
Technical Report

NIST SP 500-213

CMU/SEI-93-TR-23
November 1993

Reference Model for
Project Support Environments

(Version 2.0)
(Jointly Published as CMU/SEI Technical Report 93-TR-23)

NGCR Project Support Environment Standards Working Group

edited by

Alan Brown, David Carney, Patricia Oberndorf,
Software Engineering Institute

Marvin Zelkowitz,
National Institute of Standards and Technology

Approved for public release.

Distribution unlimited.

National Institute of Standards and Technology
Gaithersburg, Maryland 20899

and

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, PA 15213

Contents

Preface ix

Acknowledgments xi

1 BACKGROUND 1

1.1 Project Support Environment Standards Working Group : : : : : : : : : : : : : : 1

1.2 Approach : 2

1.3 Domain of Interest : 2

1.4 Scope of the Model : 3

1.5 Types of Project Support : 4

2 DESCRIPTION OF THE MODEL 5

2.1 Key Concepts and Terms : 6

2.2 The Reference Model : 7

2.2.1 Description of End-User Services : 9

2.2.2 Description of Framework Services : 10

2.3 Discussion of the Model : 10

2.3.1 Conceptual Models vs. Actual Environments : : : : : : : : : : : : : : : : 10

2.3.2 Rationale for the Groupings in the Model : : : : : : : : : : : : : : : : : : 10

2.3.3 Place of the Target System in the Model : : : : : : : : : : : : : : : : : : : 12

3 NOTES ON READING THE SERVICE DESCRIPTIONS 13

NIST SP 500-213 i

3.1 On the Relationships Dimension : 14

3.2 On Other Aspects of PSE Services : 15

4 TECHNICAL ENGINEERING SERVICES 17

4.1 System Engineering Services : 18

4.1.1 System Requirements Engineering Service : : : : : : : : : : : : : : : : : : 18

4.1.2 System Design and Allocation Service : 19

4.1.3 System Simulation and Modeling Service : : : : : : : : : : : : : : : : : : 20

4.1.4 System Static Analysis Service : 21

4.1.5 System Testing Service : 22

4.1.6 System Integration Service : 23

4.1.7 System Re-engineering Service : 24

4.1.8 Host-Target Connection Service : 24

4.1.9 Target Monitoring Service : 25

4.1.10 Traceability Service : 26

4.2 Software Engineering Services : 27

4.2.1 Software Requirements Engineering Service : : : : : : : : : : : : : : : : : 27

4.2.2 Software Design Service : 28

4.2.3 Software Simulation and Modeling Service : : : : : : : : : : : : : : : : : : 29

4.2.4 Software Veri�cation Service : 30

4.2.5 Software Generation Service : 31

4.2.6 Compilation Service : 32

4.2.7 Software Static Analysis Service : 33

4.2.8 Debugging Service : 34

4.2.9 Software Testing Service : 35

4.2.10 Software Build Service : 36

4.2.11 Software Reverse Engineering Service : 37

4.2.12 Software Re-engineering Service : 38

ii NIST SP 500-213

4.2.13 Software Traceability Service : 39

4.3 Life-Cycle Process Engineering Services : 40

4.3.1 Process De�nition Service : 41

4.3.2 Process Library Service : 42

4.3.3 Process Exchange Service : 42

4.3.4 Process Usage Service : 43

5 TECHNICAL MANAGEMENT SERVICES 45

5.1 Con�guration Management Service : 45

5.2 Change Management Service : 47

5.3 Information Management Service : 48

5.4 Reuse Management Service : 49

5.5 Metrics Service : 50

6 PROJECT MANAGEMENT SERVICES 53

6.1 Planning Service : 54

6.2 Estimation Service : 55

6.3 Risk Analysis Service : 55

6.4 Tracking Service : 56

7 SUPPORT SERVICES 59

7.1 Common Support Services : 60

7.1.1 Text Processing Service : 60

7.1.2 Numeric Processing Service : 61

7.1.3 Figure Processing Service : 62

7.1.4 Audio and Video Processing Service : 63

7.1.5 Calendar and Reminder Service : 64

7.1.6 Annotation Service : 65

7.2 Publishing Service : 65

NIST SP 500-213 iii

7.3 User Communication Services : 68

7.3.1 Mail Service : 68

7.3.2 Bulletin Board Service : 69

7.3.3 Conferencing Service : 70

7.4 PSE Administration Services : 71

7.4.1 Tool Installation and Customization Service : : : : : : : : : : : : : : : : : 71

7.4.2 PSE User and Role Management Service : : : : : : : : : : : : : : : : : : : 72

7.4.3 PSE Resource Management Service : 73

7.4.4 PSE Status Monitoring Service : 74

7.4.5 PSE Diagnostic Service : 74

7.4.6 PSE Interchange Service : 75

7.4.7 PSE User Access Service : 75

7.4.8 PSE Instruction Service : 76

8 FRAMEWORK SERVICES 79

8.1 Object Management Services : 80

8.2 Process Management Services : 83

8.3 Communication Service : 84

8.4 Operating System Services : 85

8.5 User Interface Services : 86

8.6 Policy Enforcement Services : 87

A EXTENDED DEFINITIONS OF KEY TERMS 89

B COMMON PROJECT ACTIVITIES AND THEIR RELATION TO REFER-
ENCE MODEL SERVICES 93

B.1 Management Activities : 93

B.1.1 Acquisition Management : 93

B.1.2 Project Management : 94

B.1.3 Quality Assurance : 95

iv NIST SP 500-213

B.2 Engineering Activities : 95

B.2.1 System Engineering : 95

B.2.2 Software Engineering : 96

B.2.3 Process Engineering : 96

B.3 Supportability Activities : 96

B.3.1 Logistics Support : 96

B.3.2 Operation and Maintenance : 97

C RATIONALE 99

D ABBREVIATIONS and ACRONYMS 103

E REFERENCES 107

INDEX 108

SUBMISSION OF COMMENTS 113

NIST SP 500-213 v

vi NIST SP 500-213

Comments on this document are welcome. See the last two pages of this document for informa-
tion about submitting comments.

Certain commercial products are identi�ed in this report. Such identi�cation does not imply
recommendation or endorsement by the National Institute of Standards and Technology and
the Software Engineering Institute, nor does it imply that the product, publication, or service
identi�ed is necessarily the best available for the purpose.

NIST SP 500-213 vii

viii NIST SP 500-213

Preface

The objective of the Next Generation Computer Resources (NGCR) program is to restructure
the Navy's approach to acquisition of standard computing resources to take better advantage
of commercial advances and investments. It is expected that this new approach will result in
reduced production costs, reduced operation and maintenance costs, and more e�ective system
integration. The program revolves around the selection of commercially-based interface stan-
dards in six areas: multi-system interconnects, multiprocessor interconnects, operating systems,
database management systems, project support environments, and graphics standards.

The working group concentrating on project support environment standards is the Project Sup-
port Environment Standards Working Group (PSESWG, pronounced \peace-wig"). Like the
other NGCR working groups, the goal of the PSESWG is to establish standards for interfaces;
the particular domain of interest for the PSESWG is project support environment interfaces. As
an initial step toward this goal the members of the working group have produced this Reference
Model for a Project Support Environment (PSE). The �rst three chapters contain a general
description of the model. The remaining chapters provide detail of individual aspects of the
model.

In releasing this document, there is no intention of providing a model to which any environ-
ment might \conform." The reference model is a way of expressing an understanding of the
functionality of a populated environment. It is not an architectural description to be used in
implementing an environment.

NIST SP 500-213 ix

x NIST SP 500-213

Acknowledgments

This document has been developed with the help of a large group of people who participated in
quarterly meetings of the NGCR PSESWG during 1991 and 1992. The co-chairs of this working
group were LCDR Vinnie Squitieri and Patricia Oberndorf. Members of this working group
included:

Carole Amos, Todd Barborek, Dennis Barney, Jerry Brookshire, Alan Brown, D. Bruce Macin-
doe, David Carney, Peter Clark, Geo� Clow, Douglas Cook, Charlotte Crawford, Hugh Davis,
Anthony Earl, Michael Edwards, Bob Ekman, Peter Feiler, James Ferguson, Thomas Grobicki,
Dick Grote, Stuart Jeans, George Hacken, Barbara Haleen, Bob Hanrahan, Hal Hart, Richard
Hawkes, Henry He�ernan, Bob Hokanson, Stu Jeans, Judy Kerner, Tammy Kirkendall, Joe Lo-
max, Monte Luhr, Steve Lyda, Brad Lyon, Joyce Lyttle, Zyg Martynowicz, John McGregor,
Charles McPherson, Jim Milligan, Les Mopps, Ed Morris, Bob Munck, Philip Nau, Patricia
Oberndorf, Kathy O'Toole, Bob Page, Judi Peterson, Richard Randall, Jim Reed, Judy Ry-
erson, Michael Shapiro, Mike Snodgrass, Vinnie Squitieri, William Sudman, Linwood Sutton,
Ramiro Valderama, Rosa Weber, Tom Wheeler, William Wong, and Marvin Zelkowitz

The original conceptual basis of the reference model came from Peter Feiler, who also partic-
ipated in the earliest stages of PSESWG. The principal editors of this document were Alan
Brown, David Carney, Patricia Oberndorf, and Marvin Zelkowitz, who are also responsible for
the text of the �rst three chapters

The concept for the \prism" drawing was a particular contribution of Michael Shapiro.

Many valuable contributions to the body of the document were made by: Dennis Barney, Peter
Clark, Geo� Clow, Barbara Cuthill, Bob Ekman, Peter Feiler, Hal Hart, Bob Hokanson, Jim
Milligan, Carol Morgan, Bob Munck, Carl Schmiedekamp, Michael Shapiro, Bill Sudman, and
Rosa Weber. The Reference Model has also bene�tted from the valuable comments made by
other reviewers, including: Ger van den Broek, Anthony Earl, Herm Fischer, Alex Lewin, Maria
H. Penedo, Ian Simmonds, and Ian Thomas.

This list of contributors was compiled from various sources; if any names of contributors have
been accidentally omitted, the oversight is deeply regretted.

NIST SP 500-213 xi

xii NIST SP 500-213

Chapter 1

BACKGROUND

The U.S. Navy has embarked on the Next Generation Computer Resources (NGCR) program
to ful�ll its need for standard computing resources. The program revolves around the selection
of interface standards in six areas. The interface standards will be based on existing industry
standards with multi-vendor support. The objective is to restructure the Navy's approach to
take better advantage of commercial advances and to reduce cost and duplication of computer
resources. This document is part of the NGCR program.

1.1 Project Support Environment Standards Working Group

One of the areas chosen by NGCR for interface standardization is that of project support
environments (PSEs). The initial focus for the PSE Standards Working Group (PSESWG) is
to identify areas in support environments that are in need of standardization and for which
industry accepted standards may be available within the NGCR's timeframe. The primary goal
of the PSESWG is to provide an interface standard that can be used by project managers as an
aid in procuring or assembling a Project Support Environment (PSE) for a particular project
or organization. This standard will itself consist of several interface standards that have been
chosen for their compatibility and consistency and their ability to support a wide range of project
support environment needs. This standard will use industry standards where possible, promoting
use of commercial o�-the-shelf (COTS) and government o�-the-shelf (GOTS) products.

The �rst step towards this goal for PSESWG is the establishment of a reference model that
describes the full scope of functionality that is expected of a PSE. This reference model will
provide the basis for:

� Determination of and examination of interfaces for which standards might be included in

NIST SP 500-213 1

the �nal PSESWG standard.

� Identi�cation of requirements for interfaces which might be bene�cial to standardize but
for which no industry standardization activity can be identi�ed.

� Consensus throughout the environments community.

While there are several other reference model activities that are relevant to this goal, none
individually has the scope that is required nor provides a de�nition of the concepts at a suitable
level of abstraction. Thus the reference model presented in this document is new, although it
builds on those other reference models. The PSESWG activity is being coordinated with those
other activities whenever possible.

1.2 Approach

Prior to developing this reference model, a large collection of existing environment e�orts and
models was inspected. This included (but was not limited to) the Software Technology for Adapt-
able, Reliable Systems (STARS) program, the National Institute of Standards and Technology
(NIST) Integrated Software Engineering Environment (ISEE) working group, the European
Computer Manufacturers Association (ECMA) TC33 Task Group on the Reference Model, the
Ada Joint Program O�ce Evaluation and Validation Team, the Air Force Software Life Cycle
Support Environment (SLCSE) project, Honeywell's Engineering Information Systems (EIS)
program, the Conceptual Environment Architecture Reference Model (CEARM) e�ort, and the
standardization committees within IEEE and ANSI for POSIX and for CASE Tool Integration
Models (CTIM). The products of those e�orts have been analyzed and many valuable aspects
have been combined and abstracted.

1.3 Domain of Interest

The approach of this model is most directly comparable to the approach evidenced in the POSIX
Open Systems Environment and the NIST/ECMA Reference Model for Frameworks of Software
Engineering Environments. However, while both of these have a similar approach, they have
di�erent domains of interest. For POSIX that domain is Open Systems Environments,1 and for
the NIST/ECMA reference model it is the domain of PSE frameworks that support software
engineering. The domain of the PSESWG reference model encompasses both the POSIX and
NIST/ECMA domains. Because their approaches are so similar, PSESWG has made direct use
of both models as components of our reference model. This approach led to the realization that
since both e�orts developed relatively independently of each other, there are numerous small
(but at times critical) inconsistencies between them that must be addressed. Members of NGCR
PSESWG have been active in helping the two communities to resolve these inconsistencies.

1Note that this use of the term \environment" is quite di�erent from the sense in which it is used in the phrase
\software engineering environment."

2 NIST SP 500-213

The domain of the PSESWG reference model also encompasses domains of interest that are not
addressed in the work of either POSIX or NIST ISEE. Numerous speci�cations and technical re-
ports, describing actual or proposed products, tools and standards, were examined. While some
of these provided valuable ideas for the writing of this document, PSESWG's need for greater
breadth and scope required the development of a di�erent model for a complete, populated PSE.
Thus the majority of the ideas presented in this model are original and are not derived from any
earlier e�orts.

Finally, the approach is explicitly aimed at establishing a conceptual basis for an environment,
not at standardizing any particular environment product; our model must be viewed in this light.
This approach is in contrast to many current users of a given environment who, if confronted
with the question \What is your environment like?", would reply by listing the available tools.
The basic premise of the NGCR program is to standardize on interfaces rather than products.
Thus, while tools can help to understand the interfaces on which they depend, they are not
central to this reference model, and there is no part of the intended results of the PSESWG
activities that involves choosing a standard toolset.

1.4 Scope of the Model

The purpose of the reference model is to describe environments that support projects that
engineer, develop and maintain computer-based systems. There are many varieties of such
projects. They can comprise the work of several dozens of people or can be a solitary e�ort. They
can be geographically dispersed or concentrated. They also can be institutionally dispersed,
sharing people and facilities of several organizations, or concentrated within a single organization.
Projects can have widely divergent degrees of automated support. Lastly, the nature of projects
may be essentially exploratory, developmental, or maintenance, or may encompass all of these.
Yet common to projects of interest to PSESWG is a set of important characteristics:

� Their province is the exploration, engineering, development, or enhancement of a computer-
based system.

� They require some mature form of management.

� There is computer-based support for the project.

� There is computer-based support for communication during the project's execution.

� There are several stages within the life of the project, often encompassing various engi-
neering activities.

These characteristics do not uniquely apply to software engineering projects, but include projects
involving hardware and �rmware, systems engineering, etc. These characteristics are also not
peculiar to Navy or to DoD projects, but are typical of engineering projects in general.

Although a project support environment can be either automated or manual, the scope of this
reference model is a computer-based support environment. This scope can be further articulated

NIST SP 500-213 3

by distinguishing between di�erent aspects of the automation. For instance, various project
support capabilities alluded to above can be provided on PCs, on workstations, on mainframe
computers, or on networks involving these. The scope of this reference model encompasses
all these. To the greatest extent possible the concentration has been on capabilities that are
common to all, not applicable to only one.

1.5 Types of Project Support

Projects require many types of support. Examination of the processes that projects use provides
important information on the PSE support that may be required. The functions of projects that
can be supported by PSEs can be grouped within four major categories:

� technical engineering functions (e.g., system design, simulation)

� technical management functions (e.g., reuse management, con�guration management)

� project management functions (e.g., resource scheduling, project tracking)

� support functions (e.g., editing, maintenance of the support facility)

While details about these categories might be debated,2 there is probable agreement that they
represent the types of support functions that projects may require. And given the extent and
complexity of this area, it is probably impossible to �nd any set of categories that will �nd uni-
versal agreement. The Working Group has therefore chosen a set of categories that will be most
useful as a means toward its principal goal, namely, selecting interface areas for standardization.

2For example, some might believe that the \management functions" extend beyond project budgeting to such
accounting functions as payroll; others will disagree. Post-deployment logistics presents a more di�cult example.
The purpose of this list is to convey the general scope; the services described in chapters 4 through 8 provide
more detail.

4 NIST SP 500-213

Chapter 2

DESCRIPTION OF THE MODEL

This chapter �rst establishes the basic premise of the reference model, then describes the model
itself, and lastly discusses several concepts central to an understanding of it.

The reference model is a conceptual description of the functionality provided by a project support
environment. This description is general and is bounded neither by a particular application
domain nor by any speci�c lifecycle paradigm for a development project. This is in contrast to
an actual implemented environment that is constructed of particular components (i.e., software
and hardware) and that typically does re
ect a chosen lifecycle paradigm, at least implicitly.

The distinction between conceptual and actual is of fundamental importance. The conceptual
viewpoint that governs this reference model provides an abstract description of the functionality
expected in a PSE. An actual viewpoint would describe a particular realization of the conceptual
view in terms of a PSE architecture with speci�c tools and standards. There is a mutually
re
ective relationship between the conceptual and the actual views, i.e., between this PSE
reference model and existing environments: one may either consider the model to be abstracted
from many environments or regard a particular environment as a realization of the model.

Figure 2.1 illustrates this distinction. The left-pointing arrow illustrates the activity of studying
several existing environments to derive information for the model. The right-pointing arrow
shows how a particular environment could be a realization of the model. One bene�t of this
approach is that it provides a common means of describing environments (e.g., \How is SLCSE

Conceptual

Model

Actual

Environment

abstraction

realization

Figure 2.1: Conceptual and Actual Distinction.

NIST SP 500-213 5

di�erent from EAST?").3 This further provides an ongoing validation of the model; it is a
necessary attribute that the reference model provides an accurate re
ection of technology that
exists.

2.1 Key Concepts and Terms

There are several key concepts and terms used in the Reference Model. This section provides
an overview of them and their interrelationships. These terms are more fully described and
de�ned in Appendix A. These key terms are indicated below by italics. It should be noted
that some of these concepts are not amenable to simple de�nition, either because the term is
broadly applicable, forcing description rather than de�nition, or because the term currently
has con
icting meanings in the environments community. It is hoped that this section of the
Reference Model may help resolve some of this confusion.

An Environment is a collection of software and hardware4 components; there is typically some
degree of compatibility that renders these components harmonious. One can describe an envi-
ronment using the contrasting viewpoints of conceptual vs. actual; or in a slightly di�erent way,
one can describe an environment in terms of the way it supports human activities.

When described from the conceptual point of view, an environment's capabilities are referred
to as Services, which are abstract descriptions of the work done. Some of these services are of
direct interest to an end-user (e.g., an engineer, manager, or secretary directly participating in
the execution of a project) while others comprise an underlying infrastructure, or Framework,
comprised of relatively �xed capabilities that support processes, objects, and user interfaces.

When described from the opposite, or actual view, i.e., when a realized environment is consid-
ered, the components that directly support an end-user are generally called Tools. Although no
single de�nition for \tool" will su�ce, that of the IEEE Glossary5 is useful: a computer program
used to help develop, test, analyze, or maintain another computer program or its documentation.
As in the conceptual view, the components that comprise an actual infrastructure are referred
to as the Framework. The same term, framework, is thus used in both a conceptual and an
actual sense, and its precise meaning depends on the context.

Finally, when an Environment is considered from the vantage point of how it supports human
activities, then either the environment will provide a Service to a human user or a human user
will perform some Task with the aid of the environment. For instance, one can speak of the task
of testing software, or of using a software testing service.

These di�erent views of an environment result in subtle di�erences in the meanings of key terms.
In particular, there is a slightly di�erent meaning for service when it is contrasted with tool and
when it is contrasted with task. In the �rst case, a tool is an actual realization of one or more
conceptual services. While there is no strict correlation between tool and service (because one

3Explanations of all acronyms are provided in Appendix D.
4For the purposes of this document, PSESWG concentrates on the software components of an environment.
5IEEE Standard Glossary of Software Engineering Terminology, IEEE Std 610.12-1990.

6 NIST SP 500-213

Conceptual Actual

(Machine)

Capability

(Human)

Activity

SERVICE

TASK

TOOL

Figure 2.2: Relationship between Service, Tool, and Task.

tool may realize many services, or one service may be realized by many tools), there are relatively
straightforward correlations between tools' functionalities and service descriptions. In the second
case, a task and a service provide complementary views of the same activity. For instance, one
might consider that the environment provides some capability (e.g., an environment's testing
service); or one might consider that a human user performs some task using the environment
(e.g., the human activity of testing). Whichever view one takes, both refer to the same notion,
e.g., a human using a piece of software to test the output of an engineering process.

In brief, services are the capabilities of the environment, tasks make use of and provide context
for those capabilities, and tools are the actual executable software components. Figure 2.2
illustrates the distinction between these concepts. Service can be contrasted with Tool along an
axis of Conceptual vs. Actual, or it can be contrasted with Task along an axis of Capability vs.
Activity.

2.2 The Reference Model

The PSE reference model is a catalog of service descriptions spanning the functionality of a
populated environment. The service descriptions are grouped by several di�erent categories,
including degrees of abstraction, granularity, or functionality. The highest-level division classi�es
services either as end-user or framework services. When realized (i.e., when implemented by
tools), the end-user category includes services that relate to direct support for the execution
of a project, e.g., that would be needed by engineers, managers, and secretaries. By contrast,
framework services (when realized) more often pertain to users who facilitate, maintain, or
improve the operation of the computer system itself (e.g., a human user performing such tasks
as tool installation) or are used directly by other services in the environment. As a heuristic for
understanding the di�erences between framework and end-user services, framework services in
actual environments tend to be understood by studying \program logic manuals" or by reading
the source program and looking for procedure invocations. On the other hand, end-user services
are recognized by reading user manuals for the actual environment. However, these rules are
only implicit and not part of the model itself. It is certainly reasonable for a user command to

NIST SP 500-213 7

Technical
Management
Services

Technical
Engineering
Services

Support
Services

Project
Management
Services

Framework
Services

Figure 2.3: An Illustration of Service Groups.

have direct access to a framework facility and it is also possible for an internal function call to
have access to an end-user service.

End-user services are further subdivided into Technical Engineering, Technical Management,
Project Management, and Support services. The �rst three of these groups partition the execu-
tion of a project into engineering, management, and a middle category that partakes of both.
The fourth group, Support services, is orthogonal to the other three, since it includes capabilities
potentially used by all users, such as word processing, mail, and publication.

Figure 2.3 illustrates the logical relation of these service groups. Framework services form
a central core with a potential relationship to all other services in the environment. Support
services underlie the other end-user services. The remaining three groups, Technical Engineering,
Technical Management, and Project Management, surround the Framework services and make
use of the Support services. In addition, services from these three groups may have relationships
with each other.

It is not the intention that the boundaries of the parts of this drawing explicitly indicate inter-
faces, since this �gure is drawn at the level of service groups, not of individual services. Thus, it
must be stressed that while a drawing such as this attempts to suggest in a very general manner

8 NIST SP 500-213

Support Services

Project
Management
Services

Technical
Management
Services

Technical
Engineering
Services

Framework Services

Figure 2.4: Another Illustration of Service Groups.

how the high-level service groups relate to each other, there is an express intention to avoid any
sort of architectural implication. The Reference Model is a conceptual, not an actual, model,
and no architectural choices are intended by this �gure. To emphasize this point the same set
of service groups, with the same set of potential relationships, could also be illustrated by �gure
2.4.

The key point is that the �gures are illustrative only and do not in any way connote layering of
services, architectural decisions, or implementation choices for an actual environment.

2.2.1 Description of End-User Services

Each of the end-user service categories (Technical Engineering, Technical Management, Project
Management, and Support services) is further subdivided by engineering domain, user role, or
life-cycle phase.

Technical Engineering services focus on the technical aspects of project development. These
services are subdivided by speci�c engineering domains (e.g., Software Engineering). Within an
engineering domain the processes used in the life cycle of a project de�ne a series of tasks, each
requiring services for its support. Thus, within the software engineering domain, tasks typically
include designing and coding, which require services such as compilation and testing.

Technical Management provides services that are closely related to engineering activities; these
services provide a managerial complement to engineering activities in the areas of con�guration
management, reuse, and metrics.

Project Management services are relevant to the overall success of the enterprise. They include
such things as scheduling, planning, and tracking the overall progress of a project.

Support services focus on tasks and activities common among all users of a PSE, regardless
of the domain, role, or life-cycle phase in which the activity is taking place. They include a
group of common services for information processing, as well as publishing, user communication,
presentation, and administration services.

NIST SP 500-213 9

2.2.2 Description of Framework Services

The framework service categories include Operating System, Object Management, Process Man-
agement, Policy Enforcement, User Interface, and Communication services. Service descriptions
for these groups are abstracted from the reference model developed by ECMA and modi�ed by
NIST in the \Reference Model for Frameworks of Software Engineering Environments," Edition
3, NIST Special Publication Number 500-211, August 1993 [NIST]. In addition, the Frame-
work Administration services that are included here in the chapter on Support services are also
abstracted from that document.

2.3 Discussion of the Model

The following sections discuss the conceptual basis of the model and provide a rationale for how
the service groupings were decided. A �nal section discusses how a target system is considered
in the Reference Model.

2.3.1 Conceptual Models vs. Actual Environments

Since the reference model is conceptual as opposed to actual, the service descriptions tend
neatly to partition the functionalities of a PSE. When an actual environment is examined,
however, these neat conceptual groupings are seldom found. Real software components span
various service groups, with many components considered to be end-user tools also providing
capabilities properly regarded by the Reference Model as framework services. The likelihood of
this functional overlap is the reason that a conceptual model is necessary: one of its principal
values is that it provides a common conceptual basis against which to examine many di�erent
environment implementations. Figure 2.5 illustrates the distinction between conceptual service
descriptions, having no duplication of functionality, and a set of actual software components,
many of which may overlap in their functional capabilities. As the �gure shows, tools may
duplicate other tools' functionality, and a tool often provides both framework and end-user
services.

Note that even if actual environments show this mixing of framework and end-user functionality,
it is nonetheless true that framework services tend to be a relatively �xed set of infrastructure
services found in most environments, regardless of domain or tool content.

2.3.2 Rationale for the Groupings in the Model

In the widest sense, all users of the computer system are ultimately participating in project ex-
ecution. However, the reference model distinguishes end-user services as those that are directly
related to project execution. For example, managing computer memory clearly is necessary to fa-
cilitate an eventual (computer) engineering process. However, services that directly support the
management of computer memory are conceptually di�erent enough from services that directly

10 NIST SP 500-213

service a service b

service c service d tool 1

tool 2

framework
implementation

tool 3

End-user
Services

Framework
Services

End-user tools and
framework implementation

Conceptual
Model

Actual
Environment

Figure 2.5: Conceptual Service Groups and Actual Software Components.

support high-level engineering activities that the Reference Model considers the classi�cation of
memory management appropriately as a framework service and not as an end-user service.

There are other criteria by which services are grouped in the Reference Model. Often a collection
of services provides the functionality needed to support a common resource. For example, there
is a large group of services in this reference model related to accessing data objects in a common
repository. These services are all considered part of the Object Management services group.
Since these services are related by creating, accessing, manipulating and using objects from a
repository, their classi�cation as a single group allows for a better conceptual understanding of
the requirements imposed on any realization of these services and ultimately on any standards
that address these services.

Another motivation for grouping some services together might be the roles individuals take
in using them. Thus, the activities that go into designing and producing executable source
programs will use services that are grouped under the heading of Software Engineering. In
this case, the group is determined by the users of the service rather than the management of a
common resource.

The boundary between service groups, particularly the boundary between end-user and frame-
work services, is a dynamic one that changes over time. There is a general tendency for greater
functionality to be gradually assumed by the underlying framework. For instance, historically
most operating systems have included a directory structure and �le system for data storage; a
relational database is only occasionally added to a basic operating system. In the future, how-
ever, relational database functionality may be part of every operating system. It is precisely this
growth of functionality that leads toward the notion of \framework," in contrast to the notion
of \operating system."

NIST SP 500-213 11

2.3.3 Place of the Target System in the Model

While the target system may be the same as the development system, there is no requirement
that this be so. The PSE reference model therefore di�erentiates between the services available
on the host system used in the development of computer-based projects and services on the
target system upon which the developed project will execute.

Within the NGCR program, some of the details of target system functionality are described
elsewhere. One source for these details is the \Operating Systems Standards Working Group
Reference Model," June, 1990 [OSSWG]. Other services, in particular those involving the de-
velopment system's connection to the target system and the monitoring of the target system by
the development system, are part of the PSE reference model.

12 NIST SP 500-213

Chapter 3

NOTES ON READING THE

SERVICE DESCRIPTIONS

The remainder of this document consists of descriptions of the services of a PSE. The descrip-
tions are grouped according to the division already noted, i.e., Technical Engineering, Technical
Management, Project Management, Support, and Framework services. Each service group is
prefaced with a general overview of the service group, followed by a detailed description of the
services. For consistency throughout the model, PSESWG has adopted the convention of the
NIST/ECMA Reference Model, by which a service is described through its dimensions:6

The term \dimensions" is used for the kinds of description the reference model
emphasizes with regard to the services. This is to stress di�erent dimensions are
somewhat distinct (if not orthogonal) from one another. That is, if a feature in one
service has changed in one dimension, it should not be assumed that changes had to
be made to that part of the service in another dimension. Dimensions o�er di�erent
ways of looking at a whole service....To provide descriptions of services from various
perspectives a set of dimensions is associated with each service in the RM.

The eight dimensions are:

Conceptual: the semantics (e.g., functionality) of a service without reference to either its
possible implementation or to its relation to other services.

Operations: a subset of the expected operational capabilities of an implementation that
realizes the service. This subset is not intended to be complete, but only to provide examples
of the typical operations of the service.

Rules: the set of rules that constrain the states the data may reach and the changes to states
that operations may make.

6NIST, p. 14

NIST SP 500-213 13

Types: the possible types of data or data model used by an implementation of that service, in-
formation about those types (for example, metadata), as well as the data (for example, instances
of those types) used in an implementation.

External: how the implementation of the service is made available to be used, e.g., by other
services, by tools or application programs, or directly by users.

Internal: the place in which to discuss implementation issues such as whether the service
might be supplied by the underlying framework.

Relationships to other services: the ways in which implementations of one service might
interact with implementations of another service; this may include examples of typical relation-
ships, as well as separation of static and dynamic relationships between services.

Examples: particular examples that implement a service, such as existing standards, inter-
faces, products, etc.

These dimensions are purely a conceptual means to extract di�erent facets of information about
a service in a consistent way. This information may not be apparent from a single detailed prose
narrative, hence the choice of using dimensions. The reference model does not prescribe that a
system described using the reference model must have every service, nor that every service must
be explained from all dimensions. Some dimensions may be more important than others when
dealing with particular services. Often, services or dimensions may not apply.

3.1 On the Relationships Dimension

Throughout the Reference Model, relationships between services are usually described by such
words as: \This service may interact with the XXX service..." This wording has been chosen
for several reasons. First, the nature of the relationship may be of many types, including
dependency (mutual or otherwise), data sharing, or control. Since di�erent implementations
of services might make di�erent choices, the use of \interact" is a neutral way of indicating a
relationship without making an implementation choice.

Similarly, the existence of relationships between services is (or is nearly) an architectural decision.
Since the Reference Model expressly avoids making architectural decisions, relationships between
services are listed only as suggestions and are in no way intended to indicate implementation or
architectural decisions.

Finally, almost all of the end-user services of an environment will typically have some relationship
to implementations of the framework services, and especially on the object management system;
they will also typically have some relationship with the Support services described in Chapter
7. In general, such relationships are noted in the Reference Model only when they might be of
particular relevance to the service.

14 NIST SP 500-213

3.2 On Other Aspects of PSE Services

The services included in this reference model tend to be discrete, describing functionality that
is explicitly invoked and that provides a standalone service. There are, however, some services
that are ubiquitous, in which case their functionality is implicitly invoked and whose in
uence
permeates many other services. A signi�cant example of ubiquitous services can be seen in the
Policy Enforcement services. While these services are described in a separate section (section
8.3), their operation can a�ect most other services in the model, even though that interaction
may not be documented in the service descriptions. Where the in
uence of security and policy
enforcement is documented, it is most often done through either the Rules or the Internal
dimension.

A di�erent example of ubiquitous services lies in the question of integration services. Sharing
information among the services of a PSE is directly related to the degree of integration that
the PSE exhibits. Integratedness is usually described by three integration attributes: data in-
tegration (sharing of data objects); presentation integration (a common interface with the user
of a PSE); and control integration (appropriate sequencing among several services of the PSE).
While integration is recognized as an important aspect of a PSE, there are few actual integration
services that can be separated as discrete services. Data interchange within the framework's Ob-
ject Management services (section 8.1) and some of the Life-Cycle Process Engineering services
(section 8.2) are known to be related to integration, but the complete set of needed services to
appropriately develop a fully integrated PSE is still an important research topic and not fully
understood today.

While reading the service descriptions in the chapters that follow, it is important to keep this
distinction between discrete and ubiquitous services in mind. In an actual environment, the
in
uence of services such as policy enforcement and security could be relevant to most or all of
the other services, and could have a signi�cant impact on the architecture of any system that
implements that service.

NIST SP 500-213 15

16 NIST SP 500-213

Chapter 4

TECHNICAL ENGINEERING

SERVICES

Technical Engineering services support activities related to the speci�cation, design, implemen-
tation, and maintenance of systems. In addition to \traditional" engineering domains, the
reference model also considers life-cycle processes to be an area for which an engineering disci-
pline is appropriate, and services related to that domain are included here as well. The following
services are de�ned in this chapter:

� System Engineering Services

{ System Requirements Engineering

{ System Design and Allocation

{ System Simulation and Modeling

{ System Static Analysis

{ System Testing

{ System Integration

{ System Re-engineering

{ Host-Target Connection

{ Target Monitoring

{ Traceability

� Software Engineering Services

{ Software Requirements Engineering

{ Software Design

{ Software Simulation and Modeling

{ Software Veri�cation

{ Software Generation

{ Compilation

NIST SP 500-213 17

{ Software Static Analysis

{ Debugging

{ Software Testing

{ Software Build

{ Software Reverse Engineering

{ Software Re-engineering

{ Software Traceability

� Life-Cycle Process Engineering Services

{ Process De�nition

{ Process Library

{ Process Exchange

{ Process Usage

There are many other engineering domains, e.g., mechanical, electrical, and manufacturing.
Although these are omitted in the present edition of the model, future revisions of the Reference
Model may be expanded to include them.

4.1 System Engineering Services

The System Engineering services support projects that engage in substantial development or
maintenance activities involving both hardware and software.7 These services complement those
in the specialized engineering domains (e.g., software engineering) by providing preparation for
consistency between those specializations and for integration of their results.

4.1.1 System Requirements Engineering Service

Conceptual: This service provides the capabilities to capture, model, analyze, represent, and
re�ne the system requirements that will ultimately be realized as some combination of software,
hardware, facilities, people, and data. This service creates and manipulates representations of
system requirements, which may include: system capabilities (such as design and related man-
ufacturing, test, and support capabilities), data elements, internal, external, functional, and
physical system interfaces, system software and hardware con�guration items that communi-
cate with software components, and system states and modes within which the speci�c system
operates.

7There are many parallels between services in this section and services in the Software Engineering section;
these parallels may indicate that the same conceptual service is actually common to the two engineering domains.
In the present version of the reference model, it was deemed preferable to include these apparent duplications.
In future revisions of the reference model, however, some of these services may be collapsed into descriptions of
conceptual services common to both System and Software Engineering.

18 NIST SP 500-213

Operations: Examples of requirements engineering operations include:

� Elicit and capture system requirements

� Create, modify, and delete system requirements representations

� Model a system's requirements, including characteristics such as evolving interfaces, per-
formance, and evaluation of risk impact; risks may be based on such factors as changing
technology, supportability considerations, or �nancial risk

� Check consistency of system requirements

� Allocate system requirements

Types: The types used to represent system requirements may take the form of a diagram,
textual description, table, icons, graphics, hologram, etc. The representation may be expressed
in terms of a modeling notation with explicit rules.

External: This service includes the forms (such as textual, graphical and interchange) in which
the service both accepts and provides representations of system requirements, their properties
and their interrelationships. The styles of interface (such as command language, query language,
message passing, procedure calling and graphical browsing) that the service provides to its
operations are another external aspect.

Internal: Checking the consistency of system requirements, both internally (within a set of
requirements) and externally (between sets of requirements), may include external constraints,
which may impact the implementation of this service. If the service supports simultaneous
alternative views of the same information, there may be complexities in the implementation
regarding the impact that changes to one representation have on the other representations in
order to keep the views of the same information consistent. In a secure PSE, the integrity of
the data and traceability between data objects may be of primary signi�cance.

Relationships to other services: This service may interact with the Traceability service, and
also with the System Design, Software Design, and Software Requirements Engineering services.

4.1.2 System Design and Allocation Service

Conceptual: This service provides the capabilities to capture, represent, create, analyze, and
re�ne an architectural design of a system's components. System designs describe the interre-
lationships between system components, including a partitioning of system functionality and
constraints between hardware and software. Designs represent objects such as hardware and
software components, component invocations, invocation parameters, component composition,
data elements, internal and external interfaces, hardware and software con�guration items, in-
tegrated logistics support elements, and states and modes within which the speci�c hardware
and software sub-components execute.

NIST SP 500-213 19

The results of the system design service include a de�nition of the hardware and software sub-
components that comprise a speci�c system component. Application of this service can also
result in automatic generation of speci�cation documents and work products from source infor-
mation.

A system design may also accommodate issues related to product development and integrated
logistics support.

Operations: Examples of system design operations include:

� Translate requirements into design elements

� Validate consistency of requirements to design

� Create, modify, and delete system design representation

� De�ne and manage system interface de�nitions, including those to the support system and
their attributes (e.g., reliability, size, power requirements)

� Allocate system component to hardware or software

Types: The types used to represent system designs may take the form of a diagram, textual
description, table, graphics, icon, hologram, etc. The representation may be expressed in terms
of a modeling notation with explicit rules.

Internal: In a secure PSE, it may be critical to use labels and mandatory access controls to
prevent unauthorized formal access to classi�ed design components.

Relationships to other services: Typically, design activities are based on requirements anal-
ysis, and this service and the System Requirements Engineering service may have several levels
of interrelatedness or may even be realized by a single tool or tool cluster. This service may
also interact with the System Integration, System Testing, Traceability, Software Requirements
Engineering, Software Design, Software Compilation, and Software Testing services.

4.1.3 System Simulation and Modeling Service

Conceptual: The ability to model a system concept in its entirety before implementation takes
place is an important service needed in many phases of project development. This modeling
may include both resources needed to create a product as well as the resources needed to
deploy, support, and maintain it after development. Project management activities such as
scheduling and estimation, as well as system design activities may need the ability to perform
tradeo� studies of alternative strategies. During requirements analysis it must be determined
if it is feasible to build, operate, and maintain the new product, and during design it must
be determined which alternative is most e�ective. Starting with a high-level description of the
component, the System Simulation and Modeling service creates a model of the component at
a lower cost and in less time, in order to perform a quick evaluation of the product. In order

20 NIST SP 500-213

to build the model quickly, functionality required of the full product may be sacri�ced or the
model may execute with less than optimal performance. A design may be modeled to establish
such quanti�ed information as predicted and demonstrated failure rates and repair times.

Besides modeling, the terms prototyping or simulation are often used for similar services. A
prototype usually has a structure that will be similar to the �nal product while a simulation is
a model where we are mostly interested in the results and not in the structure of the system
that produced it. Both terms, however, are often used interchangeably.

Operations: Examples of modeling operations include:

� Build model from requirements

� Execute model

� Compare design relative to required attributes (e.g., cost, performance, supportability)

� Capture results of model

Internal: Simulation models are generally either continuous or discrete. A continuous simula-
tion is usually based upon some mathematical equation where output is produced based upon
the independent time variable. In a discrete simulation, a �nite state design is usually employed,
and the system steps through execution based upon discrete \ticks" of the clock.

Prototyping models usually have a structure that is representative of the feature in the �nal
product that is being studied.

A simulation model and the tool that generates it may require safety features for security
purposes. These features might be, for instance, that the model runs to completion or, if an
error occurs that the simulation can be rerun either from the start or from before the point of
failure.

Relationships to other services: This service may interact with Project Management services
and with the System Requirements Engineering and System Design and Allocation services.

Examples: Performance Oriented Design (POD) and Synthetic Environments for Requirements
and Concepts Evaluation and Synthesis (SERCES) are examples of system modeling tools.

4.1.4 System Static Analysis Service

Conceptual: The System Static Analysis Service provides for the static analysis of system
designs and components in order to determine attributes of the system. Information derived
from the service includes:

� Product characteristics, such as component size, function calls, and operations.

NIST SP 500-213 21

� Complexity characteristics, such as cyclomatic complexity, spanning measures, other con-
trol
ow and data
ow measures, and other relationships derived from product character-
istic measures.

� Cross reference lists and graphs, such as de�ne/use graphs, call graphs, data
ow graphs,
and structure charts.

Operations: Examples of System Static Analysis operations include:

� Collect raw statistics from system representations

� Compute complexity measures

� Produce cross reference list

� Graph cross reference list

External: This service (especially cross reference information) is often provided as part of
system generation or integration tools; however, it also can be provided by separate static
analysis tools.

Relationships to other services: This service may interact with the System Design service,
and the Software Static Analysis and Design services.

4.1.5 System Testing Service

Conceptual: This service supports testing of systems. The purpose of testing is to insure that
all speci�cations have been met and that systems are operationally e�ective and suitable for
intended use. Such testing may be intrusive (e.g., accomplished by instrumenting code or hard-
ware elements), non-intrusive (i.e., accomplished by running the system in normal operational
con�gurations or through the use of real-time non-intrusive instrumentation (RTNI) equipment),
destructive (e.g., for survivability or ruggedization), or non-destructive (for both intrusive and
non-intrusive tests).

Operations: Examples of System Testing operations include:

� Generate system test cases

� Generate test requirements matrix

� Perform system test

� Perform system regression test against all previous test cases

� Analyze completeness of test coverage

� Capture system test results

22 NIST SP 500-213

� Validate system test results against anticipated results

� Produce summary report of results

Internal: In a secure PSE, con�dentiality of stored test data may be required if results are
sensitive in nature.

Relationships to other services: This service may interact with the System Requirements
Engineering, Traceability, Software Test, Con�guration Management, and Risk Analysis services.
It may also interact with the Host-Target Connection and Target Monitoring services.

4.1.6 System Integration Service

Conceptual: The product of an engineering process is often composed of a number of di�erent
pieces, each developed separately. This may be a result of a fundamental di�erence in nature
of some of the pieces of a project (e.g., the hardware and software for an embedded real-time
application), a technical distinction between the pieces (e.g., the control software and user
interface software), or a pragmatic decision (e.g., to allow a group of people to work concurrently
on portions of a large system). In any case, it must be possible to combine those pieces into a
product. The resultant product must be identi�ed as a new item of interest, and hence it can
be tracked as a signi�cant object from that point on. If the pieces exist in multiple versions, the
correct version of each piece must be selected in creating the full product.

A description is required that de�nes which logical pieces make up a product and how those
pieces are related (e.g., chapters in a document, a product-oriented family tree). As some of
the pieces may need to be transformed before they are combined, this description may contain
details of how that transformation takes place.

Operations: Examples of integration operations include:

� Identify the components and incremental builds that make up a product

� De�ne the transformations that are required to integrate the components of a product

� Build a product from its components

� Create product

� Audit product

Types: Objects that comprise a product may be CSCIs, textual or graphical components of
documents, or technical data packages and parts lists. A product can consist of originated
(\source" in its real meaning) objects as well as derived objects.

Internal: The use of labels and mandatory access controls may be necessary to prevent the
unauthorized linkage of classi�ed system components in a system build. If the product release

NIST SP 500-213 23

needs to be controlled, the build tape might require a cryptographic checksum to ensure that
the build is not corrupted in distribution.

Frequently occurring transformations are often provided as an internal component of an inte-
gration service. This helps to simplify the integration descriptions used and to automate the
building process.

Relationship to other services: This service may interact with the Con�guration Manage-
ment service, since the pieces used in a product may be part of a new con�guration. It may
interact with the Traceability service to determine which components need to be processed. It
may also interact with the System Design and the Software Build services.

4.1.7 System Re-engineering Service

Conceptual: The System Re-engineering service is required when a system's requirements
change. The changes may be related to functionality, performance, reliability, cost; to such fac-
tors as obsolescence, nonavailability of parts, changed manufacturing or logistics circumstances;
or to the need to take advantage of technological improvement and evolution. This service takes
as input an existing design and a new or modi�ed set of requirements and produces a new
or modi�ed design according to the changed requirements. The System Re-engineering service
encompasses hardware, software, manufacturing, and support elements of a system.

Operations: Examples of System Re-engineering operations include:

� Perform fault analysis and veri�cation

� Analyze impact of modi�ed requirements on existing design and implementation

� Modify design representation

� Analyze impact of new design on existing system components

Internal: In the re-engineering of secure systems, special precautions are likely to be required.
These may include labelling and mandatory access controls, maintenance of con�dentiality and
integrity, and careful auditing of all changes to existing designs and implementations.

Relationships to other services: This service may be interact with the System Simulation
and Modeling service, the System Static Analysis service, the System Requirements Engineering
service, and the System Design and Allocation service.

4.1.8 Host-Target Connection Service

Conceptual: The Host-Target Connection service is required to ensure the ability of a host
PSE to communicate with a target system for the purpose of software downloading, system test

24 NIST SP 500-213

or debug, and system monitoring.8 The minimum capability for this service is for two one-way
links. One is for the host PSE to be able to convey to the target such items as the loadable
or bootable software executable image or test and debug commands. The other permits the
target to convey to the host PSE the results of test or debug operations and target monitoring
information.

Operations: Examples of host-target connection operations include:

� Establish system-to-system communications

� Maintain, control, and relinquish host-target connection

External: The host-target communication can be realized as a direct or indirect link. A
direct link might consist of a cable or satellite connection. An indirect link might consist of an
agreement on a particular format for
oppy disk or magnetic tape.

Internal: In a secure PSE, this service may require authentication, both mandatory and discre-
tionary access controls, careful attention to network security management, and more to ensure
that no security breach occurs because of the host-target connection.

Relationships to other services: This service may interact with all other PSE services that
rely on the ability to communicate with a target system. These would include at least the
System Testing, Target Monitoring, and Software Debugging services.

Examples: A simple example of this service would be for a PSE to generate magnetic tape car-
tridges in a form for which the target system has a compatible drive. Likewise, when the target
needs to convey information back to the host, it generates another magnetic tape cartridge. A
more sophisticated capability would use a network link directly to download information to the
target, dynamically interacting with it in real time.

4.1.9 Target Monitoring Service

Conceptual: The Target Monitoring service provides the ability of the host PSE to receive and
interpret speci�ed execution and performance information from an operational target system.

Operations: Examples of monitoring operations include:

� Specify target system monitoring information

8It is assumed, for the purposes of NGCR, that the target systems are built using the other NGCR standards.
Eventually, that list of standards will include at least two levels of performance for local area networks, at least
two levels of performance for backplane busses, an operating system interface standard, a database management
system interface standard, and a graphics interface standards.

NIST SP 500-213 25

� Acquire and accumulate target system monitoring information

� Correlate and analyze target system monitoring information

� Report monitoring information

Types: These would include any types critical to the target system. These could include:
frequency or length of calls, missed deadlines, length of queues, CPU time used, dynamic paging
activity, number of requests, block sizes, fragmentation, and other types of data.

Relationships to other services: This service may interact with the Host-Target Connection
Service for the acquisition of the information reported by the target system.

4.1.10 Traceability Service

Conceptual: The Traceability service supports recording of relationships between artifacts
of the development process. These artifacts may be representations of requirements or designs,
software items, hardware, test items, etc. The relationships permit other services to perform such
operations as verifying existence, establishing dependencies, and similar operations whose aim
is establishing and maintaining factors of constraint. This service may be used in maintaining
consistency as well as performing change impact analysis.

The Traceability service generally imposes additional properties on the types of object de�ned
for the other development process services. Thus, this service is similar to the framework's
Object Management services, but is at a higher level of abstraction, since this service presumes
additional semantic information than that present in the OMS.

Environments may provide a traceability service automatically, wherein development process
activities inform the traceability service as derivations occur. More loosely coupled systems
may require user convention or intervention to record relationships, such as the use of naming
schemes that permit the deduction of relationships between artifacts. One common use of this
service is to establish that a system's requirements can be traced throughout other stages of the
lifecycle process.

Operations: Examples of traceability operations include:

� Create, update, and destroy relationships between two items

� Query current status of relationship or relationship history

� Navigate relationships and items

� Detect and report violations of traceability constraints

Rules: Relationships must point at existing items.

26 NIST SP 500-213

Internal: Fully automated trace recording will likely imply the sharing of schema and a data
repository between multiple development process activities. In a secure environment, the in-
tegrity of the data links is especially important. Care must also be taken that a user navigating
the traceability trees cannot infer information from relationships in the data.

Relationships to other services: This service may interact with most other engineering
services. It may also have an important relationship with the framework's Process Support
services and with the Lifecycle Process Engineering services.

Examples:

� ORCA (Object-based Requirements Capture and Analysis).

� RETRAC (REquirements TRACeability).

4.2 Software Engineering Services

The services in this category support the speci�cation, implementation, debugging, and main-
tenance of software.9

4.2.1 Software Requirements Engineering Service

Conceptual: This service provides the capabilities to capture, represent, analyze, and re�ne
those system requirements that are allocated to software components. This service creates and
manipulates representations of requirements. These may include: software capabilities, data
elements, internal and external software interfaces, system software and hardware con�guration
items that communicate with software components, and system states and modes within which
the speci�c software executes.

Operations: Examples of software requirements engineering operations include:

� Elicit and capture software requirements

� Create, modify, and delete software requirements representations

� Check consistency of software requirements

� Allocate software requirements

9There are many parallels between services in this section and services in the System Engineering section;
these parallels may indicate that the same conceptual service is actually common to the two engineering domains.
In the present version of the reference model, it was deemed preferable to include these apparent duplications.
In future revisions of the reference model, however, some of these services may be collapsed into descriptions of
conceptual services common to both System and Software Engineering.

NIST SP 500-213 27

Types: The types used to represent software requirements may take the form of a diagram,
textual description, physical artifact, graphical computer representation, hologram, etc. The
representation may be expressed in terms of a modeling notation with explicit rules.

External: External aspects of this service include the forms (such as textual, graphical and
interchange) in which the service both accepts and provides representations of software require-
ments, their properties and their interrelationships. The styles of interface (such as command
language, query language, message passing, procedure calling and graphical browsing) that the
service provides to its operations are another external aspect.

Internal: In a secure PSE, the integrity of the data and traceability between data objects may
be of primary signi�cance.

Relationships to other services: This service may interact with the System Requirements
Engineering and System Design services. It may also interact with the Software Traceability,
Software Design, Software Re-engineering, and Software Simulation and Modeling services.

Examples: OOATool and DCDS are examples of tools providing software requirements engi-
neering.

4.2.2 Software Design Service

Conceptual: This service provides the capability to capture, represent, create, analyze, and
re�ne the design attributes of the software components of a system or subsystem. These at-
tributes can be the structure or functionality of the software or other characteristics such as
user interface design or performance considerations. Software designs are typically dependent
on a set of requirements; they describe interrelationships of software components, including
interfaces, invocation parameters, data elements, and the states and modes within which the
speci�c software sub-components execute. The outcome of the software design service includes
de�nition of the software components and subcomponents.

Operations: Examples of software design operations include:

� Translate requirements into design elements

� Create, modify, and delete software design representation

� Validate design to requirements

� Produce structure charts, graphs, screens or other design information from design repre-
sentation

� Evaluate design representation

Types: The types used to represent software designs may take the form of a diagram, textual
description, physical artifact, graphical computer representation, screen display, hologram, etc.
The representation may be expressed in terms of a modeling notation with explicit rules.

28 NIST SP 500-213

External: The external dimension includes the forms (such as textual, graphical and inter-
change) in which the service both accepts and provides representations of software designs, their
properties and their interrelationships.

Internal: In a secure PSE, it may be critical to use labels and mandatory access controls to
prevent unauthorized formal access to classi�ed design components.

Relationships to other services: Typically, design activities are based on requirements anal-
ysis, and this service and the software requirements engineering service may have several levels
of interrelatedness or may even be realized by a single tool or tool cluster. This service may also
interact with the System Requirements Engineering and System Design services and with the
Compilation, Debugging, and Software Testing services. It may also interact with the Software
Simulation Service.

This service may also interact with the Software Reverse Engineering and the Software Re-
engineering services, both of which have as goals the modi�cation of an existing design into a
new design.

Examples:

IDE's Software through Pictures (StP), Teamwork, ObjectMaker, and the Hierarchical Object-
Oriented Design (HOOD) method and its associated design tools provide examples of this service.

4.2.3 Software Simulation and Modeling Service

Conceptual: The ability to model a component or software system before implementation is
an important service needed in many phases of project development and in many engineering
domains. Project management planning services may need simulation and modeling to perform
tradeo� studies of alternative strategies. Requirements engineering can use simulation and
modeling to determine if it is feasible to build a product to the requirements. Design services
can use simulation and modeling to determine the e�ectiveness of alternative designs with respect
to such attributes as user interface characteristics or execution
ow.

Starting with a high-level description of the component, the Software Simulation and Modeling
service creates a version of it that is less expensive than the desired product and built in less time
in order to perform a quick evaluation. In order to build the model quickly, it either sacri�ces
functionality required of the full product, reduces the capability of the product, or executes with
less than optimal performance.

Besides modeling, the terms prototyping, emulation, or simulation are often used for similar
services. A prototype usually has a software structure that will be similar to the �nal product.
An emulation tends to be relatively complete, in the sense of a rival, while a simulation is a
model where one is principally interested in the results and not in the structure of the software
that produced it. All three terms, however, are often used interchangeably.

Operations: Examples of Software Simulation and Modeling operations include:

NIST SP 500-213 29

� Build model from requirements

� Execute model

� Capture results of model

Internal: Simulation models are generally continuous or discrete. A continuous simulation
is usually based upon some mathematical equation where output is produced based upon the
independent time variable. In a discrete simulation, a �nite state design is usually employed,
and the system steps through execution based upon discrete \ticks" of the clock.

Prototyping models usually have a software structure that is representative of the feature in the
�nal product that is being studied (e.g., a user interface design similar to the window structure
the system will execute in). Often a high level language with easy modeling capabilities but
slow execution characteristics is used to build a prototype (e.g., SetL, 4GLs).

A simulation model and the tool that generates it may require safety features for security
purposes. These features might be, for instance, that the model runs to completion or, if an
error occurs that the simulation can be rerun either from the start or from before the point of
failure.

Relationships to other services: This service may interact with the Planning and Risk
Analysis services, and with the Software Requirements Engineering, Software Design, and Soft-
ware Re-engineering services. The System Simulation and Modeling Service provides similar
functionality at the system level.

Examples:

� Simula, Simscript, and CPL (Common Prototyping Language) are example simulation and
prototyping languages for software systems.

� Menu or screen simulators (DEMO program, TeleUse, Rapid/Use in IDE's StP) also pro-
vide examples of this service.

4.2.4 Software Veri�cation Service

Conceptual: It has long been demonstrated that a posteriori testing of software is most e�ec-
tive in showing the presence of errors and not their absence. Software veri�cation uses formal
mathematical methods to prove a priori that the software must execute according to its speci-
�cations. While proving that software does indeed meet its speci�cations has been shown to be
an extremely hard problem, there are many critical applications where the needed reliability of
the software simply requires it.

Formal veri�cation �rst requires that a formal speci�cation of a program be generated and
then that a formal model exists that maps between the speci�cation and the eventual design or
implementation language. Given these two descriptions, a mathematical proof is generated that
the written software and the speci�cation are equivalent.

30 NIST SP 500-213

Operations: Examples of software veri�cation operations include:

� Analyze speci�cations (for consistency to the formal model)

� Read source component (either source programming language or design language)

� Identify errors (between speci�cations and veri�ed object)

� Produce summary report

Rules: Veri�cation systems are based upon one of a few formal models:

� Axiomatic models which extend the predicate calculus with programming language con-
structs.

� Functional and denotational semantic models which assume that programs are mathemat-
ical functions with an input and output domain.

� Algebraic models which formally de�ne the interface between program components as
mathematical equations.

Relationships to other services: Veri�cation may interact with Software Requirements En-
gineering, Software Design, Software Testing, and Software Debugging services.

Examples: VDM (Vienna Development Method), based upon denotational semantics, and Z,
based upon the axiomatic model, are used to show the equivalence between a speci�cation and a
design. A�rm was a research system that used the algebraic model to show equivalence between
a speci�cation and a source program. Gypsy is a language that includes a veri�er as part of its
system.

4.2.5 Software Generation Service

Conceptual: Software generation provides automatic and semi-automatic production of soft-
ware components using existing components or component templates.

The use of a Software Generation service is most frequently seen in well-de�ned application areas
such as language parser generation, database application generation, and user interface design
and production.

Operations: Examples of Software Generation operations include:

� Generate parser from a syntactic language description (e.g., a BNF representation of a
language grammar)

NIST SP 500-213 31

� Generate script for the composition and interconnection of software components

� Generate rule-based system from a set of rules

� Generate user interface component for a software system

� Generate schema for database

Internal: In a secure PSE, the Software Generation service must insure data integrity of the
descriptions, scripts, rules, schemata, etc. so that the documentation can be trusted to represent
the software.

Relationships to other services: This service may interact with the Software Design and
Software Compilation services.

Examples:

� Parser generators (LEX, YACC) for producing compilers.

� 4th Generation Languages (4GLs) and application generators provided by many relational
database systems.

� IDL tools to generate the I/O for speci�c data formats.

� Application-speci�c language generators.

4.2.6 Compilation Service

Conceptual: The Compilation service provides support for the translation and linking of soft-
ware components written in various programming languages. Source code is created either by
means of text processing services, or by the automatic generation services described in the
Software Generation service.

The principal outputs from this service are executable programs supporting some target sys-
tem. Other products of this service may include metrics data and documentation aids such as
compilation listings.

Operations: Examples of software compilation operations include:

� Find code and inheritance dependencies among a set of software components

� Preprocess source code to produce modi�ed source code

� Apply macro expansions to source code

� Translate a source program (e.g., Ada, COBOL, C, Pascal, Assembly language) into some
target object code language

32 NIST SP 500-213

� Produce report on the translation; this may include source listings of various complexity,
including cross-reference data, compilation speeds, CPU usage, etc.

� Link object code into executable images. When intended for use on a remote target, link
code into loadable/bootable images.

� Incrementally update compiled system to re
ect new changes.

Rules: The Compilation service enforces the rules of the programming languages that it pro-
cesses.

Types: Source code directly created by a human user is typically written in ASCII text. Source
code produced by source code generators may rely on internal data types known to the compiler.

Internal: The compilation of object code must be free from insertion of malicious code. Compil-
ers may not be trusted to the degree necessary for secure systems, but system integrity controls
can be used to provide additionsl protection.

Relationships to other services: This service may interact with the Software Design, Soft-
ware Generation, Debugging, Software Traceability, and Software Testing services. It may also
interact with the System Testing service and the Host-Target Connection service. It may also
interact with the Con�guration Management, Project Management, and Lifecycle Process En-
gineering services.

Examples: Examples of compilation services include:

� Compiler systems (including linkers) for standard languages (Ada, COBOL, C, Pascal,
etc.)

� Unix's Lint preprocessor

4.2.7 Software Static Analysis Service

Conceptual: The Software Static Analysis service provides for the static analysis, or source
code analysis, of software components in order to determine structure within the component.
Information derived from the service includes:

� Code characteristics, such as component size, number of statements, statement types, vari-
ables, function calls, operations, operands, data types and other programming language-
speci�c data.

� Complexity characteristics, such as cyclomatic complexity, software science measures,
spanning measures, other control
ow and data
ow measures, and other relationships
derived from product characteristic measures.

� Cross reference lists and graphs, such as de�ne/use graphs of variables, call graphs of
functions and other subprograms, data
ow graphs, structure charts, and variable and
type de�nition lists.

NIST SP 500-213 33

� Software characteristics, such as: testability, completeness or consistency, reachability,
reusability, and maintainability.

Complexity measurements are based upon various underlying graph models of the source pro-
gram. Even simple measures, like lines of code, have di�erent interpretations, so comparisons
between two tools providing this service must be carefully analyzed before such comparisons are
used.

Operations: Examples of Software Static Analysis operations include:

� Collect raw statistics from component

� Compute complexity measures from component

� Produce and graphically represent cross reference lists

Internal: Data is often collected from internally parsed forms of the source program.

Data and the traceability between data objects must be preserved and non-corruptible in a
secure PSE.

External: This service (especially cross reference information) is often provided as part of
compilation tools; however, it also can be provided by a separate static analysis tool.

Relationships to other services: This service is often provided as part of the Software
Compilation service. This service may also interact with the Software Design service, the Metrics
service, and with the System Static Analysis service.

Examples: NASA's SAP program for analyzing Fortran code is an example of this service.

4.2.8 Debugging Service

Conceptual: The Debugging service is for the location and repair of software errors in in-
dividual software components by controlled or monitored execution of the code. Unlike the
the Software Testing service, which determines that an error is present, the Debugging service
supports tracking down errors and replacing code.

Operations: Examples of Debugging operations include:

� Instrument source programs by inserting breakpoints, instruction traps, printing out data
values, and modifying source text

� Execute programs incrementally

34 NIST SP 500-213

� Monitor and save execution output

� Analyze properties of programs and their current data values

Relationships to other services: This service may interact with the Text Processing ser-
vice, with the various Software Engineering services such as the Software Design, Compilation,
Software Test, and Software Generation services, and with the Host-Target Connection service.

Examples: The Unix dbx debugger is an example of this service.

4.2.9 Software Testing Service

Conceptual: This service supports the testing of software systems. Testing is performed on
individual software components (unit testing), on collections of software components (integration
testing), and on complete software systems (system testing).

A particular situation in which software testing occurs is when the target operating environment
for an application is di�erent from the environment on which the application is being developed.
In this case, the system's Host-Target Connection and Target Monitoring services will be required
for software testing.

Operations: Examples of software testing operations include:

� Generate test cases and test harness. Depending upon the testing method used (e.g., path
testing, functional testing, statement coverage, boundary value testing), capabilities may
be implemented to analyze source programs and generate such test values.

� Instrument source programs to output test results, depending upon testing method used.
For example, each path (or branch or statement) can output data showing that each path
was executed.

� Perform tests for resource utilization, reliability, and path and domain selection

� Perform timing analysis and real-time analysis (missed deadlines, deadlock, race)

� Perform mutation analysis

� Perform regression testing of all previous test cases on the tested object.

� Validate test results with expected results

Internal: In a secure PSE, con�dentiality of stored test data may be required if results are
sensitive in nature.

Relationships to other services: The System Testing Service may be needed to test systems
involving both hardware and software components. The Debugging service may be used to
repair errors found by testing. The Host-Target Connection service may be used to communicate

NIST SP 500-213 35

testing data with a target system di�erent from the host system being used for development.
This service may also interact with the Compilation service, the Con�guration Management
service, the Build service, and the Lifecycle Process Engineering services. Formal proofs of
correctness are handled by the Software Veri�cation service.

Examples: Software TestWorks is an example of this service.

4.2.10 Software Build Service

Conceptual: The product of software development is often composed of a number of compo-
nents, each developed separately. Size of resulting product, number of personnel assigned to
development, schedule, and development method (e.g., top down design, structured design, ob-
ject oriented design) all in
uence the development of a software product into a set of separately
compilable components. In any case, it must be possible to combine those pieces into a product,
often called a release. The resultant product release must be identi�ed as a new item of interest,
and hence it can be tracked as a signi�cant object from that point on. If the components exist
in multiple versions, the correct version of each must be selected in creating a full release.

In the building of a release it is often possible to perform some transformations to the components
automatically before they are combined. For example, the source code is typically converted to
object code via compilation before the object code is combined through linking.

A description is required that de�nes which logical pieces make up a product and how those
pieces are related (e.g., phases in a multi-phase program). As some of the pieces may need
to be transformed before they are combined, this description may contain details of how that
transformation takes place. Speci�c data, such as default �le names, may be added to the
product at this time.

The product release can be compared with the build description that was used to derive it. A
list of the actual versions of components used in that build should be recorded, together with
the operations that were used in transforming the components and deriving the release.

The resultant product release may also be versionable.

Operations: Examples of Build operations include:

� De�ne the relationships among the components that make up the product

� Transform the components that make up the product

� Build a product from its components

� Create product release

� Audit product release

Types: Objects that comprise a release may be source code, binary code, and textual or

36 NIST SP 500-213

graphical components of documents. A release can consist of originated (\source" in its real
meaning) objects as well as derived objects.

Internal: If the software product release needs to be controlled in a secure PSE, the build tape
may require a cryptographic checksum of the build to ensure that the build was not corrupted
in the distribution of the system.

Frequently occurring transformations are often provided as an internal component of the Soft-
ware Build service. This helps to simplify the build descriptions used and to automate the
building process. Components used by the Software Build service may themselves be collections
of objects in an Object Management System.

Relationship to other services: This service may interact with the Con�guration Manage-
ment service, since the pieces used in a build may produce a con�guration. It may also use the
Software Traceability service to determine which components need to be processed. It may also
interact with the System Testing and System Integration services.

Examples: The Unix make tool is a well known example for software construction.

4.2.11 Software Reverse Engineering Service

Conceptual: The Software Reverse Engineering service provides the capabilities to capture
design information from source or object code and produce structure charts, call graphs, and
other design documentation of that information. The goal is to generate a design that represents
an existing program which may then be re-engineered (using the Software Re-engineering service)
to provide new functionality, perhaps retargeted to execute on a new hardware platform or
translated into another source programming language.

It is sometimes necessary to also reverse engineer source code from executable object code.
Disassemblers are tools that produce assembly language from such object code, and decompilers
produce source programs from such object code.

Decompiling object code that was originally compiled in one language into another is an ex-
tremely di�cult operation. It is often better to reverse engineer the object code and then use
the Software Re-engineering service to produce the code in the new language.

Operations: Examples of Software Reverse Engineering operations include:

� Generate design from source code

� Generate source program from object code

Rules: Abstracting and partitioning the design will require speci�c rules and methods. These
rules will have a signi�cant e�ect on the usefulness of the design in future re-engineering e�orts.

Types: This service produces a new design and uses as input either a source program or an
object program. The types of design for reverse engineering are the same as the types used in
the Software Design service, such as Data Flow diagrams and ER diagrams.

NIST SP 500-213 37

External: Software code and its language de�nition are the primary input interfaces to this
service. Standard output formats (e.g., the Common Data Interchange Format) are required for
sharing a design with other services in the environment

Internal: The most di�cult problem in this service is the de�nition of the boundary of the
existing software to be reverse engineered. In the case of very large amounts of code, current
reverse engineering techniques would require extensive processing, possibly similar to the pro-
cessing needed to compile it. This situation implies partitioning of the code space and further
implies a partial design as a result.

Relationships to other services: The Software Compilation service may be used to translate
a source program into another source programming language. The Software Re-engineering
service may be used to modify the reverse-engineered design. The Software Static Analysis
service may be used to produce some of the design information, such as structure charts and
call graphs. This service may also interact with the Software Design service.

4.2.12 Software Re-engineering Service

Conceptual: The Software Re-engineering service is used when software requirements change.
This service takes as input an existing design and a new or modi�ed set of requirements and
produces a new or modi�ed design according to the changed requirements. The service may
also check that the new set of requirements is consistent with the existing system and may
determine the impact of the altered design on the existing set of components. Such concepts
as altered functionality, modi�ed performance, and new capacities may also be evaluated. Use
of this service may also be appropriate when source code is deemed in need of restructuring for
improved maintainability. It may also be used when code is to be translated from one notation
into another.

Operations: Examples of Software Re-engineering operations include:

� Revise or restructure existing code

� Perform impact analysis of new design on existing software components

� Translate from one notation into another (e.g., a COBOL-to-Ada translator)

Types: The input to this service is a design, an altered set of requirements, and possibly a
set of source code components. The output will be a design. The format of a design may be a
diagram, textual description, physical artifact, graphical representation, hologram, etc.

Internal: In the re-engineering of secure software, special precautions are likely to be required.
These may include labelling and mandatory access controls, maintenance of con�dentiality and
integrity, and careful auditing of all changes to existing designs and implementations.

Relationships to other services: This service may interact with the Software Design service
to perform some of the design activities associated with re-engineering. It may also interact

38 NIST SP 500-213

with the Software Requirements Engineering, Software Simulation and Modeling, and System
Re-engineering services.

4.2.13 Software Traceability Service

Conceptual: The Software Traceability service supports recording of relationships between
artifacts of the development process. These artifacts may be representations of requirements
or designs, code items, test items, etc. The relationships permit other services to perform
such operations as verify existence, establish dependencies, and similar operations whose aim is
establishing factors of constraint.

The Software Traceability service generally imposes additional properties on the types of object
de�ned for the other development process services. Thus, this service is similar to the frame-
work's Object Management services, but is at a higher level of abstraction, since this service
presumes that additional semantic information is present in establishing the relationships than
is present in the OMS.

Environments may provide a traceability service automatically, wherein development process
activities inform the traceability service as derivations occur. More loosely coupled environments
may require user convention or intervention to record relationships, such as the use of naming
schemes that permit the deduction of relationships between artifacts. One common use of this
service is to establish that requirements can be traced throughout other stages of the lifecycle
process.

NIST SP 500-213 39

Operations: Examples of traceability operations include:

� Create, update, and destroy relationships between two items

� Query current status of relationships

� Query relationship history

� Navigate relationships and items

Rules: Relationships must point at existing items.

Internal: Fully automated trace recording will likely imply the sharing of schema and a data
repository between multiple development process activities. In a secure environment, the in-
tegrity of the data links is especially important. Care must also be taken that a user navigating
the traceability trees cannot infer information from relationships in the data.

Relationships to other services: This service may interact with many process-related ser-
vices, both at the Lifecycle Process Engineering level as well as at the framework's Process
Support level. It may also interact with the System Traceability service. It may also interact
with the Software Requirements Engineering and Software Design services.

Examples:

� ORCA (Object-based Requirements Capture and Analysis).

� RETRAC (REquirements TRACeability).

4.3 Life-Cycle Process Engineering Services

The Life-Cycle Process Engineering services support projects in achieving discipline, control,
and clear understanding in their life-cycle development processes and individual process steps.
The activities of the role of Process Engineer are sometimes shared by various management and
technical roles on a project and are sometimes performed by a distinct role (Process Engineer).
The services in this section distinguish process-driven (or -managed, -sensitive, -centered, or
-controlled) PSEs from collections of project tools. Life-Cycle Process Engineering services
include Process De�nition, Process Library, Process Exchange, and Process Usage.

The Life-Cycle Process Engineering services di�er from the framework's process management
services in several ways. At the framework level, the process management services produce and
manipulate the basic data needed to de�ne processes. These include: de�nition of pre- and post-
conditions for enactment of processes; de�nition of project data needed for process enactment;
speci�cation of relevant events; and creation of both the basic process elements that de�ne
the life-cycle processes and the basic primitives to enact processes. At the end-user level, the
Life-Cycle Process Engineering services described in this section use the framework's process
management services to de�ne the relationships among the various services in the PSE and

40 NIST SP 500-213

various roles users take in developing a product in order to implement a process for achieving
that development.

4.3.1 Process De�nition Service

Conceptual: This service provides the capabilities for projects to create, maintain, tailor,
adapt, and validate de�nitions of processes in formal, semiformal, and informal forms. This
is a comprehensive service that provides for process de�nition the analogy of a wide range of
systems or software development services, from requirements activities through architecture,
design, instrumentation, and veri�cation activities.

A process de�nition prescribes the interaction between process participants (managers, engi-
neers, etc.), technology (framework services, tools, etc.), and the methods, organizational poli-
cies, and procedures used to create the interim and �nal products that result from the execution
of the process.

The features of a process de�nition notation can lead to the automation of, guidance for, control
over, and enactment of the de�ned process. The process mechanism will be driven by formal
detailed speci�cations of the process that include de�nitions of the triggers, activities, work
products, completion criteria, and other elements of the process (e.g., data schemata for project
databases).

Operations: Examples of process de�nition operations include:

� Analyze process requirements, including domain-speci�c analysis and application-speci�c
analysis

� Instantiate, compose, decompose, tailor, and modularize process de�nitions

� Simulate, model, and validate process de�nitions

Internal: Discretionary access control might be used to provide need-to-know protection.

Relationships to other services: This service may interact with the Process Library and
Process Exchange services. It may also interact with the System Traceability and Software
Traceability services.

Examples: Existing notations and languages for representing processes include:

� Structured Analysis and Design Technique (SADT), data
ow diagrams, state transition
charts, Petri nets, Work-
ow

� Marvel, APPL/A

� Action diagrams, HIPO, PMDB

NIST SP 500-213 41

4.3.2 Process Library Service

Conceptual: The Process Library service supports reuse capabilities for processes, analogous
to software reuse. The process reuse concept is that life-cycle processes need not always be
de�ned from scratch and that previous instances of process assets may be made available in
libraries that may be national, organizational, or local in scope and that may be interconnected
by networks. Process assets may range from complete life-cycle process de�nitions to individual
process steps. Process assets may also be objects that can be versioned.

Operations: Examples of process library operations include:

� Create, update, and delete process assets

� Certify, measure, and manage process assets

Relationships to other services: This service may interact with the Process De�nition and
Process Exchange services. It may also interact with the System Traceability and Software
Traceability services.

Examples: The Process Asset Library (PAL) currently under development at the SEI will
provide a library of process assets and will involve infrastructure capabilities (e.g., guidelines,
library access mechanisms). The PAL will be a national library available through software
repository services, but it is also designed to be retrieved and instantiated for organization- or
projects-speci�c purposes.

4.3.3 Process Exchange Service

Conceptual: The Process Exchange service supports interchange of process de�nitions between
projects and between PSEs. It deals with transformations between di�erent representations,
integration of heterogeneous representations, and interchange formats for process assets. This
service is principally intended for representations that are machine processable, that can be
electronically transmitted between environments, and that embody formal syntax and semantics.

Operations: Examples of Process Exchange operations include:

� Encode and decode process metamodels

� Encode and decode process language syntax

� Transfer process de�nitions (output, export, import)

� Manage a \foreign language" interface for process exchange

Relationships to other services This service may operate in conjunction with the Process
De�nition or Process Library services and may interact with the Framework's Network and Data
Interchange services.

42 NIST SP 500-213

4.3.4 Process Usage Service

Conceptual: The Process Usage service supports the carrying out, enactment, or execution
in a PSE of a project's de�ned and installed process. Installed project processes are typically
carried out by a combination of manual human activities and PSE automated capabilities; hence,
both humans and machines may serve as \enactment agents." The scope of this service includes
capabilities for:

� users' selection, guidance, and control of process steps

� navigational and help facilities for users to query the installed process for information on
succeeding actions

� varying the rigidity of enforcement of policies and constraints

� process metrics speci�cation, collection, and reporting

� interactions of process de�nitions, simulations, and high-level representations with PSE
data management

Operations: Examples of process usage operations include:

� Manage help and guidance facility for process users

� Query and report on process utilization and status

� Manage analysis and decision aids for users

Relationships to other services: This service may interact with the Process De�nition service
and the Process Library service. It may also interact with the System Traceability and Software
Traceability services.

Examples: Emerging PSEs with process enactment support include ProSLCSE, EAST, and
Cohesion.

NIST SP 500-213 43

44 NIST SP 500-213

Chapter 5

TECHNICAL MANAGEMENT

SERVICES

The services in this chapter fall into a middle category that partakes of both Technical Engi-
neering and Project Management. These services pertain to activities that are often equally
shared by engineers and managers; the operations of these services do not clearly fall into one
or the other category.

This chapter describes the following services:

� Con�guration Management service

� Change Management service

� Information Management service

� Reuse Management service

� Metrics service

5.1 Con�guration Management Service

Conceptual: The goal of con�guration management is to identify, document, and control
the functional and physical characteristics of con�guration items to ensure traceability and
reproducibility of a project's end products. This involves controlling, recording, and auditing
the baseline and changes (pending or made) to the components of these end products. In the
context of a PSE, an end product could be any of a wide range of items, including software,
hardware, or a manufacturing process. A con�guration item may be an aggregation of hardware,
�rmware, or software, or any of their discrete portions that satisfy an end user function. An item
required for logistic support and designated for separate procurement may be a con�guration
item. A con�guration item may also include a unique signature.

Examples of the end products or con�guration items to be managed include:

NIST SP 500-213 45

� a computer program (e.g., operating system or application program)

� an integrated micro circuit device (e.g., ASIC, gate array, or hybrid)

� a board or circuit card assembly (e.g., graphics engine, microprocessor, signal processor,
memory, or local area network)

� an equipment item that may be comprised of the above items (e.g., mini- or microcomputer,
workstation, or network bridge)

� a system that is a collection all the above mentioned items that when interconnected
support a speci�c domain (e.g., command and control system, missile guidance system, or
jet propulsion system) or that is the evolving developmental support environment used to
generate, test, and maintain the product.

This service provides the management required to maintain a product's many constituent pieces,
including requirements statements, speci�cations, designs, drawings, CAD/CAM �les, source
code �les, test documentation, logistic documentation, baseline de�nitions, and end-user docu-
mentation. This service supports identi�cation and management of interrelationships between
system components, any of which may themselves be composite objects. For various reasons a
component with the same logical function may have several (sometimes alternative) implemen-
tations. This may be the result of �xes to errors, di�erent operating requirements, and variety
of interfacing requirements.

Con�guration control measures may be applicable to con�guration documentation for each con-
�guration item, e.g., software identi�cation numbers could be embedded in source code headers,
and included with the engineering drawing of a product.

Operations: Examples of Con�guration Management operations include:

� Create a new con�guration

� Modify a con�guration

� Recover an older con�guration

� Delete a con�guration

Internal: Each version of a con�guration will have a unique identi�er. The external names used
for con�gurations may be di�erent from internal identi�ers used for consistency and tracking.
Hence, external names may be changed, or multiple names may be de�ned for the same internally
identi�ed con�guration.

For clarity and control, a con�guration may be identi�ed by identi�cation number, release date,
or by means of descriptive documents such as manuals.

In a secure PSE, all changes to items would be audited. Mandatory and discretionary access
control services can be used to support need-to-know.

46 NIST SP 500-213

Relationships between con�gurations may be through a naming convention, held as relationships
between nodes in a version graph, or in some other form.

Rules: There are dependency rules that govern the deletion of a con�guration.

Relationships to other services: This service may interact strongly with the framework's
Version service, as well as the Access Control and Concurrency Control services.

5.2 Change Management Service

Conceptual: The Change Management service supports the creation, evaluation, and tracking
of change requests generated in response to errors, omissions, or required enhancements to a
product. This service provides support for the resolution of a change request in terms of any
decisions, task assignments, and product changes.

Change requests are evaluated for their criticality and bene�t to provide an understanding of the
potential impact if they are not addressed. An estimate of the resources required to carry out
the change request may also be provided. Such decisions often involve complex human activities
such as review boards or change control boards.

Based on the evaluation of a change request, one or more change orders may be created for it.
Typically information recorded with a change order includes the date of the change order and
the identi�er of the change request initiating the order.

When a product is in use, new releases of the product will need to include changes made in
response to particular change orders.

Operations: Examples of change management operations include:

� Create a change request in response to a reported error, omission, or required update

� Evaluate, classify, and retain historical record of a change request

� Create, evaluate, and track a change order for a change request

� Provide selection support for controlling elements from di�erent con�gurations

� Generate a report or document; this may include:

{ change request status

{ change order status

{ audit trails of changes to a product component

Internal: A way to uniquely identify each change order is required. This allows the progress
of the change order to be tracked. A status indicator allows new, in progress, and completed
change orders to be distinguished. A priority level helps users to determine the importance (or
otherwise) of non-completed change orders.

NIST SP 500-213 47

In a secure PSE, all changes to items would be audited. Mandatory and discretionary access
control services can be used to support need-to-know.

Relationships to other services: This service may interact with the Con�guration Manage-
ment service.

Examples: Netherworld and ChangeVision provide examples of this service.

5.3 Information Management Service

Conceptual: The Information Management service provides the ability to manage, classify, and
retrieve information within a PSE. Unlike the framework object management services which are
concerned with the organization and storage of data objects and the relationships among them,
the information management service provides for higher-level relationships among the infor-
mation components within an information base. While the object management services are
concerned with the internal data model (e.g., relational, object-oriented, hierarchical), informa-
tion management provides for user-level manipulation of information needed to support tasks
within the PSE.

There are many applications of this service found in most existing environments. Applications
whose principal work is to perform some kind of database lookup or modi�cation, e.g., a comput-
erized telephone directory or namelist, are typical instances of this service. While the Reference
Model considers these as potentially signi�cant support services, it was considered impractical
to enumerate each instance as a separate service.

Operations: Examples of information management operations include:

� Create, access, modify, and delete metamodels of information objects.

� Create, access, modify, and delete information objects.

� Create, access, modify and delete relationships among information objects.

Types: Information consists of objects, relationships among those objects and schema (meta-
data) describing composite objects.

External: Access to information is often via user command language queries describing con-
straints on the information base. Commands generally contain information about what data is
needed rather than how it is to be retrieved.

Internal: This service generally uses the facilities of the framework object management system
to implement such services. The embedded data model is often hidden from the user.

In a secure PSE, all changes to items would be audited. Mandatory and discretionary access
control services can be used to support need-to-know.

Examples:

48 NIST SP 500-213

� Remote information query services such as Archie, Gopher, WAIS

� Directory systems such as phone directories, parts lists, catalogs, etc.

5.4 Reuse Management Service

Conceptual: The Reuse Management service supports the storage, inspection, and reuse of
assets related to many stages of engineering processes. These assets include such artifacts as
requirements, designs, software components, test cases and documents.

There are three elements of Reuse Management: (1) storage, (2) indexing and classi�cation,
and (3) browsing and retrieval. The storage facility in which the assets are kept is commonly
referred to as a repository or library. Indexing and classi�cation are done through one of several
competing strategies for reusable assets, such as \faceted" and \knowledge-based." Browsing
and retrieval are related to the actual mechanism by which the Reuse service is provided to
users.

Although management of a reuse repository may occur in a local sense, a useful reuse repository
will likely be a virtual construct, with reuse operations taking place throughout a distributed,
heterogeneous network of actual repositories. Any reuse management operations that occur in
such a larger context are necessarily bound by constraints external to an individual PSE.

Operations: Examples of reuse management operations include:

� Deposit, acquire, or submit asset into the repository

� Catalog, register, classify, accept, or index the asset

� Search or browse the repository

� Browse, examine, or extract the asset

� Register the user, extractor, or submitter

� Report problem with or use of an asset

Rules: The Repository administration must de�ne the policies and rules with regard to all the
operations, such as: who may extract an asset; the criteria for asset deposit; and the policies for
charging and liability. The Reuse Management service must support and enforce these policies
and rules.

The indexing strategy for browsing (e.g., faceted or knowledge-based) may greatly a�ect the
management and user view of the assets.

Types: The primary unit of concern for the Reuse Management service is the asset. An asset
is composed of elements linked together to form a reusable entity. The elements of an asset are
themselves typed, such as Ada code, tagged document, or executable binary.

NIST SP 500-213 49

External: The external interface to the Reuse Management service is similar to a database sys-
tem providing search and retrieval services. It is usually managed by an organization dedicated
to providing reusable assets to a broad set of customers. The formats of the reusable assets are
de�ned by their types.

Internal: The implementation of the Reuse Management service must provide reasonable per-
formance and capacity. The relationship between the local repository and the external repository
(connectivity and networks) must also be considered.

A common implementation model is the client-server model. In this model, the server can
be located inside or external to the PSE. The client provides the user interface to the reuse
operations.

In a secure PSE, all changes to items would be audited. Mandatory and discretionary access
control services can be used to support need-to-know.

Relationships to other services: The Reuse Management service may interact with many
of the Software Engineering services, in particular with the Software Design service.

Examples (storage facilities): The Asset Source for Software Engineering Technology (AS-
SET), Reusable Ada Packages for Information System Development (RAPID), and Central
Archive for Reusable Defense Software (CARDS) are examples of storage facilities for reusable
assets. InQuisiX and the Reuse Library Framework (RLF) are examples of classi�cation and
retrieval mechanisms.

5.5 Metrics Service

Conceptual: The ability to manage project development in a PSE depends upon the collection
and understanding of quantitative data. Facilities are provided by the service both for primitive
data collection as well as the organization of that data into information meaningful to end-users
of the PSE.

Data is generally organized into three classes, of which the �rst and third class are typically the
output of the System or Software Static Analysis services.

� Resource data provides information about product characteristics, such as number of com-
ponents, size, and various static analysis measures.

� Performance data provides information about time-dependent processes, such as computer
usage costs, error reports and personnel time charges.

� Complexity data provides information about the structure of the development project,
both static analysis measures of the source documents and dynamic measures (e.g., of the
executing program).

50 NIST SP 500-213

This data must then be transformed and used by various models. Various reliability models, often
derived from hardware reliability theory, can be used to predict errors. Resource models depend
upon various regression models, and various complexity models are based upon information
theory, entropy or other �nite state processes. These models are then used by other services,
particularly the various Project Management services.

Operations: Examples of metrics operations include:

� Insert and delete data from data set

� Pick appropriate model for given data set

� Compare data set to predicted model

� Compute standard error and deviation in data set

� Graph data set

� Predict next point(s) in data set

Rules: The underlying model usually represents some formal mathematical property or equa-
tion.

Types: Data usually represents: product characteristics (e.g., size), process characteristics (e.g.,
errors), or structure (e.g., software science or cyclomatic complexity measures for a module).

Con�dentiality of stored metric data may be required if the results are considered sensitive in
nature.

Relationships to other services: The raw data of this service may be provided by the
Metrication service and by the Software Static Analysis service. The models produced by this
service may be used by the various Project Management services.

Examples:

� COCOMO cost estimation model

� Software science or cyclomatic complexity structure models

NIST SP 500-213 51

52 NIST SP 500-213

Chapter 6

PROJECT MANAGEMENT

SERVICES

The services in this chapter support these activities related to planning and executing a project.
Project planning is the activity by which e�orts of all personnel responsible for a project are
coordinated and integrated. Coordination and integration occur through a comprehensive plan
for ful�lling the project's need in a timely manner and at a reasonable cost. Project planning
takes place throughout the life of a project, from the project inception to completion. Typically,
one of the �rst steps in a project involves assessing customer needs, examination of strategies to
meet these needs, and discussion of the implications and e�ects of such strategies. A plan for
producing a proposal may also be necessary.

A project may be carried out by a number of cooperating or subcontracting organizations. If this
is the case, planning is necessary to manage the request for and selection of those organizations.
Following project initiation (e.g., contract award) detailed planning of the project activities will
be necessary, together with ongoing monitoring and re-planning of the project to ensure its
continued progress.

This chapter describes the following services:

� Planning service

� Estimating service

� Risk Analysis service

� Tracking service

The activity of planning a project also requires de�nition of the process or processes that will
support the project; services related to those activities will also contribute to project manage-
ment.

NIST SP 500-213 53

6.1 Planning Service

Conceptual: The Planning service provides operations that permit handling of data according
to a set of chronological constraints relevant to a project (i.e., describing the sequence of work
and identifying signi�cant task interdependencies). These include start and �nish times for the
project (as well as all component parts of the project). This service will support creation of
structures such as a Work Breakdown Structure (WBS), the most common means for planning
and scheduling a project.

Operations: Examples of planning operations include:

� Generate key project events

� Quantify inputs and outputs for work activities

� Compute event lead times (from manpower and cost models)

� Calculate start and �nish dates

� Analyze critical path

� Generate part or all of the WBS in a database; this may include generation of detailed
event schedules

� Register assignment of work responsibilities to individuals or organizations

� Modify work breakdown structure based on actual vs. scheduled progress

Rules:

� Project schedules may not have cycles or loops.

� Start and end dates for all work activities must be not be contradictory (e.g., no activity
can be scheduled to complete before it begins).

� Individual work assignments can constrain the schedule.

� Some events may be unchangeable

Types: A work schedule may be created as a graph with nodes being individual activities
and the edges being constraints that one activity has on another. Such graphs are commonly
nested, with a node on a higher-level graph representing entire lower-level subgraphs. The data
structure for this service may or may not use such a representation, but at least some equivalent
for it will probably be necessary.

Internal: Creating and modifying the WBS may be implemented through a \Work Breakdown
Structure editor" or an expert system. Such tools will have built-in knowledge of the normal
components of a WBS, such as start/stop dates, no cycles, etc.

54 NIST SP 500-213

Relationships to other services: This service may interact with the Life-Cycle Process
Engineering services. It may also interact with the Risk Analysis and Tracking services, as well
as with the Con�guration Management and Metrics services.

Examples: Examples of this service are TimeLine and MacProject.

6.2 Estimation Service

Conceptual: The Estimation service supports quanti�cation, analysis, and prediction of project
cost and resource needs. These include estimates for the size of a project, labor, equipment,
facilities costs, and cost of computer resources allocated throughout the project lifecycle. Esti-
mates may need to factor in the concept of multiple activities assigned to the same entity. This
is more likely to concern a person being assigned two or more parallel jobs, although the same
is possible for hardware allocations as well.

Operations: Examples of estimation operations include:

� Create cost, size, and resource estimates for product development, production, installation,
operation, and support

� Generate estimates for variable parameters such as workload mixes or for di�ering design
characteristics (e.g., safety, standardization, maintainability, survivability)

� Produce impact analyses based on alterations to variable parameters

� Perform sensitivity analysis on variable parameters

� Modify cost and size estimates and resource allocations

Internal: The principal component of an Estimation service could be an expert system. An
implementation of this service may also choose that estimates from one area (e.g., size estimates)
can constrain estimates in another area (e.g., cost).

Relationships to other services: This service may interact with the Numeric Processing
service through the use of spreadsheets, etc. It may also interact with the Tracking service and
with the Metrics services.

Examples: Tools that implement the Constructive Cost Model (COCOMO) estimation model
provide examples of this service.

6.3 Risk Analysis Service

Conceptual: The Risk Analysis service supports those planning activities that consider ele-
ments related to the success or failure of a project. Tracking of items such as expected resource

NIST SP 500-213 55

usage (e.g., productivity, reliability errors) versus actual usage allows for predictions of total
system needs. This service also includes calculation of various probabilities, such as those for
budget overrun and technological failure, and such commonly used indices for success as the
Mean Time Between Failures (MTBF) of a system or a system module.

Operations: Examples of risk analysis operations include:

� Perform trade-o� analyses based on di�ering parameters for resource allocation and schedul-
ing data

� Produce cost, schedule, and performance risk statistics and analyses

� Create decision trees, alternative and payo� matrices

� Calculate probabilities and generate reports for various allocation strategies

Relationship to other services: The Risk Analysis service may interact with the System
Testing service, as well as with the Planning, Estimation, Numeric Processing, and Metrics
services.

6.4 Tracking Service

Conceptual: This service supports correlation of estimated cost and schedule data with actual
performance of a project; it also provides the capability to track action items to closure. It may
provide triggers or alarms when actual data di�er from planned resource usage, or when action
items have not been closed after a certain period.

This service also supports the presentation of such data in human-readable form. Presentation
will typically include transformation of project information into speci�c formats, such as Gantt
or Pert charts. It could also include hardcopy generation of a WBS, interim brie�ng charts on
project status, and the like.

Operations: Examples of tracking operations include:

� Gather metrics related to current status of a project and its constituent work activities

� Compare cost, size, and resource estimates with actual amounts

� Read and display status of all project variables (e.g., milestones met, cost, labor hours,
etc.)

� Produce project data and summary information in various formats (e.g., according to the
formatting rules of a given template, as a group of slides, based on a WBS, etc.)

Types: This service may need input from a personnel or an accounting database. As project
personnel change through the life of a project, the cost for individuals will change, thus altering
the overall cost estimates.

56 NIST SP 500-213

Relationships to other services: This service may interact with the Estimation and Planning
services. It may also interact with the Software Requirements Engineering service for providing
prototyping capabilities and with several of the Support services for manipulating and presenting
project data.

Examples: SME (SoftwareManagement Environment) fromNASA/GSFC allows for a knowledge-
based approach to compare current resource expenditures to historical baselines. Presentation
tools that produce Gantt and Pert charts are also examples of the operations of this service.

NIST SP 500-213 57

58 NIST SP 500-213

Chapter 7

SUPPORT SERVICES

Support services include services used by all users. They generally include those services asso-
ciated with processing, formatting, and disseminating human-readable data; they also include
services that provide support for use of the computer system itself.

This chapter describes the following services:

� Common Support services

{ Text Processing service

{ Numeric Processing service

{ Figure Processing service

{ Audio and Video Processing service

{ Calendar and Reminder service

{ Annotation service

� Publishing service

� User Communication services

{ Mail service

{ Bulletin Board service

{ Conferencing service

� PSE Administration services

{ Tool Installation and Customization service

{ PSE User and Role Management service

{ PSE Resource Management service

{ PSE Status Monitoring service

{ PSE Diagnostic service

{ PSE Interchange service

{ PSE User Access service

{ PSE Instruction service

NIST SP 500-213 59

7.1 Common Support Services

Interaction among PSE users is generally based on a set of standard representations. Of these
the most important are textual information, numbers, and �gures. In addition, a number of
emerging technologies indicate that PSE users will also make growing use of digitized audio and
video information. The Common Support services create representations relating to all of these
information media that other services may use in providing their services.

Most of these services, as well as some other Support services, have a set of basic operations, such
as create, modify, delete, move, copy, or save. The item in question for each service, however, is
considerably di�erent, and though there is an apparent duplication in the descriptions of these
operations, there is a substantial di�erence in the nature of the operations themselves. The
redundancy in the service descriptions below is, therefore, a necessary one.

7.1.1 Text Processing Service

Conceptual: The ability to create and manipulate textual information within the PSE is a
service of primary importance. It is involved in supporting the activities of planning, design,
documentation, engineering, and most management activities throughout the lifecycle of any
project.

Text may be viewed either as characters on a two dimensional plane, with operations available
to navigate on the plane, inserting and modifying text as needed, or as structured objects (e.g.,
graph, tree, table, or formula) with operations available to also navigate around this structure
making changes as needed.

Operations: Examples of text processing operations include:

� Create, modify, delete, and save text for future use

� Import externally produced text into a format usable by this service

� Export text in various formats

� Format or print text or documents

� A collection of text manipulation primitives including

{ move, copy, or input text

{ include or merge previously saved text with current text

{ search for, replace, or compare text strings

� Format document, create template, print

� Check spelling and grammar, lookup (i.e., in dictionary or thesaurus)

� Create and manipulate textual table

60 NIST SP 500-213

� Scan externally produced text into a format that can be manipulated by this service.

Rules: Depending upon the services implemented in the PSE, the Text Processing service
may need to implement text format or template design format rules, spelling or grammar rules,
thesaurus substitution rules, tool or �le format rules, and textual table design or format rules.

Types: The Text Processing service requires an underlying character set for representing text
as well as any required special symbols. Schema may be de�ned giving templates for words,
paragraphs, chapters, tables, equations and other design template aspects.

External: This service may be used by other services within the PSE (e.g., electronic mail) or
may be invoked directly by the user of the PSE to create textual objects.

Internal: Objects referenced by the Text Processing service are often �les in the �le system or
objects in the object management system. More complex structures can also be used, such as
graphs or tree structures linking parts of a document, such as in a syntax-directed editor.

Relationships to other services: Text Processing services may interact with any PSE service
requiring the use and manipulation of textual information for user input, display, output or tool
or �le textual format conversion.

Examples:

� General editors such as vi or emacs

� Specialized editors, such as context sensitive editors

� Syntax-based editors (DEC's LSE, research editors like Mentor, SUPPORT, or CPS)

� Text manipulation tools such as awk and grep.

7.1.2 Numeric Processing Service

Conceptual: The ability to create and manipulate numeric information (e.g., spreadsheets,
libraries of standard mathematical functions, statistical packages) within the PSE is one of the
major services involved in supporting the activities of planning, budgeting, and management of
projects.

Operations: Examples of numeric processing operations include:

� Create, modify, edit, delete, and save formulas and spreadsheets

� Import or export spreadsheet data in various tool or �le formats

� Format or print numbers, formulas, or calculated results

� A collection of number and formula manipulation primitives including

NIST SP 500-213 61

{ move, copy, or input numbers or formulas

{ include or merge previously saved spreadsheets with current values

{ search for, replace, or compare number or formula strings

� Create, manipulate, calculate, and print mathematical formats and templates

� Calculate general arithmetical operations such as square root, logarithm, sine, cosine, etc.

� Create and manipulate numeric tables

Rules: Depending upon the services implemented in the PSE, the Numeric Processing service
would need to implement mathematical format or template design format rules, including math-
ematical function input parameter or calculation rules, spreadsheet tool or �le format rules, and
numeric table design or format rules.

Types: The Numeric Processing service would need to de�ne valid number formats, that is,
integer, �xed point,
oating point or scienti�c and limits, implemented mathematical functions
and their parameters, the basic formula format or symbol de�nitions and calculation rules, and
the speci�c spreadsheet or non-spreadsheet token model implemented.

Internal: The Numeric Processing service would normally be implemented by means of runtime
libraries of mathematical functions, as well as by separate PSE tools, such as a spreadsheet or
calculator applications, designed to be enacted whenever numeric processing services are needed.

Relationships to other services: Numeric Processing services may interact with any PSE
service requiring the use and manipulation of numeric information for user input, display, output,
tool or �le format conversion.

Examples: Spreadsheets such as Lotus 1-2-3, Microsoft Excel, Borland's Quattro pop-up cal-
culators, and separate tools for creating equations or tables (e.g., EQN and TBL) are examples
of this service.

7.1.3 Figure Processing Service

Conceptual: The Figure Processing Service deals with the creation and manipulation of
graphic, image, or documentation �gures within the PSE. It involves supporting images for
any other end-user service and activity.

62 NIST SP 500-213

Operations: Examples of �gure processing operations include:

� Graphic or image creation, modi�cation or editing, deletion, and saving for future use

� Graphic or image manipulation primitives such as zoom, size, shrink, rotate, �ll, align,
move to foreground or background, compose or decompose, include or merge previously
saved graphic or image objects with current graphics or images; search for, replace or
compare graphic or image objects

� Import or export graphics or images in various formats

� Format or print graphics, images or documents

� Scanning externally produced pictures into a format that can be manipulated by this
service.

Rules: Depending upon the services implemented in the PSE, the Figure Processing service
would need to implement graphic or image or �gure format and template design format rules,
tool or �le format rules, and graphic, image or �gure table design or format rules.

Types: The Figure Processing service may need to de�ne valid graphic, image or �gure object
primitives and special graphic object representations, as well as the basic graphic, image or
�gure token model implemented.

External: The PSE would automatically invoke Figure Processing service functions whenever
needed by other services; these services may also be invoked directly by the PSE user.

Internal: The Figure Processing service would normally be implemented as separate PSE tools,
that is, graphic, image or �gure editor applications, designed to be invoked by the framework
whenever �gure processing services are needed by other services, tasks, functions or tools active
in the PSE.

Graphic data is often stored either as a bit-mapped (or raster) data object representing the
pixels that will be the picture, or as a set of rules for drawing the picture (e.g., as a set of
vectors).

Relationships to other services: The Figure Processing service may interact with any PSE
service requiring the use and manipulation of graphic, image or �gure information for user input,
display, output, tool, �le format conversion or directly by the PSE user.

Examples: Examples of the Figure Processing service include independent drawing tools such
as MacDraw, MacPaint, x�g under X Windows, and pic for Unix tro�.

7.1.4 Audio and Video Processing Service

Conceptual: The ability to capture, create and manipulate data that is based on audio- or
video-based sources will soon become a necessary capability of PSEs. There are numerous tech-
nologies now emerging, including enhancement of graphical devices, animation, \ink" (computer

NIST SP 500-213 63

manipulation of hand-written text), and similar means of computer processing of digitized audio
and video data. Although these capabilities are all currently in relative infancy, many of them
will soon be common. It may be the case that some of these capabilities will eventually be
regarded as proper either to the Framework or even platform or hardware services.10

The integration of these services with currently existing services will also be likely. For instance,
voice tagging of an ASCII text �le, or freezing a video image containing numeric data and
then capturing that data for inclusion in a spreadsheet, are likely possibilities for integrating
multimedia operations with \traditional" computer tools.

Operations: Examples of audio and video processing operations include:

� Create, modify, and delete sound and video data objects

� Record, playback, and transmit audio and video data objects

� Transform data from one form (e.g., audio) into another form (e.g., ASCII text).

� Store audio and video data in other formats (e.g., PostScript)

Relationships to other services: This service may have a close relationship with the Frame-
work's Dialog service. This service may also interact with the Text, Numeric, and Figure
Processing services, the Publishing service, the Mail service, and any other services in the envi-
ronment that deal with human-readable information.

7.1.5 Calendar and Reminder Service

Conceptual: This service provides the means for a user to keep an electronic schedule of
meetings, deadlines, and similar important dates and times. This service may be a passive one,
i.e., simply an electronic form of a traditional desk schedule. It may also be a more active service,
such as sending automatic reminders of dates and times for deliverables to project members,
initiating actions on objects, or automatically triggering process steps.

Operations: Examples of operations of this service include:

� Insert and delete items in an electronic calendar

� Select actions for execution at a given date and time

� Display and print calendar information in di�erent modes (e.g., entire year, particular
months, weeks, and days)

10There has been a proposal to modify the NIST/ECMA Framework's Presentation service to accommodate
some of these emerging technologies.

64 NIST SP 500-213

� Select actions for execution when speci�ed event occur (e.g., alarms)

Rules: Entries are associated with a date and time

External: The external interface to the Calendar and Reminder service is based on the display
of a calendar. This calendar can be displayed at di�erent levels of granularity (day, week, year).

Relationship to other services: This service may interact with the other Common Support
services, with the Mail service, and with several of the Project Management services.

Examples: Synchronize is an example of this service.

7.1.6 Annotation Service

Conceptual: The Annotation service provides for associating comments with existing objects.
The comments may be in the form of text, diagrams, audio, or video.

Operations: Examples of operations of this service include:

� Add, delete, or modify commentary associated with an object

� Copy or display object with or without commentary

� Order commentary by date, time, size, or author

� Connect commentary to multiple objects

Rules: Attaching a comment to an object cannot adversely a�ect existing uses of that object.

Modi�cation of a comment may be limited to the author or administrator.

Reading of comments or certain aspects of the comments may be restricted to speci�c individuals.

Types: The comment may be text, diagram, audio, video, or a mixture of these.

Internal: A common implementation model is the use of a central comment database (e.g.,
RDBMS, OODBMS). All comments are gathered and managed in that database, although the
objects to which the comments apply may be external to it.

Relationships to other services: The Annotation service may interact with the Text, Nu-
meric, Figure, and Audio and Video Processing services.

7.2 Publishing Service

Conceptual: The basic function of the Publishing Service is to create and print documents.
Until recent times, documents have been understood to be collections of printed pages. But

NIST SP 500-213 65

with the advent of digital technology, this de�nition is no longer satisfactory. A more abstract
notion of what \documents" are sees them as structured, portable collections of related objects
that intend to communicate information. This includes books, letters, brochures, hypermedia
collections, and on-line services. It includes both documents that are read (e.g., papers, etc., con-
sisting of pages and divided into multipage segments called chapters or sections) and documents
that are viewed (e.g., slides, etc. where one page is independent of another page, documents
with video content, etc.).

Given this broad de�nition, the function of the Publishing service must be equally broad; it is
therefore:

� to create, edit, and delete the objects that compose documents;

� to structure these objects in relation to each other;

� to deliver the resulting document in a portable form.

Publishing involves three aspects of a document:

1. Content The actual content of the objects that compose documents can be created, edited,
and deleted by the Publishing service. The objects that the Publishing service manipu-
lates includes textual objects, vector graphics, bit-mapped images, data-driven charts, and
equations. Thus, the Publishing service requires other services for editing each of these
types of object (i.e., text editors, graphics editors, etc.). In addition, document objects
can be temporal in nature, such as audio or video objects, or animations. Documents may
also include �nding aids, such as tables of contents, hyperlinks, or full-text query facilities.

2. Format Each object in a document has not only content but appearance as well, which
we refer to as \format." Format for text objects includes attributes such as font, type,
size, face, and leading. format for bit-mapped objects includes color/gray-scale, size, and
resolution. Format for audio objects includes amplitude and dynamic range.

3. Structure The objects in a document are related to each other in well-de�ned ways. The
rule base (implicit or explicit) that describes document structure de�nes the type of doc-
ument in question. For exaample, if the document is a business letter, it has exactly
one date followed by exactly one address, etc. If the document is a technical manual,
it has a di�erent structure, one that includes rules such as \When an illustration ob-
ject is included, it must be followed by exactly one descriptive caption." The Publishing
service requires tools for creating the rule base for each type of document that it publishes.

Operations: Examples of publishing operations include:11

11These are often the same operations available through the Common Support services such as Text Processing,
Figure Processing, Audio and Video Processing, etc.)

66 NIST SP 500-213

� Create, modify, delete, and save text for future use

� Import or export text in various formats

� Create tables of contents, indices, bibliographies, and glossaries

� Format or print text or documents

� A collection of text manipulation primitives including:

{ move, copy or input text

{ include or merge previously saved text with current text

{ search for, replace or compare text strings

� Import �gure, graphic or table into document

� Create or modify layout or style for document

� Format document, create template, print

� Check spelling and grammar, lookup (i.e., in dictionary or thesaurus)

� Create and manipulate textual table

� Build document

� Preview document

� Print template

Rules: In producing a document, many visual design decisions must be considered. Issues such
as font selection, format and structure rules, and page layout are very important to producing
quality documents. These decisions are supported by the Publishing Service.

Types: The page is the basic element of the Publishing Service. Pages contain items with
speci�c semantics, such as words, paragraphs, titles, and �gures.

Documents are de�ned as a collection of pages. Documents have parts with speci�c semantics,
such as title page, abstract, preface, table of contents, section, bibliography, and appendix. There
are types of documents, such as memoranda, projection charts, technical reports, presentation
slides and letters. Documents may also contain data whose sources include multimedia data
objects, such as a frozen image from an animated video data �le.

Often style guides (i.e., schema) are used to represent the semantics of the parts of a document.

External: The contents of documents are constructed by an author entering it via the keyboard
or by importing it from another service. The output of the Text Processing Service may serve
as input to the Publishing Service.

NIST SP 500-213 67

The Publishing Service produces data directly to a printing device or into a �le for subsequent
processing. The Publishing Service may produce a variety of output formats depending on the
target printer.

Documents may be electronic and should be able to be viewed in that manner. Documents also
may have sound and video content.

Internal: Because of the complexity of the Publishing Service, signi�cant attention is placed
on internal performance and construction of the visual presentation.

There are generally two models for building Publishing Service products. In one case, formatting
information is inserted directly into the document (e.g., tro�, WordPerfect). In the other case,
editing commands are external to the document (e.g., TeX style guides) and can be altered
independently to altering the document itself.

Relationships to other services: The Publishing Service may interact with the Text, Nu-
meric, and Figure Processing services.

Page items and document parts (e.g., paragraphs, �gures, abstracts, appendices) may be objects
visible to the framework Object Management services.

Examples: Interleaf5 from Interleaf, Framemaker from Frame Technology, Pagemaker from
Aldus, Tex, Latex, and tro� are all examples of this service. Freelance, the Slitex variant of
Tex, and Powerpoint are examples of Publishing service tools that emphasize slide presentation.
Postscript is an example notation for describing text and graphics within such documents.

7.3 User Communication Services

Interaction between individuals is accomplished by many mechanisms. When such interactions
are pertinent to the activities of a project and are supported by services of the PSE, they are
handled by the User Communication services.

7.3.1 Mail Service

Conceptual: The Mail Service provides for simple communications of notes between computer
system users. It follows a paper letter mail paradigm, while taking advantage of the speed and
connectivity of wide area computer networks. Automatic note forwarding and collecting are also
part of the Mail service.

Operations: The Mail service has the common set of operations needed to create and save
textual information. In addition, the Mail service has the following unique operations:

� Receive, compose, send, reply, forward, broadcast, and acknowledge mail

68 NIST SP 500-213

� Electronically review mail

� Customize the mail's send and receive capabilities

Types: Mail is often stored in objects called folders. Folders are usually related to speci�c
subjects or addressees.

Mail can be sent to individuals, or mailing lists of many individuals can be created to broadcast
messages to many users at one time.

The basic object of the Mail service is the message; a message is the item that is mailed. Messages
have sub�elds, such as addressee, author, date, subject, salutation, body, and closing.

External: The external view of the Mail service is via simple, easy to use tool kits (or utilities).

The Mail service is also the primary connection for most users who are communicating across
LAN and WAN networks.

Internal: The major distinguishing feature of the Mail service among the User Communication
services is that it represents one way asynchronous communication between two users. Mail is
sent by one user and the PSE stores the mail until retrieved by the receiver. An acknowledgment
is sometimes sent to the sender stating that the message is waiting for the receiver, but whether
the receiver actually read the message is generally not known.

In a secure distributed PSE, authentication of the sender by the receiver is required. There are
also other security considerations, such as Secure Mail and Privacy Enhanced Mail, that are still
research topics.

Relationships to other services: The Mail service may use the Text Processing service
to create messages. It may also interact with the Figure Processing and Numeric Processing
services for creating complex messages. Other services in the PSE may use the Mail service to
communicate with other users, e.g., informing a test team that a program build is completed
and ready for testing.

Examples: Unix mail, MailTool, and Andrew Tool Kit are examples of this service.

7.3.2 Bulletin Board Service

Conceptual: The Bulletin Board service is a form of mail with a single sender and multiple
recipients. Information is mailed to the bulletin board and users access the bulletin board as
desired. Unlike mail, which prompts receivers to read the message and may acknowledge receipt
to the sender, a Bulletin Board service simply posts the information, and it is up to each intended
receiver to interrogate the Bulletin Board for new information.

Operations: The Bulletin Board service has the common set of operations needed to create
and save textual information. In addition, the Bulletin Board service has the following unique
operations:

NIST SP 500-213 69

� Subscribe and post messages

� Browse a bulletin board's messages

� Reply or add information to posted messages

� Forward messages

Types: Often users can \subscribe" to certain bulletin boards, and therefore lists of such users
must be maintained. There are often multiple bulletin boards and the names of such bulletin
boards must be maintained also.

External: Access to the Bulletin Board service is often via an interface that looks very much
like a Mail service interface.

Internal: There are generally two methods for implementing a Bulletin Board service. One way
is via the Mail service. Lists of users subscribing to a given bulletin board are maintained, and
a post operation is simply a Mail service broadcast operation to all users who have subscribed
to this service.

A second method is for the Bulletin Board service to post items into an object in the object
management system, and the browse operation reads that object.

Like the Mail service, this is also an asynchronous communication service.

Relationships to other services: The Bulletin Board service often uses the Mail service
to broadcast messages and the Text Processing service for creating messages. The framework
Communication service is used to send messages across a LAN or WAN.

Examples: Readnews, VAXnotes, and Unix note�les are examples of this service.

7.3.3 Conferencing Service

Conceptual: Often it is necessary for users to engage in interactive synchronous communica-
tion. This is handled in the PSE by the Conferencing service. While the model implemented
often resembles a two-way telephone call, the service could also be implemented to permit
computer-based conferencing for many users.

Operations: Examples of conferencing operations include:

� Open connection

� Send message

� Close connection

70 NIST SP 500-213

Types: Objects that can be sent and received through this service may include ASCII text,
sound, video, and graphical objects.

External: This is often a separate service that creates multiple viewing areas on the screen,
each representing one end of the conversation.

Relationship to other services: This service may use the framework's Communication service
to permit synchronous communication to proceed.

Examples: The Unix talk program is an example of this service.

7.4 PSE Administration Services

The administration of a computer system includes services that span all of the levels of the
system. They include services whose province is low-level operating system support, as well as
services that a�ect the engineering and management users of the environment.

While these services provide administration capabilities that pertain to an overall environment,
they also have considerable overlap with the functionality of the Framework Administration
services originally described in the ECMA/NIST reference model. Most of those services have
now been subsumed by the service below.

7.4.1 Tool Installation and Customization Service

Conceptual: This service supports the installation, testing, and registration of tools into a
PSE. The service provides the necessary operations to set up default resource limits, default
names, and other operational characteristics for a tool to be used in a PSE. The installation of
a tool may involve signi�cant changes to the tool's implementation or encapsulation of the tool
in some form of tool wrapper. Installation of a tool may also involve speci�c vendor constraints,
such as the operation of tool-speci�c daemons to ensure that the number of users agrees with
the number of licenses purchased.

Tools are designed to operate with a speci�c user interface. However, it is desirable to have
consistency of user interface style and operation across a number of tools. Hence, in addition to
the work required to install a tool, customization of a tool's user interface may be required.

Being able to de�ne a test environment for a recently installed tool protects the PSE from errant
behavior on the part of the new tool. For example, names and defaults are kept local to the
tester and may not a�ect other versions of the tool present in the PSE.

It may be possible to access alternate versions of the same tool within a single PSE.

Operations: Examples of tool installation operations include:

� Install tool by setting default resource limits (e.g., CPU time, objects manipulated, �le

NIST SP 500-213 71

sizes, and default names) for that tool, or according to a vendor's licensing regulations

� Customize tool, e.g., by providing a new user interface

� Create a test environment for a recently installed tool

� Register a new tool in a PSE by making it known to potential tool users

� Provide access to multiple versions of the same tool

� Unregister an existing tool in a PSE, making it unavailable for use

Internal: Installing a tool in a PSE may involve a major amount of work on the part of the
installer. Amongst other things, the amount of work required is dependent on the compatibility
of the internal architecture of the tool and the PSE. In addition, porting an existing tool to a
PSE may require encapsulation of the tool in some form of tool wrapper.

Registering a tool makes that tool known to potential users. This may take a number of forms,
including making the tool's name known in a public directory, placing the tool itself in a well-
known place in the PSE, extending the project schema of a database-centered PSE, and so
on.

Relationships to other services: In installing and testing a tool it may be necessary to make
use of the User and Role Management service to partition the PSE and Policy Enforcement
services to protect other users of the PSE. User and Role Management and Policy Enforcement
services are needed to ensure that only authorized individuals can access these Tool Registration
Services and the registered tools themselves.

7.4.2 PSE User and Role Management Service

Conceptual: Users of a PSE must be made known to the system through some form of registra-
tion. Users may be grouped according to particular user roles within the PSE (e.g., developer,
designer, manager). Each role may require particular tools, permissions, data, and so on. These
provide (potentially) overlapping partitions of the PSE.

The utility of this service may be to facilitate security, to aid partitioning of the PSE data for
distribution purposes, to allow easier communication between groups of PSE users, to allow
tasks to be assigned to groups, and so on.

Operations: Examples of role management operations include:

� Register a new PSE user

� Deregister an existing PSE user

� Create a new role of PSE user

� Delete an existing role of PSE user

72 NIST SP 500-213

� Assign a user as a member of a PSE role

� Deassign a user from being a member of a PSE role

� Select a view or partition of the PSE tools, data, etc., as visible (i.e., accessible) to a
particular role

� Amend the view de�ned for a role

Rules: A user can be assigned to more than one role.

Internal: Many of these operations could be provided by (or complemented by) framework
mechanisms for the administration of mandatory or discretionary access control.

Relationships to other services: This service may interact with the Tool Installation and
Customization service and with the Lifecycle Process Engineering services.

Examples: Most available PSEs have user registration facilities. Grouping services are avail-
able to Unix groups and as roles in ISTAR, ASPECT and other PSEs.

7.4.3 PSE Resource Management Service

Conceptual: The Resource Management service provides the ability to monitor, add, change,
or delete resources available to a PSE. The resources supported include disks, memory, tapes,
quotas, and workstations.

Operations: Examples of resource management operations include:

� Add a resource to the PSE

� Delete a resource from the PSE

� Amend a resource of the PSE

� Query status of a resource in the PSE

� Provide statistics on a resource of the PSE

� Make a resource available to user and/or role

� Interrogate PSE for availability of a resource

Types: The following are types of resources: disks, memory, tapes, user quotas, workstations,
tape drives, terminals, mainframes.

External: Other services will use the resource management service to determine availability of
resources for an operation.

NIST SP 500-213 73

Internal: This service is concerned only with the user, role, and tools levels; it does not address
the system level platform resource management.

Relationships to other services: This service may interact with the User and Role Manage-
ment and the PSE User Access services.

7.4.4 PSE Status Monitoring Service

Conceptual: During execution of the PSE it is necessary to monitor and control the actions
that take place. The information obtained can be used to adjust, or tune, the PSE to improve
its availability and performance. Particular information of use to the PSE administrator may
include statistics on the uptime of the PSE, overall tool usage, resource usage by individuals, av-
erage response time, and so on. This service is analogous to the monitoring functions performed
by a database administrator or a system administrator.

Operations: Examples of status management operations include:

� Log actions and events that occur during normal execution of the PSE

� Produce report on PSE usage

Internal: This service may be heavily dependent on the underlying monitoring services of the
operating system on which the PSE is implemented.

Relationship to other services: This service may interact with the Metrics service.

7.4.5 PSE Diagnostic Service

Conceptual: A PSE must be able to perform self-testing and diagnosis to determine irregular
conditions. The PSE may then be able to correct problems automatically or to send messages
to a PSE administrator for human intervention. The irregular conditions may include inability
to achieve expected network connections, lack or fragmentation of disk or secondary storage
facilities, or inconsistent relationships in the environment (e.g., missing tools).

Operations: Examples of diagnostic operations include:

� Initiate self-test of PSE facilities

� Collapse fragmented storage

� Send diagnostic message to system administrator

� Perform automatic rollback from an invalid environmental condition

Relationships to other services: The service may interact with the PSE Status Monitoring
service, the PSE User Access service, and the Framework's Archive service.

74 NIST SP 500-213

7.4.6 PSE Interchange Service

Conceptual: Communication and sharing between PSEs requires services for interchange be-
tween PSEs. For example, tools and data from one PSE may be transferred to another PSE to
facilitate reuse. This requires external protocols from the PSE to the outside world.

Also, initial loading of data and tools into a PSE must be handled by this service.

Operations: Examples of interchange operations include:

� Transfer data between PSEs

� Transfer a tool between PSEs

� Transfer user/role between PSEs

� Transfer task description between PSEs

Rules: Consistency of the receiving PSE must be maintained following the interchange.

Internal: Some form of encryption may occur between the PSE and the outside world in order
to ensure greater security.

Relationships to other services: This service may interact with the framework's Data In-
terchange service. Also, the PSE user access service may constrain access to transfer operations
to trusted users.

7.4.7 PSE User Access Service

Conceptual: The PSE needs to know who is accessing resources and to provide control over
access to the PSE.

Operations: Examples of user access operations include:

� Login a user into the PSE

� Authenticate a user of the PSE

� List all current users of the PSE

� Logout a user from the PSE

NIST SP 500-213 75

� Set privileges of a PSE user

� Set access to resources by another PSE user

Rules: All access to a PSE must be preceded by a login operation.

Users often have a prede�ned role associated with a login operation, constraining the PSE
resources available to them.

External: Authentication of a user by a login or authentication operation is typically by a
password, but can include other characteristics such as personal facts, �ngerprints, ID cards,
handwriting, etc.

Relationships to other services: This service may interact in many ways with access control
at the framework level.

Example: Unix root privileges provide an example of the set-privileges operation, and the Unix
chmod function for altering �le access attributes is an example of the set-access operation. The
ASPECT PSE uses publish and acquire operations to allow other roles to have access to private
data.

7.4.8 PSE Instruction Service

Conceptual: The appropriate use of tools often requires online information to be given to the
user of the tool. This information may either be in the form of an interactive tutorial run by
the user in order to learn the features of a new tool or may be invoked within the tool as part
of a \help" facility.

Often the Instruction service will enact the actual tool and guide the user through the use of
that tool with speci�ed input. In other cases, the Instruction service may simply display a
prede�ned �le of information on the desired topic (and thus behave much like the Information
Management service).

Operations: Example operations of this service include the following:

� Display information

� Browse (search for) information

� Explain (interpret) program output, command input, or data item

� Simulate (with input and output) tool activity

Internal: This service is often implemented as a separate tool from the tool it is explaining.
However, at other times it may be implemented as a \hot key" within the tool itself. Enacting
this key causes the tool to enter a \help" mode where it displays useful information to the user.

76 NIST SP 500-213

Relationship to other services: This service may interact with the Information Management
service as well as the framework User Assistance service in intercepting and explaining error and
warning messages. This service may also interact with any tool supporting any service of this
reference model, as described in the Internal dimension, above.

Examples: Examples of online instruction include the following classes of tools: Computer
Aided Instruction (CAI) and online tutorials; and Browsers and online help facilities (e.g.,
UNIX man utility).

NIST SP 500-213 77

78 NIST SP 500-213

Chapter 8

FRAMEWORK SERVICES

These services comprise the infrastructure of a PSE. They include those services that jointly
provide support for applications, CASE tools, etc. and that are commonly referred to as \the
environment framework." The source for these service descriptions is the \Reference Model
for Frameworks of Software Engineering Environments, Edition 3," NIST Special Publication
Number 500-211, August, 1993. Although most of the following text has been extracted directly
from this source, the text has been substantially abbreviated. For a full description of each
service, the reader should consult the NIST/ECMA Frameworks Reference Model itself.

In the case of one section of the NIST/ECMA reference model, (section 10, Framework Ad-
ministration services), it was felt that most of the services were essentially subsumed by other
services already described in the PSE reference model. These included the following:

� Registration service (section 10.1): for this service, see section 7.4.1, Tool Installation and
Customization Service.

� Resource Management service (section 10.2): for this service, see section 7.4.3, PSE Re-
source Registration service.

� Metrication service (section 10.3): for this service, see section 5.5, Metrics service.

� Sub-Environment service (section 10.4): for this service, see section 7.4.2, PSE User and
Role Management service.

� Self-Con�guration Management service (section 10.5): for this service, see section 7.4.1.
Tool Installation and Customization service.

One remaining service from this section of the NIST ECMA reference model (License Manager
service, section 10.6) is not duplicated in the PSE reference model. This service provides for the
enforcement of licensing requirements on PSE components. As with all of the other abbreviated
framework service descriptions, the reader should consult the NIST/ECMA reference model for
its full description.

NIST SP 500-213 79

This chapter describes the following services:

� Object Management services

� Process Management services

� Communication services

� Operating System services

� User Interface services

� Policy Enforcement services

8.1 Object Management Services

NB: These service descriptions have been abstracted from the NIST/ECMA Reference Model,

section 4.

Conceptual: The general purpose of the object management services is the de�nition, storage,
maintenance, management, and access of object entities and the relationships among them.
These services are generally built upon the database and �le system services of the platform.
These services include the following:

8.1.1 Metadata service (NIST/ECMA, section 4.1): provides de�nition, control, and mainte-
nance of metadata, typically according to a supported data model. Metadata (e.g., schemas) is
data about the structure and constraints of data and objects in the object manager. A Metadata
Service allows generic tools to be written which operate according to the structure of the objects
in a particular environment.

8.1.2 Data Storage and Persistence service (section 4.2): provides de�nition, control, and main-
tenance of objects, typically according to previously de�ned schemas and type de�nitions. It
is this service which permits an object to live beyond the lifetime of the process that created
it and allows access to it by that process or by other processes until it is deleted. This service
provides the essential storage characteristic of a \database" or object management system.

8.1.3 Relationship service (section 4.3): provides the capability for de�ning and maintaining
relationships between objects in the object management system. These relationships provide
the links to move between objects in the object management system. For models, like the
E-R data model, they provide the essential links for building such models. For others, like
object-oriented models, they provide a mechanism for building inheritance and like properties.

8.1.4 Name service (section 4.4): supports naming objects and associated data and maintains
relationships between surrogates and names. This service provides for the translation of external
names known to users and tools within an environment to internal, often arbitrary, identi�ers
of those objects. The external names can be �le names, function names, process names, etc.,

80 NIST SP 500-213

while the internal names often represent physical locations in the object management system,
arbitrary counters or hash-coded table-lookup values.

8.1.5 Distribution and Location service (section 4.5): provides capabilities that support man-
agement and access of distributed objects. The Location Service may have both a physical and
logical model of the object management system. Distributed software development support is
�rmly established as a requirement for PSE frameworks, and this service permits users and tools
to locate necessary objects in the environment.

8.1.6 Data Transaction service (section 4.6): provides capabilities to de�ne and enact transac-
tions. Transactions are units of work made up from a sequence of atomic operations. Such
operations must not terminate in a half-completed state. Implementation of such operations is
handled by this service via operations like commit and rollback.

8.1.7 Concurrency service (section 4.7): provides capabilities that ensure reliable concurrent
access (by users or processes) to the object management system. In multiprocessing systems
and distributed networks it is imperative that certain critical operations execute to completion
before their data can be interrogated by another process. This service provides these capabilities
via operations like acquire and release locks.

8.1.8 Operating System Process Support service (section 4.8): provides the ability to de�ne OS
processes (active objects) and access them using the same mechanisms used for objects. This
provides integration of OS process and object management. This service provides the basic
support mechanisms for enacting and controlling active objects in addition to the more static
data in the object management system.

8.1.9 Archive service (section 4.9): allows on-line information to be transferred to o�-line media
and vice-versa. This service allows users to determine which objects are readily available via
the object management system and which require increased access time by retrieval from o�-line
media such as tape. Size of the object management system and size of the individual objects
determines whether and how often the Archive service needs to be used.

8.1.10 Backup service (section 4.10): restores the development environment to a consistent state
after any media failure. While the Archive service is often viewed as one used by users of
an environment to manage the objects under their control, the Backup service is often viewed
as an administrative function that provides reliability and integrity to the data in the object
management system and is generally transparent to the users of an environment.

8.1.11 Derivation service (section 4.11): supports de�nition and enactment of derivation rules
among objects, relationships or values (e.g., computed attributes, derived objects). Many objects
in the object management system are often related (e.g., type de�nitions, source code, object
code, executable modules), and changes to one often a�ect the others. This service provides the
capabilities to link these objects in such a way that rules are established for deriving the related
objects from other objects.

8.1.12 Replication and Synchronization service (section 4.12): provides for the explicit replication
of objects in a distributed environment and the management of the consistency of redundant
copies. The basic operations of this service are to provide synchronization of multiple objects

NIST SP 500-213 81

and manage replicated objects so that ownership is not hindered.

8.1.13 Access Control and Security service (section 4.13): provides for the de�nition and enforce-
ment of rules by which access to PSE objects (e.g., data, tools) can be granted to or withheld
from user and tools. This service utilizes the operations within the Policy Enforcement services
of the framework.

8.1.14 Function Attachment service (section 4.14): provides for the attachment or relation of
functions or operations to object types, as well as the attachments and relation of operations to
individual instances of objects. This provides the basic functionality to implement inheritance
properties in the object-oriented data model.

8.1.15 Common Schema service (section 4.15): provides mechanisms for integrating tools into a
PSE by providing a means to create common (logical) de�nitions of the objects (and operations)
these tools may share from the underlying objects in the object management system. This service
provides the capabilities for creating and modifying such schema in order to integrate new tools
into an existing set of tools and their related data in an environment.

8.1.16 Version service (section 4.16): provides capabilities for managing data from earlier states
of objects in the OMS. Change throughout development has to be managed in a PSE and the
inclusion of versioning is one of the means of achieving this. This service provides the capabilities
to create new versions of objects and to recover earlier versions of objects.

8.1.17Composite Object service (section 4.17): creates, manages, accesses, and deletes composite
objects, i.e., objects composed of other objects. It may be an intrinsic part of the data model
or a separate service. Complex objects in a PSE (e.g., source code, a report) may consist of
collections of other objects linked in speci�c ways. This service allows for such objects to be
considered as either a single composite object (e.g., a report) or as subsets of this object (e.g.,
a chapter, a table).

8.1.18 Query service (section 4.18): an extension to the Data Storage and Persistence service's
read operation. It provides capabilities to retrieve sets of objects according to de�ned properties
and values. These capabilities can be fairly simple navigation operations (e.g., \Get all objects
linked to X") or more complex inference rules (e.g., \Get all objects linked to X and Y but not
to Z").

8.1.19 State Monitoring and Triggering service (section 4.19): enables the speci�cation and
enaction of database states, state transformations, and actions to be taken should these states
occur or persist. This service provides an asynchronous event mechanism among independent
tools and provides the capabilities for the object management system to become an inter-tool
signalling channel.

8.1.20 Data Subsetting service (section 4.20): enables the de�nition, access and manipulation
of a subset of the object management model (e.g., types, relationship types, operations if any)
or related instances. The PSE framework may provide support for selecting parts of the OMS
necessary to carry out speci�c subprocesses of the overall project.

8.1.21 Data Interchange service (section 4.21): o�ers two-way translation between data repos-

82 NIST SP 500-213

itories in the same or di�erent PSEs. This permits the object management system to transfer
data to other PSEs.

8.2 Process Management Services

NB : These service descriptions have been abstracted from the NIST/ECMA Reference Model,
section 5.

Conceptual: The general purposes of the Process Management services in a PSE are the un-
ambiguous de�nition and the computer-assisted management of project development activities
across total project lifecycles. In addition to technical development activities, these potentially
include management, documentation, evaluation, assessment, policy-enforcement, business con-
trol, maintenance, and other activities. The services are:

8.2.1 Process Development service (section 5.1): provides for creation, control, and maintenance
of process de�nitions, sometimes represented in a process formalism. These de�nitions corre-
spond to process assets needed by an organization; these assets may be de�nitions of a complete
process, a subprocess (or process element), a process model, a process architecture, or a process
design.

8.2.2 Process Enactment service (section 5.2): provides for the instantiation and execution of
process de�nitions by process agents that may be humans or machines. It also provides services
to access, maintain, and control the persistent state of the process.

8.2.3 Process Visibility service (section 5.3): provides facilities for the de�nition and mainte-
nance of visibility and scoping information associated with enacted processes. Several enacting
processes may cooperate to achieve the goal of a higher level process or a complete process; the
extent of such cooperation is part of the de�nition of processes and may be provided by inte-
grated visibility features in a particular process de�nition representation; however, independent
services may be provided to deal with interprocess interactions such as visibility of common
data, common events, and propagation of information.

8.2.4 Process Monitoring service (section 5.4): observes the evolving enactment state of pro-
cesses, detects the occurrence of speci�c process events, and enacts other processes to respond
to these detected events.

8.2.5 Process Transaction service (section 5.5): supports the de�nition and enactment of process
transactions, which are process elements composed of a sequence of atomic process steps, and
which are to be completed in their entirety or rolled back to their pre-enactment state.

8.2.6 Process Resource service (section 5.6): supports the assignment of process agents (e.g.,
tools or user roles or individual users) to enact various processes and process elements, which
is typically done under constraints of time, budget, manpower assignments, equipment suites,

NIST SP 500-213 83

and process de�nition technology (e.g., insu�cient formality may be used for totally automated
enactment).

8.3 Communication Service

NB: This service description has been abstracted from the NIST/ECMAReference Model, section
6.

Conceptual: This service provides a standard communication mechanism that can be used for
inter-tool and inter-service communication. The services depend upon the form of communi-
cation mechanism provided: messages, process invocation and remote procedure call, or data
sharing. This service may be built upon the framework network services, but it is also relevant
when the environment does not involve a network. Communication is provided tool-to-tool,
service-to-service, tool-to-service, or framework-to-framework. The services are:

8.3.1 Data Sharing service (section 6.1): Data sharing is supported via data sharing operations
within the OMS or memory by other data manipulation services. Data sharing often occurs
because of common agreement on the location of the data, either in memory or in various forms
of secondary storage, including the OMS.

8.3.2 Interprocess Communication service (section 6.2): provides primitive operating system
process communication via the RPC mechanism of the network service.

8.3.3 Network service (section 6.3): supports communication among collections of processes. If
the processes are executing on di�erent computers, then this service must be invoked to cause
the actual transfer of data between machines.

8.3.4 Message service (section 6.4): supports managed communication among a large number of
elements of a populated environment framework. The Message service provides communication
over a distributed (in both the logical and physical senses) collection of services and tools.

8.3.5 Event Noti�cation service (section 6.5): supports the noti�cation of messages based upon
certain triggering conditions. This service provides a consistent way for various services to report
information, as in an asynchronous event, a \return code" upon exiting a program, or standard
error messages reported to the user.

84 NIST SP 500-213

8.4 Operating System Services

NB: These service descriptions have been abstracted from the NIST/ECMA Reference Model,

section 7.

Conceptual: These services include those services that are usually considered part of an oper-
ating system or executive. The set of services includes system process management, �le manage-
ment, input and output, memory management and print spoolers. These services also include
timing mechanisms, device drivers, and services related to distributed systems.

Operating System services include the following:

8.4.1 Operating System Process Management service (section 7.1): provides the ability of an
operating system to create processes and to schedule each independently for execution.

8.4.2 Operating System Environment service (section 7.2): provides for passing of information
between operating system processes.

8.4.3 Operating System Synchronization service (section 7.3): provides for appropriate synchro-
nization of the execution among all operating system processes in a PSE.

8.4.4 Generalized Input and Output service (section 7.4): provides basic operations to transfer
data between processes and input and output devices attached to a PSE.

8.4.5 File Storage service (section 7.5): provides the basic operations to read and write �les and
to store and access them in directories.

8.4.6 Asynchronous Event service (section 7.6): provides for the creation and sending of signals
between operating system processes.

8.4.7 Interval Timing service (section 7.7): provides for the ability to set and test timers on
individual operating system processes.

8.4.8 Memory Management service (section 7.8): provides the ability to manage the main mem-
ory of the framework.

8.4.9 Physical Device service (section 7.9): provides the ability to manage the physical devices
attached to the framework.

8.4.10 Operating System Resource Management services (section 7.10): provide general com-
puter system management, including:

� System Operator services to access and control the system to allow the platform to perform
properly.

� System Administration services to assume management and allocation of system services
to system users.

� Capability and Security services that support the ability to control usage such that system
integrity is protected from inadvertent or malicious misuse. This includes prevention of

NIST SP 500-213 85

unauthorized access, prevention of data compromise, prevention of service denial, and
security administration.

8.5 User Interface Services

NB: These service descriptions have been abstracted form the NIST/ECMA Reference Model,
section 8.

Conceptual: These services involve all aspects of the PSE and provide for the integration of
the object management system, the process management services, and the tools themselves into
a consistent set of presentation attributes between tools and users of the PSE.

8.5.1 User Interface Metadata service (section 8.1): provides for describing the objects used by
the User Interface Services. While similar to the object management system Metadata service,
for e�ciency, many systems will create presentation schema outside of the object manager.

8.5.2 Session service (section 8.2): provides the functionality needed to initiate and monitor a
session between the user and the environment. It provides the tool-to-session transformations
needed to run multiple tools on multiple UI devices. This provides the essential characteristics
viewed by the user (e.g., windows, colors, menus, icons).

8.5.3 Text Input service (section 8.3): provides for textual input processing by application
programs. Lines of text are entered by the user via a keyboard, and the application reads the
text one character, or line, at a time.

8.5.4 Dialog service (section 8.4): provides the interface between the application program and
physical display devices. It includes operations for controlling execution of applications, such as
starting, suspending, or aborting execution, or moving execution from foreground to background.
It is the function of this service to seamlessly pass information between programs and users.

8.5.5 Display Management service (section 8.5): provides for interaction among individual win-
dows. In general, each application writes to a speci�c set of windows. This includes services for
capturing and redirecting command-line input and output. This includes interacting with other
windows and enforcing integrity constraints between the user and the framework.

8.5.6 Presentation service (section 8.6): provides capabilities to create and manage the physical
interface between the user and the PSE. This includes the screen display area as well as sight,
sound, touch or other sensory interfaces in the PSE.

8.5.7 UI Security service (section 8.7): provides the security constraints needed by the UI. This
requires authentication, via the Policy Enforcement services, of the user to the environment and
creation of a trusted path between the user and the data to which the user has access.

8.5.8 User Interface Name and Location service (section 8.8): permits the framework to manage
multi-user and multi-platform environments. It permits various sessions to communicate with
various tools and various display devices. It provides the mechanism for tools to link to the
appropriate display device (e.g., correct window).

86 NIST SP 500-213

8.5.9 Internationalization service (section 8.9): provides capabilities concerned with di�erent
national interests. This includes local formats for dates and other data, collating sequences and
national character codes, scanning direction, and other country-speci�c symbols or icons.

8.5.10 User Assistance service (section 8.10): provides a consistent feedback from various tools
to the user for help and error reporting.

8.6 Policy Enforcement Services

NB: These service descriptions have been abstracted from the NIST/ECMA Reference Model,

section 9.

Conceptual: The Reference Model uses the term \policy enforcement" to cover the simi-
lar functionality of security enforcement, integrity monitoring, and various object management
functions such as con�guration management. The PSE reference model regards security as a
service that intersects many of the boundaries of the reference model service groupings. The set
of services is:

8.6.1 Security Information service (section 9.1): supports the establishment of security informa-
tion for use within the PSE. It provides the basis upon which di�erent operational roles for users
(e.g., administrators, subcontractors, programmers, managers) can be built, provides the abil-
ity to grant the same security-related privileges to groups of users, and provides con�dentiality
levels, which represent security classi�cations, and integrity levels, which represent the \purity"
or \goodness" of an object, for each subject and object in a secure PSE.

8.6 2Identi�cation and Authentication service (section 9.2): provides for the ability to identify
users and to properly associate them with appropriate access rights prior to any operations being
carried out on their behalf.

8.6.3 Mandatory Access Control Service (section 9.3): provides capabilities to assign access
values by a security o�cer to govern access to the information contained in an object.

8.6.4 Discretionary Access Control service (section 9.4): provides the ability to permit users to
control (i.e., permit and deny) individual modes of access to objects that they own by individual
users and all members of sets of users.

8.6.5 Mandatory Integrity service (section 9.5): provides the capabilities to protect objects from
unauthorized or unconstrained modi�cation as determined by the PSE security o�cer.

8.6.6 Discretionary Integrity service (section 9.6): provides the capabilities to protect objects
from unauthorized or unconstrained modi�cation as determined by a user. Since we can never
be completely sure that some part or feature of the product has not been maliciously corrupted,
this service provides assurance that a user may determine that a PSE maintains the \purity" or
\goodness" of an object owned by the user.

NIST SP 500-213 87

8.6.7 Secure Exportation and Importation of Objects service (section 9.7): provides the ability
to export and import objects in a secure manner. This is especially important since data often
must pass through non-trusted channels.

8.6.8 Audit service (section 9.8): provides the ability to record information about calls on the
PSE facilities in order to track and control security-related actions.

88 NIST SP 500-213

Appendix A

EXTENDED DEFINITIONS OF

KEY TERMS

Environment

An environment is a collection of software and hardware12 components; there is typically some
degree of commonality that renders these components harmonious. There are certain character-
istics, evidenced in the goals and aims of many existing research e�orts, that an environment is
likely to exhibit. The de�nition of an environment is actually a description based on three key
characteristics of an environment.

First, environments are not restricted to facilitating engineering, but provide software support
for many other processes, managerial as well as engineering, necessary to complete projects.
The second characteristic is that the components of the environment will have some degree of
integration, facilitating the interoperation and communication between components, sharing of
data, and showing a common appearance to a user.

The third characteristic is that environments contain components at di�erent levels of size,
purpose, and complexity. Some portions of an environment comprise an infrastructure, whose
main role is to provide support only for other software components rather than for end-users.
These capabilities may even be invisible to an end-user. Other capabilities, however, will more
likely be directly accessed by the end-user and will provide explicit support for the various
activities of a project. This distinction is not always clear, and the gap between the two categories
is really a spectrum, with some components spanning both rather than simply being in one or
the other. Still, the distinction provides a useful structuring device for the model.

Process and Task

The concepts of \process" and \task" are based on the following de�nitions:13

Process: A set of partially ordered steps intended to reach a goal. A process is decomposable

12For the purposes of this document, PSESWG concentrates on the software components of an environment.
13These de�nitions are borrowed from [FEILER].

NIST SP 500-213 89

into process steps and process components. The former represent the smallest, atomic level; the
latter may range from individual process steps to very large parts of processes.

Task: A process step typically enacted by a human, requiring process planning and control.

The work carried out by a project can be considered to be a set of tasks that support some
particular development process. Since environments of interest to this reference model will be
used in widely di�ering application domains to support many types of project, it is necessary that
the model be general enough to be widely applicable. The model therefore does not represent
particular processes or their constituent tasks; instead, it models the functionality provided by
a populated environment in support of any chosen process.

Service

A service is an abstract description of work done by one or more software components; it
is the term we use to describe the functional capabilities of an environment. By using an
abstract description, we can enumerate the capabilities of an environment without reference to
any particular implementation choices.

A service is self-contained, coherent, and discrete. In addition, the notion of service is essen-
tially relative, and thus services can be composed of other services, creating a service hierarchy.
Decisions about the scope of a service description, i.e., on the appropriate functional area of any
particular service, are made through ad hoc knowledge of the expected capabilities of a popu-
lated environment. Key factors for these decisions are lifecycle phase of a project and end-user
roles in the lifecycle.

There is a close relationship between services and tasks: in some ways, these two terms provide
di�erent views of the same activity. For instance, one view might be that the environment
provides an editing service, another view being that to perform the task of editing a user receives
support from the environment. Whichever view one takes, both refer to the same basic activity,
e.g., a human making use of a piece of software, such as emacs, to create or revise textual data.
We can contrast these viewpoints by noting that services are the capabilities of the environment,
while tasks make use of and provide context for those capabilities. For example, in the domain of
Quality Assurance, it is reasonable to refer to such things as testing a new release of a software
system as a task that requires the support of services such as test case generation and report
production.

Framework

The most widely accepted use of this term derives from the NIST/ECMA Reference Model
[NIST]. Current [environments] distinguish between the set of facilities in support of the life-
cycle project, denoted tools, and a set of (relatively) �xed infrastructure capabilities which
provide support for processes, objects, or user interfaces, denoted frameworks.

The NIST/ECMA model describes a set of �fty services common to Software Engineering frame-
works. These services manage information and computing resources, and also provide for tool
execution, inter-tool communication, user access, and input and output for all user interactions
with a computer-based collection of tools. With minor modi�cation in the service groupings,

90 NIST SP 500-213

this document has accepted the NIST/ECMA de�nition of a framework and framework services.

The extent of a framework can vary both in its complexity and in the breadth of its services. In
the case of complexity, a framework can span the spectrum from a minimal set of services needed
for software operation to a more complete set of services that represent data and operations at
higher levels of abstraction. The �rst of these extremes might be an operating system kernel
providing minimal support for input and output and data access (e.g., POSIX 1003.1); the
second extreme might be an implementation that includes a full data repository, complex user
interfaces, life-cycle process management services and other comparable services (e.g., framework
implementations incorporating ECMA PCTE, X Window System, etc.).

In the case of the relative breadth of framework services, an overriding factor is the domain that
the framework must support. In general, the more restricted the domain, the more a service will
become apparent as a common one, and thus be considered for inclusion in the framework. In
the PSESWG Reference Model, the set of services included are thought to be general enough to
be common to the engineering domains that are included. This may change over time, however,
as more is understood about all of the domains and how they relate to one another.

Interface

The de�nition of interface from IEEE Software Engineering Standards [IEEE] is:14

A shared boundary across which information is passed; [a software] component that connects
two or more other components for the purpose of passing information from one to the other.

This boundary, or interface, provides an external entry point for a software component that
permits either invocation of the software, insertion of input to it, or reception of output from
it. When the software is described in an abstract manner (as when we use the term \service"),
then the interface is at a conceptual level. For instance, in the case of a data storage service and
an access control service, one might assume some relationship between them that would permit
one service to make use of the other; this implies a mechanism by which data or control might
pass between these services. But at the conceptual level, the speci�c choice of mechanism by
which this occurs is not of interest.

By contrast, in an actual environment, the choice of mechanism by which an interface is realized
is a vital issue. The realization of an interface might include choices of formats or protocols, or
could include procedures that exchange invocations and data across the shared boundary. In
either case, this is called a speci�ed interface. As an example, a requirements de�nition service
and a design de�nition service in a particular environment might share data through a common
format such as the proposed Common Data Interchange Format (CDIF) standard or by using a
shared Schema De�nition Set in PCTE.

Finally, it is useful to note the distinction between a speci�ed interface and implementations of
it by di�erent vendors. Di�erent implementations of the same interface may exhibit di�erent
characteristics that may have a signi�cant e�ect on the practical utility of an implementation
for a given project.

14Glossary of Software Engineering Terminology, ANSI/ISS Std 610.12-1990

NIST SP 500-213 91

Tool

The de�nition of a software tool is of great importance to an environment Reference Model,
since the intuitive picture of a populated environment is a framework with a set of installed
tools. However, the de�nition of a tool is very di�cult to achieve. The IEEE de�nition is:15

A computer program used to help develop, test, analyze, or maintain another computer program
or its documentation.

This de�nition is useful, but is not complete. For example, it does not specify whether tools
can be part of the framework. Said di�erently: must tools be independently executing programs
(such as a compiler or editor) or can they be interfaces into the operating system (e.g., is the
PC-DOS �le system a tool? Is an X-Windows implementation a tool?)? These questions are
probably not susceptible to simple answers, nor to answers that will have broad acceptance.

For the purposes of this reference model, however, it may be su�cient to note that whether
perceived as realizing a framework service or an end-user service, a tool is an actual realization
of one or more conceptual services. But there is no strict correlation between a service and a
tool, since one tool may realize many services, or a single service may be realized by several
tools. Tools and services are in many ways similar, but are not the same thing.

15ibid.

92 NIST SP 500-213

Appendix B

COMMON PROJECT

ACTIVITIES AND THEIR

RELATION TO REFERENCE

MODEL SERVICES

The purpose of this appendix is to describe several activities typically performed by users of
a PSE as part of project execution. The need for this description is that, while many project
activities occur with a one-to-one agreement between Reference Model services and a user's tasks,
this correspondence between task and service is not evident for all activities. For example, there
is a one-to-one agreement between the Software Design service and the task of creating a design
before building a software product. Similarly, programmers need to compile source programs,
and they make use of the Compilation service through the functionality of such tools as compilers
and preprocessors. However, not all tasks have corresponding services in the reference model.
For example, a common task is often called quality assurance, yet there is no Quality Assurance
service in the model. This is because the task of quality assurance uses existing services already
present in the model.

The following presents several common tasks and the set of services that may be used to im-
plement parts of them. In almost all cases, common support services like Text Processing and
User Communication services will be needed and will not explicitly be mentioned.

B.1 Management Activities

B.1.1 Acquisition Management

Acquisition management supports the activities necessary to develop, award, and track pro-
curements. While some of the examples used here are expressed in terminology common to

NIST SP 500-213 93

government acquisitions, the concepts are applicable to acquisition activities in general.

Generally, these acquisition activities are developed in conjunction with the Proposal Prepa-
ration activity, described later. That is, an organization, typically a governmental unit, will
plan for an acquisition (Acquisition Planning) and develop a request for procurement (RFP)
by performing RFP Generation. In response, other organizations will respond to the RFP with
the Proposal Preparation task. The acquiring unit then performs a Proposal Evaluation task,
choosing from among the submitted proposals.

Examples of Acquisition Management activities include:

Acquisition planning. Creation of the acquisition plan { Services: Project Management
Planning, Estimation and Risk Analysis services.

RFP generation. Create, maintain and modify the statement of work { Services: Technical
services such as System Requirements Engineering and Software Requirements Engineer-
ing services as well as Project Management services such as Estimation Service and the
Numeric Processing service.

Proposal evaluation. Evaluate set of submitted proposals { Services: Numeric Processing
and Estimation services.

Acquisition tracking. Monitor contract once it is awarded { Services: Project Management
Estimation, Planning, Risk Analysis and Tracking services.

B.1.2 Project Management

Project Management activities are those that track and manage the development of a project
from concept to completion. Examples of these activities include:

Proposal preparation. Develop proposal in response to RFP { Services: Technical Engineer-
ing services such as System Requirements Engineering, Software Requirements Engineer-
ing, System and Software Design services, Project Management Planning, Estimation and
Risk Analysis services and Numeric Processing, Publishing, and Presentation Preparation
services.

Project Management. Plan and execute project from concept through deployment { Ser-
vices: Project Management Planning, Estimation, Risk Analysis and Tracking services.

Con�guration Management. Ensure traceability and reproducibility of a project's end prod-
ucts { Services: System Integration, Software Build, System and Software Traceability,
Con�guration Management, Change Management, and Reuse Management services.

94 NIST SP 500-213

B.1.3 Quality Assurance

The purpose of Quality Assurance (QA) is to assure that the product meets certain standards
before it is delivered by the developer or accepted by the purchaser. Reliability and correctness
of the source programs are certainly important components of QA, but QA includes many other
attributes.

Examples of Quality Assurance activities include:

Quality assurance planning. Quality objectives must be determined and data needed to
measure such quality must be determined { Services: System Requirements Engineering,
Software Requirements Engineering, Metrics, and Risk Analysis services.

Develop test plans. Develop test plans for achieving quality objectives { Services: Sys-
tem Requirements Engineering, Software Requirements Engineering, System and Software
Testing, Code Veri�cation, Con�guration Management and Traceability services.

Quality assurance testing. Quality objectives are monitored and tested { Services: System
and Software Testing and Metrics services, as well as Project Management Estimation and
Tracking services.

B.2 Engineering Activities

B.2.1 System Engineering

System engineering involves those activities that support the technical development and main-
tenance of hardware and software components of a project. For the most part, these activities
fall into the services described by the System Engineering services, but include other services as
well.

Typical System Engineering activities include:

System requirements analysis. Develop requirements and speci�cations { Services: Sys-
tem Requirements Engineering, System Design and Allocation, and System Simulation
and Modeling Service.

System development. Build the product { Services: System Engineering services with soft-
ware components developed by the Software Engineering services.

System deployment. Operation and maintenance of the product { Services: System and
Software Traceability and Testing services, Con�guration Management and System and
Software Design services.

NIST SP 500-213 95

B.2.2 Software Engineering

Software engineering activities are those activities involved in building and maintaining the
software components of a product. For the most part, these tasks use the Software Engineering
Services.

Typical Software Engineering activities include:

Software requirements engineering. Develop software requirements { Services: Software
Requirements Engineering, Software Design and Software Modeling services.

Software development. Build the software components { Services: all of the Software En-
gineering Services.

Software deployment. Operation and maintenance of the software { Services: Software
Traceability and testing services, Con�guration Management Services, Reuse Management,
Software Reverse Engineering and Software Re-engineering services, and the Software De-
sign service.

B.2.3 Process Engineering

Process engineering activities develop the steps in the development process that are to be taken
by other members of the development group. The process may be relatively �xed (e.g., following
a strict \waterfall" development using speci�c design method, speci�c compiler, speci�c testing
and validation tools) or may be partially or totally dynamic (e.g., testing method depends upon
the results of the previously performed code veri�cation activity). For the most part, these tasks
make use of the Life Cycle Process Management services.

Process Engineering activities include:

Process de�nition. De�ne development process { Services: Process De�nition, Process Li-
brary and Process Exchange services. Processes may be enacted using the Process Usage
service.

Process enactment. Perform the set of development processes { Services: Process Usage
service.

B.3 Supportability Activities

B.3.1 Logistics Support

Supportability and logistics activities ensure the operational availability of systems, including
supportability, readiness and survivability. For computer-based products, logistics supports the

96 NIST SP 500-213

operation and maintenance of such systems. Although many logistics operations are outside of
the purview of a PSE (e.g., several aspects of personnel training, payroll issues), many are fully
covered by existing PSE services.

The following are those logistics tasks that will undoubtedly be part of the operational charac-
teristics of a PSE.

Supply support. Support the identi�cation, selection for acquisition, cataloging, receipt and
storage, provisioning, issue and disposal of the component parts of a computer-based
product { Services: Con�guration Management, Numeric Processing, Estimation, Risk
Analysis services, as well as most of the Acquisition Management tasks mentioned above.

Personnel support. Support personnel requirements including training and operational re-
quirements { Services: Mostly outside the purview of a PSE, although data may be
stored in and make use of PSE object management system. May use Project Management
Planning, Estimation, and Tracking services.

Documentation support. Maintain logistics support and product technical documentation
{ Services: Text, Numeric and Figure Processing services, Publishing and Presentation
Preparation services, and Con�guration Management services.

Computer resources support. Support the management of the logistics support facility {
Services: Project Management Services of Planning, Estimation, Risk Analysis and
Tracking services.

B.3.2 Operation and Maintenance

Post-deployment logistics maintains the product in the �eld. Errors or anomalies must be
tracked from their source to the maintenance organization, and the distribution of corrections
or new system enhancements from the maintenance organization to the �eld must be supported
and monitored.

Error correction. Correction of errors and anomalies found using the product { Services:
Change Management and Con�guration Management services, Project Management ser-
vices, such as Planning, Estimation and Tracking, and Technical Engineering services for
correction of errors.

System enhancement. Modi�cation of the product due to changed requirements { Services:
Con�guration Management, Re-engineering, Reverse Engineering and all other Technical
Engineering services to produce a new version of the product.

NIST SP 500-213 97

98 NIST SP 500-213

Appendix C

RATIONALE

1. What di�erent users/uses are there of the reference model?

The PSESWG intends to use this reference model as a source document for the identi�cation
of interfaces in a PSE. Once those interfaces have been identi�ed, it will be possible to examine
them and determine those that it would be bene�cial to standardize. There are likely to be two
sorts of interfaces in this category: those for which candidate standards exist or which are being
actively examined by organized standardization e�orts and those for which no such activity can
be identi�ed. The �rst kind will drive the organized selection process PSESWG will use to
determine the contents of the military standard it is chartered to produce. The second kind will
be used as the basis for encouraging appropriate research, development, and standardization
e�orts.

In addition to identifying potential standards, this reference model can be used in many other
ways:

� To understand the architecture of a proposed or realized system.

An actual or proposed product (for example, a tool or framework) can be characterized
in terms of the elements (services and relationships) of the reference model and the ex-
plicit realization of those elements as a set of operations and data objects. In some ways
we can see this as a cross-section or instantiation of the PSE reference model. Such a
characterization can help others to better understand the product thus described.

� To compare products

Comparing di�erent PSE products is di�cult without a consistent conceptual model within
which to analyze all products. The descriptions of products through services provides a
common vocabulary for discussing them and helps to ensure that any comparison com-
pares like with like. In addition, the categorization of services into end-user and framework
services means that products can be compared at di�erent abstract levels: comparison of
abstract functionality (end-user services) and comparison of support mechanisms (frame-
work services).

NIST SP 500-213 99

� To describe a proposed or required system.

The PSE reference model can be used as the basis for describing a set of PSE require-
ments by giving the services corresponding to a required system, as opposed to an actual
system. This allows the requirements to be described in an abstract way, in terms of
required services and the interface among those services. This is independent of particu-
lar implementation constraints, which can then be examined in the light of the abstract
requirements.

� To discuss implementation of services.

The separation of end-user and framework services means that particular tools and frame-
work realizations will be characterized as providing essentially equivalent end-user services
using di�erent framework services. For example, the end-user service on inter-tool com-
munications can be realized via di�erent framework services: a remote procedure call
mechanism, message server facilities, data sharing with triggers, and so on.

� To examine product integration issues.

By describing services of actual PSE products a characterization of both their abstract
functionality and implementation mechanisms is provided. When users wish to determine
the extent to which those products can be integrated, these descriptions provide the neces-
sary basis for answering important questions regarding the ease with which the integration
can take place. For example, the end-user service aspects can reveal the extent to which
the products provide similar services, while the framework aspects allow issues of mecha-
nism interoperation to be discussed. Hence, a PSE integrator may use the PSE services
reference model to determine, for a collection of tool products to be integrated, what
services each tool provides and, based on the overlap of provided services and available
base computing environment, to develop a strategy for integration in terms of a particular
environment architecture, identifying interfaces relevant for its realization.

In summary, we note that in presenting the PSE reference model we abstracted from a notion
of tools and framework realizations towards higher level concepts of services and interfaces. In
examining an actual tool or PSE product, the reference model can be used to re
ect issues of
functionality and architecture by allowing an abstract description of that product to be produced.

2. Why a service-based approach?

The approach taken in deriving this reference model is one based on services. There are a
number of reasons why this was chosen as the most e�ective means:

{ Path of least resistance and most familiar: Functional decomposition is a straightforward
approach for most people working in this area. Many people think of their environments in
terms of \what the PSE does" for them, and this thinking is well-captured in a service-based
approach.

{ Nature of related reference models: The PSE reference model builds upon the work of other
related models. Both the NIST/ECMA reference model and the reference model in the POSIX

100 NIST SP 500-213

Guide to Open Systems Environments had already (independently) taken very similar service-
based approaches. In order to be able to capitalize on this wealth of available work, it made
good sense to adopt a compatible approach.

{ Natural �t with end goal: A major goal of the PSE reference model is to help identify interface
areas for standardization. Although such standards are largely known as \interface standards,"
they are by-and-large described from a service-based viewpoint. This consistency will make it
much easier to use the reference model in the identi�cation of candidate interface standards than
other approaches.

It should also be understood that taking a service-based approach at this point in the evolution
of the reference model does not mean that other viewpoints were not considered or will not
be found to be important in the future. Early discussions about the approach to be taken
recognized that a complete reference model might well include a number of di�erent points of
view of a PSE. But it was concluded that one of them had to be �rst and that a service-based
approach was at least as viable as any of the others.

A data-oriented approach is often mentioned as an alternate to the service-based approach
used here. It is highly likely that such an approach will become very important in the process of
understanding the data interface requirements of the services articulated in this reference model,
and may play a role in the future.

A process-oriented approach is also mentioned as an alternate. It is actually not far removed
from the approach taken. As described in chapter three, the determination of end-user services
was driven largely by knowledge and consideration of end-user processes and the service require-
ments they generate.

3. How did we select services?

The selection of services has been guided by a number of important principles. These include:

� By considering typical activities that a PSE supports, it is possible to de�ne the function-
ality that is necessary in order to support those activities. For example, in considering
the maintenance activities of a typical software development project, it is possible to ask
yourself the question \what functionality would I need or expect from a PSE to support
software maintenance activities?". It is those support services that we have captured in
this reference model.

� There are a wide range of potential users of a populated PSE. This includes many forms
of project engineers, project managers, administrative sta�, and PSE support sta�. Con-
sidering the required functionality of a PSE from each of these PSE users' perspectives
provides a useful way to describe a set of PSE services.

� A number of existing studies have described the expected functionality of some part of a
populated PSE in terms of a set of service descriptions. We have analyzed and expanded
on this work.

NIST SP 500-213 101

The result is a model that provides a description of the functionality that can be expected from
a populated PSE without being tied to a particular architecture for implementing a PSE, tools
that must be part of the PSE, or expected uses and users of the PSE.

4. How did we group services?

Grouping of services has been based on a combination of factors which imply a coherence to
those services. In many cases this coherence is a result of a functional relationship between the
services (e.g., the OMS services), a temporal relationship (e.g., System Requirements Engineer-
ing services), or based on the expected role of the users (e.g., PSE User and Role Management
service). In all cases the aim of the group is to provide an abstraction of those services that
allows them to be discussed as a whole without concern for the details of which services form
part of that group.

5. How do interfaces facilitate/relate to integration?

The use of the reference model for PSESWG is to act as a basis for identi�cation of interface areas
where existing standards exist, or where future standards might be pro�table. By identifying
these standards, the possibility exists that tools (potentially from di�erent vendors) will be
available that support the standard.

The consequence of this tool support for standards is that a basis is provided through which shar-
ing is possible. Integration of tools is facilitated by selecting and agreeing interface standards,
but it is not a necessary consequence of standard interfaces. In general, the interfaces provide the
syntactic agreements on which semantic agreements between tools can be built. Without the in-
terface standards providing that syntactic level agreement, the more useful semantic agreements
that are needed are less likely, and more costly to implement.

102 NIST SP 500-213

Appendix D

ABBREVIATIONS and

ACRONYMS

4GL Fourth Generation Language
ANSI American National Standards Institute
APPL/A A Process Programming Language based on Ada
APSE Ada Programming Support Environment
ASCII American [National] Standard Code for Information Interchange
ASIC Application Speci�c Integrated Circuit
ASSET Asset Source for Software Engineering Technology
CAD/CAM Computer-Aided Design/Computer-Aided Manufacture
CAI Computer-Aided Instruction
CARDS Central Archive for Reusable Defense Software
CASE Computer-Aided Software, System Engineering
CSCI Computer Software Con�guration Item
CDIF CASE Data Interchange Format
CEARM Conceptual Environment Architecture Reference Model
CM Con�guration Management
COCOMO Constructive Cost Model
COTS Commercial o�-the-shelf
CPL Common Prototyping Language
CPS Cornell (University) Program Synthesizer
CPU Central Processing Unit
DCDS Distributed Computing Design System
DOD Department of Defense
DOS Disk Operating System
EAST Environment of Advanced Software Technology
ECMA European Computer Manufacturers Association
EIS Engineering Information Systems
EQN Equation preprocessor for nro� and tro�
GOTS Government o�-the-shelf

NIST SP 500-213 103

GSFC (NASA) Goddard Space Flight Center
HIPO Hierarchical Input Process Output
HOOD Hierarchical Object-Oriented Design
IDE Interactive Development Environments
IDL Interface Description Language
IEEE Institute of Electrical and Electronics Engineers
ILS Integrated Logistics Support
ISEE Integrated Software Engineering Environment
LAN Local Area Network
LEX Lexical Analysis Program Generator
LSE Language Sensitive Editor
MTBF Mean time between failures
NASA National Aeronautics and Space Administration
NGCR Next Generation Computer Resources
NIST National Institute of Standards and Technology
OMS Object Management System
OODBMS Object-Oriented DataBase Management System
ORCA Object-based Requirements Capture and Analysis
OS Operating System
PAL Process Asset Library
PC Personal Computer
PCTE Portable Common Tool Environment
PMDB Project Master Data Base
POSIX Portable Operating System Interface for Computer Environments
PSE Project Support Environment
PSESWG Project Support Environment Standards Working Group
QA Quality Assurance
RAPID Reusable Ada Packages for Information System Development
RDBMS Relational DataBase Management System
RETRAC Requirements Traceability
RFP Request For Proposal
RM Reference Model
RPC Remote Procedure Call
RTNI Real-Time Non-Intrusive Instrumentation
SADT Structured Analysis and Design Technique
SEE Software Engineering Environment
SLCSE Software Life-Cycle Support Environment
SME Software Management Environment
SOW Statement of Work
StP Software Through Pictures
TBL Table formatting preprocessor for nro� and tro�
TC33 Technical Committee 33
TCOS Technical Committee on Operating Systems
UI User Interface
VDM Vienna Development Method

104 NIST SP 500-213

WAN Wide Area Network
WBS Work Breakdown Structure
WYSIWYG \what you see is what you get"
YACC Yet Another Compiler Compiler

NIST SP 500-213 105

106 NIST SP 500-213

Appendix E

REFERENCES

NIST Reference Model for Frameworks of Software Engineering Environments. NIST Special
Publication 500-211, August 1993; ECMA TR/55 Edition 3, June 1993.

POSIX Draft Guide to the POSIX Open Systems Environments. P1003.0, June 1992.

OSSWG Reference Model for Embedded Operating Systems. NGCR Operating System Stan-
dards Working Group, June 1990.

FEILER Software Process Development and Enactment: Concepts and De�nitions. Peter
Feiler and Watts Humphrey, SEI, 1991.

IEEE Glossary of Software Engineering Terminology. ANSI/ISS Std 610.12-1990.

NIST SP 500-213 107

Index

Abbreviations, 103
Acquisition Management Activities, 93
Acronyms, 103
Activities

Acquisition Management, 93
Engineering, 95
Logistics Support, 96
Management, 93
Operation and Maintenance, 97
Process Engineering, 96
Project Management, 94
Quality Assurance, 94
Software Engineering, 95
Supportability, 96
System Engineering, 95

Activities and Services, 93
Administration Services (of PSE), 71
Annotation Service, 65
Audio and Video Processing Service, 63
Authentication, 76

Background, 1
Build Service, Software, 36
Bulletin Board Service, 69

Calendar and Reminder Service, 64
Change Management Service, 47
Comments on RM, Submission, 113
Common Support Services, 60
Compilation Service, 32
Conceptual Dimension, 13
Conferencing Service, 70
Con�guration Management Service, 45
Customization and Installation (of Tool) Ser-

vice, 71

Debugging Service, 34
De�nitions of Key Terms, 89

Diagnostic Service, see PSE Diagnostic Ser-
vice

Dimension
Conceptual, 13
Examples, 14
External, 14
Internal, 14
Operations, 13
Relationships, 14
Rules, 13
Types, 14

End-User Services, 9
Engineering Activities, 95
Engineering Services, Technical, 17
Environment, 6, 89

vs. Conceptual Model, 10
Estimation Service, 55
Examples Dimension, 14
External Dimension, 14

Figure Processing Service, 62
Framework, 90, 91
Framework Services, 6, 10, 79

Grouping, 10

Host-Target Connection Service, 24

Installation and Customization (of Tool) Ser-
vice, 71

Interchange Service, see PSE Interchange Ser-
vice

Internal Dimension, 14

Key Terms, De�nitions, 89

Life-Cycle Process Engineering Services, 40
Logistics Support Activities, 96

108

Mail Service, 68
Management Activities, 93
Management Services

Project, 53
Technical, 45

Metrics Service, 50
Model, 7

Conceptual vs. Actual Environment, 10
Discussion, 10

Model Description, 5
Modeling

Software Simulation and Modeling Ser-
vice, 29

System Simulation and Modeling Ser-
vice, 20

Next Generation Computer Resources, see
NGCR

NGCR, xi, 1, 12
Numeric Processing Service, 61

Operation and Maintenance Activities, 97
Operations Dimension, 13

Planning Service, 54
Process, 89
Process De�nition Service, 41
Process Engineering Activities, 96
Process Exchange Service, 42
Process Library Service, 42
Process Usage Service, 43
Project Activities, 93
Project Management Activities, 94
Project Management Services, 53
Project Support Environment StandardsWork-

ing Group, see PSESWG, 1
PSE Administration Services, 71
PSE Diagnostic Service, 74
PSE Interchange Service, 75
PSE Resource Management Service, 73
PSE Status Monitoring Service, 74
PSE User Access Service, 75
PSE User and Role Management Service, 72
PSESWG, xi, 1{3

Quality Assurance Activities, 94

Rationale, 99
Re-engineering

Software Re-engineering Service, 38
System Re-engineering Service, 24

Reading the Service Descriptions, Notes, 13
Reference Model, 7
References, 107
Relationships Dimension, 14
Reminder and Calendar Service, 64
Resource Management, see PSE Resource

Management Service
Reuse Management Service, 49
Reverse Engineering Service (Software), 37
Risk Analysis Service, 55
Role Management, see PSE User and Role

Management Service
Rules Dimension, 13

Scope of the Model, 3
Service, 6, 7, 90

Administration (of PSE) Services, 71
Annotation, 65
Audio and Video Processing, 63
Bulletin Board, 69
Calendar and Reminder, 64
Change Management, 47
Common Support Services, 60
Compilation, 32
Conferencing, 70
Con�guration Management, 45
Customization, see Tool Installation and

Customization
Debugging, 34
End-User Services, 6
Estimation, 55
Figure Processing, 62
Framework Services, 6
Host-Target Connection, 24
Information Management, 48
Installation, see Tool Installation and

Customization
Life-Cycle Process Engineering Services,

40
Mail, 68
Metrics, 50

NIST SP 500-213 109

Numeric Processing, 61
Planning, 54
Process De�nition, 41
Process Exchange, 42
Process Library, 42
Process Usage, 43
PSE Administration Services, 71
PSE Diagnostic, 74
PSE Interchange, 75
PSE Resource Management, 73
PSE Status Monitoring, 74
PSE User Access, 75
PSE User and Role Management, 72
Publishing, 65
Reminder, see Calendar and Reminder

Service
Reuse Management, 49
Risk Analysis, 55
Software Build, 36
Software Design, 28
Software Engineering Services, 27
Software Generation, 31
Software Re-engineering, 38
Software Requirements Engineering, 27
Software Reverse Engineering, 37
Software Simulation and Modeling, 29
Software Static Analysis, 33
Software Testing, 35
Software Traceability, 39
Software Veri�cation, 30
System Design and Allocation, 19
System Engineering Services, 18
System Integration, 23
System Re-engineering, 24
System Requirements Engineering, 18
System Simulation and Modeling Ser-

vice, 20
System Static Analysis, 21
System Testing, 22
System Traceability, 26
Target Monitoring, 25
Text Processing, 60
Tool Installation and Customization, 71
Tracking, 56
User Communication, 68

service
Framework Services, 79

Service Descriptions, Notes on Reading, 13
Service Groups, 8
Simulation

Software Simulation and Modeling Ser-
vice, 29

System Simulation and Modeling, 20
Software

Build Service, 36
Design Service, 28
Engineering Activities, 95
Engineering Services, 27
Generation Service, 31
Re-engineering Service, 38
Requirements Engineering Service, 27
Reverse Engineering Service, 37
Simulation and Modeling Service, 29
Static Analysis Service, 33
Testing Service, 35
Traceability Service, 39
Veri�cation Service, 30

Static Analysis Service
Software, 33
System, 21

Status Monitoring, see PSE Status Monitor-
ing Service

Submission of Comments on RM, 113
Support Services, 59, see Common Support

Servies
Supportability Activities, 96
System

Design and Allocation Service, 19
Engineering Activities, 95
Engineering Services, 18
Integration Service, 23
Re-engineering Service, 24
Requirements Engineering Service, 18
Simulation and Modeling Service, 20
Static Analysis Service, 21
Testing Service, 22

Target Monitoring Service, 25
Target System, 12
Task, 6, 7, 89

110 NIST SP 500-213

Technical Engineering Services, 17
Technical Management Services, 45
Testing Service

Software, 35
System, 22

Text Processing Service, 60
Tool, 6, 92
Tool Installation and Customization Service,

71
Traceability Service

Software, 39
System, 26

Tracking Service, 56
Types Dimension, 14

User Access Service, see PSE User Access
Service

User and Role Management Service, 72
User Communication Services, 68

Veri�cation, see Software Veri�cation Ser-
vice

Video, see Audio and Video Processing

NIST SP 500-213 111

112 NIST SP 500-213

SUBMISSION OF COMMENTS

When you submit comments on Version 2.0 of the Reference Model, please send them by elec-
tronic mail to the following address:

djc@sei.cmu.edu
If you do not have access to an electronic network, please send the comments by postal mail or
FAX to:

David Carney
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
phone: (412) 268-5758
fax: (412) 268-6525

To assist us in the processing and tracking of your comments, please use the format below for
each comment.

! NAME : : :

! PHONE : : :

! FAX : : :

! EMAIL : : :

! MAIL
... multi-line address

! DATE : : :

! SECTION : : :

! VERSION 1.0

! TOPIC : : :

! COMMENT
... text of comment

! RATIONALE
... text of rationale

! END

The NAME line contains your name or a�liation (or both).

The PHONE line contains your phone number.

NIST SP 500-213 113

The FAX line contains your FAX phone number.

The EMAIL line contains your electronic mail address.

The lines following the MAIL line contain your postal mailing address.

The DATE line includes the date of you comment. It should be in ISO standard form (year-
month-day), for example, 4 July 1992 is 92-07-04.

The SECTION line should include the Reference Model section number and title, for example,
\4.2.7 Software Static Analysis Services." To help identify it better, this line can also include
the page number.

The TOPIC line should contain a one-line summary of the comment. This line is essential.

The lines following the COMMENT line contain your request for a change, an addition, a
deletion, or anything else about the Section. This can be as long or as short as necessary. When
you make suggested wording changes or additions, please be as speci�c as possible.

The lines following the RATIONALE line explain why the suggested change(s) (if any is re-
quested) should be made. Please be as clear and concise as possible.

The END line marks the end of the comment form.

A sample comment is shown below for illustration.

! NAME A. Reviewer, ABC Inc.

! PHONE 909-555-5555

! FAX 909-555-4444

! EMAIL reva@lizard.abc.com

! MAIL

A. Reviewer

ABC Inc.

MS:23AB-WX

1234 Somestreet St.

Somecity, XX 98765

! DATE 93-11-03

! SECTION 7.1.2 Numeric Processing Service

! VERSION 1.0

! TOPIC Numeric Processing should not include formatting of formulae

! COMMENT

The text discussing the formats and formula strings should be removed or moved to the

section on Text Processing. Also the examples of EQN and TBL should be removed.

! RATIONALE

The Numeric Process Service should provide calculation operations of a numerical nature it

should not include the operations that are purely text formatting and document processing

in nature.

! END

114 NIST SP 500-213

