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T ranslating a problem description 
into a computer solution is central 
to programming, but the process is 

generally ill-defined, error-prone, and ex- 
pensive. Some researchers are using for- 
mal mechanisms to describe a problem and 
algorithmic processes to convert the prob- 
lem statement into a program. The general 
approach is to describe a problem in a 
specification language with well-defined 
syntax and semantics. This reduces the 
problem to developing a source program 
that meets the specification. Among the 
specification languages investigated, axi- 
oms’ and algebraic models* predominate. 

Verification is just one of many ap- 
proaches to producing quality software. 
(The sidebar on the following page shows 
where it fits in the overall scheme.) The 
functional approach described in this arti- 
cle is one alternative, but it is not meant as 
a panacea for poor requirements and spec- 
ifications analysis. Regardless of the model 
employed, verification is a precise, formal, 
and difficult undertaking. Some applica- 
tions do, however, lend themselves to a 
functional approach that has not been ad- 
equately described in the literature. 

The University of Maryland uses a func- 

This model’s 
verification conditions 

depend only on 
elementary symbolic 
execution of a trace 

table. An easy-to-learn 
technique, it’s used in a 

freshman computer 
science course. 

tional correctness model as part of its intro- 
ductory computer science course. The model 
was originally developed by Mills,3 who, 
with others,4-6 has since refined it. The idea 
is to express a specification as a mathemat- 
ical function, develop a program, and prove 
that the function implemented by that pro- 
gram is the same as the specification func- 

tion. The system used at the university 
meets several of Dijkstra’s criteria’ for the 
teaching of formalism to express programs. 

In this article, the method is applied to 
rather simple programs. However, even in 
large complex implementations, the tech- 
niques can be applied informally to deter- 
mine the functionality of complex interac- 
tions. 

Functional model of a 
program 

Specifications. A specification is a 
mathematical description of a problem to 
be solved. Let a be a string representing a 
source program. For example, a Pascal 
program is just the linear string 

program main(input, output); . . . end. 

We express the mathematical function 
denoted by program a by a box notation.* 
[a] represents the function that com- 

*[p] is often written as B in other papers on the subject. 
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Approaches to producing quality programs 

Testing. In the oldest technique, testing, programs are ex- program’s specifications. This contrasts to the above defini- 
ecuted using sample data that is representative of the data tion of verification. Correct programs may be very unreliable, 
processed under actual use. If the data is chosen appropri- and reliable programs may not be correct. For example, con- 
ately, most errors can be found. But, as Dijkstra has ob- sider two watches - one stopped and the other two hours 
served, testing can only show the presence of bugs, not their late. The stopped watch is correct twice a day; the late watch 
absence. In most large implementations, testing is the most is never correct. However, the stopped watch is highly unreli- 
feasible and generally the only usable technique.’ able, while the late one is quite reliable. 

Design methodology. Good techniques produce well- 
structured programs, which minimize faulty logic and hence 
errors. Techniques like structured programming, data ab- 
stractions, top-down design, and object-oriented program- 
ming help the programmer think more clearly about the pro- 
gramming process. While these methods are great aids in 
producing quality programs, the programs must still be 
checked using other techniques for the eventual program- 
ming glitch.* 

Testing is often the best method to show good reliability.5 
Software safety is a related topic that addresses reliability and 
the probability of embedded systems causing physical harm 
to individuals6 

As can be seen by the above list, all of the techniques are 
useful, but they are difficult to use effectively. Improving these 
methods is a major focus of software engineering research. 
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putes the same values as program CC. 
Although a function is the intuitive mod- 

el of a specification, often we simply want 
one feasible solution out of many possibil- 
ities. In choosing one optimal strategy from 
several equivalent ones (for example, 
equivalent optimal moves in a game-play- 
ingprogram), we usually do not care which 
solution the program employs. Because of 
this, we only need to define a specification 
as a relation. If r is such a specification 
relation, it is equivalent to a program p by 
the following correctness theore&: 

Program p is correct with respect to 
specification relation r if and only if domain(r 
n [p]) = domain(r). 

In other words, if we take the subset of I 
from those pairs in r that are also in func- 
tion [p] (that is, r n [p]), we have a func- 
tion. If this function has the same domain 
as r, then [p] includes a pair of values for 
each member of relation r, and we get a 
feasible (or correct) implementation of the 

specification. In what follows, however, 
we use the simpler case. We have chosen 
the more restricted specification function 
f, instead of the more general relation r, with 
the corresponding correctness theorem off 
L [PI. 

Programs. A program is a sequence of 
declarations followed by a sequence of 
statements. Each maps a set of values for 
every variable in the program into a new 
set of values. Using denotational seman- 
tics, we can define the meaning of such a 
program as follows: 

If wr is a set of variable names and vu/ is 
a set of values, a stare is a function with the 
signature state : var + WI/. A state represents 
the formal model for program storage (for 
example, activation records). 

If rxpr is an expression, [expr] is a function 
that maps a state into values, or [expr] : state 
+ VU/. For example, if (.r,a) and (y,b) represent 
entries in the state function S representing 
variables ,I- and y. then [x+y] (S) is defined to 
bethefunctionwith[x] (S)+[y](S)asavalue. 
If we define [x] (S) to be S(B), then S(s) = a, 

which agrees with our intuitive definition 
that [x+y] (S) = a+h. 

If s is a Pascal statement, then [s] is a 
function that maps a state into a state-that 
is, each statement maps a set of values for all 
variables into a new set of values. If s is a 
declaration, then the resulting state includes a 
(iwr,va/) pair for the newly declared variable. 
Forexample, ifsis thestate ((x,l),~v,2)), then 
the function [y:=x] applied to s results in the 
state { (B, I ), (J, I ) 1. 

It is easy to see the correspondence between 
sequential execution and function 
composition. Ifs is a sequence s,, s2, , S, of 
statements, then [s] = [s,, s2, , s,] = [s,] 0 
[SJ 0 0 [S”l = [%I C... ([%I ([s,l)) . ..). 

The function [p] for “program main (in- 
put, output); begin sl; ~2; end.” is given 
by [program main (input, output)] 0 [sl] 0 
[s,] 0 0 [.] where the signature for [pro- 
gram...] is val+ state, for [.] is state + val, 
and state + state for all other statements. 
Hence, a program maps a value to a value 
and is composed of functions that map 
states to states. (Details of how to handle 
individual statement types like assignments, 
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conditionals, and iteration are given later.) 
Developing a program requires several 

separate activities: 

(1) designing a specification that ex- 
presses the task to be performed, 

(2) refining that specification into a for- 
mal explicit statement that captures 
the specification’s intended func- 
tionality, and 

(3) developing a program that correctly 
implements that functionality. 

Most of this article concerns the transi- 
tion between the last two steps. Techniques 
will be given that aid in this transition and 
help show that both formalisms have 
equivalent functionality. 

Applications. With this notation, three 
separate activities-verification, program 
design, and reverse engineering - can be 
investigated: 

(1) Iffis a function and ifp is a program, 
show [p] =f- that is, verification. 

(2) Iffis a function, develop program p 
such that [p] =f- that is, program design. 
As a practical matter, we only care thatfL 
[p], since any value in [p] and not in f 
represents a value computed by the pro- 
gram that is outside its specifications and 
not of interest to us. 

(3) If p is a program, then find a func- 
tionf such that [p] =f- that is, reverse 
engineering. Given a program, determine 
its specifications. Some heuristics are giv- 
en, but the basic method is to “guess” a 
solution and show by methods 1 and 2 
above that it is the correct solution. 

Symbolic execution 

Symbolic execution is an aid in showing 
functional composition. To show that [p] = 
h we symbolically execute program p and 
show that the resulting function is the same 
asf. 

For example, consider the Pascal se- 
quence 

x:= x+1; 
y:= x+y; 
x:= y+l 

Since we know that 

[x:=x+1; y:= x+y; x:= y+l] = 
[x:=x+1] 0 [y:=x+y] 0 [x:=y+l] 

we can symbolically execute each state- 

ment function. We use a trace table where 
we write, under “Part,” the relevant state- 
ment function and, under each relevant 
variable, the new value that results from 
that execution. In the statement function, 
we substitute the value of each variable at 
that point in the computation. This results 
in a new function that can transform each 
variable into its new value. 

For the above Pascal sequence, we get 
the following trace table: 

Part X Y 

(2) formalizing the specification, and (3) 
developing the source program. We use a 
functional notation for step 2 that is closely 
tied to the eventual Pascal source program. 
This notation includes (1) concurrent as- 
signment, (2) conditional assignment, and 
(3) loop verification. This notation was 
strongly influenced by McCarthy’s work 
on Lisp. 

Designing assignment statements. 
Concurrent assignment is defined as si- 
multaneous assignment. The function 

This states that simultaneously x is trans- 
formed by the function [x:=x+y+2] andy is 
transformed by [y:=x+y+l]. 

The extension of the trace table to han- 
dleconditionals (for example, if statements) 
requires a condition column. We write the 
predicate that must be true at that point for 
that execution path to proceed, and we 
develop trace tables for each path through 
the program. 

For example, the program sequence 

x:= x+y; 
if x>y then 

x:= x-l 

has two possible execution sequences, (x>y 
and xly) and two corresponding traces: 

Part Condition x Y 

x:= x+y x+Y 
if x>y (x+YbY 
x:=x-l (x+y)-1 

and 

Part Cond. X Y 

x:= x-by x+Y 
if x>y (x+YEY 

These two tables represent the following: 
if x+y>y, the function is [x:= x+y-11; if 
x+yly, the function is [x:= x+y]. The next 
section shows how to write this as a condi- 
tional assignment function. 

Design rules 

As stated earlier, software development 
consists of (1) designing the specification, 

(x,y,z := y,z,x) 

simultaneously accesses the current values 
of variables y, z, and x and stores them, 
respectively, into variables x, y, and z. 
Mathematically, the state function that re- 
sults will have the same values for all state 
variables other than x, y, and z, and those 
three will have new values. 

Given statementp, showing that [p] does 
implement this concurrent assignment is 
simply a matter of building its trace table. 
The more interesting problem is how to 
develop p, given some concurrent assign- 
ment as its specification. This leads to 
three design heuristics for concurrent as- 
signment: 

(1) All values on the right side of the 
intended concurrent assignment (that is, 
all values needed by a left-side variable) 
must be computable at each step. 

(2) At each step, if a variable can be 
assigned its intended value, do so. Other- 
wise, introduce a temporary variable, and 
assign it a value that must be preserved. 

(3) Stop when all variables on the left 
side of the intended concurrent assignment 
have been assigned their intended values 
(that is, when finished). 

If we “execute” a trace table as we devel- 
op each Pascal assignment statement, we 
are also verifying that the design works as 
we wish. Once the values in the trace table 
are the desired values, we have shown that 
the assignment statements written do in- 
deed implement the intended concurrent 
assignment. 

Remember, however, that the three de- 
sign rules are heuristics, not an algorithm. 
They indicate how to search for a solution 
and how to check if the solution is correct, 
but they do not give the solution. We have 
not replaced the art of programming by an 
implementable methodology that auto- 
matically builds correct programs from 
specifications. 

32 COMPUTER 

- 



Designing conditional statements. The 
conditional assignment is the formal mod- 
el of conditionals. If b, is a Boolean condi- 
tion and c, is a design function, then a con- 
ditional statement has the syntax 

sponding concurrent assignments. The 
functionfthat this implements is 

equivalent. These will be denoted V.I-III. 
Once we have these verification condi- 
tions, we would like to use them as design 
guidelines to help developp, given onlyf. 
We call these five design rules V.l-V. 

Consider the following example: 
The while statement [while b do d] is 

defined recursively via the if statement to 
mean” 

x:=x+ y:=y-z: (* 1 *) 
(* 2 *) 

if x+y>O then 
y:=x+y (* 3 “) 

else 
y:=-x-y (” 4 *) 

with the semantics of evaluating each h, in 
turn. and setting the value of the condition- 
al to be c, for the first h, that is true. If all b, 
are false, then the statement is undefined. 
(This is similar to the co&of Lisp.) If h,, is 
the default case (that is, the expression 
true), then it can be omitted, with the last 
term becoming (L.,,). The iden@ function 
is written as 0. 

We’ll use several theorems involving 
conditional statements in this article. They 
can be verified by simple trace tables: 

[while b do d] = [if b then begin d; 
while b do d end] 

That is, if h is true, perform d and repeat the 
while statement. Via a simple trace table 
we get the same result as 

This has two execution sequences, l-2-3 
and l-2-4, with two different traces. 

(**) [while b do d] = [if b then d; 
while b do d] = [if b then d] 0 [while b 
do d] 

(1) If is true: 

Part Cond. x y 

Let f be the meaning of the while state- 
ment, that is, f = [while b do d]. By substi- 
tuting back into (**) above, we get the first 
condition that 

(1) Conditional (a--th) I (not(a)*c) has 
the same meaning as (a-th) I (c). 

(2) Conditional (ad(hdc)) has the same 
meaning as (a and b-c). 

(3) Conditional (u+c) I (h-tc) has the 
same meaning as (a or hdc). 

(4) Conditional(a--t(horc))hasthesame 
meaning as (u-QJ) I (a-tc). 

y:=x+y xiy-x=y 

(2) If is false, so not(if) is true: (V.1) f = [if b then d] o f 

[ Part 1 Cond. [ x [ y What other conditions onfensure it is 
indeed the specification of the while state- 
ment? Iffis undefined for some inputa, then 
both sides of the equation are undefined. 
To ensure that this cannot happen, we re- 
quire thatf be defined whenever [while] is 
defined, or that domain([while]) c 
domain(f). (Note: For ease in reading, we 
will use [while] to stand for [while b do d]). 

Similarly. if [while] is everywhere the 
identity function, then any f will fulfill the 
equation since the recursive equation re- 
duces tof= () o,f=,f. Thus, we must also 
have domain(f) c domain([while]). This 
yields 

x:=x+y x+Y Y i 
y:=y-x x+y -x 
if x+y>O (x+y)-x50 
y:=-x-y 4-x) 

The Pascal source program for this de- 
sign is simply a series of if statements that 
test each condition in turn. For example, 
given 

I I -(x+y) / 
(h,+c,) I (h@C.?) I . . . I (b,,-Scn) 1 I Y =- i 

the Pascal program can be written directly 
as 

This gives the function: 

(p-0 + .u,y :=x+4‘,?‘) I (4‘50 4 x,y 
:=.I+?‘,-?‘) if b, then c, 

else if bz then c? 
else if bi then ci Or. since the assignment toy (that is, (:>O 

--3 )’ :=y) and (~50 --f v := -y)) is just 
function abs(y), the function reduces to (V.11) domain(f) = domain([while b 

do dl) If all the b, are false, since the Pascal code 
is everywhere defined, the specifications 
are actually a (correct) subset of this source 
program. 

(s,y := s+y, abs(y)) 
Consider any state s E domain([while]). 

If[b] (s) is true, that is, expression b in state 
.r is true, then from (**), s,= [d] (s) and s, 
E domain([while]). This will be true, for 
s?, So, and so on, until at some point [b] (s,,) 
is false and both [if b then d] (s,,) and [while 
b do d] (s,,) equal s,,. 

This s,? is a member of domain([while]) 
and of range([while]). More importantly, 
if [b] (s) evaluates to false, then [while] (s) 
= s. Or, stated another way, [while] (s) = s 
for all states .r where [b] (s) is false. This is 
just a restriction on the [while] function to 
those states where b is false, which is the 
function (not(b) --f [while]). This must be 

We could have left our answer as a 
condirional assignment, but replacing it as 
a concurrent assignment using the absolute 
value function leads to a more understand- 
able solution. Knowing when (and how) to 
apply such reductions is probably as com- 
plex an issue as any encountered in axiom- 
atic verification. 

Verifying assignment and conditional 
statements. Assumep is the program to be 
verified and it consists of only if and as- 
signment statements. There are only a fi- 
nite number of execution paths through the 
program. For each path, compute the con- 
dition that must be true to execute that 
path, and use a trace table to determine 
what happens to the variables by executing 
that given path. Assume p,, pz, .._ are the 
conjunctions of all conditions on each ex- 
ecution path, and u,, a?, . . . are the corre- 

Verifying while loops. To handle full 
program functionality, we must address 
loops. Given a functional descriptionf and 
a while statement p, we first describe three 
verification rules that prove thatf’andp are 
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Figure 1. Domain and range of the while function. 

Therefore, as shown in Figure 1, 
range([while]) c domain([while]). Sincef 
must also have this property, we get the 
first design constraint: 

(D.1) range(f) c domain(f). 

Similarly, we have shown that for an s 
where [b] (s) is false, [while] (s) =s, wemust 
also have&) = s, because if [b] (s) is false, 
the body d is not executed. But these are 
just the points in range(f). Therefore, we 
get the second design constraint: 

(D.11) ifs E range(f), then f(s) = s. 

D.1 and D.11 must be true if f is the 
meaning of a while statement. Therefore, 

equal to the identity function 0, also re- problem of designing a loop. Given a spec- they show the existence of a possible solu- 
stricted to the same domain, or just (not(b) ificationf, how can we design a while from tion. 
-+ () ). Any candidate functionfmust also the three statement verification conditions From D.11, we knowfmust be an identity 
have this property, yielding the third con- given above? on range(f) in order to be implemented 
straint From V.111, the while terminates when with a while. We can restate this as: 

[b] evaluates to false, and range([while]) is 
(V.111) (not(b) + f) = (not(b) + () ) just the set of states where [b] is false. But (D.111) [b] evaluates to true in 

since we can apply [while] to this state domain(f)-range(f) and false in 
Designing while loops. Consider the initially, it is also part of domain([while]). range(f). 

Verification example using the 
functional correctness model 

This example shows that the functionf= (AIB + A,B := (B- 
(B-A)/2), (B-(B-A)/2) I () ) is implemented by the source pro- 
gram 

1 while A<B do 
2 begin 
3 A := A+l; 
4 if A<B then 
5 B := B-l 
6 end 

where A and B are integers and division means integer truncated 
division (for example, l/2 = 0). 

The approach we follow is to first determine the functionality 
of the assignment statement (line 3), then the if statement (lines 
4-5), then the entire begin block (lines 2-6), and finally the 
functionality of the entire segment (lines l-6). 

Line 3. A := A+1 is just the concurrent assignment (A :=A+l). 

Lines 4-5. dl = [if A<B then B := B-l] 

If A43 is true, evaluate the function B := B-l, and if it is 
false, skip the then statement and do nothing, for example, the 
identity function. The conditional assignment can be written 
as 

d, = (A& + B := B-l) I () 

Lines 2-6. dz = [begin A := A+l; if A<B then B := B-l end] 

d2 = [A:=A+l] o [if A<B then B:=B-11 = (A:=A+l) 0 dl 
= (A:=A+I) o ((A4 + B:=B-1) I()) 

Develop a trace table for the begin block. There will be two 
paths through this block (for example, first and second alter- 
natives ford,). Hence, there will be two trace tables: 

Part Cond. A B 

3: A:=A+I A+1 
4: if A<B (A+l)<B 
5: B:=B-1 B-l 

Part 1 Cond. IA IB 1 

3: A:=A+l A+1 
4: if A<B (A+lQB 
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Similarly to the assignment design, we finding the loop invariant in an axiomatic 
develop the while loop via proof. 

(D.IV) Develop d so that all values 
are preserved forf. 

(D.V) Show thatfis everywhere 
defined, that is, the loop must 
terminate for all x E domain(f). 

(4) Termination. Prove that the selected 
h and d cause the loop to terminate (condi- 
tion D.V). If proven, since step 2 shows 
that [b] (.r)isfalsefor.r~ range(f), thisshows 
that the loop will terminate with some x in 
this range. 

Given function f, we develop a while 
statement such that [while] =fas follows: 

(1) Existence. Verify conditions D.1 and 
D.11. If these cannot be satisfied, then no 
such while statement can be written. 

(2) Range determination. Use D.111 to 
develop some predicate h such that [b] is 
false on range(f) and true on domain(f)- 
range(f). Sincef and [while] are to be the 
same function, h becomes the predicate for 
the loop. 

Examples. For two simple examples of 
this method, see the sidebars below and on 
page 38. The first example verifies a pro- 
gram with its specifications: the second 
example shows the design of a program 
from its functional specification. For amore 
complex example, see Gannon, Hamlet, 
and Mills.” 

(3) Loop body. Use DIV to develop an 
appropriated. These guidelines do not give 
absolute solutions to this problem, but they 
do indicate how to verify whether d, once 
found, is a solution. It is comparable to 

Data abstraction and 
representation 
functions 

The discussion so far has concentrated 
on the process of developing a correct 
procedure from a formal specification. 

However, program design also requires 
appropriate handling of data. 

Data abstractions. A data abstraction is 
a class of objects and a set of operators that 
access and modify objects in that class. 
Such objects are usually defined via the 
type mechanism of a given programming 
language, and a module is created consist- 
ing of such a type definition and its associ- 
ated procedures. 

Isolation of the type definition and invo- 
cation of the procedures that operate on 
such objects are crucial to the data abstrac- 
tion model. Each procedure has a well- 
defined input/output definition. The im- 
plementor is free to modify any procedure 
within a module as long as its input/output 
functional behavior is preserved, and any 
use of such a procedure can only assume its 
functional specification. The result is that, 
rather than viewing a program as a com- 
plex interaction among many objects and 
procedures, a program can be viewed as the 
interaction among a small set of data ab- 
stractions -each relatively small and well 
defined. 

We then get 

d2 = (A+I<B + A,B :=A+l,B-1) I (A := A+l) 

Lines l-6. Showf = [while A<B do begin A:=A+l; if A<B then 
B:=B-1 end] 

We must show that functionf meets the three verification rules. 
We will do this in the order VII, VIII, and V.I. 

(1) Show V.IIZ. (not(A<B) +fi = (not(A<B) -+ () ) 

(not(A<B) +f) = 

(AX3 + (ASB + A,B := B-(B-A)/2, B-(B-A)/2) I () ) = 

(A3 and AIB --f (A,B := B-(B-A)/2, B-(B-A)/2)) I (A3 
-+‘I)= 

(A=B -+ A,B := B-(B-A)/2, B-(B-A)/2) I (AXI + () ) = 

(A=B + A,B := A&) I (AkB + () ) = 

(A= + 0 1 

(2) Show VII. domain(f) = domain([while]) 

fis defined for all A and B. For ASB, an explicit assignment is 
given, and for all other A and B,fis the identity function. 

The [while] function is also defined for all A and B. If Aa, the 
body of the while does not execute giving the identity function for 
such A and B. If A<B, then for each pass through the loop, A is 
increased by 1 and B may be decremented by 1. At some point, B- 
A must reach 0 or become negative. If B-AIO, then BIA and the 
while loop terminates. So for all A and B, the while statement must 
terminate and will generate some value for A and B. 

(3) Sho~r V.I. f = [if b then d] 0 f 

The meaning of the body of the if statement (d) is the previously 
defined function: 

d2 = (A+l& +A,B :=A+l,B-1) I (A :=A+]) 

The problem then reduces to showing that 

f= (if A<B then (A+l<B + A,B:=A+l,B-1) I (A:=A+l)] o 
((AIB -+ A,B := B-(B-A)/2, B-(B-A)/2) I () ) 

We will generate the set of functions that represent each 
separate path through each possible trace table. If we let c, be the 
ifexpressionA<B, c2 beA+l<B in dz, and c3 be A3 inf, then there 
are six possible paths through this function yielding six different 
trace tables, each deriving a different function g,: 
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Figure 2. Commuting representation diagram. 

Languages such as Ada (or C++) allow the procedure names contained in the 
data abstractions to be built relatively module. 
easily, since the object type can be speci- However, even in older languages, such 
fied as the private part of a package (or as C or Pascal, data abstractions form a 
class) specification. Only the body of the good model of program design. Although 
package has access to the type structure, not automatically supported by the 
while other modules have access only to language, with reasonable care, programs 

can be designed that adhere to the data 
abstraction guidelines. 

Representation functions. A procedure 
within a data abstraction translates a high- 
level description of a process into a lower 
level programming language implementa- 
tion. For example, suppose character strings 
up to some predefined maximum value are 
needed. Pascal only defines fixed-length 
strings; therefore, we must implement this 
as objects using primitive Pascal data types. 

In procedures outside the defining mod- 
ule, we would like to refer to these objects 
(for example, call them Vstrings) and be able 
to operate on them. While inside the mod- 
ule, we need to operate on their Pascal 
representation (arrays of characters). In 
the former case, we call such functions 
abstractfunctions that define the function- 
al behavior of the operation, while we call 
the latter concrete functions that give the 
implementation details. 

For the Vstring example, we could de- 
fine the string via an abstract comment 
containing the functional definition: 

Cl 

true 
true 
true 
true 
false 
false 

c2 

true 
false 
true 

- 

c3 Function 

true 
true 
false 
false 
true 
false 

g1 
g2 

iiT3 

g4 

g5 

I% 

For ga: 

Part Cond. A B 

ct is true A<B 
ca is false A+12B 
c3 is true A+lSB 

A+1 
B-(B- B-(B- 
(A+ 1 ))I2 (.4+1))/2 

(Note: If cl is false, then d2 is not evaluated, giving only six pos- Theresultingpredicateis(A4) and(A+l>=B)and(A+lG), which 

sibilities rather than the full complement of eight that normally 
reduces to A=B-, 

occurs with three predicates.) By substituting B-l for A, we get 

g2 = (A=&1 + A,B := B-(B-(A+1))/2, B-(B-(A+l))/2) 
We need to show that 

= (A=B-1 + A,B := B-(B-(B-1+1))/2, 

f= gl I g2 I g3 I g4 ’ & I g6 B-(B-(B-1+1))/2) 

For g,: 
= (A=B-1 4 A,B := B,B) 

Part Cond. A B However, if A=B-I, then (B-A)/2=0. Thus we can write g2 as 

c, is true A<B g2 = (A=B-1 --;r A$? := B-(B-A)/2, B-@-A)@) 
c2 is true A+l<B A+1 B-l 
c3 is true A+lIB-1 B-l-(B-l- B-l-(B-l- For g-,: 

(A+1))/2= (A+1))/2= 
B-(B-A)/2 B-(B-A)/2 

The resulting predicate, (A<B) and (A+l<B) and (A+lSKl), re- 
duces to Ad-l; gl = (A&-l -+ A,B := B-(B-A)/2, B-(B-A)/2) 

y- 
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(abs: ,y-abs = a.,, x2, . . . . x,,>] 

The concrete representation of a Vstring 
could be 

(con: .r-con: record 
chars: array [ l...maxval] of char; 
size: O..maxval 
end: ) 

To show that both representations are 
the same, we define a representation 
function that maps concrete objects into 
abstract objects. It does this by mapping a 
state into a similar state, leaving all data 
unchanged except for those specific ob- 
jects. Let r map a concrete object into its 
abstract representation. If Cstrings is the 
set of concrete strings (that is, the set of 
variables defined by the above record de- 
scription) and Vstrings is the set of abstract 
strings, then we define a representation 
function r with the signature 

r: state -3 state 

such that r = { (u,r) I ~=r, except that if u(x) 

E Cstrings, then r(x) E Vstrings). This 
simply means that u and 1% represent the same 
set of variables in the program store, ex- 
cept that each occurrence of a concrete 
variable in u is replaced by its abstract def- 
inition in 1’. 

For each implementation of a string, we 
have its abstract meaning given by func- 
tion r: 

.v-abs:=cr-con.chars[i] I 1 5 i I 
s-con.size> 

The purpose of a procedure in an ab- 
straction module is to implement an ab- 
stract function on this abstract data. For 
example, if we would like to implement an 
Appendoperation, wecandefinex:=Append 
(XJ) as 

( abs: x, . . . . . ,Y,~ ,..., x,!+,, := x1 ,..., x,,, 
VI...., y,) 

Similarly, we can define a concrete imple- 
mentation of this same function as 

(con: .r.chars[n+l] ,..., As given by our earlier correctness the- 

.u.chars[n+.r.size], 
x.size := v.chars[ l] ,..., y.charsLv.size], 
x.size+~.size) 

If .x--con and y-con represent the con- 
crete implementations of Vstrings x and y. 
and if .r-abs and v-abs represent their ab- 
stract representation, and if Append-con 
and Append-abs represent the concrete 
and abstract functions, we have 

.I--con’ := Append-con (x-con, y-con) 
s-abs’ := Append-abs (.x-abs, y-abs) 

We want to know if both the concrete 
and abstract functions achieve the same 
result, or if the abstract representation of 
what we get by implementing Append-con 
is the same as our abstract definition of 
Append. This is just the result: Is 
r(x-con’)=.\-abs’? We say that the repre- 
sentation diagram of Figure 2 commutes 
(that is, either path from (x-con, g-con) to 
x-abs’ gives the same result). We have to 
show that I’ applied tax-con’gives us .u_abs 
(for example, .I-, , .I-? ,..., x,,, yI ,..., v,,). 

This leads to the condition (A&) and (A+l<B) and A+l)>(B-1). The resulting condition is (Aa) and (A>B) or just (A>B); g6 = 
We get (A<B-1) and (A>B-2), which is the null function. (A>B + A,B := A,B). 

For Q": Next, showf= gt I g2 I g3 I g4 I g5 I g6. In this example, since 
g3 and g4 are null, we have to show thatf= g, I g2 I gs I gb. 

(A>B + A,B := A,B) 
Theresultingconditionis(A<B)and(A+l~)and(A+l>B).But 
(Ad) and (A+l>B) are mutually disjoint, making g, null. The first two terms reduce to 

For g5: (A<B + A,B := B-(B-A)/2, B-(B-A)/2) 

yi 

For A=B, the third term becomes 

(A=B+AB:=AB)= 
(A=B + A:B := BL(B-A)/2, B-(B-A)/2) 

And the last term is 
The resulting condition is (AXi) and (AS) orA=B. For A=B, B- 
(B-A)/2 = B = A; g5 = (A=B + A, B := A,B). (Ad -+ A,B := A,B)= (A>B + () ) 

For g6: We have therefore shown that 

Part Cond. A B gl Ig2Ig5Ig6= 
(AS + A,B := B-(B-A)/2, B-(B-A)I2) I (A>B + () ) = 

c, is false A2B (AIB + A,B := B-(B-A)/2, B-(B-A)/2) I () = 
c3 is false A>B A B f 
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orem, a program (for example, Append-con) 
will often compute a value in a domain 
larger than necessary (for example, 
domain(Append-abs)). Thus, we actually 
want to show 

r o Append-abs L Append-con 0 r 

A verification 
methodology 

We have seemingly developed two 
mechanisms for designing programs: (1) a 
functional model for showing the equiva- 
lence of a design and its implementation 
and (2) a commuting diagram for showing 
correct data abstractions. However, both 
are complementary ideas of the same the- 
ory. For example, the concrete design 
comment for Append in the previous sec- 
tion is just a concurrent assignment trans- 
latable into a Pascal source program via the 
techniques described. 

This leads to a strategy for developing 
correct programs: 

develop the abstract data objects that are 
needed. 

(2) For each object, develop abstract 
functions that may be necessary to operate 
on the abstract object. 

(3) Using the abstract object and opera- 
tions as a goal, design the concrete repre- 
sentation of the object and corresponding 
representation function. 

(4) Design a concrete function for each 
corresponding abstract function. 

(5) Show that the representation dia- 
gram commutes. That is, the concrete 
function does indeed implement the ab- 
stract function. 

(6) Develop correct programs from each 
concrete function. 

Note the order of steps 2 and 3. It is 
important to understand the abstract func- 
tions before designing the concrete repre- 
sentation, since the appropriate represen- 
tation will depend greatly on the application. 
Consider the implementation of adute data 
object. Depending on the abstract func- 

(1) Store as character string MMIDDI 
YY. This is appropriate if the date is simply 
a unique tag associated with some data and 
has no other semantic meaning. 

(2) Store as <YY,DDD> where integer 
YY is the year and integer DDD is the day 
of year. This is quite efficient if sequential 
dates are needed. 

(3) Store as number of days since some 
initial date. This is most efficient to com- 
pute distances between two days, avoids 
certain problems such as accounting for 
leap years in all functions, but is cumber- 
some to print out in its usual format. 

(4) Store as <MM,DD,YY> for integers 
MM, DD, and W. Computation on dates is 
a bit more cumbersome, but conversion to 
its usual printed form is quite easy. 

The importance of this technique is that 
it can be applied at any level of detail. This 
article obviously considered only short 
program segments. For larger programs, 
only concepts critical to the success of a 
program need to be formalized, although a 
long-range goal would be to develop this or 

- tions required, the following are all feasi- other techniques that could be applied to 
(1) From the requirements of a program, ble concrete representations: very large systems in their entirety. Its 

Design example 

The second example involves developing a while loop 
for the following specification: 

f&y) = (x>100+x,y:=xx+1) I (x,y:=x,y) 

To develop this program from its specifications, use the 
four-step process based on rules D.1 through D.V (ex- 
plained in the main text). First determine iff is realizable by 
a while loop. 

be less than or equal to 100 on the range off, we know that 
+x+1) OR (&iOO) will be true on the range and hence false 
on domain(f) - range(f). So the negative of this has our desired 
property: not((x<lOO)or(y=+1))=(x>lOO) and(yox+l). Since 
the loop will exit when this predicate is false, b = (x>lOO) and 
(yox+l), giving the partial solution 

while (x>lOO) and (y<>(x+l)) do 
id) 

D.I. Is range(f) c domain(t)? 
Sincefis defined for all input, domain(n includes all values 

of x and y. Range(t) is some subset of (x,y), so condition D.1 
is true. 

D.IV. Develop d so that all values are preserved for f. 
To find a function [d] that preserves the values needed forf, 

y needs to become x+1. So let d = (xy := x,x+1). Our solution 
is now 

D.11. For (xy) E rangev), do we have an identity func- 
tion, that is,f(x,y) = (x,y)? 

There are two cases forx: x>lOO andx1100. For the case 
of ~~100, we have from the specification that (x,x+1) E 
rangem, andf(xJ+l) = (x,x+1), which is an identity. For 
the case where x1100, we know from the specification that 
f(x,Y) = kY>. 

while (x>lOO) and (yox+l) do 
{ x,y:=x,x+l 1 

or just 

while (x>lOO) and (yox+l) do 
y:=x+l 

D.V. Show that the loop must terminate. 
D.111. Find [b] that evaluates to true in domain(f) -range(f) We know that b is false on the range of the while statement. 

and false in range(f). Thus, if we can prove that the loop terminates, the current 
Find a predicate b that is false on its range and true values of x and y when the loop terminates must be a feasible 

elsewhere. Since we want y to take on the value x+1 or x to solution. 
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major difference from other verification 
techniques is that it forces the programmer 
or designer to consider the functionality of 
the program as a whole, and it requires the 
designer to design data structures with op- 
erations that operate on those structures. 
Since this is central to the data abstraction 
model of program design, this technique is 
quite applicable to current thinking about 
programming. 

T he technique presented here was 
quite manual, with the develop- 
ment of trace tables that grow in 

complexity as the number of conditionals 
increases. However, much of the process 
can be automated. For example, most of 
the details in a verification proof consist of 
keeping track of the various trace table 
executions. But this is a mechanical, syn- 
tactic property of programs, and a comput- 
er is ideal for carrying out such repetitive 
tasks. At the University of Maryland, we 
implemented an extension called FSQ to 
the Support integrated environment to fa- 
cilitate such proofs.* The goal is to develop 
a semiautomatic system that guides the 
user into making the correct decisions. 
This should greatly ease the problems in 
developing such proofs. 

Program verification - whether using 
this functional approach or some other ap- 
proach, like axiomatic or algebraic cor- 
rectness - is not an easy task. However, 
programming is not easy, and the need for 
correct programs is great. Using the func- 
tional correctness method described in this 
article will not guarantee simplicity in de- 
veloping large correct programs, but it does 
provide a methodological basis for devel- 
oping correct programs. 

The method described in this article adds 
to the current set of techniques addressing 
the important, but extremely difficult, 
problem domain of program verification. 
The software engineering field still has a 
long way to go before program verification 
becomes an accepted activity in all pro- 
gramming developments. This article sim- 
ply describes another tool that can be eval- 
uated along with the others in determining 
the best approach towards good engineer- 
ing of software. n 
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