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 Abstract 
 
In developing information technology, you want assurance that systems are secure 
and reliable. Correctness is an attribute that one strives for in order to 
achieve those goals, but you cannot have assurance or security without 
correctness. We discuss methods used to achieve correctness, focusing on 
weaknesses and approaches that management might take to increase belief in 
correctness. Formal methods, simulation, testing, and process modeling are 
addressed in detail. Structured programming, life-cycle modeling like the spiral 
model, use of CASE tools, use of formal methods applied informally, object- 
oriented design, reuse of existing code, and process maturity improvement are 
also mentioned. Reliance on these methods involves some element of belief since 
no validated metrics exist. Suggestions for using these methods as the basis for 
managerial decisions conclude the paper. 
 
1. Introduction  
 
"Engineers today, like Galileo three and a half centuries ago, are not 
superhuman. They make mistakes in their assumptions, in their calculations, in 
their conclusions. That they make mistakes is forgivable; that they catch them 
is imperative. Thus it is the essence of modern engineering not only to be able 
to check one's own work, but also to have one's work checked and to be able to 
check the work of others." [Petroski, 1985] 
 
Assurance is defined1 as "the confidence that may be held in the security 
provided by a Target of Evaluation." Informally, assurance is a "warm fuzzy 
feeling" that the system can be relied upon to reduce residual risk to the 
predetermined level. Without delving into psychology, we observe that 
effectiveness and correctness both contribute to assurance. Effectiveness is 
determined by analysis of the specifications of the functional requirements; the 
environment in which the system will be used, the risks, threats, and 
vulnerabilities; and all the countermeasures, including physical, 
administrative, procedural, personnel, and technical. The system is considered 
effective if the result of this analysis is an acceptable residual risk. 
Correctness is determined by comparing the implementation of the countermeasures 
with their specification. The system is considered correct if the implementation 
is sufficiently close to the specification. Note that this definition of 
correctness is compatible with the concept of risk management and is closer to 
the concept of trustworthy than to error-free. 
 
This paper shows how correctness can be established. All known methods 
contributing to correctness have shortcomings that make it impossible to 
establish correctness beyond reasonable doubt. That is, establishing correctness 
is a matter of belief, not proof. Under conditions of belief, we caution fiscal 
prudence in resources invested in assuring correctness. The major methods 
addressed in this paper are mathematical models, simulation, testing, process 
models and procedures. Minor methods, called silver bullets, include structured 
programming, the spiral model, Computer Aided Software Engineering (CASE) tools, 



 

 

formal methods applied informally, object-oriented (OO) programming, reusing 
existing code, and process maturity. Cost benefit is offered as a measure for 
selecting which belief system to embrace. We recommend hedging one's investments 
by using more than one method. 
 
Security-critical information technology (IT) systems2 are extremely dependent 
on correctness. In systems involving human life and safety, correctness is 
paramount. A security-critical IT system must do exactly what is identified in 
its specification and not do anything that is not so specified. Correctness of 
software always has to be with respect to a specification.  
 
Various methods may be used to demonstrate correctness, but all are less than 
perfect and involve some element of belief in relying on the results of using 
that method. That is, it cannot be proven that a method is "good" or "better." 
The methods are complementary in contributing to correctness itself as well as 
in contributing to belief in correctness. There is a growing consensus that, to 
say the least, no one technique can provide adequate assurance (see, for 
example, [Butler, 1993]). David Parnas [Parnas, 1990], among others, has 
suggested that an "assurance tripod" is required: the combination of rigorous 
testing, evaluation of the process and personnel used to develop the system, and 
a thorough review and analysis of various products produced during development. 
In the pragmatic end, managerial judgment determines resource allocation to 
correctness and assurance. In this paper, we focus on practical product 
correctness and the various problems one has in achieving this correctness.  
 
We should learn from branches of natural science and engineering that have been 
trying to understand complex systems far longer than computers have existed. One 
important objective is to recognize when simplifying assumptions are valid and 
when they are dangerous. One of the authors learned as a sophomore that "the 
essence of engineering is to make enough assumptions so that you can solve the 
problem, without assuming the problem away." 
 
Let us consider whether formal theories of programming are good approximations 
of real programs executing on real computers. Although the theories are 
relatively simple, applying them to realistic programs vastly complicates the 
model. You cannot even assume simple axioms like "For all integers i, i+1>i" on 
fixed wordsize computers since integer i may "overflow" and have an unspecified, 
negative, zero, or the same value, depending upon the particular hardware 
executing the program. Mathematical models of computer programs generally do not 
accurately represent the subtlety of programs in an environment (i.e., execution 
on real hardware). In some sense, the mathematics of computer modeling belongs 
in the realm of applied rather than pure mathematics. When we use Ohm's law, 
Kirkoff's rules, etc., to design an electronic circuit or use Newton's laws to 
predict the orbit of a satellite, no one is saying that they have "proved" that 
the circuit works or that the satellite will be exactly where they said it would 
be. By the same token, when we model a computer program using some method such 
as Hoare's [Hoare, 1969] we then have some confidence (maybe little) that the 
program when executed will behave much as we predict (but perhaps not exactly 
like we predict-e.g., integer overflow). This requires that even simple programs 
have complex proofs in order to show that the mathematical properties of the 
program behave as desired. Simple formalisms for programs are too complex to 
accurately represent most programs in execution on physical machines. 
 
This insight shows that formalisms in programming are very different from 
formalisms in the natural sciences. In the natural science, you have a theory 
(e.g., Laws of Motion) that is a good approximation to the physical interactions 
among objects. In physics, a sufficiently accurate approximation gives useful 



 

 

results. In contrast, for programming, you must approximate the program and the 
hardware (e.g., assume integers are infinite) in order to have any relationship 
to the formal model. A key difference is lack of continuity. In programming, 
disastrous examples of integer overflow and other discontinuities show that the 
supposed approximations are not necessarily close. Use of discrete logic to 
model these leads to expressions of enormous complexity [Parnas, 1985]. 
Alternatively, models could incorporate known characteristics and limitations of 
the computer to increase their veracity. We do not wish to compare good models 
of physics with bad models of computers. Newton's laws do not work well for 
objects at near the speed of light or for objects that are not in inertial 
frames of reference. Likewise, a Hoare model of computer system behavior is a 
poor representation if the integer values are at or near the overflow. One would 
need to modify the model to accommodate the overflow behavior. Once having done 
so, the model would be better. 
 
Several methods have been developed and been accepted over time to demonstrate 
the correctness of computer programs. None of these heuristics are true in the 
sense that they portray absolute infallibility of the method. Each has 
proponents and detractors. In the next section, we describe these methods, 
explore ways in which each accomplishes its task, and draw some conclusions from 
this analysis.  
 
2. Correctness methods  
 
Several techniques are regularly employed to show that a computer program does 
exactly what it is supposed to do and nothing else. The first two described 
below, formal methods and simulation, analyze the program and derive properties 
about it. The third, testing, experiments with program behavior, perhaps using 
some information derived by application of the first two techniques. The fourth 
technique, process models and procedures, looks at the development process 
itself under the assumption that good development practices result in good 
software. 
 
Each method is described briefly, emphasizing its advantages, disadvantages, and 
contributions to our belief system. A common distraction with all methods is the 
complexity of execution. The steps, processes, or manipulations that constitute 
the practice of the method can be so overwhelming that perspective is lost. We 
agree with Hamming [Hamming, 1962] that "the purpose of computing is insight" 
and that it is difficult to retain perspective and insight in the face of 
complexity. It is very easy to get caught up with all the mechanics of employing 
a method so that in practice the mechanics get emphasized at the expense of 
understanding.  
 
"When you can measure what you are speaking about, and express it in numbers, 
you know something about it; but when you cannot measure it, when you cannot 
express it in numbers, your knowledge is of a meager and unsatisfactory kind" 
[Kelvin, 1881]. Metrics of correctness need to be developed and applied to 
individual methods and combinations of methods. We need to replace belief with 
analysis if at all possible. While early work on the Capability Maturity Model 
[Paulk, 1993] and the Experience Factory [Basili, 1992] show that we may develop 
such metrics, more needs to be done.  
 
2.1 Formal Methods 
 
The use of formalisms stems from two related observations: natural language 
tends to be imprecise, and in achieving precision, there is the potential for 
automation. Mathematical notation has the advantage of precision and is 



 

 

associated with rigorous, logical thinking that assists in reducing ambiguity. 
In principle, formal models of IT systems can support all phases of the system 
development process -articulation of policy for use, high-level architecture, 
design, and implementation. Today, formal models of security policy help perfect 
understanding and development, especially of new policies. While formal 
specifications are used in Europe, they have not made much of an impact in the 
United States. No language is likely to be a cure- all in achieving higher 
levels of abstraction, and more natural models of problem spaces, for all 
problem spaces. 
 
In discussing formal methods, we have to be sure to differentiate them from 
formalized methods, such as Computer Assisted Software Engineering (CASE) tools, 
structured analysis, and other mechanized methods for developing source programs 
[Rushby, 1993]. In using formal methods, one traditionally begins with a formal 
description of the specification of a software system according to some 
underlying mathematical model and the realization of that specification as a 
concrete design or source code implementation. (Other possibilities are to start 
with a description of how the system is to be used, or to let an automated 
deduction system participate directly in the construction of later design and 
implementation stages.) Using mathematical principles, one shows that the 
program agrees with the model. For example, axiomatic verification, perhaps the 
oldest of the formal techniques, assumes we have a program S, a precondition 
(specification) P that is true before the execution of S, and a postcondition 
(output specification) Q. We need a proof that demonstrates: (1) the 
relationship among S, P, and Q that determines the effect program S has on P to 
assure that Q will be true after execution terminates, and (2) program S does 
indeed terminate if P is true initially [Hoare, 1969]. If we derive a set of 
axioms for each statement type in our language (e.g., rules for describing the 
behavior of the if statement, the while statement, the assignment statement), 
then we have tied program correctness to the problems of generating correct 
mathematical proofs. But we still have not proved that the program when executed 
on a specific computer is correct because of the very problems raised earlier. 
At best we have shown that the formal description of the program satisfies its 
specification (i.e., produces the given post condition when the precondition is 
true) [Fetzer, 1988]. Our confidence in the correctness of the program is 
dependent on our confidence that our formal model is an accurate representation 
of the target computer. 
 
As described previously, when we use formal models we need to suppress details 
to make the models tractable. Unfortunately, many of the details suppressed in 
the formal models are implementation dependent and security relevant. Formal 
models are losing ground to the complexity of networked and distributed systems. 
It is difficult to scale up the traditional use of formal methods to large 
complex systems. While they may appear to work satisfactorily on small "toy" 
problems, there has been little evidence that they scale up very well [Parnas, 
1985]. 
 
"Larger examples are necessary to demonstrate how these concepts scale up" 
[Youngblut, 1989, p. 58]. Formal models are often applied to complex systems 
combined with other belief systems. For example, variants of the Bell-LaPadula 
security policy model [Bell, 1974] are often cited as the basis of operating 
system security, but the actual implementations also include security- relevant 
processes, called trusted or privileged, that are not formally modeled. Belief 
that security is preserved after introduction of these processes is often 
established by non- formal means. Practitioners of formal modeling sometimes 
appear to forget about the assumptions and simplifications that were made to 
make their models tractable and fail to caveat the applicability of their 



 

 

results to the real world. This is an error on the part of the practitioners. A 
great deal of the simplifying assumptions are made because the modelers simply 
do not know how to model some of these features (although many are certainly 
susceptible to being modeled), or the resources available do not permit modeling 
the necessary details. Perhaps the practitioners are not experienced enough in 
this kind of mathematics. 
 
Within the limits imposed by the simplifications and assumptions made for the 
sake of tractability, formalism can be used both to determine correctness of the 
implementation and adherence of the system to certain properties. We can prove 
that a given procedure must return a certain value and also show that certain 
policies are never violated. Many observers believe that formal policy models 
have their maximum benefit in removing inconsistencies, ambiguities, and 
contradictions in the natural language policy statement. The process of 
formalizing the policy aids in clarifying the policy. This process then has the 
secondary benefit of making a clearer statement of policy to the implementors.  
 
Although formal methods are based on mathematical proofs, we must realize that 
even mathematical proofs may have flaws. "Outsiders see mathematics as a cold, 
formal, logical, mechanical, monolithic process of sheer intellection... [but] 
Stanislaw Ulam estimates that mathematicians publish 200,000 theorems every 
year. A number of these are subsequently contradicted or otherwise disallowed, 
others are thrown into doubt, and most are ignored. Only a tiny fraction come to 
be understood and believed by any sizable group of mathematicians" [DeMillo, 
1979, p. 272]. Although mathematicians do not like to admit it, correctness can 
be likened to a social process-it is only the test of time where no flaw has 
been discovered that builds our confidence in the ultimate truth of a theorem. 
All scientific processes have flaws. Petroski [Petroski, 1985] argues that 
failure is an important part of engineering design. It is only when things fail 
that we understand how to make them better. How well would we be designing 
bridges if none ever collapsed? Either we have overbuilt them to a point of 
economic stupidity, or we have never stressed them sufficiently. We hope that by 
our continuing (unsuccessful) attempts to model computers, we are learning 
something.  
 
2.2 Simulation 
 
Simulation is the development of a simplified version of a system's 
specification by eliminating non-critical attributes to develop a system that 
exhibits relevant properties. By ignoring certain properties, it is often 
possible to quickly and inexpensively build simpler versions of a system. Using 
this simulation, security-related principles can be more readily developed and 
examined. This increases our belief in the ultimate specification since we have 
demonstrated the existence of an implementation that already has the desired 
properties. 
 
While we can simulate a system to test the security policies, the interaction of 
these policies with the assumed-away specifications of the complete system 
severely lowers our belief in the correctness of the overall system with respect 
to security. By definition, one is "abstracting away" non-essential aspects of 
the system when doing simulation and modeling-yet it is very hard to develop 
"non-interference proofs" for those missing aspects, so that you have confidence 
that they really won't change the behavior of interest in the "real" system. It 
is only by testing (and/or formalism) applied to the complete system that adds 
to our belief in this product-although the existence of a simulation that 
implements our security policy does provide a sort of existence proof on policy 



 

 

and increases our confidence (i.e., belief) in a complete implementation. (See 
spiral model discussion, below.)  
 
2.3 Testing 
 
Testing demonstrates behavior by executing a system using a selected set of data 
points to show that the system executes correctly on those points. The 
assumption is made that if the set of data points is chosen appropriately, then 
the behavior of the system for most data points will be analogous to the 
selected data points. If we believe that the selected data points are 
representative of the domain of data in which we interested, we have confidence 
in the correctness of our implementation. Choosing the selected data points and 
the best method of testing our program are our major decision steps toward 
determining our belief in the correctness of this system. Knowledge gained from 
formal methods, code analysis, and simulation can help focus the selection. As 
pointed out by Leveson [Leveson, 1992], "testing researchers have defined 
theoretical ways of comparing testing strategies both in terms of cost and 
effectiveness (for example, [Weyuker, 1991]), formal criteria for evaluating 
testing strategies (for example, [Goodenough, 1975]), and axioms or properties 
that any adequacy criterion (rule to determine when testing can stop) should 
satisfy (for example, [Weyuker, 1986])." Analytic results can also indicate when 
statistically significant measurement results have been obtained [Mamrak, 1979]. 
 
Testing methods can be divided into functional, performance, failure-mode, and, 
for security, penetration. Functional testing includes testing against a catalog 
of flaws previously discovered in this or other systems. The major thrust of 
security testing is in penetrating (i.e., violating the security policy), 
thereby measuring the resistance to anticipated threats. The presence of 
anticipated threat actions, possibly by a malicious adversary, distinguishes the 
security concerns in a system. 
 
Testing functional specifications is usually achieved by black- box testing, in 
which the tester only has access to the specifications of the program, while 
testing specific program behavior by understanding the design is achieved by 
glass-box (a.k.a. white-box) testing, in which the tester has access to the 
internal source code of the program. Security testing of high-assurance systems 
proceeds with extensive documentation of design and implementation. Varying 
degrees of assurance are obtained according to the information available to the 
testers, including security kernel code, design documentation, and formal 
models. The value of penetration testing depends on the experience of the 
testers and the methodology employed. IV&V (Independent verification and 
validation), where a group independent from the developers is charged with 
testing a system, is sometimes effective in finding errors that developers who 
"know" the source program sometimes overlook. However, IV&V is expensive and 
many applications, especially ones without high reliability requirements, do not 
benefit from this added level of assurance [Page, 1985].  
 
The classical example by Dijkstra shows that exhaustive testing cannot prove 
correctness of any implementation. To prove the correctness of "a+b=c" on 32-bit 
computers would require 232x232 = 264 or over 1019 tests. At a rate of even 108 
tests per second, that would require 1011 seconds or over 3,000 years. Perhaps 
we should ask ourselves whether we really have so little understanding of the 
operation of a computer that we have to test addition, for example, for all 
possible addends to be convinced that the addition function is working 
correctly? Under what conditions can we state a general argument that works in 
the face of overflow? Although it is recognized that testing cannot be 



 

 

exhaustive, testing has a very strong intuitive appeal and constitutes a very 
strong basis for belief in correctness. 
 
Testing always involves comparing the actual results of execution with 
anticipated results. One way to capture anticipated results is to test an 
executable specification of a prototype. Once this is done, it is possible to 
automatically execute the system being tested and its specification in parallel, 
and to automatically compare the results, thereby greatly increasing the number 
of feasible test cases [Taylor, 1985].  
 
2.4 Process Models and Procedures 
 
All of the previous techniques depend upon subjecting a program to one of the 
discussed methods to increase confidence that the program exhibits correct 
behavior. However, as we have often stated, this is extremely difficult to do. 
As an alternative, perhaps it is easier to understand the mechanisms used in 
developing the program under the belief that correct methods yield correct 
programs. The idea underlying process models is that understanding what you are 
doing is a necessary step to improvement. By using a simple, well understood 
process to develop software, we have belief that the ultimate product best meets 
our needs. Two process models currently enjoy favor: waterfall and spiral. The 
United States Department of Defense (DoD) standards imply (but do not require) 
use of the former in management of software development. 
 
The waterfall model [Royce, 1970] conceives of software development as a linear 
process based upon a set of deliverable artifacts. There are easily recognized 
milestones between steps in the process. Although the mechanisms of the process 
are generally obscure-only the results of the process are visible. Therefore, 
the waterfall model uses these products-a specifications document, a design 
document, a source file, and the results of testing, for example. These 
milestones can support a management strategy of schedules and reviews. 
Recognition that the process is not perfect led to the introduction of feedback 
paths in the model. If drawn as a waterfall of steps, the feedback paths suggest 
salmon swimming upstream. The feedback paths represent knowledge gained in 
latter steps that affect activities and decisions made earlier. It may be 
necessary to adjust, or even abandon, earlier work as a consequence of feedback. 
In practice, schedules tend to not allow for such corrective action. Non-
technical project managers are often determined to meet their schedules, no 
matter what the consequences [Stillman, 1993].  
 
Because of all of these deficiencies, belief in the waterfall model as a useful 
methodology for developing software that satisfies its specification has been 
slowly decreasing, and an alternative spiral model has been gaining favor 
[Boehm, 1988]. The spiral model emphasizes the process of developing software 
rather than the resulting products. It is also called a risk- reducing model, 
since the basic premise is to develop and prototype a solution, evaluate the 
risks of adding specifications, and repeat the process. Each cycle of the model 
creates a more complex version of the system, with the ultimate prototype being 
the final system itself. At each stage, we use Occam's razor to simplify our 
solution, we make the process of development as visible as possible, and we try 
to quantify the risks involved in continuing development. Thus, our belief in 
the solution should be higher than with the hidden processes inherent in the 
waterfall model. The spiral model emphasizes the repetition of basic activities 
at progressive stages of a project. The exact activities change as the project 
matures, but such activities as design, implementation, testing, evaluation, and 
planning are related. Changing requirements are more easilly accomodated. The 
cost is represented by the radial distance in a polar coordinate system and the 



 

 

activities occur at a specified polar angle. Progress is assumed proportional, 
or at least related to, cost. While the theory of the spiral model accommodates 
redesign and backtracking, the imposition of schedules can have exactly the same 
effect as on the waterfall model. 
 
3. Choosing among alternative beliefs 
 
Software engineers promote one technique after another as the "silver bullet" 
[Brooks, 1987] solution to all our problems. This section examines the most 
popular silver bullets. 
 
3.1 Tarnished Silver Bullets 
 
To address correctness in system development, many techniques have been proposed 
as potential solutions (e.g., see [Chang, 1993; Davis, 1993]). All techniques 
involved a measure of belief as groups of professionals argued among themselves 
regarding the appropriateness of their favorite method. None has completely 
provided the warm fuzzy feelings we want : 
 
a. Structured programming (e.g., "goto-less programming" of the 1970s) makes 
programming easy and correct. Twenty years of experience have shown that quality 
has improved, but not to the level initially proposed. There is a relationship 
between the restrictions imposed by using only the appropriate control 
structures and formal verification of the source code produced; however, errors 
still occur in such programs [Zelkowitz, 1990]. 
 
b. The spiral model is superior to the waterfall model. The spiral model was 
an improvement in that it emphasized the process of software development with 
attendant interest in the management, risk evaluation and reduction, and 
prototyping aspects of the process. Note that this is an example of Petroski's 
theses. Because the waterfall methodology has proved inadequate to produce good 
software, a new methodology (spiral) has been introduced. When it is determined 
that the spiral also is inadequate, creative people will develop a new system. 
Since we do not have good measures of correctness, it is difficult to know how 
to make the process better. Note also that the spiral model and the waterfall 
model that it replaced both represent a similar set of practices as actually 
implemented by many organizations.  
 
c. CASE tools will supplement the intelligence lacking in today's 
programmers. Unfortunately, the tools have not added much intelligence and 
today's programmers could still use additional help. Case tools suffer from the 
same problem as the other software we are discussing: they have errors (all 
software has errors), and they are only as smart as their developers. 
 
d. Formal methods applied informally (e.g., languages like VDM and Z) can 
improve the process. While this seems to be true, it has yet to be demonstrated 
that this approach results in the correctness that we need for security-related 
systems. It is not clear that our belief in these specification techniques will 
be high enough to eliminate the need for alternate mechanisms. Nor is it clear 
that our beliefs are the only ones that count. See [MacKenzie, 1992] for a 
discussion of mathematical arguments that qualify as proof in a court of law.  
 
e. Object-oriented (OO) programming and design will replace conventional 
design techniques, and languages that implement such processes (e.g., C++) will 
replace other languages (e.g., Pascal, Ada, FORTRAN). This concept represents 
one of the newer trends in program design. We do not have enough evidence to 
judge the effects of OO design on security. This technique does encapsulate some 



 

 

of the formal data-structuring mechanisms into the programming language; 
however, it must still be observed what effects it will have on overall system 
correctness. (Note that this is just the current version of the traditional 
silver bullet, "Language X will make programming easier." In the 1960s, we had 
COBOL and then PL/I, in the 1970s we had Pascal, in the 1980s we had Ada, and 
now we have C++.). Each language is perceived to have failed in achieving some 
objective. Hence, someone develops a new language to correct the flaws. This 
cycle will probably never end, as it is not likely that any one language will be 
perfect for all applications. 
 
f. Reusing existing code is the solution. Since code proven correct once need 
not be so proven again, one only needs to create a library of reusable 
components. While reusing existing code is an admirable goal, we still do not 
have the technology to implement this process. While we can create write-only 
libraries of reusable components, we have no process available that enables us 
to determine the specifications of an existing library component and whether it 
fulfills the specifications for another application. Current interests in 
domain-specific architectures and faceted classification schemes are both 
attempts at understanding the functionality of reusable components. We reuse 
hardware components all the time, in the sense that we manufacture identical 
copies of circuit packages and other components. Each component conforms to some 
specification of performance and behavior that is described in components 
manuals. Why can't we do something similar with software?  
 
g. Process maturity improvement is today's salvation [Paulk, 1993]. Current 
thinking is that improving only the process without looking at the ultimate 
product being produced is all that is necessary to produce quality software. 
While it should greatly improve the production of software from many 
organizations that currently have no such process, as shown often in the past, 
this is a naive approach to producing correct software. 
 
We do not mean to say that the above techniques are failures. All, to some 
extent, improve upon the quality and correctness of the resulting program that 
is produced. Programming as taught in the universities and practiced in industry 
today is radically different from that of the 1960s. However, the important 
point is that none of them achieves the level of correctness that would support 
our belief in that technique over all others.  
 
3.2 Which Belief System to Embrace 
 
Resources must be allocated among the correctness methodologies. While 
management has been described as the art of making decisions based on inadequate 
information, the quality of decisions is often improved by providing more 
information. Installation and use of security-critical IT systems cannot wait 
for proofs of efficacy or development of metrics for determining cost-benefit. 
Managers will need to continue to make decisions whether or not to employ IT. 
The managerial authorization and approval granted to an IT system to process 
sensitive data in an operational environment is, in theory, made on the basis of 
analysis and certification of the extent to which design and implementation of 
the system meet pre-specified requirements for achieving adequate security. 
Security objectives can be met by a combination of technical means within the 
system and physical and procedural means outside the system. In this theory, 
when management accredits the system, management is accepting the residual risk.  
 
How can we address this residual risk? While we have no clearly defined metric 
for this, we do have examples of systems that seem to adequately address our 
security concerns. One avenue of research is increased study of these 



 

 

"artifacts"-the systems, designs, and specifications that have helped produce 
acceptable solutions. This knowledge should enable us to produce better models 
in the future. However, today there is no way to measure the residual risk, nor 
is there a metric for cost-benefit. So, how is a decision made? Since computer 
and management science cannot help verify a decision, the experienced manager's 
intuition cannot be dismissed. Experience probably includes comparison with 
previous efforts, the correctness of which has become better known over time. 
One must be careful to distinguish between management saying "I did this before 
and it worked" versus "I feel safe using this since I used it before, while this 
new technique is unknown to me." The first statement encapsulates the 
experiences of good management, while the second statement reinforces 
unscientific prejudices. The real problem is how to differentiate among good 
science, common sense, and stubborn stupidity.  
 
In deciding which belief system to embrace, the prudent manager probably hedges 
by using more than one system. Various combinations of formalism, testing, 
simulation, and process may be employed. Since cost is one of the attributes we 
need to address in evaluating the overall quality of the product, it is prudent 
that management should adequately choose from among the techniques those that 
meet required cost constraints yet still meet functional requirements for the 
product.  
 
4. Recommendations 
 
Given the absence of metrics for any of the belief systems, the inherent 
difficulty in using any of them, and the lack of a repository of correctness 
artifacts to study and evaluate, the authors do not propose to solve this 
problem with a pronouncement of correct technique. Our focus is to increase the 
awareness of the technical and managerial segments of the IT security community 
to the limitations of each of these techniques. We attempt to increase 
understanding of the need to address more than one solution to the multifaceted 
correctness problem.  
 
We view the glass as being half full. We do not advocate that anyone abjure his 
belief(s) in correctness. Rather, we suggest that attempts to prove beliefs are 
bottomless pits. Unless some breakthrough occurs, we advocate treating this 
aspect of software engineering pragmatically. Just as engineers built steam 
engines (see [Leveson, 1992] for further analogy) before the science of 
thermodynamics was developed, the software engineering community can build 
software systems based on intuitive and pragmatic notions of how to attain 
correctness and other aspects of quality. At least now, we should acknowledge 
practicing an empirical discipline.  
 
At the risk of appearing cautiously optimistic, we hesitantly endorse four 
interrelated strategies. The exact allocation of resources among the strategies 
remains a technical management decision. Looking at the mature methods available 
today, we tend to agree with the perceived consensus that a combination of the 
following should be employed: 
 
* Evaluation of process, personnel, and abilities to identify and reinforce 
positive attributes  
 
* Thorough review and analysis of intermediate products during development 
with sufficient time and resources allocated to correct deficiencies 
 
* Rigorous testing based on the preceding analysis 
 



 

 

* Recognition of critical points in system development 
 
! Point of diminishing return for application of any method 

 
! When a development should be terminated for cause or to stop hemorrhaging 

 
Looking forward, we see promise in combining aspects of program reuse and object 
orientation. The possibility of employing object self-protection in security 
architecture should be considered.  
 
Each of the techniques described in this paper has an aspect that help increase 
our belief in the correctness of an implementation, yet each is fraught with 
some dangers. Each technique comes with some, generally high, cost for its use. 
It is imperative that management addresses each as aids in developing security-
critical IT systems and not arbitrarily dismiss any of them. We should: 
 
* Be cognizant of the limitations of each  
 
! Belief in correctness should be relative 

 
* Be prudent in establishing realistic assurance requirements for a given 
system that are measurable, achievable, and cost- effective  
 
* Resist the temptation of unachievable elegance and perfection 
 
* Differentiate between research and operations  
 
! Define achievable specifications 

 
! Accept residual risk 
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