
ERROR CHECKING WITH POINTER VARIABLES

Marvin V. Zelkowitz, Paul R. McMullin, Keith R. Merkel, Howard J. Larsen

Department of Computer Science and Computer Science Center
University of Maryland, College Park, Maryland 20742

I. Introduction

The u s e of p o i n t e r v a r i a b l e s i n a programming !a~"~Ee o f t e n r e s u l t s i n a
d i f f i c u l t c l a s s o f e r r o r s ¢o d e t e c t . P o i n t e r s may p o i n t t o s t a r a g e t h a t
no l o n g e r i s a l l o c a t e d s c~ s t a r a g e may b e s ~ l l o c a t e d a s ane d a t a t y p e and
a c c e s s e d as a n o t h e r . This r e p o r t d e s c r i b e s t h e implementatice~ of p o i n t e r s
i n t h e PLY4 P L / 1 c o m p i l e r s u c h t h a t ~11 e r r o r c o n d i t i o n s a r e d e t e c t e d . I n
additlo~ I l~rel~m~y teStS with PLUM seem to indicate thet the total
checking of pointers is not as expensive an operatio~ as it first appears.

The ability to process an arbitrary number of
instances of a complex data structure frequently
requires the use of pointer variables in a higher
level programming language. In such cases an
arbitrary data structure is allocated, and a
pointer variable is set to point to that structure.
The fields within this structure can then be
accessed via the ~ointer's value.

The use of pointer variables frequently leads to
several types of errors. For example, in a block
structured language like PL/I, storage is allocated
on block entry and deleted on block exit. If a
pointer variable of an outer block is set to point
to a variable in an inner block, then on block exit
the pointer will still have a value even though the
storage for the block has been deleted.

In general there are two techniques for storage
allocation: retention and deletion [I]. The
technique described in the preceding paragraph is
an example of the deletion strategy, with the
pointer resulting in a dangling reference - since
it has a value that points to unallocated storage.
In the retention strategy, storage remains
allocated until the last pointer to it disappears.
The contour model [3] is an example of the
retention policy.

While the retention policy avoids the dangling
reference problem, the deletion pollcyhas certain
advantages. For example a stack can be used for
block structured storage allocation rather than a
general heap storage Which is necessary for
retention. However, checking for invalid references
ismore difficult with the deletion policy.

Over the past six months pointer variables have
been added to the PLUM PL/I compiler for the Univac
1100 series computer at the University of Maryland.
Since PLUM's runtlme environment is based upon a
stack implementation, the deletion policy was
chosen as the basicmechanism. Also since PLUM is a
diagnostic system, total error checking in pointer

variable usage was desired. This report is a
description of the algorithms implemented, and a
preliminary report on the results of that
implementation.

2. PL/I Pointers

In PL/I local storage is stack orlen~e~ (as in
ALGOL) while pointers are used to allocate from a
heap. Pointers contain the location of the storage
that is allocated, While a based variable is used
to describe that storage• For example, consider the
statements:

DECLARE X BASED CHARACTER(8);
DECLARE P POINTER;
ALLOCATE X SET(P);

The first declaration declares X to be a template
describing a character string of length 8. Notice
that it is simply a description of storage - it is
not storage itself. The second declaration declares
P to be a pointer variable whose own storage is
allocated when the block containing P is entered.
The third statement allocates an area described by
X (character string of length 8) and assigns its
address to P.

The storage allocated to Pc an be accessed visa
based reference as in:

DECLARE X BASED CHA~L~CTER(8);
DECLARE Y BASED CHAP~CTER(8);
DECLARE P POINTER;
• . . (P->X) . . .

In this example, (P->X) is the X component of the
storage pointed to by P• Since X and Y have exactly
the same description, in this case (P->X) could
have been replaced by (P->Y).

This example points out an important feature of
PL/I pointer variables - pointers are not typed.
That is every usage of a pointer variable must be
followed by a based variable describing the
contents of the structure pointed to.

391

in considering all that has been written so far,
the following errors may exist in using PL/I
pointers:

I. ~llxed Mode - The storage pointed to by a
pointer is of a different data type than the based
variable used to access it.

2. Dangling References - A pointer points to
storage that was freed, either implicitly by
exiting the block containing the storage or
explicitly via a FREE statement.

3. Inaccessible References - Storage may be
explicitly allocated via an ALLOCATE statement, and
then the pointer is set to some other value. In
this case the storage is forever lost since it can
never be returned to the system.

The first class of errors above is generally
particular to PL/I since many languages force
pointers to he type checked at compile time [6].
However, the latter two classes are not particular
to PL/I, and can occur in almost any language that
has pointers.

3. Pointer Error Checking

3. I. Mixed Mode

In order to eliminate this form of error, typed
pointers were first proposed. Declarations like the
following were first considered:

DECLARE P POINTER (CHARACTER(8}} ;

This would declare P to be a pointer which could
only point to a character string of length 8.
However, this is not PL/I. A similar effect,
however, could have been achieved via the PL/I
declaration:

DECLARE X BASED(P) CHARACTER(8);

In tnis case X is a based (template} character
string of length 8, and is pointed to by P. If P
may not point to any other data type (e.g. DECLARE
Y BASED(P} REAL would be illegal}, then it is
possible to type check all references at compile
time. All that would be necessary at runtime would
be a check for valid pointer references.

If we had been designing a new language, this
approach would have been taken; however, the goal
of PLUM is to be a diagnostic PL/I checkout
compiler. Because of this, and since runtime
execution speed was not of primary importance, it
was decided that compile time type checking was too
restrictive, and we opted for a runtime check.

In order to provide this runtlme check, pointers
were implemented with the following runtime storage
structure:

+ @

l SYMBOL I STORAGE l
1 TABLE ! ADDRESS !

'4- -I ' I "

I LINKAGE !
! INFORMATION !
@ @

When storage .is allocated, besides setting the

address of the storage into the STORAGE ADDRESS
field of the pointer v a r i a b l e , the address of the
based variable °s symbol table entry is also
included. (Since PLUM is a diagnostic system, a
runtime symbol table exists for all variables in
the program.) Every use of a based reference is
preceded by the code:

CALL RESOLVE(pointer, based reference)

If the symbol table address of the based variable
used with the pointer reference is the same as that
contained in the SYMBOL TABLE field of the pointer
variable, then a valid reference exists, and the
operation proceeds normally. If the references do
not match, then a runtlme routine compares the
attributes of both based variables and checks for
compatibility.

For example, consider the example:

DECLARE X BASED FIXED BINARY;
DECLARE Y BASED FIXED BINARY;
DECLARE P POINTER;

~ATE X SET(P);
P->Y = P->X + 2;

In this example, the ALLOCATE statement sets
with the value:

up P

@ @ ÷

1 X ! address !
! ! allocated!

Before each usage of a based reference, the RESOLVE
routine is called. In the assignment statement,
the code generated is:

CALL ~-.SOLVE(P, X)
LOAD register, P->X
ADD register, 2

/* compute RHS */
CALL RESOLVE(P, Y)
STORE register, P->Y

/* set assigned value */

In this case, the second call to RESOLVE (e.g.
RESOLVE(P,Y)) takes significantly more time than
the first call to RESOLVE. Since P points to a
variable of format X, the runtlme routine must
check that X and Y have exactly the same form. For
PL/I structures, this results in a tree walking
algorithm that checks corresponding leaf nodes of
the structure for compatibility.

Note that this implementation is a restriction of
PL/I. PLUM does not allow a user to set up a
structure and then access it via a different data
type (e.g. setting up a based character string,
then accessing the individual bits of the string by
overlaying a bit string on top of it). If the user
wishes to perform that function, then the UNSPEC
builtin function can be used. By using UNSPEC, the
user is explicitly declaring that type checking is
to be ignored - PLUM will not allow the user
(implicitly or inadvertently) to ignore type
checking.

The RESOLVE routine was relatively easy to
implement in PLUM since a runtlme symbol table
exists; however, it is also possible to implement

392

in a standard compiler. If a based variable is a
simple scalar variable, then the field S~,BOL TABLE
could slmoly be •anencoding of the attributes of
the variable. If the based variable is a complex
structure, then SYMBOL TABLE could point to a
condensed llst of attributes for each element of
the structure.

3.2. Dangling References

The most difficult aspect of pointers is how to
decide whether they point to valid addresses. In
Algol-68 [4] this is accomplished by not allowing
pointers to point to variables declared in an inner
block. In another scheme [5] Lomet uses tombstones
to access storage by accessing the allocated
storage indirectly via these tombstones. However,
the tombstones must remain even if the storage for
the variable is deallocated. In [2], a brief
algorithm is presented for solving this problem in
EULER; however, the details of such an implement-
ation are lacking.

In PL/I storage is allocated in areas. Thus a user
can specify an area variable, which is initially an
unformatted hunk of memory, and add the phrase:

IN(area variable)

to the ALLOCATE statement. In order to accommodate
these, all storage allocation in PLUM is within
areas. Three different areas exist.

The first type of area is the syste m area. This is
all of memory outside of the user's stack. All
storage that is allocated without an explicit area
specified comes from this system area.

A second type of area is the area variable - a
block of storage set aside by the programmer.

A third form of area is the stack area associated
with a given block. Since the ADDR builtin function
allows for accessing the address of any local
variable, this stack area is also considered to be
an area variable. As will shortly be explained,
when any area variable is deallocated, all pointers
pointing into it are found. By making normal block
termination the same as area deallocation, the same
algorithms can be used.

In each area variable (and stack activation
record), all allocated storage is chained together
so it is possible to find all storage allocated
within a given area. In addition all pointers that
point to a given variable are also linked together
via the LINKAGE INFORMATION field of the pointer.
Thus in:

ALLOCATE X SET(P);
Q-P; /* Q is a pointer also */

the storage for X (figure I) will contain a pointer
to Q, and Q will have a pointer to P. When the
storage for X is freed, either by a FREE statement,
or by exitlng the block containing the address
pointed to, this list is scanned, and all pointers
on it are set to a null value. (Actually they are
set to a value that will invoke an error message
the next time that they are examined by the resolve
routine.)

3.3. Inaccessible Storage

The previous section also shows how inaccessible
storage is discovered. Whenever a pointer°s value
is altered it is deleted from the list of pointers
pointing to a given based allocation. If this llst
now contains no entries, then nothing points to the
allocation any longer, and is therefore inaccess-
ible.

In addition to the linkage field in pointers, all
pointers declared within a given block (or area)
are linked together. Whenever a block is exited
(or area deallocated) this list is scanned, and any
pointers still containing non-null values are
unllnked from their based references. This enables
the discovery of inaccessible references caused
when the last pointer to it is deallocated.

It should be noted that this process is recursive.
It may turn out that when a pointer is deallocated,
a based area may now be inaccessible. It is then
necessary to go through the area and set to null
any pointer pointing into it. In addition any
pointers in the area are unlinked from what they
point to, which may make some other area
inaccessible, etc. (See figure 2.)

There is still one type of error that PLUM doesn't
catch. If a ring structure is allocated, and then
the last reference to any element of the ring is
deallocated, then each allocation within the ring
will have a pointer to it, but nothing will point
to the ring itself. Periodic garbage collection
could work in this case since all allocated storage
is chained together; however, this has not as yet
been done. Unlike dangling reference errors, this
error will not permit invalid answers since no
illegal references are allowed - only the loss of
some storage.

For both dangling references and inaccessible
storage, code was added to the RESOLVE routine
described earlier. If the SYMBOL TABLE field of a
pointer has no value in it, then it is a null
reference, and an appropriate message generated.

P Q

X

< j yl

, /
data

Figure I. Runtime structures
statements:

ALLOCATE X SET(P);
Q=P;

after executing the

393

,In all cases, the call to RESOLVE is delayed as
long as possible. For example, the left hand side
of the assignment statement is resolved after the
right hand side expression is evaluated in order to
avoid the (remote) possibility of an expression
that involves a function call which deallocates the
left hand side variable. In addition, based arrays
are resolved after all subscripts have been
evaluated.

One further problem remained - based references as
arguments to a subroutine. In this case, since PL/1
uses a call by reference parameter mechanism, the
called procedure does not know that the parameter
is based, and may well proceed to deallocate it via
its global pointer name, and then reference it via
its parameter. In order to prevent this, PLUM

assumes that pointers contain storage, and based
variables are simply descriptions of this storage.
With this interpretation, it is meaningless to paSS
a based reference to a procedure. If that effect
is desired, then the pointer itself can be passed,
and the variable referenced via a based variable
declared within the procedure.

• ~ile this is a restriction from PL/I, we believe
that it is" reasonable for most applications. In
order to accommodate a larger class of programs,
however, we make the special case that if a based
reference is passed as an argunent .to a subroutine,
then it is placed into temporary storage, and hence
passed by value. Thus any deallocatlon has no
effect.

PLUM 5:05A <U. OF MD. PL/I> 06/13/76
I P:PROCEDURE OPTIONS(MAIN);
2 DECLARE A BASED POINTER,
2 B BASED POINTER,
2 C BASED POINTER,
2 P POINTER,
2 Q POINTER;
2 /* ALLOCATE C */
3 ALLOCATE C SET(P);
3 /* ALLOCATE B */
4 ALLOCATE B SET(Q);
5 Q->B=P;
5 /* ALLOCATE A */
6 ALLOCATE A SET(P);
7 P->A:Q;
7 /* FREE ALL LINKS */
8 Q=NULL;
9 P=NULL;

10 STOP;
11 END;

COMPILE TIME 158 MSEC.

***** IN 9 ERROR EX 107 Nothing points
to A any longer. It will be freed.

***** IN 9 ERROR EX 107 Nothing points
to B any longer. It will be freed.

***** IN 9 ERROR EX 107 Nothing points
to C any longer. It will be freed.

***** IN 10 EX 24 Program stop
EXECUTION TIME 201MSEC.

Figure 2. cascading effect of freeing pointers
whichpoint to othar based pointers.

4; Test Results

After implementing pointers, we were somewhat
concerned about the efficiency of the resulting
system. While execution time was not of prime
importance, we did not want pointers to be so
expensive to use that no one would avail themselves
of the feature. In addition, since the vast
majority of users did not need or even know about
pointers, we wanted to keep the overhead to s
minimum.

For programs that do not use pointers essentially
no overhead was added. Three instructions were
added to every procedure activation and termination
via the code:

SET pointer-fleld:O;
IF polnters-in-block THEN

CALL polnter-lnitialization

Since the IF test is almost always false, no
additional code needs to be executed. Also, no code
is added to the body of a procedure. Thus it is
estimated that each program increased in execution
time by under I% - a negligible figure.

In order to test the implementation of pointers,
the following typical program was written. A linked
list of 10 elements was created, and then deleted
(figure 3a). This was repeated 500 times for a
total of 5000 allocations. The program implemented
the linked lists in two different manners. In one,
an array was declared, and the program did its own
allocation by having the array element contain the
index of the next element in the list. Figure 3b
gives the basic code that did the allocation. The
variable NEXT is the index of the next array
element on the free llst while HEAD is the index of
the first allocated element. In figure 3c the same
basic code is shown using pointer variables. In
this case HD points to the head of the list and
HD->P points to the next element.

After each allocation, the program was modifed to
have 0, 4, 8, 12 and 16 references to an element in
the list. Thus the overhead of accessing based
references, relative to their allocation, could be
monitored.

(a)

IF NEXT=0 THEN
CALL 'OUTOFSPACE

NEW=NEXT;
NEXT=A(NEXT) ;
A(NEW)-H~D;
HEAD=NEW;

DECLARE P BASED POINTER;
DECLARE Q POINTER;
DECLARE HD POINTER;
ALLOCATE P SET(Q) ;
Q->P=HD;
HD=Q;

(b) (c)

Figure 3. (a) List structure created
(b) Allocation using arrays
(c) Allocation using pointers

394

The results of this test are graphed in figure 4. A
total of 4 different programs were tested. Line (a)
is the time required with no subscript checking in
the array allocation. Line (b) is array allocation
with subscript checking turned on. Line (c) is the
pointer implementation where type checking was not
needed. That is, the pointer was accessed via the
same based reference as it was assigned. Finally
llne (d) is the case where full type checking was
needed since the pointer was accessed via a based
variable that was different, but had the same
attributes. (Note that lines (c) and (d) do not
meet at 0 accesses. This is because line (d) still
had to type check the based reference on the FREE
statement, in order to check for errors in PL/I.)

As expected, the runs without subscript checking
took the least time since inline code was generated
for subscripts. This code is comparable to the
code produced by a production compiler. Similarly
the run with full pointer type checking took the
most time due to the complex tree walking algorithm
that is needed.

What was most surprising were lines (b) and (c).
Most users run PLUM with subscript checking turned
on. Since PL[~4 is a diagnostic system, subscript
checking is an important diagnostic tool, and from
a practical point of view, it is also the default
condition, and most users, being lazy, prefer not
to modify the defaults unless they run into
explicit problems with it. Similary, we believe
that for most users of pointers, the based variable
used for the assignment to a pointer will be the
same based variable used in its access. Thus full
type checking is usually unnecessary and only
dangling references need to be checked.

With no accesses of based storage between
allocations, the pointer implementation took about
50% more time than the array implementation with
subscript checking; however, with more than six
accesses per allocation, the pointer implementation
is more efficient. That is, the overhead to perform
subscript checking is more than the overhead to
perform pointer validity checking. While we may be
able to speed up subscript checking, the validity
checking for pointers (without type checking) is
inherently a simpler operation.

(Note that further details of the implementation
(somewhat dated since it was written before the
actual implementation began) as well as how the
PL/I controlled storage class was implemented can
be found in [7].)

5. Conclusions

The results of this test seem to indicate the
opposite of what we expected. For the majority of
programs that will use pointers in PLUM, execution
times will be comparable, or even less, than the
corresponding program which uses linked arrays. By
typing pointers, an efficient algorithm has been
implemented which is inherently simpler than the
equivalent subscript checking algorithm. While it
is possible to use a significant amount of time for
pointer type checking (llne d of figure 4), our
approach is that for the vast majority of users Who
do not know (or care) about pointers no overhead is

CO

[--

f~

04

v--

D

f
s- no tYP echecklng

(a) No subscript checking

4 8 12
Accesses per allocatlon/deallocation

Figure 4. Pointer-Array timing comparison

16

introduced. For the majority of those Who do use
pointers, then the implementation is efficlent.
Finally for those Who insist on executing more
complex programs than is generally necessary, they
will pay in execution time. In any case, error
checking will be performed regardless of what they
do.

References

[I] Berry D. M., et. al. On the time required for
retention. ACM/IEEE Symposium on High Level
Language Computer Architecture, SIGPLAN Notlces,
November, 1973, 165-178.

• [2] Chirica L. M., et. al. TWO parallel EULER
runtlme models: the dangling reference, impostor
environment and label problems. ACM/IEEE Symposium
on High Level Language Computer Architecture,
SIGPLAN Notices, November, 1973, 141-151.

[3] Johnston J. B., The contour model of block
structured processes. Proc. ACM Symposium on Data
Structures in Programming Languages, SIGPLAN
Notices, February, 1971, 55-82.

[4] Lindsey C. H. and S. G. van der Meulen,
Informal Introduction to Algol 68. North Holland
Publishing Company, Amsterdam, 1971.

[5] Lomet D. B., Scheme for invalidating references
to freed storage. IBM Journal of Research and
Development, January, 1975, 26-35.

[6] Wirth N., The programming language PASCAL. Acta
Informatica I, 1971, 35-63.

[7] Zelkowitz M. V., Pointer variables within a
diagnostic compiler. University of Maryland
Computer Science Technical Report TR-343, December,
1974.

3 9 5

