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Abstract

The classroom is a valuable resource for conducting software engineering

experiments. However, coordinating a family of experiments in classroom

environments presents a number of challenges to researchers. Understanding

how to run such experiments, developing procedures to collect accurate data,

and collecting data that is consistent across multiple studies are major problems.
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This paper describes an environment, the Experiment Manager that simplifies

the process of collecting, managing, and sanitizing data from classroom experi-

ments, while minimizing disruption to natural subject behavior. We have success-

fully used this environment to study the impact of parallel programming languages

in the high-performance computing domain on programmer productivity at

multiple universities across the United States.
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1. Introduction

Scientific research advances by the creation of new theories and methods, fol-

lowed by an experimental paradigm to either validate those theories and methods or

to offer alternative models, which may be more appropriate and accurate. Computer

science is not different from other sciences, and the field has been moving to adopt

such exper imental appro aches [25] . Howeve r, in muc h of compute r science , and in

software engineering in particular, the experimental model poses difficulties possi-

bly unique among the sciences. Software engineering is concerned about the appro-

priate models applicable to the development of large software systems. As such it

involves the study of numerous programmers and other professionals over long
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periods of time. Thus, much of this research involves human behavior and in many

ways is similar to research in psychology or the social sciences.

The major experimental approach accepted in scientific research is the replicated

study. However, by being expensive to produce, software is not amenable to such

studies. While a typical medical clinical trial may involve hundreds of subjects

testing a drug or a new treatment, even one duplication of a software development is

beyond the resources of most organizations. Although this approach is commonly

used in various fields of research involving humans, such as clinical study in

medical science, conducting many studies is still difficult and expensive, which is

often a major obstacle for good software engineering research.

The problems with empirical studies in software engineering can be classified by

two major problems: cost of such studies and accuracy of the data.

1.1 Collecting Accurate Data
1.1.1 Costs of Software Engineering Studies
Because of the cost of developing a piece of software, typically case studies of a

single development are monitored, and after many such studies, general trends can

be observed. As an example of this, we will look at the NASA Goddard Space Flight

Center (GSFC) Software Engineering Laboratory (SEL), which from 1976 to 2001

conducted many such studies [6]. The exper iences of the SEL are illus trative of the

problems encountered in data collection. The data was collected, beginning in 1976,

at GSFC from NASA developers and the main development contractor, Computer

Sciences Corporation (CSC). The data was then manually reviewed at GSFC before

being sent to the University of Maryland for entry into the project measures database

using a UNIX-based Ingres system.

The naı̈ve simplicity in which data was collected broke down by 1978 and a more

rigorous set of processes was instituted. This could not be a part-time activity by

faculty using undergraduate employees. In addition, the university researchers

wanted a considerable amount of data, and soon realized that the GSFC program-

ming staff did not have the time to comply with their requests. They had to

compromise on the amount of data desired versus the amount of data that realisti-

cally could be collected. Data, which was collected on forms filled out by the

programming staff, were shortened to allow for more complete collection.

The data collection process for the 20 projects then under study became more

rigorous with this five-step approach:

1. Programmers and managers completed forms.

2. Forms were initially verified at CSC.

3. Forms were encoded for entry at GSFC.
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4. Encoded data checked by validation program at GSFC.

5. Encoded data revalidated and entered into database at University (after several

years, CSC took over total management of the database).

But, to obtain contractor cooperation, a 10% overhead cost to projects was

allocated for data collection and processing activities. Eventually the overhead

cost of collecting data was reduced, but the total cost of collecting, processing,

and analyzing data continued to remain between 5% and 10%. However, on a $500K

project, this still amounted to almost $50K just for data collection – an amount that

few organizations are willing to invest. While the SEL believed that the payoff in

improved software development justified this cost, it is beyond the scope of this

chapter to prove that. Suffice it to say that most organizations consider the additional

costs of data collection as unjustified expenses.
1.1.2 Accuracy in Collected Data
Most data collected on software development projects can be generally classified

as self-reported data – the technical staff fill out effort reports on hours worked,

change reports on defects found and fixed, etc. The care in which such data is

reported and collected greatly affects the accuracy of the process. Unfortunately, the

process is not very accurate. Self-reported measures can vary over time, due to

histor y or maturation effect s [7] , and the accuracy of such measures varies acro ss

individuals. This is a particular problem when the subjects have more interest in

comp leting the task than complyin g with the protocols of the stud y. Basili et al. [2]

evaluated Software Science metrics against self-reported effort data collected from

GSFC software projects. There was very little correlation between this effort and

metrics known to predict effort, and there was concern that poor self-reported data

was distorting the results. Perr y et al. [18] anal yzed previous data from project

notebooks and free-form programmer diaries which were originally kept for per-

sonal use. They found that the free-form diaries were too inconsistent across subjects

and sometimes lacked sufficient resolution.
1.2 Classroom Studies

The overhead in collecting accurate detailed data at the SEL was too high to

maintain a data collection process. This same result has been found in other data

collection studies. Instead of large replications, running studies in classrooms using

students as subjects have become a favorite approach for trying out new develop-

ment techniq ues [20] . Even thoug h a concl usion drawn from student subjects cannot

always be generalized to other environments, such experiments aid in developing
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approaches usable elsewhere. However, conducting larger-scale software engineer-

ing research in classroom environments can be quite complex and time consuming

without proper tool support. Proper tool support is a requirement if we want to

improve on the poor quality of self-reported data.

A single environment (e.g., a single class) is often insufficient for obtaining

significant results. Therefore, multiple replications of a given experiment must be

carried out by different faculty at different universities in order to provide sufficient

data to make conclusions. This means, each experiment must be handled in a similar

manner to allow for combining partial results. The complexity of providing consistent

data across various experimental protocols has been overwhelming so far.

In this chapter, we describe an environment we are developing to simplify the

process of conducting software engineering experiments that involve development

effort and workflow and ensure consistency in data collection across experiments in

classroom environments. We have used this environment to carry out research to

identify the effect of parallel programming languages on novice programmer pro-

ductivity in the doma in of high- performanc e com puting (e.g., MPI [12], Ope nMP

[11], UPC [8] , and Matlab* P [10] ). Altho ugh there are often issues rega rding the

external validity of students as subjects, this is not a major concern here since we are

explicitly interested in studying student programmers.

This work was carried out in multiple universities across the United States in

courses where the professors were not software engineering researchers and were,

therefore, not experienced with conducting experiments that involved human subjects.

2. Classroom as Software Engineering Lab

The classroom is an appealing environment for conducting software engineering

experiments, for several reasons:

l Most researchers are located at universities. Being close to your subjects is

often necessary to obtain accurate results.

l Training can be integrated into the course. No extra effort is then required by

the subjects since there is the assumption that the training is a valuable

academic addition to the classroom syllabus.

l Required tasks can be integrated into the course.

l All subjects are performing identical programming tasks, which are not gener-

ally true in industry. This provides an easy source for replicated experiments.

In addition to the results that are obtained directly by these studies, such experi-

ments are also useful for piloting experimental designs and protocols which can later

be applied to industry subjects, an approach which has been used successfully

elsewhere (e.g., [3, 4, 5]).
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While there are threats to validity of such studies by using students as subjects as

proxies for professional programmers (e.g., the student environment may not be

representative of the ones faced by professional programmers), there are additional

complexities that are specific to research in this type of environment. We encoun-

tered each of these issues when conducting research on the effects of parallel

progr amming mode l on effort in high- performanc e computin g [14] :

1. Complexity: Conducting an experiment in a classroom environment is a

complex process that requires many different activities (e.g., planning the

experimental design, identifying appropriate artifacts and treatments, enrolling

students, providing for data collection, checking for process compliance,

sanitizing data for privacy, and analyzing data). Each such activity identifies

multiple points of failure, thus requiring a large effort to organize and run

multiple studies. If the study is done at multiple universities in collaboration

with other professors, these professors may have no experience in organizing

and conducting such experiments.

2. Research versus pedagogy: When the experiment is integrated into a course, the

experimentalist must take care to balance research and pedagogy [9]. Studies

must have minimal interference with the course. If the students in one class are

divided up into treatment groups and the task is part of an assignment, then care

must be taken to ensure that the assignment is of equivalent difficulty across

groups. Students who consent to participate must not have any advantage or

disadvantage over students who do not consent to participate, which limits

additional overhead required by the experiment. In fact, each university’s

Institutional Review Board (IRB), required in all United State universities

performing experiments with human subjects, insists that participation (or

nonparticipation) must have no effect on the student’s grade in the course.

3. Consistent replication across classes: To build empirical knowledge with

confidence, researchers replicate studies in different environments. If studies

are to be replicated in different classes, then care must be taken to ensure that

the artifacts and data collection protocols are consistent. This can be quite

challenging because professors have their own style of giving assignments.

Common projects across multiple locations often differ in crucial ways making

meta-anal ysis of the combine d results impo ssible [16] .

4. Participation overhead for professors: In our experience, many professors are

quite willing to integrate software engineering studies into their classroom

environment. However, for professors who are unfamiliar with experimental

protocols, the more effort required of them to conduct a study, the less likely it

will be a success. In addition, collaborating professors who are not empirical

researchers may not have the resources or the inclination to monitor the quality
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of captured data to evaluate process conformance. Therefore, empirical research-

ers must try to minimize any additional effort required to run an empirical

study in the course while ensuring that data is being captured correctly.

The required IRB approval, when attempted for the first time, seems like a

formidable task. Help in understanding IRB approval would greatly aid the

ability of conducting such research experiments.

5. Participation overhead for students: An advantage of integrating a study into a
classroom environment is that the students are already required to perform the

assigned task as part of the course, so the additional effort involved in participat-

ing in the study is much lower than if subjects were recruited from elsewhere.

However, while the additional overhead is low, it is not zero. The motivation to

conform to the data collection process is, in general, much lower than the

motivation to perform the task, because process conformance cannot be graded.

In addition, the study should not subvert the educational goals of the course.

Putting the experiment in the context of the course syllabus is never easy.

This can be particularly problematic when trying to collect process data from

subjects (e.g., effort, activities, and defects), especially for assignments that take

several weeks (e.g., we saw a reduction in process conformance over time when

subjects had to fill out effort logs over the course of multiple assignments).

6. Automatic data collection of software process: To reduce subject overhead and
increase data accuracy, it is possible to collect data automatically from the

programmer’s environment. Capturing data at the right level of granularity is

difficult. All user-generated events can be captured (keyboard and mouse

events), but this produces an enormous volume of data that may not abstract

to useful information. Allowing this raw data to be used can create privacy

issues, such as revealing account names, with the ability to then determine how

long specific users took to build a product or how many defects they made.

All development activities taking place within a particular development

environment (e.g., Eclipse) simplifies the task of data collection, and tools

exist to s upport s uch c ases (e.g., Marmos et [21]). However, in many

domains, development will involve a wide range of tools and possibly

even multiple machines. For example, in the domain of high-performance

computing, preliminary programs may be compiled on a home PC, final

programs are developed on the university multiprocessor, and are ulti-

mately run on remote supercomputers at a distant datacenter. Programmers

typically use a wide variety of tools, including editors, compilers, build

tools, debuggers, profilers, job submission systems, and even web browsers

for viewing documentation.

7. Data management: Conducting multiple studies generates an enormous vol-

ume of heterogeneous data. Along with automatically collected data and
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manually-reported data, additional data includes versions of the programs,

pre-and post-questionnaires, and various quality outcome measures (e.g.,

grades, code performance, and defects). Because of privacy issues, and to

conform to IRB regulations, all data must be stored with appropriate access

controls, and any exported data must be appropriately sanitized. Managing this

data manually is labor-intensive and error-prone, especially when conducting

studies at multiple sites.
3. The Experiment Manager Framework

We evolved the Experiment Manager framework (Fig. 1) to mitigate the complex-

ities described in the previous section. The framework is an integrated set of tools to

support software engineering experiments in HPC classroom environments. While

aspects of the framework have been studied by others, the integration of all features

allows for a uniform environment that has been used in over 25 classroom studies

over the past 4 years. The framework supports the following.
Local server:
capture data

Upload

UM Admin

Master
DB

Sanitized
data

Install

Write/run code

HPC Machine

Umdinst
+

Hackystat
sensors

UM Experiment
Manager (EM)

+
Hackystat server

Local
Log

Upload

Create a course
Monitor registration

Sign up for account/key

Manual online logs
questionnaire

Technician

Professor

Student

UMD server:
store data

UMD server:
analyze data

HPDBugBase
(defect data)

UM workflow
tool

Upload
develop
analysis

tool

Download
analysis
results

Data analysis
interfaces

SQL queries

Sanitized
DB

UM data
analysis

environment

FIG. 1. Experiment Manager structure.
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1. Minimal disruption of the typical programming process: Study participants solve
programming tasks under investigation using their typical work habits, spreading

out programming tasks over several days. The only additional activity required is

filling out someonline forms. Sincewedonot require them to complete the task in

an alien environment or work for a fixed, uninterrupted length of time, we

minimize any negative impact on pedagogy or subject overhead.

2. Consistent instruments and artifacts: Use of the framework ensures that the

same type of data will be collected and the same type of problems will be

solved, which increases confidence in meta-analysis across studies at different

universities.

3. Centralized data repository with web interface: The framework provides a

simple, consistent interface to the experimental data for experimentalists, sub-

jects, and collaborating professors. This reduces overhead for all stakeholders

and ensures that data is consistently collected across studies.

4. Sanitization of sensitive data: The framework provides external researcher

with access to the data sets that have been stripped of any information that

could identify subjects, to preserve anonymity and comply with the protocols

of human subject research as set out by IRBs at American universities.
3.1 Instrumentation Package

Our instrumentation package, called UMDinst, supports automatic collection of

software process data in a Unix-based, command-line development environment,

which is commonly used in high-performance computing. The package is designed

to be installed in a master account on the local server and then enabled in the accounts

of each subject by executing a set up script, or be installed in the account of individual

subjects. The appropriate installation mode depends on the need of a specific experi-

ment and the configuration of the machine to be instrumented. In either case, the

package can be used without the intervention of system administrators.

UMDinst package instrument programs that are involved in the software devel-

opment process by replacing each command that invokes a tool (e.g., compiler) with

a script that first collects the desired information and then calls the original tool. It is

used for instrumenting compilers, although it is also designed to support job

schedulers (common in high-performance computing environments), debuggers,

and profilers. For each compile, the following data is captured:

l a time stamp when the command is executed

l contents of the source file that were compiled

l contents of local header files referenced in the source file
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l the command used to invoke the compiler

l the return code of the compiler

l the time to compile

The UM Dinst package includes Hackystat senso rs [15] to instru men t suppor ted

editors such as Emacs and vi, and to capture shell commands and time stamps. The

collected data is used in studies to estimate total effort as well as to infer develop-

ment activities (e.g., debugging, parallelizing, and tuning). Hackystat is a system

developed by Johnson at the University of Hawaii that captures low-level events

from a set of instrumented tools. Thus, while UMDinst captures data at the com-

mand-line level, Hackystat captures time stamps and events from editors and related

tools that have been instrumented. The pair of tools provides a complete history of

user interaction in developing a program.
3.1.1 Web Portal
The heart of the Experiment Manager framework is the web portal, which serves

as a front-end to the database that contains all of the raw data, along with metadata

about individual experiments. Multiple stakeholders use the web interface: experi-

menters, subjects, and data analysts. For example, experimenters specify treatments

(in our case, parallel programming models), assignment problem, participation rate,

and grades. They also upload data captured automatically from UMDinst. Subjects

fill in questionnaires, and report on process data such as time worked on different

activit ies and defects . Ana lysts would export data of intere st, such as tot al effort [13]

for hypothesis testing, or a stream of time stamped events for workflow modeling.
3.2 Experiment Manager Roles

We have divided the functionality of the Experiment Manager into four roles. For

each role, we developed several use cases that describe its functionality, thus

simplifying the design of the software.

1. Technician: The technician sets up the environment on the local server, usually

not at the University of Maryland. This will be someone at a university with

access to the machine the students use for the class. Often it is the Teaching

Assistant in the course the software will be used in. The tasks for the technician

are to install UMDinst so that students can use it. At the end of the semester,

the technician also sends the collected data to the University of Maryland

server in case it was collected locally.
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2. Profe ssor: A database provides the professo r with sample IRB quest ionnaires

for submitta l. This cannot be fully automated since each universit y has its own

guide lines for submitting the IRB appro val form. But experience with many

unive rsities over the last 4 years allow s us to help in answering the most

com mon question s on these forms.

The instructor first regist ers each class with the Experim ent Manager to set

up a classr oom experiment. For each such class, the prof essor can assign

sever al progr amming proj ects from our collec ted datab ase of assignm ents or

assign one of his own. Dur ing the sem ester, the syst em allow s the p rofessor to

see if stud ents have com pleted their assignm ents, but does not allow access

to any of the collected data u ntil the grade s for the assi gnment are comple ted.

In reali ty, the Teaching Assistan t may be the person to act ually perform this

task, but conceptua lly is acting in the role of the professo r.

3. Stude nt: A student who takes part in the experiment provides data on HPC

development. This requires the student to:

1. Register with the Experiment Manager by filling out a background ques-

tionnaire on courses taken and experiences in com puter science in gener al

and HPC programmi ng in particula r. Althou gh this regist ration process can

take up to 15 min, it is required only o nce d uring the semester .

2. Run the script to set up the wrapper s for the comman ds that edit, compile

and run programs. Onc e an assignment is underway, the data collection

process is mostly automatic and data is collected mostly painlessly.

4. Analyst: An analyst accesses the collected data for evaluating som e hypot hesis

about HPC development . At the present time, the analysis tools are relatively

simple. Analysts can see the total effort and defects made by each student and

collect workflow data.

Many tools exist in prototypes to support the various types of studies. For

example, the HPC community is developing concepts of what productivity means

in the HPC envi ronment [26] and we have been looking at developi ng workflow

models (e.g., how much time is spent in various activities, such as developing code,

testing, parallelizing the code, and tuning the code for better performance).

To support the study of workflows and productivity, we have developed a tool

to allow the experimenter to apply various heuristics to the base data to see if we can

automatically deduce the developer’s programming activity, for example, testing

and debugging versus development. This tool takes raw data, collected from online

tools such as Hackystat and manual logs generated by students, and we have been

developing algori thms for automa tically inferring the workfl ow cycle [23] . Resul ts

of this work are describ ed in Section 4. Curre nt activit ies are looking at extendi ng

these tools.
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3.3 Data Collection

The actual data collection activity was designed to present minimal complexity to

the student (Figs. 2 and 3). Within the Experiment Manager, the student has two

options. If data was not collected automatically, the student can enter a set of

activities, with the times each activity started and ended (Fig. 3) (e.g., self-reported

data, which we discussed earlier to be less reliable). However, the effort tool

simplifies the process greatly. If the student clicks to start the tool (small oval

near bottom of Fig. 3), then a small window opens on the top left corner of the

screen (large oval in upper left in Fig. 3). Each time the student starts a different

activity, the student only needs to pull down the menu in the effort tool and set

the new activity type (Fig. 2). The time between clicks is recorded as the time of the

previous activity. Thus, while the data is not totally automatic, we believe we have

minimized the overhead of collecting such data.
FIG. 2. Effort capture tool.



FIG. 3. Effort collection screen.
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The tool automatically computes elapsed time between events and saves the data

in the database. If the student stops for a period of time (e.g., goes to lunch and surfs

the web), there is a stop button on the tool. Upon returning, the user simply clicks on

start to resume timing.

For most HPC development, the student simply has to:

1. Log into Experiment Manager to go to effort page (Fig. 4), then click on effort

tool (Fig. 3).

2. Develop program as usual.

3. Each time a new activity starts, click on the new activity in the effort tool

(Fig. 2).

4. If any errors are found, the student records that defect by invoking the defect

tool (Fig. 4) to explain the defect on a separate page (Fig. 5).

Only steps 3 and 4 involve any separate activity for participating in these experi-

ments, and such activity is minimal.
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3.3.1 Data Sanitization
While personal data collected by the experiments must be kept private, we would

like to provide as much data as possible to the community as part of our analysis.

The sanitization process exports ‘safe’ data into a database that can be made

accessible to other researchers, running on a separate machine.

The sanitization process is briefly described in Fig. 6. Each data object we

obtained in an experiment is classified as one of:

1. Prohibited: Data contains personal data we cannot reveal (e.g., name or other

personal identifiers).

2. Clean: Data we can reveal (e.g., effort data for development of another clean

object).

3. Modified: Data we can modify to make it clean (e.g., removing all personal

identification in the source program).
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Clean data can be moved to the analysis server and modified data can also be

moved. Only prohibited data cannot be exported to others desiring to look at our

collected database. Our sanitization process on data consists of the following

four functions:

1. Normalization – Normalize the time stamps for each class on a common basis.

By making each time stamp relative to 0 from the beginning of that experi-

ment, information about in which semester it was collected (and hence from

which school the data was collected) is hidden.

2. Discretization – Since grades are considered private data, we define a mapping

table that maps grades on a small set, such as {good,bad}. Converting other

interval or ratio data into less specific ordinal sets, while it loses granularity,

it helps to present anonymity.

3. Summarization – With some of the universities, we can give out source code if

we remove all personal identifiers of the students who wrote the code. But in
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some cases, we are prohibited from doing even that. If we cannot give

out source code, we can collect patterns and counts of their occurrence in the

source code. For example, we can count lines of code, or provide analyses of

‘diffs’ of successive versions of code.

4. Anonymization – We can create hash values for dates, school names, and other

personal identifiers.
4. Current Status

Our Experiment Manager framework currently contains data from 25 classroom

experiments conducted at various universities in the United States (Fig. 7). While

some of the experiments preceded the Experiment Manager (and motivated

its development) and their data was imported into the system; perhaps half the

experiments used parts or all of the system.
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4.1 Experiment Manager Effectiveness

Before using the experiment manager, we discovered many discrepancies between

successive classroom projects which prevented merging the results. Some of these

were:

1. It was not often obvious for how many processors the final programs were
written. Since a major goal of HPC programming is to divide an algorithm to

run on multiple processors, this speedup (i.e., relative decrease in execution

time by using multiple processors) is a critical measure of performance.

Without knowing the initial goals for each student assignment, it was unclear

how to measure performance goals for each class.

2. Related to the previous problem, the projects all had differing requirements for
final program complexity (e.g., the number of replicated cells needing to be

computed). How big a grid (e.g., number of replicated cells) were required in

which to compute an answer and measure performance? This affected student

programming goals.

3. Grading requirements differed. Was performance on an HPC machine impor-

tant? Sometimes just getting a valid solution mattered. Maximum speedup, or

the decrease in execution time of an HPC machine over a serial implementation,

was sometimes the major goal.
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By using our collected database of potential assignments, as well as our checklist

of project attributes, this problem has lessened across multiple classes recently,

allowing for the combination of results across different universities.

The IRB process seems like a formidable roadblock the first time any new

professor encounters it. Often, in contacting faculty at a new university we would

lose a semester’s activity simply because the IRB approval process was too onerous

the first time it was attempted. With our experience of IRB issues, and our collection

of IRB forms required by various universities, this no longer is a major problem.

A related problem was the installation of software on the host computer for the

collection of data. Again, this often meant the delay by a semester since the

installation process was too complex. This was a major driving force to host much

of this software as a web server at the University of Maryland, with a relatively

simple UMDinst package that needed to be installed at each university’s site.

The effort tool (pictured earlier as Figs. 2 and 3) also solved some of our data

collection problems. We can collect effort data by three ways (Hackystat at the level

of editor and shell event time stamps, manual data via programmer filled-in forms,

and com piler time stamps via UM Dinst). All give different results [13] . The use of

the effort tool greatly eases the data collection problem, which we believe increases

the reliability of such data.

Most of our results, so far, are anecdotal. But we have been able to address new

universities and additional classes in a more methodical manner at present and

believe the Experiment Manager software is a major part of this improvement.
4.2 Experiment Manager Evolution

The system is continuing to evolve. Current efforts focus on the following tasks:

l Weare evolving the user interface to theExperimentManagerweb-based tool.The

goal is to minimize the workload of various stakeholders (i.e., roles) for setting up

the experiment environment, registering with the system, entering the data, and

conducting an analysis. We would like to develop small native applications

that provide a more integrated interface to the operating system, making it less

disruptive to users.

l Wewant to continue our experimentation with organizations that are often behind

firewalls. Although we are currently studying professionals in an open environ-

ment, we want to use the Experiment Manager in this environment. Although the

UMDinst instrumentation package can be set up in secure environments, the

collected data cannot be directly uploaded to the University of Maryland servers.

We have planned extensions to the Experiment Manager architecture to better
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support the experimentations with these organizations. Working in these

environments is necessary to see how professionals compare to the students.

l We will continue to evolve our analysis tools. For example, our prototype

experience bases for evolving hypotheses and high end computing defects (e.g.,

www.hpcbugbase.org) will continue to evolve both in content and usability.

l We will evolve problem-specific harnesses that automatically capture informa-

tion about correctness and performance of intermediate versions of the code

during development to ensure that the quality of the solutions (specifically,

correctness and performance) is measured consistently across all subjects.

This also requires us to evolve our experience bases to generate performance

measures for each program submitted in order to have a consistent performance and

speedup measure for use in our workflow and time to solution studies.

Our long-range goal is to allow the community access to our collected data. This

requires additional work on a sanitized database that removes personal indicators

and fulfills legal privacy requirements for use of such data.

4.3 Supported Analyses

The Experiment Manager was designed to ease data analysis, in order to support

the investigation of a range of different research questions. Some of these analyses

are focused in detail on a single developer being studied, while others aggregate data

over several classes, allowing us to look across experimental data sets to discover

influencing factors on effective HPCS development.
4.3.1 Views of a Single Subject
One view of a subject’s work patterns is provided directly by the instrumentation.

We refer to this view as the physical level view since it objectively reports incontro-

vertible occurrences at the operating system level, such as the time stamp of each

compilation.

Figure 8 shows such a physical view for a 9 hour segment of work done by a given

subject. The x-axis represents time and each dot on the graph represents a compile

event. Although we have the tools to measure physical activities with a high degree

of accuracy, this type of analysis does not yield much insight. For example, although

we know how often the compiler was invoked, we do not know why: We cannot

distinguish compilations which add new functionality from compilations which

correct problems or defects that could have been avoided. This is an important

distinction to make, if we want to know the cause of unnecessary rework so it can be

avoided.

http://www.hpcbugbase.org
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A second approach is to use the logged compile times along with a snapshot of the

code at each such compile and then apply a set of heuristics to guess at the semantics

of the activities requiring that compilation. We have built such a tool that allows us

to use various algorithms to manipulate these heuristics. The purpose of determining

the semantic activities is to build baselines for predicting and evaluating the impact

of new tools and languages.

Figure 9 uses the same data as Fig. 8 to illustrate this view. By evaluating the

changes in the code for each compile, we can infer an activity being performed by

the programmer. Again, each dot represents one compile but in this case the activity

preceding each compile has been classified as one of:
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l Serial coding: The developer is primarily focused on adding functionality

through serial code. This is inferred since most of the changes since the

previous compiler was in new code being added.

l Parallel coding: The developer is adding code to take advantage of multiple

processors, not just adding function calls to the parallel library. We decided to

separate out this activity since the amount of effort spent in this activity is

indicative of how difficult it is to take advantage of the parallel architecture for

solving the problem. This is inferred since parallel execution calls (such as to

the MPI library) were added to the program.

l Syntax fixes: The developer is fixing errors from a previous compile. We can

determine this since the previous compile failed, and the source program is

changed with no intervening execution.

l Testing and debugging: The developer is focused on finding and fixing a

problem, not adding new functionality. This activity can be identified via

some typical and recognizable testing strategies, such as when a high percentage

of the code added before a compile were output statements (so that variable

values can be checked at runtime); creating/modifying test data files instead of

the main code block; or removing test code back out of the system at the end of a

debugging session. Our hypothesis is that effort spent on these activities can

come from misunderstanding of the problem or the proposed solution and so

could be addressed with more sophisticated aides given to developers.

Such a view helps us understand better the approach used by the subject, and how

much of his/her time was spent on rework as opposed to adding new functionality.

The duration data associated with each activity also helps us identify interesting

events during the development: For example, when a large amount of time is spent

debugging, analysts can focus on events preceding the debugging activity to under-

stand what type of bug entered the system and how it was detected. This type of

information can be used to understand how hard or easy it is for the developer to

program in a given environment, and allows us to reason about what could be

changed to improve the situation.
4.3.2 Validation of Workflow Heuristics
The heuristics to date have been developed by having researchers examine the

collected data in detail (e.g., examining successive changes in source code versions).

However, the accuracy of these heuristics is not generally known. We have devel-

oped a tool that provides a programmer with information about the inferred activities

in real time. Using the tool, the developer then provides feedback about whether the
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heuristic has correctly classified the activity. This allows us to evaluate how well the

heuristics agree with the programmer’s belief about the current development

activity.
4.3.3 Views of Multiple Subjects Across

Several Classes
From the same data, total effort can be calculated for each developer and

examined across problems and across classes to understand the range of variation

and whether causal factors can be related to changes in other measures of outcome,

such as the performance of the code produced.

We note that for our experimental paradigm to support effective analyses, subjects

in different classes who tackle the same problem using the same HPC approach should

exhibit similar results regarding effort and the performance achieved. Moreover, we

must be able to find measurable differences between subjects who, for example,

applied different approaches to the same problem. In a previous paper [19], we

presented some initial analyses of the data showing that both conditions hold.

Such analyses have been instrumental in developing an understanding of the

effectiveness of different HPC approaches in different contexts. For example,

Fig. 10 shows a comparison of effort data for two HPC approaches, ‘OpenMP’
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FIG. 10. Percentage effort reduction for OpenMP over MPI.
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and ‘MPI.’ The percentage of effort saved by using OpenMP instead of MPI is shown

for each of five parallel programming problems (‘Buffon,’ ‘Matvec,’ etc.) represent-

ing different classes of parallel programs. Thus, 50 on the y-axis represents 50% less

effort for OpenMP; �50% would indicate that OpenMP required 50% more effort.

The height of each bar represents the range of values from across an entire dataset of

subjects. As can be seen, in two cases OpenMP yielded better results than MPI as all

subjects required less effort; for two other cases although there were some who

required less effort for MPI, the majority of data points indicated an effort savings

associated with OpenMP. In only one case, for the Buffon problem, did MPI appear

to give most subjects a savings in effort. As we gather more datasets using the

Experiment Manager tool suite, we will continue this type of analysis to understand

what other problems are in the set for which MPI requires less effort, and what it

is about these situations that sets them apart from the ones where OpenMP was the

less effort-intensive approach. (Interested readers can find a description of these

approaches and programming problems in other publications [19].)
4.4 Evaluation

We have been performing classroom experiments in the HPC domain since early

2003. While we have not performed a careful controlled experiment of its effective-

ness, we have observed anecdotally that the Experiment Manager avoids many of

the problems others (including ourselves) have observed in running experiments.

Many of these problems have already been reported in this paper. We have been able

to run the same experiment across multiple classes in multiple universities and

combine the results. Data is collected reliably and consistently across multiple

development platforms. We have been able to obtain data to install into our database

effortlessly without the need for students to perform any post-development activity.

Faculty, who are not experimental researchers, have been able to run their own

experiments with only minimal help from us. And finally, the ability to sanitize data

allows us to provide copies of datasets to others wanting to perform their own

analysis without running into IRB and privacy restrictions.
5. Related Work

There are various other projects that either support software engineering experi-

ments, or support automatic data collection during development, but not both.

The SESE system [1] has many simi larities: it is web-bas ed and supports features

such as managing subjects, supporting multiple roles, administering questionnaires,
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capturing time spent during the experiment, collection of work products, and

monitoring of subject activity. By comparison, Experiment Manager supports addi-

tional data capture (e.g., intermediate source files and defects) and data analysis

(e.g., sanitization and workflow analysis).

PLUM, back in 1976, was one of the first systems to automatically collect

developm ent data [24] . It, along with Hackyst at [15] , Ginger2 [22] , Marmos et

[21] , and Myl yn [17] are exampl es o f syst ems which are desi gned to collec t data

during the development process, but do not have data management facilities that are

specifically oriented towards running multiple experiments. Hackystat, which we

are using in the Experiment Manager, can collect data from several different types of

applications (e.g., vi, Emacs, Eclipse, jUnit, and Microsoft Word) via sensors. It was

originally designed for project monitoring rather than running experiments. We have

adopted the use of some of the Hackystat sensors into our data collection system.

Ginger2 is an environment for collecting an enormous amount of low-level detail

during software development, including eye-tracking and skin resistance. Marmoset

is an Eclipse-specific system which captures source code snapshots at each compile,

and is designed for computer science education research. Mylyn (originally called

Mylar) is also an Eclipse-specific system. Mylyn provides support for task-focused

code development and includes a framework for capturing and reporting on

information about Eclipse usage.
6. Conclusions

The classroom provides an excellent opportunity for conducting software engi-

neering experiments, but the complexities inherent in this environment makes such

research difficult to perform across multiple classes and at multiple sites. The

Experiment Manager framework supports the end-to-end process of conducting

software engineering experiments in the classroom environment. This allows

many others to run such experiments on their own in a way that allows for the

appropriate controls of the experiment so that results across classes and organization

at geographically diverse locations can be compared. The Experiment Manager

significantly reduces the effort on behalf of the experimentalists who are managing

the family of studies, and on the subjects themselves, by applying heuristics to infer

programmer activities.

We have successfully applied the Experiment Manager framework and with each

application are learning and improving the interface, simplifying the use by students,

making its use of value in shrinking the overall problem solving process by students,

for example, various forms of harnesses, the support for analysis, in order to get a

thorough understanding of the HPC development model.
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