

Maintaining Software with a Security Perspective

Kanta Jiwnani
Department of Computer Science

University of Maryland
College Park, Maryland 20742.

kanta@cs.umd.edu

Marvin Zelkowitz
Department of Computer Science, University of Maryland

and Fraunhofer Center for Experimental Software Engineering
College Park, Maryland 20740.

marv@zelkowitz.org

Abstract

Testing for software security is a lengthy, complex and costly
process. Currently, security testing is done using penetration
analysis and formal verification of security kernels. These
methods are not complete and are difficult to use. Hence it is
essential to focus testing effort in areas that have a greater
number of security vulnerabilities to develop secure software
as well as meet budget and time constraints. We propose a
testing strategy based on a classification of vulnerabilities to
develop secure and stable systems. This taxonomy will enable
a system testing and maintenance group to understand the
distribution of security vulnerabilities and prioritize their
testing effort according to the impact the vulnerabilities have
on the system. This is based on Landwehr’s classification
scheme for security flaws and we evaluated it using a database
of 1360 operating system vulnerabilities. This analysis
indicates vulnerabilities tend to be focused in relatively few
areas and associated with a small number of software
engineering issues.

Keywords: Intrusion classification, Security, Testing,
Vulnerabilities

1. Introduction

Any piece of software containing a security flaw can make a
secure environment vulnerable to an attack. We define an
attack as allowing an individual to either obtain information
from a computer system for which access rights have not been
lawfully obtained or cause the system to be unusable for its
intended purpose. We will refine this definition later.

Software vulnerabilities are present due to many causes: poor
development practices, ignoring security policies during
design, incorrect configurations, improper initialization,
inadequate testing due to deadlines imposed by financial and
marketing needs etc. Security is not considered during all
phases of development, but is often added later in an ad-hoc
manner. Security models often describe the security policies
to be followed, but the actual implementation cannot follow
the model exactly. Therefore security compromises are made.

The increasing exploits of vulnerabilities in systems show that
there are growing needs to develop more secure software. As

we later show, security vulnerabilities often remain from one
release of an operating system to the next. Providing a
mechanism for focusing security concerns could allow system
developers to more effectively address security issues over the
lifetime of a product.

Later versions of software often contain vulnerabilities that
exploit the same characteristics or conditions that were
exploited by attackers in the earlier versions. Programmers
and testers are neither taking adequate measures to keep a
check on these characteristics or conditions by neither
improving programming practices nor testing for these
characteristics or conditions specifically. A classic example of
this problem seen even today is the Windows XP buffer
overflow vulnerability discovered shortly after its release. This
could allow hackers to take over a computer and erase disks,
alter data and install their own programs. In spite of Microsoft
assigning one or two testers for each developer, and using a
large arsenal of testing methods (e.g., usage tests, user
interface tests, gorilla tests, “bug bash” tests, usage and stress
tests, application programming interface tests, Applets tests,
NT verify tests, regression tests, Apps-16 and 32 tests, Non-
NT tests, Synthetic GUI Application tool tests, RATS tests,
ad-hoc tests and other testing strategies [1]) a simple and most
widely known flaw could destroy the security of Microsoft's
newest version of Windows. This shows that general testing
strategies in use in organizations are insufficient.

Our goal is to devise a classification of vulnerabilities to
abstract information about problems in software development,
their location and their impact on the system to concentrate
and increase testing effort in those areas, and help the software
development community to get feedback to improve
continuously. Security rests upon confidentiality, integrity,
and availability of information, and we have tried to base our
taxonomy on these principles.

The taxonomy presented in this paper endeavors to classify
vulnerabilities in systems to find which parts of systems have
a greater concentration or which types of vulnerabilities are
dominant in various systems so as to focus the type of testing
that would be needed to find them. This regularity
information, if it exists, may guide the testing group to write
test cases to discover greater number of vulnerabilities even
before they can be exploited and help prevent and eliminate
them during the development process itself. This may also

help system designers to integrate security requirements while
building new systems. This may also reduce the cost of
maintaining systems since most of the vulnerabilities will be
eliminated at the development stage itself. Using this
approach, it would be possible to identify and eliminate flaws
like Windows XP buffer vulnerability before software
deployment.

The next section reviews security testing strategies and
classification schemes for security flaws and describes our
own model. In Section 3, we apply this taxonomy in
evaluating over 1360 security flaws found in several releases
of Windows NT and Linux. We show that the use of a
taxonomy such as ours could focus testing activities to help
uncover such vulnerabilities more easily in future system
releases. Section 4 concludes the work followed by potential
for future work.

2. Security Classifications

Presently, organizations test the security of their systems,
firewalls and networks either by using commercially available
vulnerability analysis tools like STAT Scanner, ISS Scanner,
Cybercop, by hiring a “tiger” team to simulate hackers (i.e.,
penetration testing), or by using formal methods. Penetration
testing tests the network on a particular day and its results may
vary from day to day. It does not find all the vulnerabilities in
systems [2] and is prone to several difficulties [3]. Formal
methods [4, 5] use mathematical description of the system
implemented to verify whether the system does actually meet
all the security requirements. However, it is difficult to specify
the requirements and the system in a mathematical form.

Other methods for security testing have been developed,
including syntax testing [6], property-based testing [7], fault
injection [8, 9], mutation testing [10] and Gligor’s testing
method [11]. Again these techniques are limited to finding
specific security flaws. Also, there are the general testing
techniques like path testing, domain testing, and data flow
testing [12]. However these techniques are not specifically
adapted for security issues.

2.1. Classification schemes

A number of security flaw taxonomies have been developed
including the Protection Analysis (PA) Taxonomy (1978), the
Research in Secured Operating Systems (RISOS) security
taxonomy (1976), Spafford’s taxonomy (1992), Landwehr’s
taxonomy (1994), Aslam’s taxonomy (1995), Bishop’s
taxonomy (1995), Du and Mathur’s taxonomy (1997), Brian
Marick Survey (1990) and Chillarege's Orthogonal Defect
Classification. This section reviews the above taxonomies. We
will redefine a security attack as executing any software
whose purpose is to utilize one of the security vulnerabilities
identified by one of these taxonomies.

Flat taxonomies. We define a flat taxonomy as one that
divides the set of security vulnerabilities according to one
general criterion. These are the simplest taxonomies. We then
look at multidimensional taxonomies that seek to classify such
vulnerabilities according to several such criteria.

Protection Analysis (PA) Taxonomy: As a 25 year old
taxonomy, it was one of the first to address security concerns.
The objective of the PA project [13] was to provide a basis for
categorizing protection errors according to their security-
relevant properties using an automated, pattern-matching
approach. This taxonomy was based on 100 flaws found in six
different operating systems. It had four global categories:
improper protection (initialization and enforcement), improper
validation, improper synchronization, and improper choice of
operand or operation. The categories in this taxonomy were
broad and the same flaw could be classified into multiple
categories. The contribution of this study was the introduction
of several types of security flaws like time-of-check-to-time-
of-use (TOCTTOU), allocation/deallocation of residuals, and
serialization errors that remain relevant.

RISOS Taxonomy: The Research in Secured Operating
Systems (RISOS) security taxonomy [14] was based on flaws
found in three operating systems: IBM’s OS/MVT for the
IBM 360, UNIVAC’s 1100 Series operating system, and Bolt
Beranek and Newman’s TENEX system for the PDP-10. The
classification consisted of seven categories: incomplete
parameter validation, inconsistent parameter validation,
implicit sharing of privileged or confidential data,
asynchronous validation or inadequate serialization,
inadequate identification or authentication or authorization,
violable prohibition or limit and exploitable logic error. The
main contribution of this study was the classification of
integrity flaws found in operating systems. It also led to
classifying the same flaw in multiple categories.

Spafford’s taxonomy: Spafford characterized several common
system vulnerabilities [15] with operational (administrative)
flaws, design flaws, and faults as its three main categories. It
did not help us to abstract detailed information about
characteristics of vulnerabilities.

Aslam’s Taxonomy: Aslam defined a classification of security
faults [17, 18] in the Unix Operating System. The
classification scheme had two broad categories: coding faults
comprising faults introduced during software development and
emergent faults resulting from improper installation of
software, unexpected integration incompatibilities, or when a
programmer fails to completely understand the limitations of
the run-time modules. It attributes the cause of all non-
synchronization security errors to the improper evaluation of
condition. This is a very narrow viewpoint since it may be
possible to correct the error without even changing any
condition in the program. Selection Criteria, software testing

methods and design and implementation of a prototype
database to store vulnerability information were also specified.

Brian Marick Survey: Marick published a survey of software
fault studies [22] from the software engineering literature.
Most of the studies reported faults that were discovered in
production quality software. The results were insightful but no
conclusions about development phases were possible.

Chillarege’s Orthogonal Defect Classification [23, 24] is a
method developed at IBM’s Watson Research Center for
classifying software defects based upon the semantics of
defect correction and links the defect distribution to the
development progress and maturity of the product. But ODC
Triggers do not reflect security issues.

Multidimensional taxonomies. These taxonomies classify
flaws according to more than one attribute.

Bishop’s taxonomy: Bishop proposed a flaw taxonomy [19]
for the Unix Operating System. The taxonomy uses six axes
classifying every vulnerability as: nature of the flaw, time of
introduction, exploitation domain, effect domain, minimum
number of components needed to exploit the vulnerability, and
source of identification. However, these axes do not divide the
security domain according to software functionality.

Du and Mathur’s Taxonomy: They classified flaws from three
viewpoints: cause of the flaw, the nature of their impact, and
the type of change or fix made to remove the flaw [20, 21].
The first dimension was similar to Landwehr’s while the third
dimension has categories like spurious entity, missing entity,
misplaced entity and incorrect entity that do not cover all
possibilities.

Landwehr’s Taxonomy: Carl Landwehr et al [16] categorized
50 security flaws according to three criteria: (1) the genesis of
the flaw (how did it enter the system?), (2) time of
introduction (when did it enter the system?), and (3) location
(where in the system is it manifested?). Since our goal was to
look at the impact that security flaws have on an evolving
product, how a flaw occurs, when it occurs, and its impact (i.e.
location) appeared to be the right mix of criteria. We centered
on Landwehr’s model as the basis for our work.

2.2. Our Taxonomy

Landwehr’s categorization of security flaws gave us the
realization that genesis and location were the two most useful
dimensions from our perspective. We also included a third
dimension, the impact of the vulnerability on the system.
Critical impact areas should prioritize testing effort. This 3-
dimensional classification scheme helped us to extract
information from the set of vulnerabilities and to discover
regularities in vulnerabilities across different operating
systems. This abstraction tells us about frequent occurrences

of security errors indicating that either current development
practices overlook these checks, or testing is not done
adequately for these specific conditions. With this
information, it is possible to assign a testing group to test for
these frequent occurrences more vigorously.

Each vulnerability was classified according to the following
classification.

2.2.1. Software development issues. Landwehr’s genesis
(Figure 1) provided the basis for describing the way each
vulnerability entered the system. In general it is the type of
security flaw, which is present:

• Validation errors occur when a program fails to check

that the parameters supplied or returned to it conform to
its assumptions about them, or when these checks are
misplaced.

• Domain errors occur when the intended boundaries
between protection environments are porous including
implicit sharing of privileged/confidential data or when
then the lower level representation of an abstract object,
supposed to be hidden in the current domain, is in fact
exposed.

• Serialization flaws permit asynchronous behavior of
different system components to be exploited. Many time-
of-check-to-time-of-use (TOCTTOU) flaws fall in this
category. Aliasing flaws arise when two names for the
same object can cause its contents to change unexpectedly
and consequently, invalidate checks already applied to it.
Serialization and aliasing flaws are combined into one
category.

• An identification/authentication flaw permits operations
to be invoked without sufficiently checking the identity
and the authority of the invoking entity.

• Boundary condition flaws occur due to omission of
checks to assure that constraints (table size, file
allocation, or other resource consumption) are not
exceeded.

• Trojan horse refers to a program that masquerades as a
useful service but exploits rights of the program’s user –
rights not possessed by the author of the Trojan horse – in
a way the user does not intend.

• Covert Channel is defined as a path to transfer
information in a way not intended by the system’s
designers.

• Other Exploitable logic errors include all errors that do
not fall in any of the above categories.

We have simplified this categorization by not distinguishing
between intentional and inadvertent as well as malicious or
non-malicious flaws in Landwehr’s taxonomy. From a testing
perspective, it is essential to test systems adequately to
discover such security flaws, and the programmer’s intent is
not important in this context. A trapdoor is a hidden piece of

code that responds to a special input, allowing its user access
to resources without passing through the normal security
enforcement mechanism. A logic/time bomb is a piece of code
that remains dormant in the host system until a certain
“detonation” time or event occurs. Both these flaws occur only
when the developer deliberately includes them in software. In
terms of discovery, they are the same as a Trojan horse, only
intent differs. We also redefine the following category to
eliminate ambiguity:

• Exploitable logic errors occur due to use of incorrect
logic during implementation.

Our simplified genesis dimension is then: validation errors,
domain errors, serialization or aliasing errors, errors due to
inadequate identification or authentication, boundary and
condition errors, Trojan horse, covert channel and exploitable
logic (Column 1 of Figure 3).

2.2.2. Location of flaws in the system. This dimension
(Figure 2) describes the location in software where the
vulnerability is present:

• System Initialization: Flaws in this area can occur either

because the operating system fails to establish the initial
protection domains as specified or because the system
administrator has not specified a secure initial
configuration for the system.

• Memory Management and Process Management are
functions that operating systems provide to control
memory and CPU time. Errors in these functions may
permit one process to gain access to another improperly
or to deny service to others. These two categories are
separate in the taxonomy.

• Device Management errors occur when the I/O routines
fail to respect parameters provided to them or when they
validate parameters provided in memory locations that
can be altered, directly or indirectly, after checks are
made by user programs.

• File Management: Operating systems include file
systems, which implement access controls to share and
protect their files. Errors in these controls, or in the
management of the underlying files, can result in security
flaws.

• Identification/Authentication functions of the operating
system maintain special files for user Ids and passwords
and provide functions to check and update those files as
appropriate. It is important to scrutinize these functions as
well as scrutinize all the possible ports of entry into a
system to ensure that these functions are invoked before a
user is permitted to consume or control other system
resources.

As with the genesis dimension, we have modified the location
dimension of Landwehr’s taxonomy. Landwehr et al. proposed
a general taxonomy to include flaws found in operating
systems, hardware, support software or application (user)
software. Since we were seeking a taxonomy to help us find
vulnerabilities in operating systems, we only include those
categories that fall under operating systems. Also, we have
eliminated the category called Other/Unknown.

2.2.3. Impact of flaws on the system. This dimension
describes the effect on the system due to an exploit of a
vulnerability. These are the visible impact of an attack. This
dimension can be prioritized to suit an organization’s testing
efforts. The categories are as follows:

 Non-Replicating

 Trojan Horse Replicating (virus)
 Malicious Trapdoor
 Intentional Logic/Time Bomb

Storage Non-
Malicious

Covert
Channel Timing

Genesis Other
 Validation Error (Incomplete or Inconsistent)

 Domain Error (Including Object Re-use, Residuals, and Exposed
Representation Errors)

 Inadvertent Serialization or aliasing

 Identification or Authentication Inadequate

 Boundary Condition Violation (Including Resource Exhaustion and Violable
Constraint Errors)

 Other Exploitable Logic Error

Figure 1. Landwehr’s Genesis of security flaws.

 System Initialization
 Memory Management

 Process Management/Scheduling

 Operating
Systems

Device Management
(Including I/O, networking)

Location File Management

 Identification/Authentication

 Software Other/Unknown

 Support Privileged Utilities

 Unprivileged Utilities

 Application
 Hardware

Figure 2. Security flaw taxonomy: Flaws by Location.

• Unauthorized Access: Action(s) that result in any

disclosure/modification of data, use of resources, or
execution of code with higher privileges by a user
violating the system security policy.

• Root/System Access: Actions that allow an attacker to
execute system processes or take any action with
system/root privileges violating the system security
policy.

• Denial of Service: Actions that prevent any part of a
system from functioning in accordance with its intended
purpose or delay time critical operations. This may
prevent authorized users to access resources or system
services.

• Integrity Failure: Actions that result in disclosure of
system state information violating the system security
policy.

• Crash/Hang/Exit: Crash may result due to actions that
result in sudden, sometimes drastic failure of a software

application, or operating system or a device such as a
disk. A system may hang when computer programs
conflict or do not run properly due to malicious action(s)
by an attacker paralyzing the system. Exit: Action(s)
resulting in an unexpected termination of an
application/service.

• Failure: Action(s) leading to temporary or permanent
termination of the ability of an application, system service
to perform its required function.

• Invalid State: Action(s) that lead to a system state not
permitted by the system security policy.

• File Manipulations: Action(s) that result in unauthorized
access, modification, or deletion of file contents by a user
without the required privileges.

• Errors due to clock changes: Action(s) leading to system
clock access that may result in an unpredictable system
state.

Development Issues Location Impact

Validation Errors System Initialization Unauthorized Access

Domain Errors Memory Management Root or System Access

Serialization or aliasing errors Process Management or
Scheduling

Denial of Service

Errors due to Inadequate
Identification or Authentication

Device Management Integrity Failure

Boundary and Condition Errors File Management Crash, Hang, or Exit

Trojan Horse Identification or
Authentication

Failure

Covert Channel Invalid State

Exploitable Logic Errors File Manipulations

 Errors due to clock changes

Figure 3. Security Flaw Taxonomy from a Security Testing Perspective

By making the simplifying assumptions given previously, our
taxonomy is shown schematically in figure 3.

3. Applying the taxonomy

We wanted to see if our taxonomy could be useful in finding
vulnerabilities in released software. We obtained a file of 1200
vulnerabilities found in Windows NT from Harris Corporation
and 160 in Linux compiled from Red Hat Linux Errata, and
we classified those vulnerabilities that existed in successive
releases of the software in order to see if the classification
mechanism identified error prone components of the system.

Rank Development

Issues
Location Impact No.

Windows NT
1 Exploitable

Logic
System
Initialization

Unauthorized
Access

115

2 Identification/
Authentication

System
Initialization

Unauthorized
Access

109

6 Identification/
Authentication

Identification/
Authentication

Unauthorized
Access

42

8 Validation
Error

Memory
Management

Unauthorized
Access

34

Linux

1 Validation
Error

Memory
Management

Unauthorized
Access

25

2 Identification/
Authentication

Identification/
Authentication

Unauthorized
Access

13

7 Exploitable
Logic

System
Initialization

Unauthorized
Access

5

9 Identification/
Authentication

System
Initialization

Unauthorized
Access

4

Figure 4. Common vulnerabilities of WINNT and
Linux

3.1 Distribution of vulnerabilities

The first dimension of our taxonomy (Figure 3), Software
Developing Issues, has eight categories. The second
dimension, Location of flaws, has six categories and the third
dimension, Impact of flaws, has nine categories. Hence, we
had 8x6x9 = 432 possible triples for each vulnerability. As a
first test we classified each flaw and ranked the triples
according to the number of vulnerabilities present in each
triple where Rank 1 indicates the highest number of
vulnerabilities. The last column in Figure 4 indicates the
number of vulnerabilities found in a triple. If errors occurred
randomly, then each triple should have approximately the
same number of vulnerabilities. However, in both Windows
NT and Linux, four of the top ten triples were the same
(Figure 4). These areas seem appropriate for increased system
testing.

3.2 Repetitive security failures

We classified 1360 vulnerabilities found in Windows NT
Versions 3.51, 4.0, 2000, XP and Red Hat Linux Versions 5.2,
6.2, 7.0, and 7.1. We used the STAT Scanner, a Vulnerability
Assessment Tool for Windows, Unix and Linux environments,
developed by Harris Corporation to analyze vulnerability
trends in Windows NT 4.0 and Linux systems. The following
data is based upon scanning systems with Windows NT 4.0
Service Pack 1 through Service Pack 6a and Post-SP6a
Security Rollup Package (i.e., interim bug fix releases to
Windows NT 4.0) to collect the following:
• Number and type of security flaws present in each service

pack.
• Number and type of security flaws fixed in each

successive service pack from the previous release.
• Number and type of new security flaws found in each

successive service pack, which were absent in the prior
service pack.

Service Pack Releases
12 11 12 9 6 3 0

34 34 34 25 25 28 20

17
7

16
1

13
3

10
8

10
4

10
0

77

11

11

11

9 9 6

5

0

50

100

150

200

250

SP1 SP2 SP3 SP4 SP5 SP6a SRP
Service Packs

N
um

be
r o

f V
ul

ne
ra

bi
lit

ie
s

Warning
Low
Medium
High

Figure 5. Number of security flaws in Service Packs

according to risk levels.

The successive changes in security flaws present in each
release provide more relevant data than just the total number
of flaws present. It provides a snapshot of how such flaws are
found and fixed between service pack releases. Starting with a
baseline of 234 vulnerabilities present in Service Pack 1 (SP1)
given in Figure 5, the bars above the X-axis in Figure 6
indicate the number of flaws that were not present in prior
releases (i.e., represent new security flaws), while those below
indicate the number of flaws present in the prior service pack,
but were fixed in this service pack. It can be seen that the

majority of flaws fixed in each service pack release are low
risk level. New medium level flaws were introduced in SP2,
SP3, SP6a and SRP. Only one high-risk flaw was detected
during the releases (in SP3). Medium risk flaws continue to
exist in future releases while high-risk flaws get fixed.

Our goal was to look where security flaws occurred, not just
their number. We classified the vulnerabilities found in each
service pack according to our taxonomy and ranked the
various categories under each dimension by the number of
vulnerabilities present in each category. Rank 1 indicates the
highest number of vulnerabilities. (The data is given in
Figures 11 and 12.) The results of this ranking are shown in
Figures 7 and 8. The maximum number of flaws were found in
System Initialization in the location dimension in all Service
Packs and in Exploitable logic (Rank 1 in SPs 1, 2 and 3 and
Rank 2 in SPs 4, 5 and 6) and in Inadequate Identification or
Authentication (Rank 1 in SPs 4,5 and 6 and Rank 2 in SPs 1,
2 and 3) in the dimension of Software development issues.

We also compared the distribution of high and medium risk
level flaws with the total distribution of security flaws. We
again ranked the categories in each dimension according to the
number of high and medium flaws present in each category.
This distribution or ranking scheme is shown in Figures 9 and
10. Comparing these figures with Figures 7 and 8 respectively,
we can conclude that the distribution of high and medium risk

∗ The numbers of flaws shown in each SP are relative to the previous SP. For
example, from Figure 4, SP1 has 234 flaws. SP2 flaws can be obtained from
this number by adding the number of flaws that appear above the X-axis in
Figure 5 and subtracting the number of flaws below the x-axis. Hence SP2 has
234+2-19=217 flaws.

level security flaws reflects the same regularities as the
distribution of total number of vulnerabilities. Hence, using
this taxonomy to identify high-risk flaws in one release of a
system (defined as the rank of security flaws for that
dimension), may potentially eliminate or prevent a majority of
security flaws by orienting testing to search more intensely for
these flaws.

Ranks of All Flaws

0

2

4

6

8

Syst em
Init ializat ion

Memory Mgmt Process Mgmt Device Mgmt File Mgmt Ident if icat ion/
Aut hent icat ionLocation in software

R
an

k
Va

lu
e

All Bugs
SP1
SP2
SP3
SP4
SP5
SP6a
SRP

Figure 7. Ranking of locations in software.

Ranks of All Flaws

0

2

4

6

8

10

Software Development Issues

R
an

k
Va

lu
e

All Bugs
SP1
SP2
SP3
SP4
SP5
SP6a
SRP

Figure 8. Ranking of software development issues.

A number of key points can be observed from the data:
• Ranks of each category in each service pack and the

combined list of all flaws are similar. This indicates that
the problem areas in these service packs are similar and
the vulnerabilities are concentrated in certain
combinations of the three dimensions. This also shows
that the problem areas in security can be identified using
this classification scheme.

• Since high and medium risk flaws lie in the same heavily
concentrated areas, developers and testers should be more
successful in eliminating these risk flaws and thus the
next release would have a higher level of security.

Figure 6. Number of remaining/found/fixed
security flaws in successive service packs.∗

• New security flaws found in successive service packs

were present in the heavily concentrated areas showing
that they may have been prevented and hence eliminated
even before they could be exploited if the testing effort
was concentrated in these problem areas.

Concentration of security flaws in a set of specific categories
can lead to any of the following scenarios:

1. It may be easier to exploit the categories that have a larger

concentration of flaws. This implies testing for these
categories would lead to a more difficult to break-in and
hence more secure system.

2. Test plans do not test these problem areas adequately.
Using this taxonomy would lead to building more
complete test plans.

 This should lead to categories with fewer flaws, which may
be more difficult to find and exploit. It is important to note we
may not have knowledge of all flaws in the system, but using
this taxonomy will help us eliminating the more common and
easily exploitable bugs.

For Figure 11, Black indicates many (≥50) Windows NT or
Linux (≥8) flaws while White indicates fewer flaws using a
ratio of 7:1 for relative number of Windows NT to Linux
flaws. Left semicircle is Windows and right is Linux. Looking
at all security flaws in Windows NT and Linux, we observe
that most cases (31 out of 48) have similar characteristics in
both systems. Emphasizing testing on only the 5 black circles
identifies half (48% of Windows and 63% of Linux) of the
vulnerabilities in both systems. Looking at each system
independently, the black semicircles represent 60% of
Windows and 68% of Linux flaws.

4. Conclusions

The work presented in this paper extends the existing research
in security vulnerabilities to the perspective to help predict,
prevent and eliminate security vulnerabilities in existing and
new systems. The information reflects an organization’s
environment and is therefore more useful to accurately detect
the problem areas in that environment. This information can
be retained within an organization hence preventing the risk
factor introduced by signing a contract with a “tiger” testing
team. We have shown that concentrating testing effort in the
problem areas of the organizations’ environment one can
develop more secure software which will even prevent future
vulnerability exploits.

Thus this classification scheme would not only help the
software development community in reducing maintenance
costs of systems by fixing flaws in early stages of the
development cycle, but also serve as a database to derive
security metrics or baselines for testing. Hence, Security
testing can now be established as a systematic and repeatable
process to be able to collect data about the achieved level of
security of the product and controlling the process to reach the
desired level of security.

4.1. Further testing of the taxonomy.

Hedbom et al. [25] compared the security of Windows NT and
UNIX. They found that Windows NT had slightly more
rigorous security features than “standard” UNIX but the two

Ranks of High-Med Flaws

0

2

4

6

8

System
Ini ti al i zation

Memor y Mgmt Pr ocess Mgmt Device Mgmt Fi le Mgmt Identi f ication/
Authenti cation

Location in Software

R
an

k
V

al
ue

All Bugs
SP1
SP2
SP3
SP4
SP5
SP6a
SRP

Figure 9. Ranking of locations in software counting

only high and medium risk level flaws.

Ranks of High-Med Flaws

0

2

4

6

8

10

Software Development Issues

R
an

k
V

al
ue

All Bugs
SP1
SP2
SP3
SP4
SP5
SP6a
SRP

Figure 10. Ranking of software development issues
counting only high and medium risk flaws.

Figure 11. Comparison of flaws in

Windows NT(1200) and Linux (160).

systems display similar vulnerabilities. They reached the
conclusion that there are no significant differences in the
“real” level of security between these systems. This implies
we would find similar regularities in the distribution of
security vulnerabilities in UNIX and Windows NT.

We have compiled a list of 160 vulnerabilities found in
various versions (from Versions 5.0 to 7.2) of Red Hat Linux
and from Figure 4, we reach the conclusion that Windows NT
and Linux vulnerabilities reflect similar regularities. This is a
very striking result; however, we think the number is small to
represent all the vulnerabilities present in Linux and we hope
to grow the database to derive further conclusions.

We would like to use this taxonomy to classify security flaws
found in different operating systems like variants of Unix,
Linux and Sun Solaris to understand the relationships between
the type of security flaws and the systems they are found on. If
the relationships are similar, we could then conclude that the
hacker community exploits a specific set of vulnerabilities and
with the help of this taxonomy, these vulnerabilities could be
eliminated more readily. This would also lead us to test the
generality of this taxonomy.

4.2. Research in testing techniques

One research direction would be to evaluate the various testing
techniques like path testing, domain testing, data flow testing
to find out the vulnerabilities discovered by these traditional
testing techniques and map this information to our taxonomy.
This would be very useful to organizations, as they would
know what technique to use after detecting the problem areas
in the software.

Another direction would be to build tools and automated tests
to test characteristics or conditions of software using data from
the vulnerability database. For example, if Memory
Management had a greater concentration of security flaws,
then we would like to be able to have a tool that would
perform all the memory and data structure checks and check
for consistency of values stored in memory as well as
boundary limits of the data structures so as to be able to
remove the possible flaws in this category. Thus for
regression testing, one would have to run the union of set of
automated tests that checks for various problem areas detected
in software.

Acknowledgements

We would like to acknowledge Mr. Jim Dingemanse and Mr.
William Wall from Harris Corporation, who graciously
provided access to STAT Scanner, a Vulnerability Assessment
tool. We would also like to acknowledge Dr. William Arbaugh
and Dr. Atif Memon of the University of Maryland and Dr.
Ray Vaughn of Mississippi State University for their valuable
guidance. This research was partially supported by grant

CCR0086078 from the National Science Foundation to the
University of Maryland.

References

[1] Michael A. Cusumano and Richard W. Selby, “Microsoft Secrets:
How the World's Most Powerful Software Company Creates
Technology, Shapes Markets, and Manages People,” The Free Press,
1995.

[2] Gula, Ron. "Broadening the Scope of Penetration Testing
Techniques". July 1999.

[3] C. Pfleeger, S. Pfleeger and M. Theofanos, “A Methodology for
penetration testing,” Computers and Security, 8(7), 613-620, 1989.

[4] R. R. Linde, “Operating System Penetration,” AFIPS National
Computer Conference, pp. 361-368, 1975.

[5] E. J. McCauley and P. J. Drongowski, “The Design of A Secure
Operating System,” National Computer Conference, 1979.

[6] R. Kaksonen, Marko Laakso, Ari Takanen, “Vulnerability
Analysis of Software through Syntax Testing,” Technical Research
Centre of Finland, 2000. Available online at
http://www.ee.oulu.fi/research/ouspg/protos/analysis/WP2000-
robustness/

[7] G. Fink and M. Bishop, "Property Based Testing: A New
Approach to Testing for Assurance," ACM SIGSOFT Software
Engineering Notes, 22(4), July 1997.

[8] J. Voas, and G. McGraw, “Software Fault Injection: Incoculating
Programs Against Errors,” John Wiley & Sons, Inc., 1998.

[9] Wenliang Du and A. P. Mathur, “Vulnerability Testing of
Software System Using Fault Injection,” Department of Computer
Sciences, Purdue University; Coast TR 98-02; 1998.

[10] Eugene H. Spafford, “Extending Mutation Testing to find
Environmental bugs,” Software Practice and Principle, 20(2), pp.
181-189, Feb 1990.

[11] V. D. Gligor , C. S. Chandersekaran, W. Cheng, W. D. Jiang, A.
Johri, G. L. Luckenbaugh and L. E Reich, “A New Security Testing
Method and its Application to the Secure Xenix Kernel,” Proceedings
of the IEEE Symposium on Security and Privacy, pp. 40-58, 1986.

[12] B. Beizer, “Software Testing Techniques,” Van Nostrand
Reinhold, New York, 1990.

[13] Bisbey, R. and D. Hollingsworth, “Protection Analysis Project
Final Report,” Information Sciences Institute, University of Southern
California, Marina Del Rey, CA, 1978.

 [14] R. P. Abbott et al, “Security Analysis and Enhancements of
Computer Operating Systems,” Report NBSIR 76-1041, Institute for
Computer Science and Technology, Natl. Bur. of Stnds, 1976.

http://www.ee.oulu.fi/research/ouspg/protos/analysis/WP2000-robustness/
http://www.ee.oulu.fi/research/ouspg/protos/analysis/WP2000-robustness/

[15] Eugene H. Spafford, “Common System Vulnerabilities,”
Proceedings of the Workshop on Future Directions in Computer
Misuse and Anomaly Detection pp. 34-37, 1992.

[16] C. E. Landwehr, A. R. Bull, J. P. McDermott, and W. S. Choi,
“A taxonomy of computer program security flaws,” ACM Computing
Surveys, Vol. 26 (3), pp. 211-254, 1994.

 [17] T. Aslam, “A taxonomy of Security Faults in the Unix
Operating System,” M.S. Thesis, Purdue University, 1995.

 [18] T. Aslam, “Use of a taxonomy of Security Faults,” Technical
Report 96-05, COAST Laboratory, Department of Computer Science,
Purdue University, March 1996.

[19] M. Bishop, “A Taxonomy of UNIX System and Network
Vulnerabilities,” Technical Report CSE-95-10, Purdue University,
May 1995.

[20] Wenliang Du and Aditya P. Mathur, “Categorization of Software
Errors that led to Security Breaches,” In Proceeding of the 21st
National Information Systems Security Conference (NISSC’98),
Crystal City, VA, 1998.

[21] R. A. Demillo and A. P. Mathur, “A grammar based fault
classification scheme and its application to the classification of the

errors of TEX,” Technical Report SERC-TR-165-P, Purdue
University, 1995.

[22] Brian Marick, “A survey of software fault surveys,” Technical
Report UIUCDCS-R-90-1651, University of Illinois at Urbana-
Champaign, December 1990.

[23] Ram Chillarege, “ODC for Process Measurement, Analysis and
Control,” Proc. of the Fourth International Conference on Software
Quality, ASQC Software Division, Oct 3-5, 1994 McLean, VA.

[24] Ram Chillarege, Inderpal S. Bhandari, Jarir K. Chaar, Michael J.
Halliday, Diane S. Moebus, Bonnie K. Ray, Man-Yuen Wong,
“Orthogonal Defect Classification - A Concept for In-Process
Measurements,” IEEE Transactions on Software Engineering, Vol
18, No. 11, Nov 1992.

[25] Hans Hedbom, Stefan Lindskog, Stefan Axelsson and Erland
Jonsson, “A Comparison of the Security of Windows NT and UNIX”,
Third Nordic Workshop on Secure IT Systems, November 1998.

Appendix

The following tables present the raw data used to generate
Figures 7-10.

S/W Development All Bugs SP1 SP2 SP3 SP4 SP5 SP6a SRP
Validation Error 155 40 32 24 17 16 14 7
Domain Error 21 9 7 7 5 5 4 4
Serialization/ Aliasing 1 0 0 0 0 0 0 0
Identn/Authen 218 66 63 60 56 55 49 41
Boundary Violation 12 8 8 5 1 0 1 1
Exploitable logic 326 88 84 70 50 47 48 36
Trojan Horse 120 19 19 19 18 18 15 12
Covert Channel 0 0 0 0 0 0 0 0

Figure 13. Number of flaws found in various service packs categorized according to
software developing issues.

Location All
flaws

SP1 SP2 SP3 SP4 SP5 SP6a SRP

System Initial 505 163 153 133 105 101 98 78
Mem Mgmt 77 16 15 14 9 8 6 3
Process Mgmt 10 3 3 3 3 3 2 0
Device Mgmt 15 10 10 10 10 10 6 4
File Mgmt 31 10 7 3 3 3 2 1
Identn/Authen 215 28 25 22 17 16 17 15

Figure 12. Number of flaws found in various service packs
categorized according to the locations in software.

	Maintaining Software with a Security Perspective
	
	A
	Abstract

	1. Introduction
	2. Security Classifications
	2.1. Classification schemes
	2.2. Our Taxonomy
	
	
	Figure 11. Comparison of flaws in

	References

