
IwKrH-HOLLAND

Modeling Software Engineering
Environment Capabilities

Marvin V. Zelkowitz
Institute for Advanced Computer Studies and Department of Computer Science, University of Maryland,
College Park, Maryland; and Computer Systems Laboratory National Institute of Standards and Technology,
Gaithersburg Ma yland

There is considerable interest today in designing open

systems that permit tools to be moved freely among

various environments on different hardware plat-

forms. To develop such systems, terms such as open

systems, features for open systems such as interoper-

ability, and integration must all be precisely defined.

We present a model that is an extension of a service-

based reference model for development environments

that can be used to formally define these and other

related concepts.

1. INTRODUCTION

Today there is considerable interest in develop-
ing integrated software engineering environments
(ISEES) that provide the software engineering pro-
fessional with an effective set of tools for building
software products. The purpose of this article is to
present formal attributes of an environment that can
be used as an aid in designing, building, and analyz-

ing such systems. Starting with a reference model of
a software engineering environment, various at-
tributes of an environment can be defined based on
that reference model. Terms such as open systems,
interoperability, and integrated software engineering en-
uironments are often presented in the literature as
desirable attributes for a system. It is our goal to
address these terms based on the attributes we pre-
sent here.

In Section 2 we explain the concepts of an open
system and an integrated system and compare the

two. In Section 3 we summarize a software engineer-
ing environment reference model that is the basis of

Address correspondence to Dr. Marvin T/ Zelkowitz, Department
of Computer Science, University of Maryland, Institute for Advanced
Computer Studies, College Park, MD 20742.

the attributes we wish to develop. In Section 4 we
present our model of environment attributes, and in
Section 5 give our conclusions about this effort.

2. OPEN SYSTEMS AND

INTEGRATED SYSTEMS

As machines become cheaper, the balance between
hardware and software costs is changing. Software
often costs more than the price of the hardware.
With the advent of relatively inexpensive hardware
in the 1980s and the 1990s hardware is rapidly
becoming a commodity item with the corresponding
need for software to run indcpcndently of the under-
lying hardware platform. Thus was born the concept
of the open system. This can be intuitively described
as any system composed of software components
with interfaces that adhere to open system standards
and should execute on any hardware platform that
implements those standards. (We will be more pre-
cise later.)

2.1 Open Systems and Telecommunications

The term open systems originally developed in the
telecommunications industry during the early 1980s.
This era was characterized by the breakup of AT & T
into several independent telephone companies, the
emergence of additional long distance carriers,
growth of the ARPANET (forerunner of the Inter-
net), and great advances in communications technol-
ogy from the earlier 300 and 1,200 bps modems to
today’s 14.4~38K bps to even higher data rates.
Electronic mail was just emerging, as was the advent
of the computer bulletin board and protocols such

J. SYSTEMS SOFTWARE 1996; 35:3-14
0 1996 by Elsevier Science Inc.
655 Avenue of the Americas, New York, NY 10010

0164-1212/96/$15.00
SSDI 0164.-1212(95M0082-C

4 J. SYSTEMS SOFTWARE
1996; 3.5:3-14

as file transfer protocol (FIP). There was great need
for standards to be developed to permit products
from a diverse set of providers to interoperate.

To meet these needs, the open system intercon-
nection (OSI) model was developed around 1985 to
manage information flow among communicating
components. At the highest levels of the OS1 seven-
layer model, information transfers between two loca-
tions, and the model specifies the type of standard to
describe this information flow. At lower levels, trans-
ferring mechanisms describe how information is bro-
ken down into data packets, until the lowest levels of
the OS1 model describe the electronic characteris-
tics of this data communication.

With the creation of standards that meet the OS1
requirements at a specific level, open systems has
come to mean any product that meets the relevant
standards. Being public standards, any vendor is free
to build products that conform to those standards.

However, over time, the concept of open systems
has broadened to include the computing platforms
that are communicating, thus extending the concept
of open systems to include the programming envi-
ronment, which should also be specified by a set of
publically defined interface standards. Building envi-
ronment products for an open standard would allow
easier entry for new vendors and foster a greater
market for such products. For example, the National
Institute of Standards and Technology (NIST) re-
cently changed the name of its OS1 Implementors’
Workshop to OSE (Open Systems Environment) Im-
plementors’ Workshop to reflect the increased em-
phasis on open system environments.

2.2 Open Systems and Environments

We refer to an environment as a system supporting
the execution of programs that solve problems in
some application domain. We can talk about envi-
ronments supporting business practices (e.g., support
of accounting or payroll programs), environments
supporting engineering design (e.g., CAD or com-
puter-aided design environments), or environments
supporting real-time applications (e.g., a system sup-
porting programs that control on-line processes such
as power plants and automated manufacturing). We
are concerned here with environments used for the
development of software (ISEEs), but other applica-
tion domains can be handled similarly.

Open systems concepts applied to software engi-
neering environments have progressed in several
areas:

1. Although all UNIX implementations were
based on the initial AT & T Bell Laboratories source

M. V. Zelkowitz

code, variations and enhancements introduced by
most vendors have resulted in incompatibilities
among the various implementations. Although all of
these systems “spoke” UNIX, the dialects were quite
different, and software written for one version was
generally not transportable to another. In 1984 the
UNIX user group, /usr/group, began to develop a
standard that would define what was meant to be
“UNIX.” This became “IEEE Standard 1003.1-
Portable Operating System Interface for Computer
Environments-POSIX,” known simply as POSIX.l
(IEEE, 1988), which defines the kernel set of operat-
ing system services for such systems. IEEE standards
committee P1003 is also working on other 1003.x
standards that address other distributed system is-
sues such as the shell user interface, real-time ser-
vices, distributed data access, and other system func-
tions.

2. .The process by which the U.S. Department of
Defense developed a common language for building
embedded applications (i.e., the Ada language) in
the early 1980s also increased awareness of the need
for a supporting environment in which to build Ada
applications. Starting with the “Stoneman” require-
ments document (Buxton, 1980), the concept of an
Ada programming support Environment (APSE) was
conceived (Figure 1). The APSE would consist of a
kernel set of functions (kernal APSE or KAPSE)
and a set of tools that would operate on that kernel.

3. During the early 198Os, European interest in
environments took the form of a public tool inter-

Figure 1. Ada programming support environments.

Modeling Environment Capabilities J. SYSTEMS SOFTWARE 5
1996: 353-14

face (PTI) for specifying the interfaces for tools in
an environment. An ESPRIT (European Strategic
Programme for Research and Development in Infor-
mation Technology) project was funded in 1983 to
work on such a PTI. This PTI became known as “A
Basis for a Portable Common Tool Environment,”
or PCTE for short (ECMA, 1993). Since 1988, PCTE
has been under development by Technical Commit-
tee 33 (TC33) of the European Computer Manufac-
turers Association (ECMA).

4. Development of environments was a popular
university research activity during the 1980s. Several
ACM SIGSOFT annual conferences were devoted
to software development environments (SIGSOFT,
1984, 1986, 1988, 1990, 1992).

Today we would define an open system environ-
ment as one that is composed of components, each
of whose interfaces is fully specified by a public
specification that was arrived at via a consensus
process of an appropriate standardization body. The
standard could be international (e.g., ISO), national
(e.g., IEEE, ANSI), or even the result of corporate
consortia (e.g., CORBA [Common Object Request
Broker Architecture] by OMG [Object Management
Group] or COSE [Common Office System Environ-
ment] by OSF [Open Software Foundation]).

2.3 Open Systems and Integration

A driving force for open system environments is the
desire to permit tools to interoperate when procured
from diverse sources. Tools should permit informa-
tion to be transferred easily among themselves in
order for information to be processed more effec-
tively in the environment. This desirable attribute of
allowing tools to pass information and control among
themselves, or to interoperate, is somewhat indepen-
dent of the concept of an open system. We also want
tools to behave in a consistent manner by being
integrated with the environment. By integration we
mean a measure of this interoperability relationship
among components of an environment (Thomas and
Nejmeh, 1992).

Note that integration is a property between two
(or more) components of an environment and not of
the environment or tool executing on the environ-
ment itself. Therefore, it makes no sense to state
“the user interface is integrated.” However, one can
state that “the compiler is integrated with the user
interface,” meaning that the user interface functions
have a close association with the compiler functions.

Although we do not yet fully understand the ap-
propriate design of an open software environment,

we have begun to understand many of the compo-
nents that make up the architecture for such an
environment. An environment usually consists of a
framework of core services that provides common
facilities used by the other services in the environ-
ment. Appropriate end user services are then imple-
mented to provide needed functionality for each
application domain. For example, the framework
may consist of common facilities such as a user
interface (e.g., X Windows), a data repository (e.g.,
PCTE interface), and a communications facility (e.g.,
Sun’s ToolTalk’). End-user services might consist of
application tools like editors, compilers, spread-
sheets, desktop publishing, etc.

The user’s view of the environment is a system
consisting of a collection of services that help to
solve problems in some domain. With closed propri-
etary systems where interfaces are not based on
open standards, a new embedded tool has to be
tailored to execute within the framework provided
by the enclosing system. Although the user sees an
integrated environment in which to operate, these
systems do not allow for easy integration of new
tools into the environment, except by the environ-
ment developer.

Integration certainly exists to some extent in al-
most all systems today. One can almost always pur-
chase two tools from a single vendor and have them
interoperate effectively. For example, almost all
of the major PC vendors (e.g., Microsoft, Borland,
Lotus, Apple) provide packages of word processors,
spread sheets, communication programs, and graph-
ics packages that interoperate well. We would say
that they were all integrated, but would be hard
pressed to call all of them open since communica-
tion between the tools may be via some interface
that is not part of a public specification. However,
we are interested in developing open integrated
systems where all components share common at-
tributes. The incorporation of integration concepts
into an open environment requires understanding of
how integration relates to the set of services pro-
vided by the environment.

There are several notions of integration that af-
fect the design of an environment (Brown et al.,
1994):

’ Certain commercial products are identified in this paper to
specify adequately the applicability of the model. Such identifica-
tion does not imply recommendation or endorsement by the
National Institute of Standards and Technology, nor does it imply
that the products are necessarily the best available for the pur-
pose.

6 J. SYSTEMS SOFTWARE
1996; 35:3-14

M. V. Zelkowitz

Conceptual integration. There is a shared philos-
ophy about how environment components will inter-
act in a consistent manner. “Look and feel” issues,
common data formats, and common command se-
quences are examples of conceptual integration. Use
of a common window, mouse, and command struc-
ture for all related tools is an example of a concep-
tually integrated system.

Architectural integration. How components are
constructed to interact is mostly an architectural
integration issue. Using open standards like PCTE
for a data repository or X Windows providing a
common window set of services describe architec-
tural choices made in environment design.

Physical integration. This describes the actual
components used to build the physical system from
its abstract design. For example, although a single
standard may be specified (e.g., PCTE for a data
repository), it may be necessary to purchase a single
instance of that product for all tools to cooperatively
use in order to affect good data integration. For
example, the use of TrueType fonts in Microsoft’s
Windows product permits new fonts to be added
easily and to readily be made available to all prod-
ucts that use these fonts. This would be a good
example of physical integration. On the other hand,
on UNIX systems, although Postscript is a relatively
common display format for documents, most
postscript processors must maintain their own font
libraries, resulting in hundreds of millions of bytes
of storage being used for duplicate font directories.
Although the system may appear to have conceptual
integration from the user’s point of view, this would
not be physical integration.

To date, most integration efforts have centered on
architectural integration (with some attention to
conceptual integration) in order to design systems
that have some degree of interoperability. Key inte-
gration areas are generally identified as follows:
(Wasserman, 1989)

Data integration. Data intergration is the ability
to share information throughout the environment.
Different tools and services within the environment
have their own requirements to access and share
data. A high degree of data integration may mean
that the tools in the SEE use a common database
with common schema. Other degrees may include
using common data formats or using translation
mechanisms.

Control integration. Control integration is the
ability to combine the functionalities offered in an

environment in flexible ways by allowing tools to
invoke (or enact) other tools. The combinations may
correspond to project preferences and be driven by
an underlying software process model.

Presentation integration. Presentation integration
is the ability to interact with environment services to
provide similar screen appearance and similar modes
of interaction.

Process integration. Process integration is the
ability to access environment services based on a
predefined enactable development process.

In addition, others have written about method
integration as an extension of process integration
into life cycle activities and platform integration as
the integration of tools to execute on the same
hardware, as well as other forms of integration.

We have discussed both open systems and inte-
grated systems as proposed solutions to the underly-
ing problem of interoperability. What is the relation-
ship between these two concepts? Although some
claim that they are the same, we have tried to show
that they refer to complementary properties of an
environment. That is, a system may or may not be
open, and at the same time may or may not be well
integrated. A system well integrated in one dimen-
sion (e.g., all tools use the Motif X Windows inter-
face for presentation integration) may not necessar-
ily be well integrated in another dimension (e.g.,
each tool has its own proprietary database for data
storage).

Openness is a structural attribute of a system. In
an open system we are concerned about the inter-
faces among the system’s components. We need to
ensure that the interfaces among these components
are defined by public standards. On the other hand,
integration is a behavioral attribute of an environ-
ment. We need to specify how information is passed
among environment components and how each com-
ponent interprets the data it receives. To date, the
two concepts have only general definitions. It would
help the development of this technology if we could
be more explicit about what these terms mean and
to be able to determine when we have it and when
we do not. This is the major goal for the model
presented in Section 4.

Given the need to develop integrated systems,
how do we go about the process of defining our
requirements for such a system? In the following
section we propose that by starting with a service-
based environment reference model we can address
such requirements.

Modeling Environment Capabilities J. SYSTEMS SOFTWARE 7
1996; 35:3%14

3. ENVIRONMENT REFERENCE MODEL

As already described, there is a growing trend away
from proprietary solutions for computer-based prob-
lems and toward standardized open systems solu-
tions for such problems. Providing a framework of
services to support applications leads to the obvious
question of what are the set of services and what
interfaces are needed to support user applications in
an open system environment. What is the underlying
model for an environment?

After ECMA/TC33 began to develop the PCTE
specification in 1988, there was considerable interest
in determining how well PCTE met its objectives.
However, there were no models in 1988 by which to
measure PCTE. TC33 created a Task Group on the
Reference Model (TGRM) to create such a model.
In 1991, NIST joined with TC33 to develop this
model, and Edition 3, known as the NIST/ECMA2
software engineering environment frameworks refer-
ence model is the current edition (NIST, 1993).

The NIST/ECMA model, also known as the
“toaster model” based on a graphic that was devel-
oped by George Tatge of Hewlett Packard (Fig-
ure 21, defines the underlying infrastructure set of
services for supporting tools executing on a software
engineering environment. The model consists of 66
services catalogued according to the classification of
Figure 2 plus a seventh operating system set of
services that supports the other six categories (see
Appendix A). Software products, called tools, are
added to the environment by being written to use
the services from the seven classes of infrastructure
services.

For each of the 66 services, a set of operations
may be defined. For example, there are 21 services
for data repository functionality. These include data

Figure 2. Framework reference model service groupings.

storage (persistent data), back-up services, archive
services, relationship among data object services,
query services, and metadata (schema) definition
services, plus others. For the persistent data storage
service, for example, we would need the operations
of access data, store data, modify data, delete data,
and query data. How these are implemented is not
specified by the model; each implementor desiring
this service is free to implement it in any feasible
manner.

To address the functionality that tools provided to
aid users in solving software development tasks, the
U.S. Navy’s Next Generation Computer Resources
(NGCR) program set up the Project Support Envi-
ronment Standards Working Group (PSESWG).
PSESWG developed the Project Support Environ-
ment (PSE) reference model of the set of services
needed to support users of software engineering
environments (Brown et al. 1993j3. This model in-
cluded the NIST/ECMA framework model as the
core set of framework service and puts a structure
on the “tool slots” of the framework model.

This reference model is a description of the func-
tionality that may be provided by an environment.
This general description is not bounded by either a
particular application domain or, unlike other mod-
els [e.g., Perry and Kaiser (1991)], by any process
model for a specific project. It is a serviced-based
model defining the catalog of functions appropriate
for software engineering environments. Services are
abstract capabilities of the environment, tasks make
use of and provide context for those capabilities, and
tools are the actual executable software components
that realize environment services. (Appendix A
briefly summarizes these services.)

Services are either end user or framework. The
former services directly support the execution of a
project (i.e., services that tend to be used by those
who directly participate in the execution of a project,
such as engineers, managers, and secretaries). The
latter services generally pertain to the operation of
the computer system itself (e.g., a human user per-
forming such tasks as tool installation) or are used
directly by other services in the environment. End-
user services are further subdivided into technical
engineering, technical management, project manage-
ment, and support service categories. The first three
of these groups partition the execution of a project
into engineering, management, and a middle cate-

* ECMA/NIST in Europe.

‘The PSESWG report uses the term “Project Support Envi-
ronment.” We can assume it means essentially the same thing as
an ISEE.

8 J. SYSTEMS SOFTWARE
1996; 35:3-14

M. V. Zelkowitz

gory consisting of services used by both, and gener-
ally cover the set of tasks that are applicable for the
development, management, and maintenance of
software. The fourth group, support services, is com-
plementary to the other three, since it includes
capabilities potentially used by all other users, such
as word processing, mail, and publishing, and should
apply to essentially any computer-based application
domain.

Figure 3 represents an intuitive view of the vari-
ous service groups. Framework services form a cen-
tral core with a potential relationship to all other
services in the environment. Support services under-
lie the other end-user services. The remaining three
groups generally are implemented with interfaces to
the framework services and make use of the support
services. The boundaries in the figure are not in-
tended to be interfaces between functionalities in an
environment. The reference model is a conceptual,
not actual, model, and no architectural choices are
intended by this figure.

The boundary between service groups, particularly
the boundary between end-user and framework ser-
vices, is dynamic and changes over time. There is a
general tendency for greater functionality to be
gradually assumed by the underlying framework. For
instance, historically, most operating systems have
included a directory structure and file system for
data storage; a relational database is only occasion-
ally added to a basic operating system. In the future,
however, relational database functionality may be
part of every operating system. Similarly, operating
systems usually had only primitive display manage-

Framework
Services

Figure 3. PSE reference model service groups.

ment operations. Since 1988, the MIT Consortium X
Window System has become a popular graphical
user interface (GUI) so that today it is usually
included in every environment framework as a stan-
dard GUI to use. In the not too distant future, it
probably will be a primitive operating system set of
services included with every hardware platform.

The model has been used to map (e.g., describe
and contrast) the functionality of various products or
standards in order to determine how the functional-
ity they provide compares to the functionality pre-
sent in the model (Brown et al., 1992; Zelkowitz,
1993). It is our object to extend this concept as a way
to define certain environment properties, as given in
Section 4.

In what follows, we use the classification of ser-
vices in the PSE reference model as a means to
characterize the functionality of a software engineer-
ing environment. However, all that is really required
is that we have a service-based model of an environ-
ment. In the discussion that follows, we could easily
replace the formalism of the PSE model with any
other appropriate model; however, the PSE model
seems sufficient for our purposes at this time.

4. SOFTWARE ARCHITECTURES

We can use the PSE reference model of the previ-
ous section to develop the requirements for a soft-
ware engineering environment. The first stage in
system design is to specify the functionality that is
desired by indicating which services of the reference
model are to be included in the environment. This
provides a taxonomy for describing the functionality
desired and provides a mechanism for comparing
alternative tools or standards for providing those
services.

In describing architectures, we need to know how
well two tools, standards, or products address the set
of services that are required. The domain of services
we consider is defined by the following two vectors:

The reference model mask (RMM) is a bit vector
listing all services in the reference model. Similarly,
the reference model operations mask (RMOM) is a
vector listing all possible operations, remembering
that each service can be implemented by a set of
operations. The sample set of operations in the
reference model is an initial guide to this set, and
may be extended as necessary. Xi refers to the ith
component of vector X.

A specifications mask is a bit vector that is a
mapping onto RMM giving a subset of the services
of the reference model (e.g., a “1” signifying that the
service is so indicated) needed to support some

Modeling Environment Capabilities J. SYSTEMS SOFI’WARE 9
1996: 35:3-14

environment requirement. The specification mask
may be the entire model, one service, or a set of
services (e.g., the framework user interface services).
This provides the context we are interested in, If we
are looking for an appropriate design of the user
interface, we might use a specification mask consist-
ing of the user interface services; if we want to
describe software development practices, we might
use a specification mask of the software engineering
end-user services. In the definitions that follow, there
will always be a specifications mask that limits the
context of what we are discussing.

A semice mask is the functionality provided by a
given product. It, too, is a bit vector mapping onto
RMM. It provides the gross functionality of a given
tool.

Similarly, we describe an operations mask as a
mapping of the operations of some product onto
RMOM. This permits us to describe the set of
operations provided by a product in order to discuss
functionality at a lower level of granularity than just
using the service mask. We may also develop a
specifications operation mask giving the set of opera-
tions needed in a specification.

Table 1 summarizes these masks in terms of vec-
tors that define the requirements for a product and
vectors that define the functionality provided by a
product.

4.1 Equivalence of Products

Functionally equivalent. Two products (e.g., stan-
dards or tools) are functionally equivalent with re-
spect to a specifications operation mask (i.e., the
operations of interest) if they support the same set
of operations with respect to that specification mask.

If S is a specifications operations mask (i.e., S
specifies the set of operations in a requirements
document), and if A and B are the operation masks
for two products, then A is functionally equivalent
to B relative to S if S A A = S A B, where A
stands for the bitwise “and” operation.

Conceptually equivalent. Two products (e.g., stan-
dards or tools) are conceptually equivalent with re-
spect to a specifications mask S (i.e., the services of
interest) if they support the same set of services with

Table 1. Reference Model Functionality Vectors

Granularity Requirement Product functionality

RMM Specifications mask Service mask
RMOM Specifications operations mask Operations mask

respect to that specification mask (e.g., S A A = S
A B for service masks A and Bl.

Conceptual equivalence is weaker than functional
equivalence because each product may support a
different subset of the operations of a service and so
may be conceptually, but not functionally, equiva-
lent. In general, competing products tend to be
conceptually equivalent because they generally pro-
vide similar functionality, but replaceable com-
ponents need to have identical interfaces and be
functionally equivalent. For example, most word
processors support functions of right justification,
pagination, and font alterations (conceptual equiva-
lence), but may implement these using different user
commands (e.g., not functionally equivalent).

We can further subdivide functional equivalence
into two interesting subsets:

Semantic equivalence. Two operations are seman-
tically equivalent if they have the same or different
syntax, but perform the same function. For example,
there may be a differing number of parameters, or
the parameters may be in a different format. The
Ada and C bindings for PCTE should be semanti-
cally equivalent because they should support the
same functionality on the PCTE repository, but the
Ada and C function calls will have a different syntax.

Syntactic equivalence. Two operations are syntac-
tically equivalent if they have the same syntax but
may have differing effects (e.g., semantics). For ex-
ample, many languages have read commands as
read(‘lename, object), with differing semantics im-
posed by those languages.

4.2 Interfaces

When we develop specifications for a tool, we gener-
ally provide two sets of interfaces-the services the
tools provide to the environment and the set of
services needed to implement the tool:

Functional interface. The functional interface de-
fines the set of operations that the tool implements.
It is a specification operations mask on RMOM. In
general the mask will define operations from the set
of end-user services of the reference model.

Development interface. The development inter-
face defines the set of operations needed to imple-
ment the tool. Although it is also a specification
operations mask on RMOM, in general it defines a
set of operations from the framework set of opera-

10 J. SYSTEMS SOFTWARE
1996; 35:3-14

M. V. Zelkowitz

tions needed to implement the tool. For tool A, we
refer to the development interface as DA.

These two concepts are significant when we dis-
cuss integration. Two tools can interoperate if the
development interface of one is compatible with the
functional interface of another. That is, one tool
provides the framework needed to support the exe-
cution of another tool. However, integration is con-
cerned with two tools using similar development
interfaces (e.g., accessing similar functional inter-
faces from the supporting framework).

Given specification mask S and development in-
terface T, two tools, A and B, are interchangeable
with respect to masks S and T, if services specified
by S are conceptually equivalent, and operations
specified by T are semantically and syntactically
equivalent. That is, (1) S A A = S A B (conceptual
equivalence in the functional interface); (2) T A DA
= T A D, (functional equivalence in the develop-
ment interface); and (3) if (T A DAji = 1 then the
operation specified by DAi is semantically and syn-
tactically equivalent to the operation specified by
DBi (Figure 4).

4.3 Open Criteria

This provides a way to address the concept of an
open system. We want two tools A and B to be
interchangeable with respect to their interfaces with
other tools under open criterion C, an operations
mask. T provides an open intt$ace with respect to
interface C if A and B are interchangeable with
respect to development interface T A C (and some
specifications mask S). That is, the development
interface T restricted to the operations in C are the
“same” in A and B.

I APPLICATION ACCESS TO TOOL

Open criteria: C
interface: C A T

F-ORK SERVICES

Figure 4. Interchangeable tools and open systems.

Because “open” implies a consensus-based stan-
dard, this definition only addresses the technical
issues of defining such an open system standard. It
does not address the social process of developing
such a consensus-based standard within an appropri-
ate standards body.

The term open system has often been discussed as
a binary decision-a system is either open or it is
not open. However, a system has many interfaces,
and it makes sense to talk about the degree of
openness with respect to some of these interfaces. If
we wish to specify a tool (e.g., an editor) and a
repository as separate components in an environ-
ment, then the editor’s development interface (i.e.,
the open criterion C mentioned above) will not
include repository functionality. This permits the
repository to be an embedded component of this
tool, and the system will correspondingly not be
open with respect to this repository. However, if we
specify in the editor’s interface the appropriate
repository functions as part of open criterion C,
then we force the repository interface to be open
and replaceable by another interchangeable reposi-
tory component.

For example, if E is the operations mask for an
editor and R is the operations mask for a repository,
then a system will have an open editor interface if it
meets open criterion E, an open repository interface
if it meets open criterion R and it will have an open
editor and repository interface if it meets open crite-
ria E A R.

4.4 Integration Criteria

On the other hand, integration demands other at-
tributes from our reference model. For two tools to
be integrated, we need to determine how well they
interoperate with respect to some specification.

Let A and B be two tools. If we want to deter-
mine how well integrated they are with respect to
some operations specification mask T (e.g., user
interface functions, data sharing), consider D,, and
D,, which are the development interfaces for A and
B, respectively. DA A T and D, A T give the set of
functions needed by both tools. We would like DA
and D, to be semantically equivalent with respect to
T (Figure 5).

This is not quite sufficient, however. We need to
ensure that data are used in the same way by both
tools. Standards that define interfaces can be used in
three ways: (1) a service interface (e.g., a set of
operations such as the POSIX function calls in
defining the UNIX kernel); (2) a data format (e.g.,
the ASCII character codes); or (3) a protocol (e.g.,

Modeling Environment Capabilities J. SYSTEMS SOFTWARE 11
1996: X5:3-14

the X.25 mail protocol). The reference model mainly
addresses the first of these interface classes, al-
though the second of these is partially addressed via
the metadata and data interchange services of the
object management services of the framework refer-
ence model.

For integration we need to specify the semantics
of data passing through these interfaces as well as
the protocol governing the sequence of operation
calls between the two tools. Modeling these proto-
cols is still an important research topic.

We can also precisely define the domain of inter-
est when we discuss integration. If we are looking at
two editors that access the repository, then our
specification mask S will be the set of object man-
agement services needed to maintain edited objects.
Two editors may be interchangeable (e.g., vi and
emacs both support the same interface to the UNIX
file system) but provide very different sets of user
commands, because the user interface was not of
concern. On the other hand, if we wish to be con-
cerned about user interfaces, our operations speci-
fications mask would consist of the user command
set.

The relationship between open and integrated can
be demonstrated by comparing Figures 4 and 5. For
integration we need the technical aspects of an open
interface, and we need to add the semantic equiva-
lence of two tools that need to interoperate. Open-
ness is a property of the interface between two tools
(Figure 41, whereas integration is a property be-
tween two tools (Figure 5).

Transportability is the ability to move a given tool
among a large number of systems. Define the trans-
portability mask T to be the operations mask of
(generally, but not limited to, framework) operations
on system T (e.g., the specifications needed to sup-
port tools on system 1). Let Z be the development
interface needed to implement tool I. I will be
transportable to system T if Z A T = Z (i.e., I uses
only a subset of the available framework services).
Or stated another way, I is transportable to system T

TOOL A

*

DA

TOOL B

1
Integration criteria:T

DB DAAT=DBAT
Semantic equivalence

FRAMEWORK SERVICES

Figure 5. Integration interfaces.

if system T is open with respect to open criterion I.
If Zi = 1 and the operation represented by Z, is
syntactically and semantically equivalent to the op-
eration represented by q, then the tool I can be
moved virtually unchanged to system T. Otherwise,
tool I must be modified so that I, executes on
system T as appropriate.

This definition delineates the scope of transporta-
bility. Only those operations defined in the trans-
portability mask are under consideration. For exam-
ple, consider the case of a PASCAL compiler. If we
view the transportability mask as simply the opera-
tion of producing object code, then any PASCAL
compiler that accepts the same source program and
produces an equivalent object code format would be
interchangeable with this compiler. All internal data
formats would still be proprietary to that compiler.

On the other hand, if the transportability mask
includes operations for all of the compiler switches
(e.g., preprocessor, list symbol table, optimize code,
produce listing), then only products that implement
these additional operations would be interchange-
able with the original compiler. This more detailed
mask has “opened up” the PASCAL compiler so
that additional products could replace parts of the
compiler without the need to replace the compiler
as a whole.

Note that this demonstrates that transportability
and interoperability are different concepts. Interop-
erability requires transportability properties as well
as the semantic equivalence of the transportable
operations with another tool.

4.5 Example Use of Model

Table 2 presents an example use of this model. The
table presents the specification operations mask for
two spreadsheet products (S, and S,). Services of
the reference model, which were not present in
either tool and not part of the following analysis,
were deleted from the table to conserve space. An x
in a “Services” row means that all operations under
that service are provided.

Columns R, and R, represent two functional
interfaces (specifications) for the spreadsheets (e.g.,
what functions are needed), and columns D, and D,
represent the development interface for each (e.g.,
what functions they need in order to be imple-
mented). DZ is a hypothetical specification for an
environment framework, which could represent a
new platform on which both spreadsheets are to be
transported.

According to Table 2, spreadsheets S, and S, are
functionally equivalent with respect to R, because

12 J. SYSTEMS SOFTWARE
1996; 35:3-14

Table 2. Example: Spreadsheet Mappings

Reference Model Services
and Operations S, S, R, R, D, D, DI

Estimation service
Risk analysis service
Text processing service

Operation: create, edit, save,
import text

Operation: format or print text
Operation: create and manipulate

textual table
Numeric processing service
Figure processing service
Audio and video processing service
Presentation preparation service
Calendar and reminder service
Tool installation service

Operation: customize tool
Operation: create a test

environment
PSE status monitoring service

Operation: log actions and events
Operation: produce report on

PSE usage
Operating system services
Object management services
Policy enforcement services
User interface services
User command interface services

x x x x
X X

x x

x x
X

xxxx
x x x x
X

X

X

X

X

X

x x
x x
x x
x x

x x

x x x
x x x
X

x x x
x x x

they both implement the same subset of R, opera-
tions, but they are not equivalent with respect to R,
because S, provides a risk analysis interface, but S,
does not.

S, and S, are potentially interchangeable with
respect to interface DZ because they both have the
same set of services in common with DZ. One still
must check, however, whether those operations are
syntactically and semantically equivalent in order to
have interchangeable components. S, will be easily
transportable if operations in S, A DZ in the new
system are semantically and syntactically equivalent
to the similar functions in the original system. How-
ever, transporting S, to D, would require adding
policy enforcement services to support S, because
such services are not provided by development inter-
face DZ.

5. CONCLUSION

We have tried to clearly differentiate between the
concepts of an open system and an integrated envi-
ronment. Both attributes are highly desirable in
system design, yet each is separate and can be pro-
vided independently of the other. Our major goal
was to bring a degree of precision to describing
which kind of system we have and to be able to
develop objective measures based on which we can
decide if our systems have these attributes.

M. V. Zelkowitz

Starting with a service-based functional model of
a software engineering environment, we developed
definitions of many commonly used terms, such as
open systems, interoperability, transportability, and
integration. By using a vector of services based on
this reference model of the application domain, sev-
eral key ideas, such as functional equivalence, inter-
changeability, and transportability were given more
precise definitions. Using these definitions, we were
able to define both open and integrated environ-
ment concepts.

Using the concept of service masks and the ser-
vice-based model, we have defined concepts such as
open interface and transportability to be attributes
of the interface between a tool and the framework,
whereas concepts such as integration, interchange-
ability, and interoperability are attributes that re-
flect the interaction of two tools with respect to an
underlying framework.

The services included in this reference model tend
to be discrete, describing functionality that is explic-
itly invoked to provide a unique stand-alone service.
There are, however, some services that tend to be
ubiquitous, in which case their functionality is implic-
itly invoked and whose influence permeates many
other services. A significant example of ubiquitous
services can be seen in policy enforcement (e.g.,
security) services. Although these services are de-
scribed in a separate section, their operation can
affect most other services in the model, even though
that interaction may not be documented in the ser-
vice descriptions. For example, mandatory access
control (i.e., who may access data) permeates every
service that accesses the data repository.

A different example of ubiquitous services lies in
integration services and is at the heart of the prob-
lem in defining the degree of integration in an
environment. Sharing information among the ser-
vices of an environment is directly related to the
degree of integration that the environment exhibits.
Although integration is recognized as an important
aspect, there are few actual integration services that
can be separated as discrete, and the role of the
model presented here is to try to ferret out such
integration ideas. Data interchange within the
framework’s object management services and some
of the life cycle process engineering services are
known to be related to integration, but the complete
set of services needed to appropriately develop a
fully integrated environment is still an important
research topic and not fully understood today.

The use of reference models as a tool toward
environment design is still a relatively new concept.
Although we limited our scope here to software

Modeling Environment Capabilities J. SYSTEMS SOFTWARE 13
1996: 35:3-14

engineering environment design, there is nothing in
the design process described in Section 4 specifically
for ISEEs. Most of the framework services of the

reference model are applicable to other application
domains, and it would be relatively easy to build
service-based models for other application domains.
Beginning with other service masks (RMM and
RMOM), the design process is general across many
design areas.

ACKNOWLEDGMENTS

Research support for this work was partially provided by
grant 5-l 23 from National Aeronautics and Space Adminis-
tration/Goddard Space Flight Center to the University of
Maryland. The author would like to acknowledge the many
discussions with Alan Brown, David Carney, and Tricia
Oberndorf, all of the Carnegie Mellon University Software
Engineering Institute, that led to some of the ideas expressed
here.

REFERENCES

Brown, A. W., Earl, A. N., and McDermid, J., Sofnyare
Engineering Environments, McGraw-Hill International,
1992.

Brown, A., Carney, D., Oberndorf, P., and Zelkowitz, M.,
eds., The Project Support Reference Model, Version
2.0, National Institute of Standards and Technology,
Special Publication SP 500-213, 1993. (Also CMU SE1
TR 93-TR-23, November, 1993.)

Brown, A., Carney, D., and Oberndorf, P., Practical evalu-
ation of software engineering environment technology,
Software Technology Conference, Salt Lake City, UT,
1994.

Buxton, J., Requirements for Ada Programming Support
Environments “Stoneman,” U.S. Department of De-
fense, 1980.

ECMA, Portable Common Tool Environment, Edition 2,
ECMA 149, Geneva, Switzerland, 1993.

IEEE, IEEE Standard Portable Operating System Interface
for Computer Environments-POSIX, Standard 1003.1,
IEEE, New York, 1988.

NIST, Reference Model for Frameworks of Software En-
gineering Environments Special Publication 500-211,
National Institute of Standards and Technology, 1993.
(Also ECMA TR 55, Edition 3, 1993.)

Perry, D., and Kaiser, G., Models of Software Develop-
ment Environments, IEEE Trans. Sofihtare Eng. 17,
283-295 (1991).

SIGSOFT, Proceedings of ACM SZGSOFT Symposium on
(Practical) Software Development Environments, 1984,
1986, 1988, 1990, 1992.

Thomas, I., and Nejmeh, B., Definitions of Tool Integra-
tions for Environments, IEEE Software 9, 29-35 (1992).

Wasserman, A. I., Tool integration in software engineer-
ing environments, in Sofhoare Engineering Environments
(F. Long, ed.) (Lecture Notes in Computer Science 4671,
Springer-Verlag, Berlin, 1989, pp. 137-149.

Zelkowitz, M. V., Use of an environment classification
model, in ACM/IEEE Uih International Conference on
Sofhvare Engineering, Baltimore, MD, 1993, pp. 348-357.

APPENDIX: ENVIRONMENT
REFERENCE MODELS

A.1 PSE Reference Model End-User Services

Each of the end-user service categories (technical
engineering, technical management, project manage-
ment, and support services) of the PSE reference
model (Brown et al., 1993) is further subdivided by
engineering domain, user role, or life cycle phase.

Technical engineering services focus on the tech-
nical aspects of project development. These services
support activities related to the specification, design,
implementation, and maintenance of systems. They
are subdivided into system engineering and software
engineering services. System engineering services in-
cludes services such as requirements engineering,
system design and allocation, simulation and model-
ing, static analysis, testing, integration, reengineer-
ing, host-target connection, target monitoring, and
traceability. Software engineering services include
services for requirements engineering, design, simu-
lation and modeling, verification, generation, compi-
lation, static analysis, debugging, testing, build, re-
verse engineering, reengineering, and traceability. In
addition, there are life cycle, engineering services
for managing the process model of the development
environment.

Technical management services include the fol-
lowing services: configuration management, change
management, information management, reuse man-
agement, and metrics.

Project management services include management
functions such as planning, estimating, risk analysis,
and tracking.

Support services include those facilities needed by
all users of an environment, such as text processing,
numeric processing, figure processing, audio and
video processing, calendar and reminder, annota-
tion, publishing, mail, bulletin board, conferencing,
and administration services.

A.2 Framework Reference Model Services

Framework services of the NIST/ECMA Frame-
works Reference Model (NIST, 1993) comprise the

14 J. SYSTEMS SOFTWARE
1996; 35:3-14

M. V. Zelkowitz

infrastructure of an environment. They include those
services that jointly provide support for the end-user
services given in the previous section. The following
is a brief overview of the 66 framework services, as
organized by service groupings:

Operating system. These services provide the
primitive control of the underlying operating system
by providing facilities for creating low-level pro-
cesses, low-level I/O, and low level synchronization
among the components of the environment.

Object management. These services concern the
definition, storage, maintenance, management, and
access of object entities and the relationships among
them. Object management includes facilities for cre-
ating a database of objects, establishing relation-
ships among different objects, information transfer
through common metadata, as well as maintenance
services such as archiving, backup and versioning.

Process management. These infrastructure ser-
vices support the end-user life cycle management
services by defining processes and mechanisms for
controlling the execution and library management of
such processes.

Policy enforcement. The reference model uses the
term policy enforcement to cover the similar func-
tionality of security enforcement, integrity monitor-
ing, and various object management functions such
as access control. It includes both integrity and
access control attributes.

User interface. User interface services includes
the connections between the user and the environ-
ment. Although emphasizing terminal and window
display mechanisms, they include additional services
that address multimedia issues such as mouse input,
sound, video, and handwritten text.

Communication. Communication services need to
provide two-way communication among the compo-
nents of an SEE. This may include sharing of data as
a means of communication as well transmission
mechanisms such as the remote procedure call and
messaging system.

Framework administration. This involves man-
agement of the framework to monitor users, tools,
and resources of the framework.

