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There is considerable interest today in designing open 

systems that permit tools to be moved freely among 

various environments on different hardware plat- 

forms. To develop such systems, terms such as open 

systems, features for open systems such as interoper- 

ability, and integration must all be precisely defined. 

We present a model that is an extension of a service- 

based reference model for development environments 

that can be used to formally define these and other 

related concepts. 

1. INTRODUCTION 

Today there is considerable interest in develop- 
ing integrated software engineering environments 
(ISEES) that provide the software engineering pro- 
fessional with an effective set of tools for building 
software products. The purpose of this article is to 
present formal attributes of an environment that can 
be used as an aid in designing, building, and analyz- 

ing such systems. Starting with a reference model of 
a software engineering environment, various at- 
tributes of an environment can be defined based on 
that reference model. Terms such as open systems, 
interoperability, and integrated software engineering en- 
uironments are often presented in the literature as 
desirable attributes for a system. It is our goal to 
address these terms based on the attributes we pre- 
sent here. 

In Section 2 we explain the concepts of an open 
system and an integrated system and compare the 

two. In Section 3 we summarize a software engineer- 
ing environment reference model that is the basis of 
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the attributes we wish to develop. In Section 4 we 
present our model of environment attributes, and in 
Section 5 give our conclusions about this effort. 

2. OPEN SYSTEMS AND 

INTEGRATED SYSTEMS 

As machines become cheaper, the balance between 
hardware and software costs is changing. Software 
often costs more than the price of the hardware. 
With the advent of relatively inexpensive hardware 
in the 1980s and the 1990s hardware is rapidly 
becoming a commodity item with the corresponding 
need for software to run indcpcndently of the under- 
lying hardware platform. Thus was born the concept 
of the open system. This can be intuitively described 
as any system composed of software components 
with interfaces that adhere to open system standards 
and should execute on any hardware platform that 
implements those standards. (We will be more pre- 
cise later.) 

2.1 Open Systems and Telecommunications 

The term open systems originally developed in the 
telecommunications industry during the early 1980s. 
This era was characterized by the breakup of AT & T 
into several independent telephone companies, the 
emergence of additional long distance carriers, 
growth of the ARPANET (forerunner of the Inter- 
net), and great advances in communications technol- 
ogy from the earlier 300 and 1,200 bps modems to 
today’s 14.4~38K bps to even higher data rates. 
Electronic mail was just emerging, as was the advent 
of the computer bulletin board and protocols such 
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as file transfer protocol (FIP). There was great need 
for standards to be developed to permit products 
from a diverse set of providers to interoperate. 

To meet these needs, the open system intercon- 
nection (OSI) model was developed around 1985 to 
manage information flow among communicating 
components. At the highest levels of the OS1 seven- 
layer model, information transfers between two loca- 
tions, and the model specifies the type of standard to 
describe this information flow. At lower levels, trans- 
ferring mechanisms describe how information is bro- 
ken down into data packets, until the lowest levels of 
the OS1 model describe the electronic characteris- 
tics of this data communication. 

With the creation of standards that meet the OS1 
requirements at a specific level, open systems has 
come to mean any product that meets the relevant 
standards. Being public standards, any vendor is free 
to build products that conform to those standards. 

However, over time, the concept of open systems 
has broadened to include the computing platforms 
that are communicating, thus extending the concept 
of open systems to include the programming envi- 
ronment, which should also be specified by a set of 
publically defined interface standards. Building envi- 
ronment products for an open standard would allow 
easier entry for new vendors and foster a greater 
market for such products. For example, the National 
Institute of Standards and Technology (NIST) re- 
cently changed the name of its OS1 Implementors’ 
Workshop to OSE (Open Systems Environment) Im- 
plementors’ Workshop to reflect the increased em- 
phasis on open system environments. 

2.2 Open Systems and Environments 

We refer to an environment as a system supporting 
the execution of programs that solve problems in 
some application domain. We can talk about envi- 
ronments supporting business practices (e.g., support 
of accounting or payroll programs), environments 
supporting engineering design (e.g., CAD or com- 
puter-aided design environments), or environments 
supporting real-time applications (e.g., a system sup- 
porting programs that control on-line processes such 
as power plants and automated manufacturing). We 
are concerned here with environments used for the 
development of software (ISEEs), but other applica- 
tion domains can be handled similarly. 

Open systems concepts applied to software engi- 
neering environments have progressed in several 
areas: 

1. Although all UNIX implementations were 
based on the initial AT & T Bell Laboratories source 

M. V. Zelkowitz 

code, variations and enhancements introduced by 
most vendors have resulted in incompatibilities 
among the various implementations. Although all of 
these systems “spoke” UNIX, the dialects were quite 
different, and software written for one version was 
generally not transportable to another. In 1984 the 
UNIX user group, /usr/group, began to develop a 
standard that would define what was meant to be 
“UNIX.” This became “IEEE Standard 1003.1- 
Portable Operating System Interface for Computer 
Environments-POSIX,” known simply as POSIX.l 
(IEEE, 1988), which defines the kernel set of operat- 
ing system services for such systems. IEEE standards 
committee P1003 is also working on other 1003.x 
standards that address other distributed system is- 
sues such as the shell user interface, real-time ser- 
vices, distributed data access, and other system func- 
tions. 

2. .The process by which the U.S. Department of 
Defense developed a common language for building 
embedded applications (i.e., the Ada language) in 
the early 1980s also increased awareness of the need 
for a supporting environment in which to build Ada 
applications. Starting with the “Stoneman” require- 
ments document (Buxton, 1980), the concept of an 
Ada programming support Environment (APSE) was 
conceived (Figure 1). The APSE would consist of a 
kernel set of functions (kernal APSE or KAPSE) 
and a set of tools that would operate on that kernel. 

3. During the early 198Os, European interest in 
environments took the form of a public tool inter- 

Figure 1. Ada programming support environments. 
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face (PTI) for specifying the interfaces for tools in 
an environment. An ESPRIT (European Strategic 
Programme for Research and Development in Infor- 
mation Technology) project was funded in 1983 to 
work on such a PTI. This PTI became known as “A 
Basis for a Portable Common Tool Environment,” 
or PCTE for short (ECMA, 1993). Since 1988, PCTE 
has been under development by Technical Commit- 
tee 33 (TC33) of the European Computer Manufac- 
turers Association (ECMA). 

4. Development of environments was a popular 
university research activity during the 1980s. Several 
ACM SIGSOFT annual conferences were devoted 
to software development environments (SIGSOFT, 
1984, 1986, 1988, 1990, 1992). 

Today we would define an open system environ- 
ment as one that is composed of components, each 
of whose interfaces is fully specified by a public 
specification that was arrived at via a consensus 
process of an appropriate standardization body. The 
standard could be international (e.g., ISO), national 
(e.g., IEEE, ANSI), or even the result of corporate 
consortia (e.g., CORBA [Common Object Request 
Broker Architecture] by OMG [Object Management 
Group] or COSE [Common Office System Environ- 
ment] by OSF [Open Software Foundation]). 

2.3 Open Systems and Integration 

A driving force for open system environments is the 
desire to permit tools to interoperate when procured 
from diverse sources. Tools should permit informa- 
tion to be transferred easily among themselves in 
order for information to be processed more effec- 
tively in the environment. This desirable attribute of 
allowing tools to pass information and control among 
themselves, or to interoperate, is somewhat indepen- 
dent of the concept of an open system. We also want 
tools to behave in a consistent manner by being 
integrated with the environment. By integration we 
mean a measure of this interoperability relationship 
among components of an environment (Thomas and 
Nejmeh, 1992). 

Note that integration is a property between two 
(or more) components of an environment and not of 
the environment or tool executing on the environ- 
ment itself. Therefore, it makes no sense to state 
“the user interface is integrated.” However, one can 
state that “the compiler is integrated with the user 
interface,” meaning that the user interface functions 
have a close association with the compiler functions. 

Although we do not yet fully understand the ap- 
propriate design of an open software environment, 

we have begun to understand many of the compo- 
nents that make up the architecture for such an 
environment. An environment usually consists of a 
framework of core services that provides common 
facilities used by the other services in the environ- 
ment. Appropriate end user services are then imple- 
mented to provide needed functionality for each 
application domain. For example, the framework 
may consist of common facilities such as a user 
interface (e.g., X Windows), a data repository (e.g., 
PCTE interface), and a communications facility (e.g., 
Sun’s ToolTalk’). End-user services might consist of 
application tools like editors, compilers, spread- 
sheets, desktop publishing, etc. 

The user’s view of the environment is a system 
consisting of a collection of services that help to 
solve problems in some domain. With closed propri- 
etary systems where interfaces are not based on 
open standards, a new embedded tool has to be 
tailored to execute within the framework provided 
by the enclosing system. Although the user sees an 
integrated environment in which to operate, these 
systems do not allow for easy integration of new 
tools into the environment, except by the environ- 
ment developer. 

Integration certainly exists to some extent in al- 
most all systems today. One can almost always pur- 
chase two tools from a single vendor and have them 
interoperate effectively. For example, almost all 
of the major PC vendors (e.g., Microsoft, Borland, 
Lotus, Apple) provide packages of word processors, 
spread sheets, communication programs, and graph- 
ics packages that interoperate well. We would say 
that they were all integrated, but would be hard 
pressed to call all of them open since communica- 
tion between the tools may be via some interface 
that is not part of a public specification. However, 
we are interested in developing open integrated 
systems where all components share common at- 
tributes. The incorporation of integration concepts 
into an open environment requires understanding of 
how integration relates to the set of services pro- 
vided by the environment. 

There are several notions of integration that af- 
fect the design of an environment (Brown et al., 
1994): 

’ Certain commercial products are identified in this paper to 
specify adequately the applicability of the model. Such identifica- 
tion does not imply recommendation or endorsement by the 
National Institute of Standards and Technology, nor does it imply 
that the products are necessarily the best available for the pur- 
pose. 
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Conceptual integration. There is a shared philos- 
ophy about how environment components will inter- 
act in a consistent manner. “Look and feel” issues, 
common data formats, and common command se- 
quences are examples of conceptual integration. Use 
of a common window, mouse, and command struc- 
ture for all related tools is an example of a concep- 
tually integrated system. 

Architectural integration. How components are 
constructed to interact is mostly an architectural 
integration issue. Using open standards like PCTE 
for a data repository or X Windows providing a 
common window set of services describe architec- 
tural choices made in environment design. 

Physical integration. This describes the actual 
components used to build the physical system from 
its abstract design. For example, although a single 
standard may be specified (e.g., PCTE for a data 
repository), it may be necessary to purchase a single 
instance of that product for all tools to cooperatively 
use in order to affect good data integration. For 
example, the use of TrueType fonts in Microsoft’s 
Windows product permits new fonts to be added 
easily and to readily be made available to all prod- 
ucts that use these fonts. This would be a good 
example of physical integration. On the other hand, 
on UNIX systems, although Postscript is a relatively 
common display format for documents, most 
postscript processors must maintain their own font 
libraries, resulting in hundreds of millions of bytes 
of storage being used for duplicate font directories. 
Although the system may appear to have conceptual 
integration from the user’s point of view, this would 
not be physical integration. 

To date, most integration efforts have centered on 
architectural integration (with some attention to 
conceptual integration) in order to design systems 
that have some degree of interoperability. Key inte- 
gration areas are generally identified as follows: 
(Wasserman, 1989) 

Data integration. Data intergration is the ability 
to share information throughout the environment. 
Different tools and services within the environment 
have their own requirements to access and share 
data. A high degree of data integration may mean 
that the tools in the SEE use a common database 
with common schema. Other degrees may include 
using common data formats or using translation 
mechanisms. 

Control integration. Control integration is the 
ability to combine the functionalities offered in an 

environment in flexible ways by allowing tools to 
invoke (or enact) other tools. The combinations may 
correspond to project preferences and be driven by 
an underlying software process model. 

Presentation integration. Presentation integration 
is the ability to interact with environment services to 
provide similar screen appearance and similar modes 
of interaction. 

Process integration. Process integration is the 
ability to access environment services based on a 
predefined enactable development process. 

In addition, others have written about method 
integration as an extension of process integration 
into life cycle activities and platform integration as 
the integration of tools to execute on the same 
hardware, as well as other forms of integration. 

We have discussed both open systems and inte- 
grated systems as proposed solutions to the underly- 
ing problem of interoperability. What is the relation- 
ship between these two concepts? Although some 
claim that they are the same, we have tried to show 
that they refer to complementary properties of an 
environment. That is, a system may or may not be 
open, and at the same time may or may not be well 
integrated. A system well integrated in one dimen- 
sion (e.g., all tools use the Motif X Windows inter- 
face for presentation integration) may not necessar- 
ily be well integrated in another dimension (e.g., 
each tool has its own proprietary database for data 
storage). 

Openness is a structural attribute of a system. In 
an open system we are concerned about the inter- 
faces among the system’s components. We need to 
ensure that the interfaces among these components 
are defined by public standards. On the other hand, 
integration is a behavioral attribute of an environ- 
ment. We need to specify how information is passed 
among environment components and how each com- 
ponent interprets the data it receives. To date, the 
two concepts have only general definitions. It would 
help the development of this technology if we could 
be more explicit about what these terms mean and 
to be able to determine when we have it and when 
we do not. This is the major goal for the model 
presented in Section 4. 

Given the need to develop integrated systems, 
how do we go about the process of defining our 
requirements for such a system? In the following 
section we propose that by starting with a service- 
based environment reference model we can address 
such requirements. 
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3. ENVIRONMENT REFERENCE MODEL 

As already described, there is a growing trend away 
from proprietary solutions for computer-based prob- 
lems and toward standardized open systems solu- 
tions for such problems. Providing a framework of 
services to support applications leads to the obvious 
question of what are the set of services and what 
interfaces are needed to support user applications in 
an open system environment. What is the underlying 
model for an environment? 

After ECMA/TC33 began to develop the PCTE 
specification in 1988, there was considerable interest 
in determining how well PCTE met its objectives. 
However, there were no models in 1988 by which to 
measure PCTE. TC33 created a Task Group on the 
Reference Model (TGRM) to create such a model. 
In 1991, NIST joined with TC33 to develop this 
model, and Edition 3, known as the NIST/ECMA2 
software engineering environment frameworks refer- 
ence model is the current edition (NIST, 1993). 

The NIST/ECMA model, also known as the 
“toaster model” based on a graphic that was devel- 
oped by George Tatge of Hewlett Packard (Fig- 
ure 21, defines the underlying infrastructure set of 
services for supporting tools executing on a software 
engineering environment. The model consists of 66 
services catalogued according to the classification of 
Figure 2 plus a seventh operating system set of 
services that supports the other six categories (see 
Appendix A). Software products, called tools, are 
added to the environment by being written to use 
the services from the seven classes of infrastructure 
services. 

For each of the 66 services, a set of operations 
may be defined. For example, there are 21 services 
for data repository functionality. These include data 

Figure 2. Framework reference model service groupings. 

storage (persistent data), back-up services, archive 
services, relationship among data object services, 
query services, and metadata (schema) definition 
services, plus others. For the persistent data storage 
service, for example, we would need the operations 
of access data, store data, modify data, delete data, 
and query data. How these are implemented is not 
specified by the model; each implementor desiring 
this service is free to implement it in any feasible 
manner. 

To address the functionality that tools provided to 
aid users in solving software development tasks, the 
U.S. Navy’s Next Generation Computer Resources 
(NGCR) program set up the Project Support Envi- 
ronment Standards Working Group (PSESWG). 
PSESWG developed the Project Support Environ- 
ment (PSE) reference model of the set of services 
needed to support users of software engineering 
environments (Brown et al. 1993j3. This model in- 
cluded the NIST/ECMA framework model as the 
core set of framework service and puts a structure 
on the “tool slots” of the framework model. 

This reference model is a description of the func- 
tionality that may be provided by an environment. 
This general description is not bounded by either a 
particular application domain or, unlike other mod- 
els [e.g., Perry and Kaiser (1991)], by any process 
model for a specific project. It is a serviced-based 
model defining the catalog of functions appropriate 
for software engineering environments. Services are 
abstract capabilities of the environment, tasks make 
use of and provide context for those capabilities, and 
tools are the actual executable software components 
that realize environment services. (Appendix A 
briefly summarizes these services.) 

Services are either end user or framework. The 
former services directly support the execution of a 
project (i.e., services that tend to be used by those 
who directly participate in the execution of a project, 
such as engineers, managers, and secretaries). The 
latter services generally pertain to the operation of 
the computer system itself (e.g., a human user per- 
forming such tasks as tool installation) or are used 
directly by other services in the environment. End- 
user services are further subdivided into technical 
engineering, technical management, project manage- 
ment, and support service categories. The first three 
of these groups partition the execution of a project 
into engineering, management, and a middle cate- 

* ECMA/NIST in Europe. 

‘The PSESWG report uses the term “Project Support Envi- 
ronment.” We can assume it means essentially the same thing as 
an ISEE. 
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gory consisting of services used by both, and gener- 
ally cover the set of tasks that are applicable for the 
development, management, and maintenance of 
software. The fourth group, support services, is com- 
plementary to the other three, since it includes 
capabilities potentially used by all other users, such 
as word processing, mail, and publishing, and should 
apply to essentially any computer-based application 
domain. 

Figure 3 represents an intuitive view of the vari- 
ous service groups. Framework services form a cen- 
tral core with a potential relationship to all other 
services in the environment. Support services under- 
lie the other end-user services. The remaining three 
groups generally are implemented with interfaces to 
the framework services and make use of the support 
services. The boundaries in the figure are not in- 
tended to be interfaces between functionalities in an 
environment. The reference model is a conceptual, 
not actual, model, and no architectural choices are 
intended by this figure. 

The boundary between service groups, particularly 
the boundary between end-user and framework ser- 
vices, is dynamic and changes over time. There is a 
general tendency for greater functionality to be 
gradually assumed by the underlying framework. For 
instance, historically, most operating systems have 
included a directory structure and file system for 
data storage; a relational database is only occasion- 
ally added to a basic operating system. In the future, 
however, relational database functionality may be 
part of every operating system. Similarly, operating 
systems usually had only primitive display manage- 

Framework 
Services 

Figure 3. PSE reference model service groups. 

ment operations. Since 1988, the MIT Consortium X 
Window System has become a popular graphical 
user interface (GUI) so that today it is usually 
included in every environment framework as a stan- 
dard GUI to use. In the not too distant future, it 
probably will be a primitive operating system set of 
services included with every hardware platform. 

The model has been used to map (e.g., describe 
and contrast) the functionality of various products or 
standards in order to determine how the functional- 
ity they provide compares to the functionality pre- 
sent in the model (Brown et al., 1992; Zelkowitz, 
1993). It is our object to extend this concept as a way 
to define certain environment properties, as given in 
Section 4. 

In what follows, we use the classification of ser- 
vices in the PSE reference model as a means to 
characterize the functionality of a software engineer- 
ing environment. However, all that is really required 
is that we have a service-based model of an environ- 
ment. In the discussion that follows, we could easily 
replace the formalism of the PSE model with any 
other appropriate model; however, the PSE model 
seems sufficient for our purposes at this time. 

4. SOFTWARE ARCHITECTURES 

We can use the PSE reference model of the previ- 
ous section to develop the requirements for a soft- 
ware engineering environment. The first stage in 
system design is to specify the functionality that is 
desired by indicating which services of the reference 
model are to be included in the environment. This 
provides a taxonomy for describing the functionality 
desired and provides a mechanism for comparing 
alternative tools or standards for providing those 
services. 

In describing architectures, we need to know how 
well two tools, standards, or products address the set 
of services that are required. The domain of services 
we consider is defined by the following two vectors: 

The reference model mask (RMM) is a bit vector 
listing all services in the reference model. Similarly, 
the reference model operations mask (RMOM) is a 
vector listing all possible operations, remembering 
that each service can be implemented by a set of 
operations. The sample set of operations in the 
reference model is an initial guide to this set, and 
may be extended as necessary. Xi refers to the ith 
component of vector X. 

A specifications mask is a bit vector that is a 
mapping onto RMM giving a subset of the services 
of the reference model (e.g., a “1” signifying that the 
service is so indicated) needed to support some 
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environment requirement. The specification mask 
may be the entire model, one service, or a set of 
services (e.g., the framework user interface services). 
This provides the context we are interested in, If we 
are looking for an appropriate design of the user 
interface, we might use a specification mask consist- 
ing of the user interface services; if we want to 
describe software development practices, we might 
use a specification mask of the software engineering 
end-user services. In the definitions that follow, there 
will always be a specifications mask that limits the 
context of what we are discussing. 

A semice mask is the functionality provided by a 
given product. It, too, is a bit vector mapping onto 
RMM. It provides the gross functionality of a given 
tool. 

Similarly, we describe an operations mask as a 
mapping of the operations of some product onto 
RMOM. This permits us to describe the set of 
operations provided by a product in order to discuss 
functionality at a lower level of granularity than just 
using the service mask. We may also develop a 
specifications operation mask giving the set of opera- 
tions needed in a specification. 

Table 1 summarizes these masks in terms of vec- 
tors that define the requirements for a product and 
vectors that define the functionality provided by a 
product. 

4.1 Equivalence of Products 

Functionally equivalent. Two products (e.g., stan- 
dards or tools) are functionally equivalent with re- 
spect to a specifications operation mask (i.e., the 
operations of interest) if they support the same set 
of operations with respect to that specification mask. 

If S is a specifications operations mask (i.e., S 
specifies the set of operations in a requirements 
document), and if A and B are the operation masks 
for two products, then A is functionally equivalent 
to B relative to S if S A A = S A B, where A 
stands for the bitwise “and” operation. 

Conceptually equivalent. Two products (e.g., stan- 
dards or tools) are conceptually equivalent with re- 
spect to a specifications mask S (i.e., the services of 
interest) if they support the same set of services with 

Table 1. Reference Model Functionality Vectors 

Granularity Requirement Product functionality 

RMM Specifications mask Service mask 
RMOM Specifications operations mask Operations mask 

respect to that specification mask (e.g., S A A = S 
A B for service masks A and Bl. 

Conceptual equivalence is weaker than functional 
equivalence because each product may support a 
different subset of the operations of a service and so 
may be conceptually, but not functionally, equiva- 
lent. In general, competing products tend to be 
conceptually equivalent because they generally pro- 
vide similar functionality, but replaceable com- 
ponents need to have identical interfaces and be 
functionally equivalent. For example, most word 
processors support functions of right justification, 
pagination, and font alterations (conceptual equiva- 
lence), but may implement these using different user 
commands (e.g., not functionally equivalent). 

We can further subdivide functional equivalence 
into two interesting subsets: 

Semantic equivalence. Two operations are seman- 
tically equivalent if they have the same or different 
syntax, but perform the same function. For example, 
there may be a differing number of parameters, or 
the parameters may be in a different format. The 
Ada and C bindings for PCTE should be semanti- 
cally equivalent because they should support the 
same functionality on the PCTE repository, but the 
Ada and C function calls will have a different syntax. 

Syntactic equivalence. Two operations are syntac- 
tically equivalent if they have the same syntax but 
may have differing effects (e.g., semantics). For ex- 
ample, many languages have read commands as 
read(‘lename, object), with differing semantics im- 
posed by those languages. 

4.2 Interfaces 

When we develop specifications for a tool, we gener- 
ally provide two sets of interfaces-the services the 
tools provide to the environment and the set of 
services needed to implement the tool: 

Functional interface. The functional interface de- 
fines the set of operations that the tool implements. 
It is a specification operations mask on RMOM. In 
general the mask will define operations from the set 
of end-user services of the reference model. 

Development interface. The development inter- 
face defines the set of operations needed to imple- 
ment the tool. Although it is also a specification 
operations mask on RMOM, in general it defines a 
set of operations from the framework set of opera- 
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tions needed to implement the tool. For tool A, we 
refer to the development interface as DA. 

These two concepts are significant when we dis- 
cuss integration. Two tools can interoperate if the 
development interface of one is compatible with the 
functional interface of another. That is, one tool 
provides the framework needed to support the exe- 
cution of another tool. However, integration is con- 
cerned with two tools using similar development 
interfaces (e.g., accessing similar functional inter- 
faces from the supporting framework). 

Given specification mask S and development in- 
terface T, two tools, A and B, are interchangeable 
with respect to masks S and T, if services specified 
by S are conceptually equivalent, and operations 
specified by T are semantically and syntactically 
equivalent. That is, (1) S A A = S A B (conceptual 
equivalence in the functional interface); (2) T A DA 
= T A D, (functional equivalence in the develop- 
ment interface); and (3) if (T A DAji = 1 then the 
operation specified by DAi is semantically and syn- 
tactically equivalent to the operation specified by 
DBi (Figure 4). 

4.3 Open Criteria 

This provides a way to address the concept of an 
open system. We want two tools A and B to be 
interchangeable with respect to their interfaces with 
other tools under open criterion C, an operations 
mask. T provides an open intt$ace with respect to 
interface C if A and B are interchangeable with 
respect to development interface T A C (and some 
specifications mask S). That is, the development 
interface T restricted to the operations in C are the 
“same” in A and B. 

I APPLICATION ACCESS TO TOOL 

Open criteria: C 
interface: C A T 

F-ORK SERVICES 

Figure 4. Interchangeable tools and open systems. 

Because “open” implies a consensus-based stan- 
dard, this definition only addresses the technical 
issues of defining such an open system standard. It 
does not address the social process of developing 
such a consensus-based standard within an appropri- 
ate standards body. 

The term open system has often been discussed as 
a binary decision-a system is either open or it is 
not open. However, a system has many interfaces, 
and it makes sense to talk about the degree of 
openness with respect to some of these interfaces. If 
we wish to specify a tool (e.g., an editor) and a 
repository as separate components in an environ- 
ment, then the editor’s development interface (i.e., 
the open criterion C mentioned above) will not 
include repository functionality. This permits the 
repository to be an embedded component of this 
tool, and the system will correspondingly not be 
open with respect to this repository. However, if we 
specify in the editor’s interface the appropriate 
repository functions as part of open criterion C, 
then we force the repository interface to be open 
and replaceable by another interchangeable reposi- 
tory component. 

For example, if E is the operations mask for an 
editor and R is the operations mask for a repository, 
then a system will have an open editor interface if it 
meets open criterion E, an open repository interface 
if it meets open criterion R and it will have an open 
editor and repository interface if it meets open crite- 
ria E A R. 

4.4 Integration Criteria 

On the other hand, integration demands other at- 
tributes from our reference model. For two tools to 
be integrated, we need to determine how well they 
interoperate with respect to some specification. 

Let A and B be two tools. If we want to deter- 
mine how well integrated they are with respect to 
some operations specification mask T (e.g., user 
interface functions, data sharing), consider D,, and 
D,, which are the development interfaces for A and 
B, respectively. DA A T and D, A T give the set of 
functions needed by both tools. We would like DA 
and D, to be semantically equivalent with respect to 
T (Figure 5). 

This is not quite sufficient, however. We need to 
ensure that data are used in the same way by both 
tools. Standards that define interfaces can be used in 
three ways: (1) a service interface (e.g., a set of 
operations such as the POSIX function calls in 
defining the UNIX kernel); (2) a data format (e.g., 
the ASCII character codes); or (3) a protocol (e.g., 
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the X.25 mail protocol). The reference model mainly 
addresses the first of these interface classes, al- 
though the second of these is partially addressed via 
the metadata and data interchange services of the 
object management services of the framework refer- 
ence model. 

For integration we need to specify the semantics 
of data passing through these interfaces as well as 
the protocol governing the sequence of operation 
calls between the two tools. Modeling these proto- 
cols is still an important research topic. 

We can also precisely define the domain of inter- 
est when we discuss integration. If we are looking at 
two editors that access the repository, then our 
specification mask S will be the set of object man- 
agement services needed to maintain edited objects. 
Two editors may be interchangeable (e.g., vi and 
emacs both support the same interface to the UNIX 
file system) but provide very different sets of user 
commands, because the user interface was not of 
concern. On the other hand, if we wish to be con- 
cerned about user interfaces, our operations speci- 
fications mask would consist of the user command 
set. 

The relationship between open and integrated can 
be demonstrated by comparing Figures 4 and 5. For 
integration we need the technical aspects of an open 
interface, and we need to add the semantic equiva- 
lence of two tools that need to interoperate. Open- 
ness is a property of the interface between two tools 
(Figure 41, whereas integration is a property be- 
tween two tools (Figure 5). 

Transportability is the ability to move a given tool 
among a large number of systems. Define the trans- 
portability mask T to be the operations mask of 
(generally, but not limited to, framework) operations 
on system T (e.g., the specifications needed to sup- 
port tools on system 1). Let Z be the development 
interface needed to implement tool I. I will be 
transportable to system T if Z A T = Z (i.e., I uses 
only a subset of the available framework services). 
Or stated another way, I is transportable to system T 

TOOL A 

* 

DA 

TOOL B 

1 
Integration criteria:T 

DB DAAT=DBAT 
Semantic equivalence 

FRAMEWORK SERVICES 

Figure 5. Integration interfaces. 

if system T is open with respect to open criterion I. 
If Zi = 1 and the operation represented by Z, is 
syntactically and semantically equivalent to the op- 
eration represented by q, then the tool I can be 
moved virtually unchanged to system T. Otherwise, 
tool I must be modified so that I, executes on 
system T as appropriate. 

This definition delineates the scope of transporta- 
bility. Only those operations defined in the trans- 
portability mask are under consideration. For exam- 
ple, consider the case of a PASCAL compiler. If we 
view the transportability mask as simply the opera- 
tion of producing object code, then any PASCAL 
compiler that accepts the same source program and 
produces an equivalent object code format would be 
interchangeable with this compiler. All internal data 
formats would still be proprietary to that compiler. 

On the other hand, if the transportability mask 
includes operations for all of the compiler switches 
(e.g., preprocessor, list symbol table, optimize code, 
produce listing), then only products that implement 
these additional operations would be interchange- 
able with the original compiler. This more detailed 
mask has “opened up” the PASCAL compiler so 
that additional products could replace parts of the 
compiler without the need to replace the compiler 
as a whole. 

Note that this demonstrates that transportability 
and interoperability are different concepts. Interop- 
erability requires transportability properties as well 
as the semantic equivalence of the transportable 
operations with another tool. 

4.5 Example Use of Model 

Table 2 presents an example use of this model. The 
table presents the specification operations mask for 
two spreadsheet products (S, and S,). Services of 
the reference model, which were not present in 
either tool and not part of the following analysis, 
were deleted from the table to conserve space. An x 
in a “Services” row means that all operations under 
that service are provided. 

Columns R, and R, represent two functional 
interfaces (specifications) for the spreadsheets (e.g., 
what functions are needed), and columns D, and D, 
represent the development interface for each (e.g., 
what functions they need in order to be imple- 
mented). DZ is a hypothetical specification for an 
environment framework, which could represent a 
new platform on which both spreadsheets are to be 
transported. 

According to Table 2, spreadsheets S, and S, are 
functionally equivalent with respect to R, because 
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Table 2. Example: Spreadsheet Mappings 

Reference Model Services 
and Operations S, S, R, R, D, D, DI 

Estimation service 
Risk analysis service 
Text processing service 

Operation: create, edit, save, 
import text 

Operation: format or print text 
Operation: create and manipulate 

textual table 
Numeric processing service 
Figure processing service 
Audio and video processing service 
Presentation preparation service 
Calendar and reminder service 
Tool installation service 

Operation: customize tool 
Operation: create a test 

environment 
PSE status monitoring service 

Operation: log actions and events 
Operation: produce report on 

PSE usage 
Operating system services 
Object management services 
Policy enforcement services 
User interface services 
User command interface services 

x x x x 
X X 

x x 

x x 
X 

xxxx 
x x x x 
X 

X 

X 

X 

X 

X 

x x 
x x 
x x 
x x 

x x 

x x x 
x x x 
X 

x x x 
x x x 

they both implement the same subset of R, opera- 
tions, but they are not equivalent with respect to R, 
because S, provides a risk analysis interface, but S, 
does not. 

S, and S, are potentially interchangeable with 
respect to interface DZ because they both have the 
same set of services in common with DZ. One still 
must check, however, whether those operations are 
syntactically and semantically equivalent in order to 
have interchangeable components. S, will be easily 
transportable if operations in S, A DZ in the new 
system are semantically and syntactically equivalent 
to the similar functions in the original system. How- 
ever, transporting S, to D, would require adding 
policy enforcement services to support S, because 
such services are not provided by development inter- 
face DZ. 

5. CONCLUSION 

We have tried to clearly differentiate between the 
concepts of an open system and an integrated envi- 
ronment. Both attributes are highly desirable in 
system design, yet each is separate and can be pro- 
vided independently of the other. Our major goal 
was to bring a degree of precision to describing 
which kind of system we have and to be able to 
develop objective measures based on which we can 
decide if our systems have these attributes. 

M. V. Zelkowitz 

Starting with a service-based functional model of 
a software engineering environment, we developed 
definitions of many commonly used terms, such as 
open systems, interoperability, transportability, and 
integration. By using a vector of services based on 
this reference model of the application domain, sev- 
eral key ideas, such as functional equivalence, inter- 
changeability, and transportability were given more 
precise definitions. Using these definitions, we were 
able to define both open and integrated environ- 
ment concepts. 

Using the concept of service masks and the ser- 
vice-based model, we have defined concepts such as 
open interface and transportability to be attributes 
of the interface between a tool and the framework, 
whereas concepts such as integration, interchange- 
ability, and interoperability are attributes that re- 
flect the interaction of two tools with respect to an 
underlying framework. 

The services included in this reference model tend 
to be discrete, describing functionality that is explic- 
itly invoked to provide a unique stand-alone service. 
There are, however, some services that tend to be 
ubiquitous, in which case their functionality is implic- 
itly invoked and whose influence permeates many 
other services. A significant example of ubiquitous 
services can be seen in policy enforcement (e.g., 
security) services. Although these services are de- 
scribed in a separate section, their operation can 
affect most other services in the model, even though 
that interaction may not be documented in the ser- 
vice descriptions. For example, mandatory access 
control (i.e., who may access data) permeates every 
service that accesses the data repository. 

A different example of ubiquitous services lies in 
integration services and is at the heart of the prob- 
lem in defining the degree of integration in an 
environment. Sharing information among the ser- 
vices of an environment is directly related to the 
degree of integration that the environment exhibits. 
Although integration is recognized as an important 
aspect, there are few actual integration services that 
can be separated as discrete, and the role of the 
model presented here is to try to ferret out such 
integration ideas. Data interchange within the 
framework’s object management services and some 
of the life cycle process engineering services are 
known to be related to integration, but the complete 
set of services needed to appropriately develop a 
fully integrated environment is still an important 
research topic and not fully understood today. 

The use of reference models as a tool toward 
environment design is still a relatively new concept. 
Although we limited our scope here to software 
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engineering environment design, there is nothing in 
the design process described in Section 4 specifically 
for ISEEs. Most of the framework services of the 

reference model are applicable to other application 
domains, and it would be relatively easy to build 
service-based models for other application domains. 
Beginning with other service masks (RMM and 
RMOM), the design process is general across many 
design areas. 
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APPENDIX: ENVIRONMENT 
REFERENCE MODELS 

A.1 PSE Reference Model End-User Services 

Each of the end-user service categories (technical 
engineering, technical management, project manage- 
ment, and support services) of the PSE reference 
model (Brown et al., 1993) is further subdivided by 
engineering domain, user role, or life cycle phase. 

Technical engineering services focus on the tech- 
nical aspects of project development. These services 
support activities related to the specification, design, 
implementation, and maintenance of systems. They 
are subdivided into system engineering and software 
engineering services. System engineering services in- 
cludes services such as requirements engineering, 
system design and allocation, simulation and model- 
ing, static analysis, testing, integration, reengineer- 
ing, host-target connection, target monitoring, and 
traceability. Software engineering services include 
services for requirements engineering, design, simu- 
lation and modeling, verification, generation, compi- 
lation, static analysis, debugging, testing, build, re- 
verse engineering, reengineering, and traceability. In 
addition, there are life cycle, engineering services 
for managing the process model of the development 
environment. 

Technical management services include the fol- 
lowing services: configuration management, change 
management, information management, reuse man- 
agement, and metrics. 

Project management services include management 
functions such as planning, estimating, risk analysis, 
and tracking. 

Support services include those facilities needed by 
all users of an environment, such as text processing, 
numeric processing, figure processing, audio and 
video processing, calendar and reminder, annota- 
tion, publishing, mail, bulletin board, conferencing, 
and administration services. 

A.2 Framework Reference Model Services 

Framework services of the NIST/ECMA Frame- 
works Reference Model (NIST, 1993) comprise the 



14 J. SYSTEMS SOFTWARE 
1996; 35:3-14 

M. V. Zelkowitz 

infrastructure of an environment. They include those 
services that jointly provide support for the end-user 
services given in the previous section. The following 
is a brief overview of the 66 framework services, as 
organized by service groupings: 

Operating system. These services provide the 
primitive control of the underlying operating system 
by providing facilities for creating low-level pro- 
cesses, low-level I/O, and low level synchronization 
among the components of the environment. 

Object management. These services concern the 
definition, storage, maintenance, management, and 
access of object entities and the relationships among 
them. Object management includes facilities for cre- 
ating a database of objects, establishing relation- 
ships among different objects, information transfer 
through common metadata, as well as maintenance 
services such as archiving, backup and versioning. 

Process management. These infrastructure ser- 
vices support the end-user life cycle management 
services by defining processes and mechanisms for 
controlling the execution and library management of 
such processes. 

Policy enforcement. The reference model uses the 
term policy enforcement to cover the similar func- 
tionality of security enforcement, integrity monitor- 
ing, and various object management functions such 
as access control. It includes both integrity and 
access control attributes. 

User interface. User interface services includes 
the connections between the user and the environ- 
ment. Although emphasizing terminal and window 
display mechanisms, they include additional services 
that address multimedia issues such as mouse input, 
sound, video, and handwritten text. 

Communication. Communication services need to 
provide two-way communication among the compo- 
nents of an SEE. This may include sharing of data as 
a means of communication as well transmission 
mechanisms such as the remote procedure call and 
messaging system. 

Framework administration. This involves man- 
agement of the framework to monitor users, tools, 
and resources of the framework. 


