project that collected data

on using the tool; Analyze this data to see if tool was effective.

• Lessons learned. Find a completed project that used this tool;
Interview participants to see if tool had an impact on the project.

• Static analysis. Use a control flow analysis tool to see if one

design method results in fewer logic errors than another design
method.

• Replicated experiment. Develop multiple instances of a module both
using and not using the tool; Measure differences.

• Synthetic. Have 20 programmers spend two hours trying to debug a
module, half using the tool and half using other techniques.

• Dynamic analysis. Execute a program with a new algorithm and compare
its performance with the earlier version of the program.

• Simulation. Generate a set of data points randomly and then execute
the tool and another tool to determine effectiveness in finding
errors in a given module.

 End Sidebar

3. Model Validation

In order to test whether the classification presented here reflects the
software engineering community's idea of experimental design and data
collection, we examined software engineering publications covering
three different years: 1985, 1990, and 1995. We looked at each issue of
IEEE Transactions on Software Engineering (a research journal), IEEE
Software (a magazine which discusses current practices in software
engineering), and the proceedings from that year's International
Conference on Software Engineering (ICSE). We classified each paper
according to the data collection method used to validate the claims in
the paper. For completeness we added the following two classifications:

14

1. Not applicable. Some papers did not address some new technology, so
the concept of data collection does not apply (e.g., a paper
summarizing a recent conference or workshop).

2. No experiment. Some papers describing a new technology contained no
experimental validation in it.

Table 2. Classification of 612 evaluated papers.

1985 1990 1995 Total
Method ICSE Soft. TSE ICSE Soft. TSE ICSE Soft. TSE
Not applicable 6 6 3 4 16 2 5 7 1 50
No experimentation 16 11 56 8 8 41 10 3 14 167
Replicated 1 0 0 0 0 1 1 0 3 6
Synthetic 3 1 1 0 1 4 0 0 2 12
Dynamic analysis 0 0 0 0 0 3 0 0 4 7
Simulation 2 0 10 0 0 11 1 1 6 31
Project monitoring 0 0 0 0 1 0 0 0 0 1
Case study 5 2 12 7 6 6 4 6 10 58
Assertion 12 13 54 12 19 42 4 14 22 192
Field study 1 0 1 0 0 1 1 1 2 7
Literature search 1 1 3 1 5 1 0 3 2 17
Legacy data 1 1 2 2 0 2 1 1 1 11
Lessons learned 7 5 4 1 4 8 5 7 8 49
Static analysis 1 0 1 0 0 0 0 0 2 4

Yearly totals 56 40 147 35 60 122 32 43 77 612

In our survey, we were most interested in the data collection methods
employed by the authors of the paper in order to determine
comprehensiveness of our classification scheme. Therefore, we tried to
carefully distinguish between data used as a demonstration of concept
(which may involve some measurements as a “proof of concept,” but not a
full validation of the method) and a true attempt at validation of
their results. Therefore, as in the Tichy study, a demonstration of a
technology via an example was considered part of the analytical phase.
The paper had to go beyond that demonstration to show that there were
some conclusions about the effectiveness of the technology before we
considered that the paper had an evaluative phase.

The raw data for the complete study involved classification of 612
papers that were published in 1985, 1990, and 1995. This data is
presented in Table 2.

3.1 Quantitative Observations

Figure 1 graphically presents the classification of the 562 papers that
we classified (e.g., the 612 papers less 50 that were judged to be “not
applicable”). The most prevalent validation models appear to be lessons
learned and case studies, each at a level of close to 10%. Assertions
were close to one-third of the papers. Simulation was used in about 5%

15

of the papers, while the remaining techniques were each used in about
1% to 3% in the papers.

About one-third of the papers had no experimental validation; however,
the percentages dropped from 36% in 1985 to 29% in 1990 to only 19% in
1995. Improvement in this important category seems to be occurring.

Classification of 612 software engineering papers

0 5 10 15 20 25 30 35 40

No experimentation

Replicated

Synthetic

Dynamic analysis

Simulation

Project monitoring

Case study

Assertion

Field study

Literature search

Legacy data

Lessons learned

Static analysis

V
al

id
at

io
n

 m
et

h
o

d

Per cent papers

1995 (152 papers)

1990 (217 papers)

1985 (243 papers)

Figure 1. Use of Validation Methods in Published Papers.

Tichy, in his study, classified all papers into formal theory, design
and modeling, empirical work, hypothesis testing, and other. His major
observation was that about half of the design and modeling papers did
not include experimental validation, whereas only 10% to 15% of papers
in other engineering disciplines had no such validation.

Many empirical work papers really are the result of an experiment to
test a theoretical hypothesis, so it may not be fair to ignore those
papers from the set of design and modeling papers. If we assume the 25
empirical work papers in Tichy's study all have evaluations in them,
then the percent of design and modeling papers with no validation drops
from 50% to about 40% in Tichy's study.(These numbers are approximate,
since we don't have the details of his raw data.) This number is
consistent with our results.

We have started to investigate how these numbers compare to other
disciplines. We have looked at various papers in physics, economics and
the behavioral sciences. This data is reported elsewhere [10]. What we
are finding, however, is that papers in archival research journals

16

(such as the Transactions) does not differ materially from other
archival journals in the so-called “hard sciences.”

17

3.2 Qualitative Observations

We also offer the following observations made during the classification
of the 612 papers:

1. Authors often fail to clearly state the goals, or the value-added,
of the method or tool they have developed.

2. Authors fail to state how they propose to validate their hypotheses.
We had to inspect each paper carefully in order to determine, as
best we could, what the authors were intending to show in the
various sections called ”Validation” or “Experimental results.”
Often such a section heading was not present and we had to determine
if the data so presented could be called a validation.

3. Terms are used very loosely. Authors would use the term “case study”
in a very informal manner, and even words like “controlled
experiment” or “lessons learned” were used indiscriminately. We
attempted to classify each paper by what the authors actually did,
not what they called it. It is our hope that our paper can have some
effect on formalizing these terms somewhat.

There is one major caveat, however, in understanding the data
presented. The papers that appear in a publication are influenced
greatly by the editor of that publication or program committee in the
case of conferences. In our study, the editors and program committees
from 1985, 1990,and 1995 were all different. This is then a confounding
factor in our analysis process that may have affected our outcome.
While our goal is to understand how research in software engineering is
validated, the only way to discover such research is via the
publications on software engineering, which leads to this dilemma.

4. Conclusion

In a 1992 report from the U. S. National Research Council [6], the
Panel on Statistical Issues and Opportunities for Research in the
Combination of Information recommended:

“The panel urges that authors and journal editors attempt
to raise the level of quantitative explicitness in the
reporting of research findings, by publishing summaries of
appropriate quantitative measures on which the research
conclusions are based …”

Such problems are well-known in the software engineering world, and
surveys such as the Tichy survey and our own tend to validate the
conclusion that the software engineering community can do a better job
in reporting its results.

On the other hand, we need to collect accurate data and avoid British
economist Josiah Stamp's lament:

18

“The government is very keen on amassing statistics --
they collect them, add them, raise them to the nth power,
take the cube root and prepare wonderful diagrams. But
what you must never forget is that every one of those
figures comes in the first instance from the village
watchman, who just puts down what he damn pleases.”

In this paper we have addressed the need to collect both product and
process data in order to appropriately understand the development of
software. We have developed a classification model that divides data
collection activities into twelve methods. These twelve methods are
grouped into three major categories of observational methods which look
at contemporary data collection, historical data collection of
completed projects, and controlled methods, which apply the scientific
method in a controlled setting.

Via our analysis of some 600 published papers we observed:

1. Too many papers have no experimental validation at all (about one-
third), but fortunately, this number seems to be dropping.

2. Too many papers use an informal (assertion) form of validation.
Better experimental design needs to be developed and used.

3. Lessons learned and case studies each are used about 10% of the
time; the other techniques are used only a few percent at most.

4. Terminology of how one experiments is sloppy. We hope a
classification model can help to encourage more precision in the
describing of empirical research.

More needs to be done. We have only started to look at the role of
theoretical papers (which have no validation) and need to validate such
results. We want to characterize the experimental models relative to
the types of data they can produce, and the types of data industry
needs to select technology. Our goal is to enhance researchers'
capability to report on software engineering experimentation to assist
industry in selecting new technology.

Acknowledgment

We acknowledge the help of Dale Walters of NIST who helped to classify
the 600 papers used to validate the classification model described in
this paper.

19

References

[1] Adrion W. R., Research methodology in software engineering, Summary
of the Dagstuhl Workshop on Future Directions in Software Engineering ,
W. Tichy (Ed.), ACM SIGSOFT Software Engineering Notes , 18, 1, (1993).

[2] Basili V. R. and H. D. Rombach, The TAME project: Towards
improvement-oriented software environments, IEEE Trans. on Soft. Eng.
14, 6 (1988) 758-773.

[3] Basili, V. R., The Role of Experimentation: Past, Present,
Future,(Keynote presentation), 18 th International Conference on Software
Engineering, Berlin, Germany, March, 1996.

[4] Kitchenham B. A., Evaluating software engineering methods and tool,
ACM SIGSOFT Software Engineering Notes , (January, 1996) 11-15.

[5] Li N. R. and M. V. Zelkowitz, An Information Model for Use in
Software Management Estimation and Prediction, Second International
Conference on Information and Knowledge Management, Washington, DC,
November, 1993, 481-489.

[6] National Research Council, Combining Information: Statistical
Issues and Opportunities for Research , Panel on Statistical Issues and
Opportunities for Research in the Combination of Information, National
Academy Press, Washington, DC, 1992.

[7] Pfleeger S. L., Experimental design and analysis in software
engineering, Annals of Software Engineering 1 (1995) 219-253.

[8] Tichy W. F., P. Lukowicz, L. Prechelt, and E. A. Heinz,
Experimental evaluation in computer science: A quantitative study , J.
of Systems and Software 28, 1 (1995) 9-18.

[9] Zelkowitz M. V., Yeh R. T., Hamlet R. G., Gannon J. D., Basili V.
R., Software engineering practices in the United States and Japan, IEEE
Computer 17, 6 (1984) 57-66.

[10] Zelkowitz M. and D. Wallace, Experimental validation in software
engineering, Information and Software Technology , November, 1997.

