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Compilers, besides testing for errors in a particular implementation of 
an algorithm, can be implemented to analyze program structure. This 
information can be fed back to the programmer in order to improve the 
structure, reliability and efficiency of the resulting program. This 
paper surveys several techniques that are currently implementable in a 
compiler, describes several new techniques that can be applied to pro- 
grams, and briefly describes one such implementation of many of these 
ideas. 

i. INTRODUCTION 

The development of reliable software is 
currently proceeding along several paths. 
Languages are being developed which a 
priori result in correct, more understan- 
dable and more manageable programs [8]. Ae 
the same time others are developing proof 
techniques that, a posteriori, show that 
program is correct [5]. A third path is the 
development of techniques that result in 
information during the development phase of 
a program being fed back to the programmer 
in order to suggest changes to be made i~ 
the source program [15]. 

Compilers, as an example of this third 
approach, seem to be entering into a third 
phase of development since they first 
appeared some twenty years ago. The first 
compilers (and unfortunately still the 
dominant class) simply converted a source 
language program into an equivalent machine 
language program. If there were any syntax 
errors in the program, then the compiler 
generated an error message and terminated 
the translation process. Semantic errors 
were usually not detected by the compiler 
and thus caused the program to give unpre- 
dictable results during program execution. 

The second class of compiler first 
appeared during the early 1960"s. These 
compilers of the load and go diagnostic 
class attempted to aid in program develop- 
ment [2,3,16,17]. Should there have been 
an obvious error in syntax, then the compi- 
ler would generate an error message, "fix" 
the error, and continue compilation. The 
code generated also detected as many execu- 
tion errors as possible; thus many semantic 
errors were caught during program execu- 
tion. 

While diagnostic compilers are very 
useful in fixing errors in a particular 
implementation of an algorithm - once an 
error has been detected - questions such as 
the reliability or efficiency of the resul- 
ting program are not addressed. It is not 
possible to detect whether a program is 
"good" or "poor"; only that it produces 
correct results on a small set of test 
data. Therefore, a third generation of 
compiler design is proposed. These compi- 
lers analyze program behavior and report 

back to the user information concerning the 
efficiency and structure of the program. 
Using this information, the programmer 
should be able to modify the program accor- 
dingly. 

This report contains several suggestions 
as to the type of data that can easily be 
generated by a compiler and be fed back to 
the user in order to accomplish this goal. 
The development of a data entropy measure 
will be described and the inclusion of 
several of these techniques into a diagno- 
stic PL/I system implemented at the Univer- 
sity of Maryland will also be mentioned. 

2. FLOW ANALYSIS MEASURES 

It has been argued [4] that languages 
should not include any GOTO statement; 
however, the simple lack of a GOTO does not 
automatically lead to a well structured 
program since data also plays a significant 
role in program structure. An implementa- 
tion that uses certain variables in every 
subroutine is not as well structured as one 
that localizes all accesses to only a few 
routines. This can be demonstrated by 
considering the problems associated with 
changing these variables. In the first case 
every subroutine must be studied and 
altered, while in the latter, only the few 
routines that actually use these variables 
must be changed. Parnas [14], among others, 
has been developing rules that allow for 
structured data. 

Thus designing well structured programs 
consists of more than simply omitting all 
GOTO statements. The interesting question, 
therefore, is "What is meant by a well 
structured program?" Can this concept of 
structure be measured? From a pragmatic 
point of view, is this measurement effec- 
tive, i. e. can a compiler be implemented 
to provide this information at minimal 
cost? 

Several proposals have been made for 
providing some of this data. This section 
of the paper describes pregram traces as a 
measurement technique that gives a 
pictorial representation of some aspect of 
a program's execution. 
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2.1. Execution Profiles 

One of the oldest data collection aids 
to be described is the execution profile 
[9]. A compiler can easily be altered to 
generate code to increment a count for each 
statement executed during program execu- 
tion. This data can be used to produce a 
histogram or execution profile which gra- 
phically displays how many times each sta- 
tement has been executed (fig. i). Some of 
the advantages of such a system have been 
described by Ingalls [9]. Basically, the 
reasons for such a technique are: 

i. Typically most of the execution time 
of a program is spent within a small 
section of the program; thus the execution 
profile will allow the programmer to opti- 
mize, by hand, those small sections of code 
that are frequently executed. 

2. In a test debugging run, if any sta- 
tement counts are zero, then the test data 
did not properly reflect actual program 
conditions since some program logic was 
either not exercised, or was faulty. 

3. Execution profiles may also demon- 
strate unexpected properties about a pro- 
gram. It may turn out that a certain THEN 
clause may unexpectedly be executed more 
often than its corresponding ELSE clause. 
This type of data can be fed back into the 
compiler in order to better optimize the 
source program (as in the old FORTRAN II 
FREQUENCY statement). 

In general the execution profile gives a 
condensed graphical picture of program 
execution. Due to the relatively short 
execution times for most debugging runs, 
the additional overhead in producing this 
data is well worthwhile. Depending upon the 

EXECUTION rIISTOGRAMS 

EACH , = 65 EXECUTIONS 

15 48 
1# W8 
15 ~8 
16 0 
17 ~8 
18 ~8 
19 0 
20 ~8 
21 #7 
22 #7 
23  47  
2~ 0 
25 ~7 
26 45 
27 45 
26 45 

#S 
31 45 
32 #5 
53 #5 
3# 270 * * * *  
35 2~5 * * *  
36 2Z5 * * *  
37 45 
38 ~7 
39 1 
#0 ~5 
41 1034 * * * * * * * * * * * * * * *  
#2 990 * * * * * * * * * * * * * * *  
q3  0 
## 103 * 
~5 103 * 
~6 103 * 
#7 ~93 * 

Fig. i. Execution profile (partial 
!IstingJ~__~_ote that. some counts aro x~rn 
si__n_ce the~ correspond to nonexecutable._sta-- 
tements like DECLARE statements, 

type of data used, the execution profile 
can focus attention upon a small segment of 
the program that should be further studied 
by the programmer. 

2.2. Static Language Analysis 

Compilers can easily produce a count of 
each program's statements by type [Ii], and 
can easily generate code to keep track of 
how many times each statement type is exe- 
cuted (fig. 2). while this information is 
derivable from the source program listing 
and from the execution profile, the sheer 
volume of the data makes it almost manda- 
tory that it be compiler generated. 

This data can be used to discover 
general characteristics about a program. 
Relationships between static program struc- 
ture (at compile time) and dynamic program 
structure (at execution time) may be stu- 
died. For example, the number of times that 
an IF statement is executed compared to the 
number of IF statements in a program may 
give an indication as to how well the input 
data is screened before it is used [10]. 
The collection of this data from many pro- 
grams can lead to the development of 
general properties across many programs 
(fig. 4). 

STATIC/DYNAMIC STATEMENT COUNTS 

COMMENTS = 28 STATEMENTS = 85 

~XECUTED STATEMENTS = 7~21 

COMPILATIOI} EXECUTION 
TYPE COUNT ~ COUNT % 
BEGIN 0 .0 0 ,0 
CALL 6 7.0 142 1.8 
CLOSE O .0 0 .0 
DECLARE 3 

17.~ 1539 20,~ END 15 3. 0 .0 
~ NTRY 0 :8 0 ,0 
ORMAT 0 0 .0 

GET 1 1 . I  ~8 .6 
GOTo 0 '0 0 .0 
IF 5 5,B 1175 15,6 
OPEN 0 .0 0 ,0 
PROC 6 ~{~ 1#3 1 . 9  
PUT 3 9# 1.2 
RETURN 0 0 ,0 
STOP 0 ,0 0 .0 
NULL 0 ,0 0 .~ 
DO 5 3.5 0 .0 
DO WHILE I 5, ~ 8 #7 .6 DO ITEH 5 I ,  1##3 19.1 
DO AsbCASE 0 ,0 0 .O 

GEL 11 12.9 1197 15,9 
ASG 90P 2 2. #8 ,6 
ASG i uP 2# 28,2 16#5 @1,8 

Fi 9. 2. Number and percentage of each sta- 
tement type at compile and execution time 
(partial listinq)~ 
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2.3. Trace History 

A concept related to the execution pro- 
file is the concept of trace history. Let 
Kt be the set of statement numbers executed 
during time interval t. Kt is plotted vs. t 
to obtain a scatter plot of program execu- 
tion vs. time (fig. 3). This data can 
easily be added to a compiler - especially 
to one that already has a statement tracing 
facility. 

Using this data, the interrelationships 
among statements can be measured. It may 
show that certain statements are always 
executed in tandem with other statements. 



STATEMENT NUMBER EACH LINE REPRESENTS 180 STATEMENTS E~(ECUTED 
10 2 0  .30 40  50  60  70 
÷ ÷ ÷ ÷ ÷ ÷ ÷ 

**** .•.. .. ..•**..•.•• ..• .. .. • . 

Fig. 3. Trace history. Vertical axis is 
e~ecution time and horizontal ax~s ~s sta- 
tement number. 

For large programs it may show which rou- 
tines should be grouped into single 
segments, and in a virtual machine environ- 
ment it may give the programmer information 
on how to regroup subroutines in order to 
speed up execution time by reducing paging 
overhead. While the trace history has been 
used previously in the study of paging 
systems [12], it has not as yet been 
applied to study program behavior at the 
source language level. 

2.4 Probabilistic Program Validation 

It is also possible to view the execu- 
tion profile as a probability distribution 
- the probability of being at a certain 
statement at any given time. with this 
approach, the same collected trace data can 
be used to compute a transition matrix 
giving the probability of transferring from 
one statement to another. If that is done, 
then some of the properties of Markov chain 
theory can be applied. 

One possible application of transition 
probabilities is in a new definition of 
program validation. Since it is impossible 
to test a program for all possible input 
data, selected subsets of the data that are 
"representative" are chosen. One currently 
used definition simply states that a pro- 
gram is tested if every statement has been 
executed. As any programmer intuitively. 
knows, this definition is extremely weak. 
An alternative definition has been that 
every path through the program has been 
executed. Unfortunately, the set of data 
needed to perform this testing is in 
general an undecidable problem. Therefore, 
the following definition is proposed: A 
data set tests a program if and only if the 
transition probabilities obtained are the 
same as the actual probabilities. Thus 
heavily used paths in the production pro- 
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gram will be heavily tested in the test 
run, and lessor used paths will be less 
tested. Also, if the probabilities are the 
same, then most of the different execution 
paths will probably be tested. Note that 
this definition also includes the first 
definition of program validation mentioned 
above - if a statemet is ever executed, 
then its transition probability cannot be 
zero. 

The problem with this definition is the 
determination of the actual transition 
probabilities. A proposed measure is to 
keep track of the range of values of the 
program variables. Using this range, dyna- 
mic programming techniques can be used to 
compute the probability of a conditional 
expression being true or false, and thereby 
giving estimates of the actual transition 
probabilities. 

3. FEATURE MEASUREMENT 

A related development to the above gra- 
phical techniques is the concept of feature 
measurement. This is the study of various 
numerical relationships that measure the 
overall quality of a program according to 
some norm or ideal. While these techniques 
do not give detailed breakdowns of the 
various attributes of a program, they do 
indicate trends in program structure. For 
example, as a teaching tool, if a student 
writes two versions of the same algorithm, 
and one has a different measure than the 
other, then one will be a better program 
according to some criteria. These measures, 
in conjunction with the graphical techni- 
ques already discussed, should lead to the 
feedback of information that should lead to 
a more well developed program. 

3.1. Algorithm Dynamics 

Halstead (6] has been studying algorithm 



size, and in the process has achieved some 
interesting results. One such result is 
that the approximation of program size is 
independent of programming language used. 
The number of tokens in the source program 
should be approximately: 

a log a + b log b 

where a and b are the number of distinct 
operators and operands in the program. 

3.2. Program Work 

Another trend is to compute the work 
performed by a program. Hellerman [7] has 
been studying the complexity of a function 
by computing the number of input variables 
that map to the same functional value. Let 
Xy be the number of input values that map 
to functional value y. The work performed 
by the function is then defined to be: 

[Xy log X___ = X log X -~ Xy log Xy 
y Xy y 

where X is the total number of different 
input values. 

In terms of measuring program efficien- 
cy, however, the program itself, and not 
the underlying function, should be mea- 
sured. Data entropy is proposed as one 
such measure. 

Van Emden [18] initially described a 
measure similar to the entropy of a physi- 
cal system. Let {pi} be a partition of set 
p into sets of size )pi~ . The entropy of 
the partition is defined as: 

H = -~'Ipi| log~ = log IPI- l_~Ipil log Ipil 
i ~ ~P ; IPl i 

and is just the information content of a 
finite probability space. 

If {A,B} is a partition of P, then the 
entropy loading of the partition is defined 
as: 

C(A,B) = H(A) + H(B) - H(P) 

Van Emden computed his entropy measure via 
an object/predicate table where: 

Aij=l if and only if object i had predi- 
cate j 

For example, assume that the following 
set of 5 objects {1,2,3,4,5} has 5 predi- 
cates {a,b,c,d,e) as follows: 

a b c d e 
1 01010 
2 10100 
3 10110 
4 01011 
5 00010 

In order to compute H({4,5}) consider only 
those columns containing information about 
either object 4 or object 5. The interre- 
lationships among all objects, relative to 
these columns, will be measured. Object 4 
is described by predicated b, d, and e. 
Object 5 is described by predicate d. Thus 
a reduced object predicate table can be 
prepared : 

b d e 
1 110 
2 000 
3 010 
4 111 
5 010 

From this data, the following partitions 
can be developed: 

{i}, {2}, {3,5}, {4} 

and the entropy can be computed: 

H({4,5}) = log 5 - (2/5) log 2 

Similarly H({1,2,3}) and H({I,2,3,4,5}) can 
be computed, as well as the entropy loading 
of the partition: 

H({I,2,3}) = log 5 - (2/5) log 2 
H({I,2,3,4,5) = log 5 
C({I,2,3},{4,5}) = log 5-(4/5)Iog 5 

Van Emden has shown that for two 
different decompositions of P ([A,B} and 
{C,D}), if C(A,B) < C(C,D), then A and B 
interact less than do C and D; thus A and B 
are more independent. 

Chanon [i] has used this measure in 
order to evaluate top-down programming. As 
a program is developed, assumptions are 
made about the data and an object/predicate 
table can be produced. Chanon showed that 
for two different decompositions of the 
same program, the one with the lower entro- 
py loading was a more well structured 
version. 

Unfortunately Chanon's idea cannot be 
used to automatically evaluate program 
structure via a compiler. Similar to the 
problems of automatically certifying the 
correctness of a program, the appropriate 
theorem proving techniques simply do not 
exist. 

A modification to Chanon "s approach, 
however, can be used to automatically 
generate structuring information. This new 
measure will be called data entropy of a 
program. Consider the attributes relevant 
to data storage: data may be known 
(declared) within a subroutine, data may be 
accessed, or data may be altered. Thus for 
each statement j (row in an 
object/predicate table) and for each 
variable i in a program let: 

D(j,3i+l) = 1 iff i is known at j 
D(j,3i+2) = 1 iff i is accessed by j 
D(j,3i+3) = 1 iff i is altered by j 

Using this definition, D forms an 
object/predicate table, and thus the entro- 
py of a program can be computed. 

This entropy measure has some of the 
properties desired of an entropy measure. 
It tries to measure the redundancy of data 
within a program - i. e. how many distinct 
variables actually represent the same phy- 
sical construct. For example, in well 
designed systems, the data should be local 
to only a few routines. If that is so, then 
the entropy of the progam, relative to that 
data will be approxiamtely: 

log n - (k/n) log k 
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where n is the number of subroutines and k 
is the number of routines that access the 
data. For small k the entropy will he maxi- 
mal. (Note that this differs from the usual 
definitions of entropy where small values 
of the entropy measure mean less entropy. 
This conflict can easily he corrected by 
defining the measure as log n - H, since 
the maximal value is log n.) 

4. IMPLEMENTATION 

4.1 Implemented Measures 

In order to test some of these ideas 
empirically, some of the previously 
described techniques have been implemented 
in a diagnostic system, called PLUM, imple- 
mented by the author at the University of 
Maryland. 

PLUM is a load and go PL/I compiler for 
the Univac l100-series computer. It is 
typical of several compile and go systems 
in that it is based upon a very forgiving 
philosophy - most syntax errors are correc- 
ted automatically and most execution errors 
result in default values being used rather 
than having execution ~ terminated. It is 
used primarily as a teaching tool, with the 
average student using under 5 seconds of 
computer time for each run [19]. 

The implementation of PLUM produces the 
execution profiles mentioned previously 
(fig. i)° Since the current statement 
number in execution was being saved in a 
register for diagnostic purposes, it was 
very easy to add code to update an array 
for each statement executed. 

PLUM also produces a table giving the 
count of statement types in a program (fig. 
2). Work is currently proceeding to modify 
the lexical scanner in order to have it 
generate the data necessary to produce the 
algorithm dynamics information. 

The first implementation of the trace 
history (fig. 3) was a "quick and dirty" 
implementation that took about an hour to 
implement. Since PLUM already contains a 
tracing feature, the trace history was 

implemented by simply saving all traced 
output in file, and running a PL/I program 
using this file as data. It will be a minor 
change to the runtime support routines in 
order to have the traced output save direc- 
tly onto a mass storage file. In a similar 
manner, the transition matrix has been 
produced. 

4.2 Development Tools 
Aside from the measures that have been 

added to PLUM, additional features have 
been added which aid in developing well 
structured programs. This is especially 
important in a university environment where 
the compiler is a teaching tool in addition 
to being a program development aid. 

A structured program is frequently a 
two dimensional program. Reading down the 
left margin gives the overall flow of the 
program, while reading to the right 
generally gives successively more and more 
detail as DO loops and IF statements are 
expanded. In order to facilitate this docu- 
mentation process, an automatic formatter 
has been installed. Use of this option 
causes the source program listing to be 
indented for each nested DO loop or proce- 
dure block. This feature is convenient when 
statements are added as a program gets 
debugged and the source listing tends to 
get very messy (fig. 5). 

Another feature which has been added is 
the printing of an error message for insuf- 
ficiently commented programs. As of now, 
all programs must contain at least i~% 
comments or else a warning message will be 
printed. The next step will be to make this 
a terminal error message; however, before 
that can be done, more study must be done 
on the nature of program comments. Since 
this message has just recently been added, 
the reaction from the user community is 
eagerly awaited. 

The ability to analyze many programs 
over long periods of time is important in 
evaluating the program development process. 
This ability has been added to PLUM via an 
automatic data collection facility. Each 
usage of the PLUM compiler causes approxi- 

A"CCUNTIKC TTMES PRCG~AM SIZE 
ACCT # EL ~-  NAUE O"TSONS TY~[  COMPL EXEC # ST"TS ~3J 5YMTB. INT FM STACK TOKS BLKS 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

OS5223PAUL ST1 ?T C÷S 111G 2525  n 75 313 B7 133 lC5 3 
CC522SFAUL STI CS'V C+ ~ 115C 2434 e 7~ 313 87 IZC 1C6 Z 
QC5223PAUL ARTNS NT C+C 11C4 ZSgg ~ 45 191 3S 115 4C " 
CCS22ZP~UL ARTN NT C+[ !C75 2482 ~ ~I 15~ qC 135 47 
~5223~AUL ARYNV NT C+~ 1075 3D98 1 IS3 239 75 ISI  81 4 
£C5223PAUL EN'F  NT C+~ 9Cq 2~3~ ~ 26 1~2 5 I  87 $7 Z 
CDS223PAUL EN'R NT C+~ 9CI 23]2 ° 2S 192 47 87 ~= " 

c~ 7 DISPLAY C+r 3G4 =421 14C lED 1 ~  119 CC.~2.K E" I~ ZZt ~" 
DOSZ23K DI?VLAY ET C+~ g57 2476 I ~ 14~ 231 103 188 119 2 
CC522/K D I~LAY  ~T C +r  ~?Z 22~27 SF IqC 225 ~C3 I88 119 Z 
OC5233K 9ISPLAY ST C 951 C I ~ 14~ 235 103 ~ 119 
CC522SK DISPLAY ST C+ r gCC 5722C ~F 14C 23£ ICZ I~8 :19 Z 
"=~ ST 2~ 2~ ~7g 208 aS 215 C .... SMARV PS~ C+[ 527 245S 2 

CCSZZZMA~V PZ ~ "" C +~ 45? I~CI ~ . 34~ ~34 :28 I~3 23 
OS5223MARV PI~ ~T C+[ 457 2551 Z? 199 3S4 14Z 4~4 149 2 
CCt22ZMARV r 1 " 1  U" C+ r 811 2C44 4e 7C2 E4g 48C 97C ~C7 2 
CZ5223MARV PIX2 S r C 534 0 2~ Z73 5!2 273 D 318 D 
CC~Z2SM~PV FITE ST C+ ~ 448 I[~Z ~ IZ[ 21~ IXC 89 128 Z 
COSZZ?MARV PIT7 S" C+F 471 2711 2q 2C5 31G 175 399 172 . 
CCSZZZMAPV F1~3 S~ C+~ 491 278S 2 ~ Ie8 37~ 152 88 177 
C05223MARV P14~ STV C+S 7C7 2239 4~ SC5 723 335 ~22 354 . 
CC[Z23F:ARV FH~RADA ~"~",, C+" q_.~r~: E88E ~I~ 4 F C 8  ~CC 3436 1687 4173 Y43 
CZ=2~MAoV . . . . . .  PSW "U" C+~ . . . .  ~$5 S~7 ~ .'" Z~2 57S 284 139 349 
CC~22ZMA~V FSc O?" C +~ q~2 212C I ~ ~C8 =~S 124 8~ 124 
C~223MA~V PM~S ST C +r 1274 4425 8" 1239 91C 7BG 1443 954 !42 

Fig. 4. Sample data collected on each pro- 
gram giving user account number, program 
name. number of statements, program size, 
and other characteristics, 
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ROTO:PROC OpTIONS(MAIN); 
DECLARE (ApB,XMOLDpxM) FLOAT; 
A=-2. ;  
~= -1 , ;  
XMOLD=O,; 
GOTo START; 
GENER:DO;XMOLD=xM; 
PUT ~KIP LISTIXMI; 
STAR :XM:(A+B)/2.; 
IF ABS(XM-XMQLD)<I.E-5 THEN GO TO FINISH; 
IF FIXM)<O. IHEN DO; 
A=XM; 
GOTO GENER;END; 
ELSE IF F(XM)>o. THEN DO; 
B=XM; 
GOTO GENER;END; 
END; 
F:PROC(X)RETURNS(FLOAT); 
DECLARE X FLOAT! 
RETURN(X**3-X+I,);  
ENO F; 
FINISH:END ROTO; 

ROIO:PROC OPTIONS(MAIN); 
DECLARE (A,B,XMOLD,xM) FLOAT; 
A=-2. ;  
B=-I,; 
XMOLD=0,; 
GOTO START; 
GENE~IDOIXMOLD:xM; 

_UT SKIP LIST(XM); 
5TART:XM=IA+B)/2,; 
IF ABS{XM-XMOLD)<I.E-5 THEN GO TO FINISHI 
IF F(XM)<O. THEN DO; 

A=XM; 
GOTO GENERIEND; 

ELSE IF F(XM)>0, THEN DO; 
B=XM; 
GOTO GENERIEND; 

END; 
FIPROC(X)RETURNS(FLOAT); 

OECLARE X FLOAT; 
RETDRN(X**3-X+I.); 
END F; 

FINISH:END ROTO; 

Fiq. 5. The sam@ proqram with the formatter 
turned off, and on. 

mately ~00 words of information to be saved 
in a mass storage file. Each entry consists 
of programmer name, program name, compile 
and execute time, and such program charac- 
teristics as number of statements, error 
messages and the static language analysis 
mentioned previously. (See fig. 4 for a 
partial listing of this data now being 
collected.) This automatic collection of 
data, unlike earlier semi-manual systems 
[13], will be used to answer questions such 
as: How does a single program develop as 
it gets debugged? What are characteristic 
errors in a program? And does the static 
language analysis undergo a similar evolu- 
tion across a large class of programs as a 
program is developed? 

5. CONCLUSIONS 

There is currently no agreed upon quan- 
titative definition of structured program- 
ming. It is not even clear as to what stru- 
ctured programs really are. Because of 
this, it is doubtful that automatic techni- 
ques can be developed in the near future to 
truly generate correct software. 

However, a system can be implemented 
which does feed back information to the 
programmer which is of use in improving the 
structure of a program. Ideas are develo- 
ping as to what information can be 
obtained, and how it can be used to produce 
better software. While a compiler may not 
know what reliable software is, it can let 
you know when you probably have achieved 
it. 
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