
A SIMPL Distributed Operating System and Its 
Formal Definition 

R. Noonan, V. Basili, R. Hamlet, M. Lay, D. Mills, J. Turner, M. Zelkowit~" 
Commuter Science Center, University of ~arvland 

In recent years there has been a phenomenal 
growth of interest in networks of cormouters shar- 
ing both data and programs. For examnle, Cmdr. 
Grace Hopper has advocated a hierarchical network 
of minicomputers to perform the data processing 
function in which the tasks to be done would be 
distributed over the network, with only sunmmry or 
extract information being passed from one level to 
another. While the hardware exists to build such 
a network, the software mechanisms to effectively 
(from both a time and cost viewpoint) control such 
a network have not yet been develoDed. 

At the Computer Science Center of the Univer- 
sity of Maryland a distributed operating system, 
which is independent of the specific number and 
hardware of the particular con~outers it is running 
on, is being developed and imDlemented. Support- 
ing this project is the develovment of two 
linguistic tools: the design and implementation 
of a systems progranmdng language called SIMPL and 
the use of formal semantics in the specification 
of both SIMPL and the distributed operating sys- 
tem. So far, each of these three elements has had 
a considerable effect on the others. 

The operating syste~ will be coded in S~PL. 
In fact, this language is intended to be used for 
systems ~rk on both the Center's UNIVAC 1108 and 
DEC PDP-ii/45. Unlike ALGOL 68, S~PL itself is 
not an attenmt to push forward the boundaries of 
language design. Rather it is an attempt to in- 
corporate what has been learned about programming 
and algebraic languages since the introduction of 
FORTRAN in the late 1950's. As a language, SIg~PL 
resembles both BLISS and NUCLEUS. 

In the design of the language, a number of 
sometimes conflicting goals had to be resolved. 
These goals included the following: 

i. SIMPL was based on the principles of 
structured prograr~ing. Certain 
features, notably the ~o to statement, 
were abolished from the language. 

2. The language was to serve as a student 
progranming language. It must be 
simple and easy-to-learn and must en- 
courage good progranming habits. 

3. The language must be free-format and vet 
have a simple syntax. Because of student 
difficulties in learning ALGOL, the 
obnoxious semicolon was abolished. 

4. The language was to be used as a systems 

Droqranmdng language. It thus includes 
both bit and shift operators. However, 
in order to preserve machine-independence, 
it did not include the capability of ad- 
dressing registers or of inserting 
machine language instructions. 

5. As a syste~ns language, only features 
which could be efficiently implemented 
were allo~d. Thus, for examole, block 
structure was not included in SIMPL. 

6. The language will be used for the verifi- 
cation of programs. This influenced the 
design considerably. For examnle, func- 
tions may not have side-effects and may 
not be recursive. 

7. Later versions of the language will in- 
clude an assert stat~ent. Assertions 
which cannot be verified at cormoile time 
will cause run time tests to be inserted 
when compiled in debugging mode. 

8. Automatic traceback and subscript check- 
ing are nrovided in the compiler. 
various trace statements can be compiled 
or omitted depending on the trace mode 
selected. 

Features of the language include both internal 
and external procedures, and aritbnetic assignment, 
if, case, call, while, return, and exit state- 
ments. Simple Darameters are Passed either by 
value or by reference and arrays are massed by 
reference. Simple variables and arrays may be de- 
clared external. The usual arithmetic operators 
have been included but only integer arithmetic and 
one dimensional arrays have been implemented. 

At the current time two versions of SIMPL are 
running on the UNIVAC 1108; one Dreduces cede for 
the 1108, while the other for the PDP ii. To 
minimize the differences between the two inmolemen- 
tations, both a reference language and a hardware 
language have been defined. 

The second major el~ment of this effort is re- 
search in the area of semantic models. A language 
called HC~ (Hierarchical Granh L_anguage) has been 
develoned based on the earlier work on H-graphs 
due to Pratt (1969) and Basili (1970). HC~ is 
essentially a structured Drograr~dng model; 
despite this, it is capable of modeling any Dro- 
grar~ning language feature, includin~ go to state- 
ments. 

127 • 



In HGL the basic structure is a graph. T~e 
contents of a particular node can be either a data 
item or a graph (possibly the one containing this 
node). In addition, a graph may have attributes 
associated with it; an important attribute of 
graph is its entry node. The basic operators of 
HGL are the basic graph operators, such as 
positive adjacency, positive incidence, etc., ex- 
tended to hierarchical graphs. As a language }TGL 
is functional and LiSP-like. 

The principal advantages of HGL over VDL J s 
that it preserves the natural program topology as 
a graph and that graph structures are a more 
natural representation of data structures than the 
tree structures of VDL. In order to cormoare the 
two, formal definitions of S~4PL have been produc- 
ed in both HGL and VDL. Several definitions w~re 
produced in HGL and evaluated as imDle~entation 
strategies. In fact, this should be a major use 
of a model and of a formal definition. This was 
one of the major defects of VDL, however; the 
definition developed depended on a dump mechanism 
(as in the formal definition of PL/I) even though 
this was totally inappropriate for a non-block 
structured language. The best HGL model, on the 
other hand, relied on a more natural stack defini- 
tion. 

The use of HGL in modeling various language 
constructs has had a major impact on the evolu- 
tion of SIMPL. For examDle, the study of various 
models of block structure in HGL led to the con- 
clusion that block structure is an unnecessarily 
complicated mechanism to achieve independence of 
names. Hence, this feature was not included in 
SIMPL, which relies instead on named procedures. 
It was felt that the latter was more in keeping 
with the precepts of structured progran~ningf 
especially with regard to limiting the length of 
a given routine (as advocated by E. Dijkstra and 
H. Mills). 

Another use of HGL will be a proof of 
correctness of the implementation of SIMPL using 
the twin model approach as developed by the II~i 
Vienna group. 

Both SIMPL and HGL are being used in the de- 
sign and implementation of a distributed opera-- 
ting system for a network of minicomputers (Lay, 
1973). In this system network resources are 
provided and shared through segment creation arm 
transmission, where segments can be either pro- 
cesses or messages. Processes are given cap- 
abilities to influence their own environment as 
well as that of other processes t~ough message 
coorrmunication. These facilities are construct- 
ed so that processes need not be aware of the 
hardware configuration (possibly distributed over 
several minicomputers) upon which they are run. 

This project will be implemented on the 
Center's PDP 11/45 and will be principally coded 
in SIMPL. The system at the current time has 2 
teletypes and has a low speed link with the Cen- 
ter's 1108, which is used for compilation. A 
Canberra 2020 (3 unit cassette) tape unit, which 
is being programmed to be used like DECtaDe, is 
the primary mass storage device. Thus, the system 
will have a low speed, random access capability. 

The use of SIMPL as the prime syst~ns 
language is expected to have a major impact on the 

system. For example, the compiler will produce 
location-independent, absolute code. Linking will 
be handled by the monitor at run-time; this will 
obviate the need for a linkage editor, at least 
for systems modules. It will also eliminate the 
need for overlaying, even though the system is 
already Paged (a PDP 11/45 has 8 I bank registers 
and 8 D bank registers). Only a simple loader and 
monitor will need to be core resident, with other 
modules being loaded and linked as necessary. 

It is planned that a formal description of 
this operating system will be produced in HGL. 
This definition will be used in order to Drove the 
correctness of the onerating system. It is ex- 
nected that this effort will be beneficial both 
for the distributed operating system and HGL it- 
self. 

Sum~ 7 

In this Danerwe have briefly described a 
distributed operating system which is currently 
being designed and immle~nented. To SUPPort this 
project a systems implementation language called 
S~PL has been develoDed in which to cede this 
operating system. A languaqe called HGL in which 
formal models can be defined has been developed. 
HC~ has been used to formally define S~PL and 
will be used to formally define the distributed 
operating system. It is expected that all three 
efforts will continue to have a considerable in- 
fluence on each other. 

References 

I. Basili, V., "A Semantic Model for Programs," 
Ph.D. dissertation, University of Texas 
at Austin, TSN-9, (Jan., 1970). 

2. Basili, V., "SIMPL-X: A Language for Writing 
Structured Programs," U. of Maryland, 
TR-223, (1973). 

3. Lay, M., Mills, D., and Zelkowitz, M., "A 
Distributed Operating Svst~n for a Vir- 
tual Segment Network," AIAA Conf. on 
Comb. Network Systems, (April, 1973). 

4. Pratt, T., "A Hierarchical Graph Model of 
Progran~ing Language Semantics," Proc. 
SJCC, (1969). 

128. 


