
S h o r t C o m m u n i c a t i o n s
P r o g r a m m i n g L a n g u a g e s

Reversible Execution
M.V. Zelkowitz
University of Maryland

Key Words and Phrases: debugging, PL/I, reversible
execution, backtracking; CR Categories: 4.22, 4.42

The ability to backtrack, or retrace, the execution of a
computer program has gained wider acceptance recently
as a desired feature within a programming language.
This is particularly useful in two different applications:
(1) In debugging systems where the trace output is
saved and can be interrogated under programmer con-
trol [1, 3]; (2) In artificial intelligence applications where
one is trying to prove a certain result. It is frequently
necessary to backup the proof and try some alternative
path [2].

However, none of these systems previously developed
gives the user full control over the backtracking func-
tions. To test this possibility, the following modifica-
tion was made to the Cornell PL/I compiler, PL/C [4].

Backtracking is accomplished via execution of the
statement

R E T R A C E option;

where

opt ion : := TO(label) A N D PL/ l - s t a t emen t
STATEMENTS(express ion) A N D PL/ l - s t a t emen t
CONDITION(expres s ion) A N D PL/ I - s t a t emen t

Execution of RETRACE will cause the program to backup
until the 'option' is satisfied. The corresponding Pt./I
statement (which may be an entire BEGIN block) is then
executed, and normal execution resumes. The TO option
causes backup until the statement labeled 'label' is
encountered; STATEMENTS causes 'expression' statements
to be backed up; while CONDmON causes retracing
until the logical 'expression' becomes true. For a com-
plete description of the RETRACE feature, see [5].

Figure 1 is an example where the RETRACE feature is
used to implement a tree walking algorithm. In this
case, every time a leaf node is processed and there is no
brother to that node, then the program finds the father
node by backtracking to the last point at which the
father node was known. While this example is relatively
simple, the same process can be used to implement a
large class of top down algorithms.

Another use of the RETRACE is in debugging systems.
Copyr ight @ 1973, Associat ion for C ompu t i ng Machinery, Inc.

General permission to republish, bu t not for profit, all or part
o f this material is granted provided tha t A C M ' s copyright notice
is given and tha t reference is made to the publication, to its date
o f issue, and to the fact tha t reprinting privileges were granted
by permiss ion o f the Associa t ion for C o m p u t i n g Machinery.

Research per formed at D e p a r t m e n t of C ompu t e r Science,
Cornell Universi ty. A u t h o r ' s address: D e p a r t m e n t o f Compu te r
Science, Universi ty of Mary land , College Park, M D 20742.

Fig. 1. A t r e e - w a l k i n g a l g o r i t h m u s i n g t he R E T R A C E faci l i ty .
DECLARE 1 TREE(100),

2 SON, 2 BROTHER;
I = ROOT-_NODE;
/* LOOK FOR LEAF */
SCAN__TO--_LEAF: DO WHILE (SON(I) ~ 0);

NEW__NODE: I = SON(I);
END;

/* PROCESS LEAF */
CALL PROCESS (TREE(I));
/* LOOK FOR BROTHER NODE */
NEXT__FATHER: IF BROTHER(I) = 0 THEN

DO; /* GO TO FATHER */
RETRACE TO (NEW__NODE) AND

BEGIN; /* SEE IF DONE */
IF I = ROOT__NODE THEN STOP;
GO TO NEXT__FATHER;
END;

END;
ELSE DO; /* FOUND A BROTHER */

I = BROTHER(I);
GO TO SCAN.__TO__LEAF;

END;

T a b l e I. E x e c u t i o n S ta t i s t i c s

STMT SIZE N SIZE D TIME N TIME D
|3 504 712 0.45 0.78
12 560 880 0.95 1.34
8 320 472 0.12 0.14

15 928 1512 4.10 7.28
54 3160 4832 0.21 0.35

131 5428 7484 0.20 0,26
81 3840 5000 0.11 0,19

AVG 2106 2985 0.88 1.48

STMT--program size (statements)
SIZE N--program size (bytes)
SIZE D--program size with debugging code
TIME N--execution time (sec)
TIME D--execution time with debugging code

A user could include the RETRACE within an ON unit
which is activated by some error condition. The program
could backup several statements and turn on a trace
of the program. In this case the user would get a trace
of his program near the point of the error without the
large volume of output usually associated with tracing
routines. The implementation of this system involved
the creation of an in-core trace table. The assignment
operator was modified so that all assignments resulted
in entries being made into this table. Procedure activa-
tion and termination were also modified so that proper
environments could be saved.

In terms of efficiency, Table I demonstrates these
results. Program size grew about 40 percent while execu-
tion time grew by a factor of 2. Since core is relatively
inexpensive, and the usual interpretive debugging sys-
tems run at a factor of 40 to 50 slower, the 40 percent
increase in size, and 70 percent increase in execution
times are tolerable costs for these features.

Received May 1972; revised April 1973

References
1, Balzer R .M. E X D A M S : Extendable debugging and
moni tor ing system. Proc. AFIPS 1969 SJCC Vol. 34, AFIPS
Press, Montvale , N.J. , pp. 567-580.
2. Fe ldman J.A., et al. Recent developments in S A I L - - a n
Algol based language for artificial intelligence. AFIPS 1972
FJCC Vol. 41, AFIPS Press, Montvale , N.J. , pp. 1193-1202.
3. G r i s h m a n R. The debugging sys tem AIDS. AFIPS 1970
SJCC Vol. 36, AFIPS Press, Montvale , N.J. , pp. 59-78.
4. P L / C - - t h e CorneU compiler for PL / I . Dept . Comput . Sci.,
Cornell U. , I thaca, N.Y., Aug. 1971.
5. Zelkowitz, M. Reversible execution as a diagnostic tool.
Ph.D. Diss., Dept . Comput . Sci., Cornell U. , Jan. 1971.

566 Communica t i ons September 1973
of Volume 16
the A C M N u m b e r 9

