
An Information Model for Use in

Software Management Estimation and Prediction

Ningda R. Li and Marvin V. Zelkowitz

Department of Computer Science

University of Maryland

College Park, MD 20742

Abstract

This paper describes the use of cluster analysis
for determining the information model within col-
lected software engineering development data at the
NASA/GSFC Software Engineering Laboratory. We
describe the Software Management Environment tool
that allows managers to predict development at-
tributes during early phases of a software project and
the modifications we propose to allow it to develop dy-
namic models for better prediction of these attrib@s.

Keywords: Cluster analysis; Data modeling; Mea-
surement; Software management; Tools

1 Introduction

Software management depends upon managers to
collect accurate data of the software development pro-
cess and on the production of accurate models upon
which to use that data. Lines of code is still the most
widely used measure for coat and error analysis, even
though it is known to be inaccurate [8]. However, since
it is not known until the completion of a project, its
use as a predictive measure is not reliable. What are
needed are more accurate models of the software de-
velopment process.

Current models are developed according to broad
categories, such as waterfall development, spiral model
development, cleanroom development, etc., with addi-
tional qualifiers giving a few attributes of the product
(e.g., real time, embedded application, data base).

Permission to copy without fee all or pmt of this material is

granted provided that the copies W. not made or distributed for
direct commercial advantage, the ACM copyright notica and tha

titla of the publication end ita date appaer. w-d notice ia @van
that copying ia by permission of the Association for Computing
Machinery. To copy otharwiaa, or to rapublish, raquires a fee

and/or specific parmiasion.

CIKM ’93-1 l/93/D. C., USA

~ 1993 ACM o-89791-626-319310011$1.50

Data is often collected and projects are compared to
historical baselines according to these general cate-
gories. For example, the COCOMO model [1] is based
upon a small set of predefine factors, and predictions
are made according to how a new project measures up
to these factors.

It is difficult for software managers, however expe-
rienced they are, to evaluate the status or quality of a
soft ware development project and make correct deci-
sions without accurate, reliable measurement models
and data. These data include metrics aimed at clari-
fying and quantifying some quality of either a software
product, or the development process itself [13].

Since we do not have accurate models of the soft-
ware development process, perhaps, we can use the
data itself to develop dynamic models of software
development that reflect the changing nature of the
development process. In this paper we study one
particular modeling technique, cluster analysis, as
a means for determining the underlying information
model present in the collected software engineering de-
velopment data.

The importance of software management has led
to the development of various software management
tools for aiding in this effort. These tools help soft-
ware managers get access to, visualize, and analyze
measurement data. The Software Management Envi-
ronment (SME) is one of those tools developed within
the NASA Goddard Space Flight Center Software En-
gineering Laboratory (SEL) [6], [12]. It is the purpose
of this paper to investigate the use of cluster analysis
within SME to enhance the ability of software man-
agers to predict and control the software development
process.

In Section 2 we describe the information model and

the measures used by SME. In Section 3 we describe

481

our use of cluster analysis to dynamically change our
information model, and in Section 4 we describe some
preliminary results of using our new model. We then
give our conclusions to this work.

2 Measurement in SME

For over 15 years the software engineering commu-
nity has been studying various models of the soft-
ware development process. Concepts like Halstead’s
software science messures, Putnam’s Rayleigh curve,
Boehm’s COCOMO model, among many others, are
all attempts at providing a quantitative model un-
derlying the software development cycle. Unfortu-
nately, most of these models are very general, and
while broadly describing the software process, do not
have the granularity to make accurate predictions on
a single software project.

As a way to further these studies, the Software En-
gineering Laboratory was established to evaluate the
above models and develop new models within a pro-
duction programming environment.

2.1 NASA/GSFC SEL

The NASA Goddard Space Flight Center Software
Engineering Laboratory is a joint research project
of GSFC Flight Dynamics Division, Computer Sci-
ences Corporation and the University of Maryland.
Data from over 100 projects h= been collected since
1976 and a data base of over 50 Mbytes of measure
ment data has been developed. Initially supporting
100,000 line FORTRAN ground support software for
unmanned spacecraft written by 10 to 15 program-
mers over a 2 year period for an IBM mainframe, the
SEL data base now includes a wider variety of projects
consisting also of Ada and C code for a variety of ma-
chines.

The SEL collects data both manually and automat-
ically. Manual data includes effort data (e.g., time
spent by programmers on a variety of tasks – design,
coding, testing), error data (e.g., errors or changes,
and the effort to find, design and make those changes),
and subjective and objective facts about projects (e.g.,
start and end completion dates, goals and attributes
of project and whether they were met). Automatically
collected data includes computer use, program static
analysis, and source line and module counts.

2.2 Measure Models

Data modeling often combines various measures in
order to evaluate attributes in a software development.
For example, classification trees were used as part
of the Amadeus project [9] [10] and a variant of that
method was used within the SEL [11]. In this case, a
tree is generated where each leaf node represents one
of several results. Based upon values for each mea-
sure, a path down the tree is taken until a result at a
leaf node is reached.

For each project, we can compare the collected data
over time with a predefine model of a similar project
from the data base. A basic measure model refers to
the expected behavior of a software development mea-
sure as a function of time [5]. Measures, developed
from the raw data collected by the SEL, include lines
of code, staiT hours, computer hours, and changes and
errors. A memure model is usually obtained by ex~-
ining the data for that measure over a set of projects
and averaging them. Time is described in terms of
the four major phases of software development within
the waterfall life-cycle: design, code and unit test, sys-
tem test, and acceptance test.1 Measure behavior is
described in terms of percent completion of that mea-
sure at each distinct checkpoint.

Within the SEL, we describe one of these measure
models aa a vector of 15 points, each representing the
percent completion of the measure at distinct dates
in the development cycle (generally 2570 increments
through each phase). Table 1 shows the tabular repre-
sentation of a Lines of Code (LOC) model [5] and Fig-
ure 1 shows the graphical representation of the same
model, According to the LOC model, no code should
be written during the design phase, and most of the
code (76$ZO)should be written during the code and unit
test phase.

For easeof use, we can use the vector representation
of the model:

[0, 0,0,0, 0,6.86,36.05,53.99,76.28,

86.82,94.88,96.09,98.14, 99.58, 100]

In general, a measure model can be represented by
the following vector:

P = ~0, Pl, P2,~l3>Pl4]

1The SEL does not collect specification data since that t~k

is performed by another group. This is reflected in the models

that the SEL develops, and is a good indication why no two

development models are easily transportable across locations.

482

Phase % of Phase % of Total Lines
Design o 0.00

25 0.00
50 0.00
75 0.00

Code/Unit o 0.00
Test 25 6.86

50 36.05
75 53.99

System Test o 76.28
50 86.82

Acceptance o 94.88
Test 25 96.09

50 98.14
75 99.58

End 100 100.00

Table 1: Tabular representation of a LOC model

Design

100

80

% 60r
Loc

40

20

Acce t.
Tea?

00

Phases

Figure 1: Graphical representation of a LOC model

with p. =0,0 <p~<lOOforl<i~ 13, and
p14 = 100.

We will use measure pattern to refer to a measure
model derived from a single project. Essentially, we
produce a measure model as the average of some set
of measure patterns.

2.3 SME

The Software Management Environment was devel-
oped to help software managers carry out manage
ment activities like observation, comparison, predic-
tion, analysis, and assessment [6]. In order to provide
these functions, SME uses measurement data from
current and paat projects from the SEL database, re-

Deaign
120

100

80

L~C 60

40

20

[
start ~ + ;

U%idkt %%

100

Phases

Figure 2: LOG patterns

relationships,search results in terms of models and
and manager experience from the past.

SME was initially built with a fixed set of measure
models. For example, for LOG (lines of code), the
most apparent predictor seemed to be programming
language. Therefore, SME originally had two models
of LOG baaed upon language - Ada and FORTRAN.
Each project was classified according to the measure
model it was expected to adhere to, and for each mea-
sure type, a predefine measure model was stored in
the data base.

Some of the features of SME are described below.

Measure models in SME

Currently in SME, a measure model is derived from
a set of projects with the same characteristics, such
as development methodology, programming language,
and development environment. SME decides which
measure model to use for a project measure of inter-
est baaed on the characteristics of that project. For
example, Figure 2 shows four LOG patterns of four
different projects with the sarhe characteristics. SME
creates a LOC model by averaging these patterns, but
is the resulting model a good representative of actual
LOG behavior? This is the basic question behind our
research plan, and our goal is to develop, dynami-
cally, LOG (and other) models that better represent
attribute behavior.

observation and Comparison

To monitor the progress of a project, managers need

483

200K

LOC

lOOK

l.-=....

Figure3: Growth in’Lines of Code’ for P1

cumulative growth data for measures such as effort,

size and errors. SME provides graphic display of the

actual collected data like shown in Figure 3, in which
the solid curve represents an overall view of project
PI’s growth in size (lines of code) over a specified cal-
endar time. The dotted curve in Figure 3 shows a
LOC model of a similar project or the LOC measure
model from the data base to permit the manager to
compare project data to a model which indicates the
“normal behavior” for such projects. Comparison can
also be made between projects.

Prediction

SME can also predict a measure’s completion value
for an on-going project, by using the appropriate mea-
sure model scaled up to the actual time schedule of the
new project. Using the initial data collected from a
project, final values can be estimated giving the man-
ager an indication of the measure’s possible future be-
havior.

Analysis and Assessment

SME can help the manager identify the probable
causes of any unexpected behavior for a measure, and
assess the quality of a project based on all the mea-
surement data. For each measure, a knowledge base of
caus~effect relationships is maintained. So, for exam-
ple, if a given project seems to have too many errors
at a certain point in the coding phase compared to the
error measure model, a rationale can be provided to
the manager, such as:

TEAM IS REPORTIHG INCOllSEQUEl?TAIL ERRORS

IIJEXPERIE?ICED DEVELOPMEET TEAM

POOR USE OF METHODOLOGY

COMPLEX PROBLEM

etc.

Similar idea can be found in [4]. What is desired
is a mechanism whereas this knowledge base can be
updated dynamically as projects evolve.

3 Cluster analysis

Cluster analysis is the technique for finding groups
in data [7] that represent the same information model.
Biologists and social scientists have long used it to
analyze their data. Here, we use it to find similar
measure patterns within the collected software devel-
opment data.

Clustering was used previously in an early SEL
study [3] in order to determine possible patterns in
projects by clustering the modules that make up the
project. The results were somewhat inconclusive due
to large variances within small modules and the many
different attributes that contributed to the single value
that was clustered. In this current study, we try to
separate out different attributes and study their ef-
fects over time. This gives greater precision to the
data we are looking at and eliminates much of the
variability found in the earlier study.

3.1 Clustering

As stated in section 2.2, a measure pattern can be
represented by a vector. Clustering is a method to
determine which vectors are similar and represent the
same or similar physical objects. There are several
clustering and modeling algorithms, includlng:

●

●

●

Euclidean distance. Each vector represents a
point in n-space. Points near one another are in
the same cluster.

Cosine. Each messure pattern represents a vector
from the origin. The cosine of the angle between
two vectors represents the similarly in their com-
ponents and hence their closeness.

Optimal Set Reduction. OSR, generates, based on
search algorithms and univariate statistics, logical
expressions which represent strong patterns in a
data set [2].

484

Design

100

80

% 60
LOC

40

20

E
Start ~ ~ ~

u%%,?%

Figure 4: A cluster of LOC patterna

Several other algorithms also have been used.

For our initial investigation, we are using the Eu-
clidean distance between two vectors as a degree
of similarity between two measure patterns. For
example, if P = ~0, pI, p2, . . ., P13, P14] and N =
[?ao,nl, ?lz,..., ~13, nlA] are two measure patterns,
then their Euclidean distance is

ed(P, N) = (po – no)2 +” ..+ (P14 – nlA)2

Two patterns are assumed similar and are in the same
cluster if and only if ed(P, N) < c.

Note that by varying c we can adjust the size of
the clusters by specifying how close two vectors must
be in order to be in the same grouping. Since single
vector clusters provide no information, we want to ad-
just .s so that we generally have clusters of at least 3
vectors without including vectors that represent fun-
damentally different curves. Figure 4 shows a cluster
of three LOC patterns.

3.2 Cluster model

A cluster model is the average of all measure pat-
terns in one cluster. It closely describes the measure
behavior for all projects in the cluster because mea-
sure patterns in the same cluster are similar. Instead
of choosing a predefine messure model for a project
measure of interest using the project’s characteristics
(as is currently the case with SME), a cluster model
can be dynamically selected for the project measure
depending on which cluster its pattern best fits.

A further advantage from the current static ap-
proach of SME, is that alternative models can be de-
veloped for each measured attribute. Within SME,
the same measure model is used for all measured at-
tributes. For example, if the defining characteristic is
Ada for the LOC measure, it will be the Ada mea-
sure model for each other measure (e.g., error, effort).
With dynamic clustering, measure models can vary for
each distinct measure.

For an ongoing project, a manager’s estimate of
schedule and measure completion values are used to
derive its messure patterns. Estimates are replaced
by real data once they become available. So a project
measure’s closest cluster model may change as the
project develops. In Section 4.3 we discuss how to use
this information to improve on the predictive capa-
bilities of SME. On the other hand, since a project’s
development methodology or programming language
usually do not change during a project’s development
life-cycle, the static measure model chosen by the cur-
rent implementation of SME based on those charac-
teristics does not change.

Similarly, SME does an assessment of a project’s
real data compared to the measure model’s estimate
by use of a predefine set of attributes. But by look-
ing at the attributes that are common for all projects
within a given cluster, we may be able to determine
general characteristics for any new project that falls
within that cluster. This list of attributes will dy-
namically evolve over time instead of being a static
description of project behavior. For example, if all
projects within a given cluster were previously late in
delivery, it may be useful to report this information
to the manager of a new project that falls within this
cluster.

This allows the knowledge base to grow and change
dynamically as projects develop. It does not require
the predefintion of a few models - which may not even
accurately represent the actual development model,
only a manager’s poor estimate of one.

4 Evaluation of Clustering

Before implementation of our clustering approach
within SME, we evaluated the effectiveness of clus-
tering with a subset of the SEL data base. Mea-
surement data from twenty-four projects in the data
base were clustered using eight different measures:
computer hours (CPU), total staff hours (EFF), lines
of code (LOC), modules changed (MCH), module

485

Design

r

100$ —

80 P19 —

p6 ----

% 60R 6”””-

LOC
p20

40

20

dCode
Unit eat

..
-........,

J

.:.’
..’“.“,

\ “-
~~~
424

S’#si Acce t.
Te4!

I

f

.’
. . ,. .“.

. .

.,.”
.. -.”
.-

00

Phases

Figure 5: Two clusters of MCH patterns

count (MOD), reported changes (RCH), reported er-
rors (RER), and computer jobs (RUN). We then stud-
ied common objective and subjective attributes of
projects in the same cluster.

For example, Figure 5 shows two clusters of MCH
(module changes) patterns. Cluster Cl consists of pat-
terns from projects P3, P13 and PM, and cluster C2
consists of patterns from projects P& Pl& Pzi). We
observe that more than half of the module changes
were made during the code and unit test pheee for
projects in C2 compared to about twenty precent for
projects in Cl. Consequently, only twenty percent of
the module changes were made during the system test
phsse for C2 compared to about fifty percent for Cl.

4.1 Objective characteristics

Project characteristics of the two clusters are sum-
maried in Table 2 and 3 respectively. We observe that
if computer language is the basis for choosing a MCH
measure model, as is the case with the current ver-
sion of SME, all six projects will use the same MCH
model since they all use FORTRAN. In this case, clus-
tering discovers the two vastly different behaviors of
MCH measures which are undetectable with the static
approach.

In addition, some commonly used discriminators do
not appear to be significant with these clusters. Size is
often used to classify projects, yet cluster Cl contains
projects from 16K to 179K source lines. The projects
represent two very different hardware and software en-
vironments (IBM mainframe and DEC VAX VMS)
and each project in Cl represents a different applica-

Attributes P3 P13 Plg
Computer IBM DEC IBM
Language FORT. FORT. FORT.
Application AGSS SIM. ORBIT
Reuse ( 70) 10.1 30.7 38.1
Time (wks) 116 119 109
Sise (SLOC) 178.6 36.6 15.5

Table 2: Project characteristics for cluster CI

I Attributes I Ps I 1’16 P2(I

Computer IBM IBM IB-M
Language FORT. FORT. FORT.

Application AGSS AGSS AGSS
Reuse (%) 19.5 1.9 10.0
Time (wks) 97 87 147
Sise (SLOC) 167.8 233.8 295.4

Table 3: Project characteristics for cluster G’2

tion area. (However projects in C2 are more homoge
neous; they all represent relatively large 168K to 296K
attitude ground support systems built ss mainframe
IBM applications.)

4.2 Subjective characteristics

Subjective data for each project is stored in the
data base as an integer between 1 (low or poor) and
5 (high). Each project manager fills in these values
at the end of a project bssed upon experiences during
the development. For each cluster we retrieved those
subjective attributes that differed by at most 1 within
the cluster, thus indicating a common feature for those
clustered projects. This information can then be fed
back to the manager of a new project that falls within
that cluster to provide an indication of probable future
behavior.

Projects in cluster C2 have common ratings on the
following subjective attributes:

Tightness 6f schedule constraints: 3

Access to development system: 3

Timely software delivery: 4

We notice that their rating for timeliness of software
delivery is relatively high. This could be a direct re-
sult of the fact that most module changes were made
during code and unit test phsse.

486



Design d
Code

Unit est

140

120

100
% go

CPU
60

40

20

Phsses

Figure 6: Prediction for CPU

4.3 Predictive models

The two clusters of Figure 5 are easiest to mes

sure when all data points for each measure model are

available. However, it is the very nature of predic-

tive models that some of this data is incomplete. We

are currently altering SME’S predictive capabilities to

take this into account.

If data is available for new project P up through

point i (e.g., values for PO, PI,..., pi), then clustering

for P against each existing cluster will be only with

respect to these i + 1 points. That is, for each cluster

C, it will be assumed that pi and ci have the same

value and P’s other values will be scaled accordingly.

Clustering will determine which cluster has the closest

shape to P’s shape.

Once a matching cluster is found, it will be as-

sumed that project P has the same characteristics as

this found cluster and the succeeding values for P will

match the cluster’s measure model for points i + 1

through 14.

The effect will be to scale P’s original estimate with

respect to the cluster’s estimate. For example, in Fig-

ure 6, if the cluster estimated a 5070 completion by

point 8 and the actual data showed a 75% “compl&

tioq” then it can be assumed that the actual com-

pletion will be 150% since the relevant cluster is only

half finished. In this csse it can be assumed that the

manager underestimated the resources needed for this
project. We are currently modifying SME’S graphical

interface to show these predicted curves.

The predictive model for project P depends upon

both estimating the total resources needed in order to

compute the percentage for point Pi and estimating

the schedule in order to determine how far one has

progressed in the current development phase. Either

one, however, may not be accurate. For example, cur-

rent point PG represents 50~o coding, yet that is only

known when coding is complete. The current date

may possibly range from perhaps the 25% level (and

hence really represent point P5) to the 75% level (and

hence really represent point P7) depending upon how

accurately the initial schedule was set up. The true

date will be known only after the coding phase is com-

pleted. However, in the above paragraphs we have de

scribed a mechanism to estimate resource needs when

we assume that the schedule is correct.

On the other hand, if the latest available project

point Pi is scaled to a cluster model horizontally along

phsses instead of vertically (i.e., by changing the es-

timated schedule), we can predict future changes in

project schedule. However, since only discrete rnk

stones of a schedule are used, they need to be quan-

tified before numerical scaling can be applied. We

are looking at extending the SME predictive model in

order to estimate both the resource needs as well as

potential bounds on the schedule based upon current

data.

It should be reahzed that the model’s predictive

capabilities improve as a project develops. Very few

points are available for prediction early in the develop-

ment cycle leading to few differences among the var-

ious clusters. On the other hand, late in the devel-

opment cycle where there is more variability among

the clusters, it may be too late to change develop-

ment models to account for any potential problems.

How well the early predictions lead to significant dif-

ferences in project development attributes is obviously

an issue we need to investigate.

4.4 Model evaluation

Aside from its primary use as a tool to aid man-

agement in predicting future behavior on a current

software development project, use of cluster analysis

permits SME to be used as a tool to evaluate new

models. If a model is proposed that describes some

attribute of development that is collected by the SEL

data base, then all projects within a cluster should

exhibit that attribute to a great extent.

For example, the SEL is currently planning to en-

487



hance the SEL data base with additional predefine

measure models in addition to the two models used

at present. Often the following attributes (and their

relevant values at NASA) are viewed as important at-

tributes of a development methodology:

●

b

●

●

Computer use - IBM or DEC environment

Reuse of existing source code – Low, medium or

high reuse of existing source code

Language – FORTRAN or Ada as a source pr~

gramming language

Methodology – Cleanroom or standard NASA wa-

terfall development method

By choosing one value from each category, the SEL can

develop 24 possible models. A subset of these will be

built into the SEL data base as predefine models for

each project and each project will be assigned to one of

these categories. However, while they are often viewed

as crucial attributes, are these really discriminators

useful to differentiate among projects?

If these are really discriminators of project devel-

opment, then projects within a single cluster should

all consist of the same predefine measure model (or

at least predominately so). We can then use our clus-

tering approach to determine the effectiveness of the

new proposed models.

We can also use clustering to determine if there

are any relationships among measures. If a cluster for

Reported Change (RCH) consists of the same projects

as a cluster for Reported Error (RER), this indicates

that those two measures are closely related. If projects

A and B are in the same cluster for CPU, LOC and

RUN, then those projects are somewhat related.

This approach can be extended to any quantitative

model. Projects in the data base can be grouped ac-

cording to how well they meet the discriminators of

any new proposed measure. The projects can be clus-

tered, and if the models are appropriate, then clusters

should be somewhat homogeneous.

For example, cleanroom is a technique that ad-

dresses early verification of a design that should result

in fewer resulting errors (with less testing necessary)

later in the development cycle. If so, then measur-

ing reported errors (RER) per computer run (RUN)

should cluster cleanroom projects together, and the

plots should show high measure model values early in

the development cycle. We can use SME to test such

claims from this and other proposed models.

4.5 Evaluation of clustering

Clustering is effective in distinguishing measure

behaviors. For most of the measures studied, we

were able to yield clusters that differentiated behavior

among the projects, whereas the current SME would

consider them all similar and use the same measure

model on that data.

A current weakness, however, is that the result-

ing clusters yield few common objective or subjective

characteristics. We believe that this is due more to the

nature of the current subjective files within the SEL

data base than in the clustering methodology itself.

The current data files are developed by the project

managers and contain attributes about the project

(e.g., external events such as schedule and require-

ments changes, team composition, environment com-

position). There is little about how management was

performed (e.g., we didn’t test enough, we started cod-

ing too soon). This is understandable given how the

data was collected. We need to develop methods to

collect this latter data in a non-threatening manner

from each project manager so that it can be fed back

to future project managers more effectively.

5 Conclusion

In this paper, clustering is presented as a mech-

anism for dynamically determining and altering the

information model that describes certain attributes of

the software development process. This permits the

software manager to more accurately predict the fu-

ture behavior of a given project based upon similar

characteristics of existing projects in a data base. We

believe the resulting cluster models are fairly accurate

indicators of such behavior.

Clustering also permits rationale for deviations

from normal behavior to be determined dynamically

and are easier to generate than the existing expert

system approach. Preliminary evaluation of cluster-
ing leads us to believe that the resulting models are

fairly accurate indicators of such behavior.

In addition, it appears that some often used dis-

criminators may not be totally effective in classify-

ing projects. Size, programming environment and ap-

plication domain may unnecessarily separate projects

into categories that are ultimately the same (e.g., see

488



Tables 2 and 3). Obviously, this needs further study.

We are in” the process of modifying NASA/GSFC’s

SME management tool for incorporation of these new

models into the tool. We believe that this should

greatly improve SME’S predictive capabilities. Mod-

ification of the data in the SEL subjective data files

should greatly aid in the analysis and assessment as-

pects of SME.

However, the process is far from over. We also

intend to study alternative clustering and modeling

techniques (e.g., Optimal Set Reduction, Cosine) in

order to determine the best approach towards messur-

ing these critical attributes. In addition, we need to

observe how well early predictions of a project match

with subsequent observations in order to be able to

use SME as an effective management planning and

tracking tool.

6 Acknowledgement

This research was supported in part by grant NSG-

5123 from NASA/GSFC to the University of Mary-

land. We would like to acknowledge the contribution

of Jon Valett of NASA/GSFC and Robert Hendrick of

CSC as major developers of the original SME system

and for their and Frank McGarry’s (also of NASA)

helpful advice on proposed changes we are making to

SME.

References

[1]

[2]

[3]

[4]

B. Boehm. Soflware Engineering Economics.

Prentice Hall, Englewood Cliffs, NJ, 1981.

L. C. Briand, V. R. Basili, and C. J. Hetmanski.

Providing an empirical basis for optimizing the

verification and testing phases of software devel-

opment. In Proceedings of the IEEE International

Symposium on Sofiware Reliability Engineering,

Research Triangle Park, NC, October 1992.

Z. Chen and M. V. Zelkowitz. Use of cluster

analysis to evaluate software engineering method-

ologies. In Proceedings of the Fifth International

Conference on Sofiware Engineering, San Diego,

CA, March 1981.

R. Chillarege, I. S. Bhandari, and et al. Orthogo-

nal defect classification – a concept for in-process
measurements. IEEE Transactions on Sofiware

Engineering, 18(11), November 1992.

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

W. Decker, R. Hendrick, and J. Valett. The soft-

ware engineering laboratory (sel) relationships,

models, and management rules. Technical Re-

port SEL-91-001, The Software Engineering Lab-

oratory, NASA Goddard Space Flight Center,

Greenbelt, MD, February 1991.

R. Hendrick, D. Kistler, and J. Valett. Software

management environment (sine) concepts and ar-

chitecture (revision 1). Technical Report SEL-

89-103, The Software Engineering Laboratory,

NASA Goddard Space Flight Center, Greenbelt,

MD, September 1992.

L. Kaufman and P. J. Rousseeuw. Finding Groups

in Data: An Introduction to Cluster Analysis.

John Wiley & Sons, New York, NY, 1990.

R. E. Park. Software size measurement: A frame-

work for counting source statments. Techni-

cal Report 92-TR-20, Software Engineering Insti-

tute, Carnegie Mello University, Pittsburgh, PA,

September 1992.

A. A. Porter and R. Selby. Empirically guided

soft ware development using metric-based classifi-

cation trees. IEEE Software, 7(2):46-54, 1990.

R. Selby, A. Porter, D. Schmidt, and J. Berney.

Metric-driven analysis and feedback systems for

enabling empirically guided software develop-

ment. In Proc. 13th International Conference

on Soflware Engineering, pages 288–298, Austin,

TX, May 1991,

J. Tian, A. Porter, and M. V. Zelkowitz. An

improved classification tree analysis of high cost

modules based upon an axiomatic definition of

complexity. In Proc. 3Td International Symp. on

Sofiware Reliability Engineering, Research Trian-

gle Park, NC, October 1992.

J. D. Valett. Automated support for experience-

based software management. In Proceedings of

the Second Irvine Software Symposium (ISS ‘92),

Irvine, CA, March 1992.

A. von. Mayrhauser. Sofiware Engineering: Meth-

ods and Management.

Diego, CA, 1990.

Academic Press, Inq., San

489


