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I. Introduction 

The u s e  of p o i n t e r  v a r i a b l e s  i n  a programming !a~"~Ee o f t e n  r e s u l t s  i n  a 
d i f f i c u l t  c l a s s  o f  e r r o r s  ¢o d e t e c t .  P o i n t e r s  may p o i n t  t o  s t a r a g e  t h a t  
no  l o n g e r  i s  a l l o c a t e d  s c~  s t a r a g e  may b e  s ~ l l o c a t e d  a s  ane  d a t a  t y p e  and 
a c c e s s e d  as  a n o t h e r .  This  r e p o r t  d e s c r i b e s  t h e  implementatice~ of p o i n t e r s  
i n  t h e  PLY4 P L / 1  c o m p i l e r  s u c h  t h a t  ~11 e r r o r  c o n d i t i o n s  a r e  d e t e c t e d .  I n  
additlo~ I l~rel~m~y teStS with PLUM seem to  indicate thet the total 
checking of pointers is not as expensive an operatio~ as it first appears. 

The ability to process an arbitrary number of 
instances of a complex data structure frequently 
requires the use of pointer variables in a higher 
level programming language. In such cases an 
arbitrary data structure is allocated, and a 
pointer variable is set to point to that structure. 
The fields within this structure can then be 
accessed via the ~ointer's value. 

The use of pointer variables frequently leads to 
several types of errors. For example, in a block 
structured language like PL/I, storage is allocated 
on block entry and deleted on block exit. If a 
pointer variable of an outer block is set to point 
to a variable in an inner block, then on block exit 
the pointer will still have a value even though the 
storage for the block has been deleted. 

In general there are two techniques for storage 
allocation: retention and deletion [I]. The 
technique described in the preceding paragraph is 
an example of the deletion strategy, with the 
pointer resulting in a dangling reference - since 
it has a value that points to unallocated storage. 
In the retention strategy, storage remains 
allocated until the last pointer to it disappears. 
The contour model [3] is an example of the 
retention policy. 

While the retention policy avoids the dangling 
reference problem, the deletion pollcyhas certain 
advantages. For example a stack can be used for 
block structured storage allocation rather than a 
general heap storage Which is necessary for 
retention. However, checking for invalid references 
ismore difficult with the deletion policy. 

Over the past six months pointer variables have 
been added to the PLUM PL/I compiler for the Univac 
1100 series computer at the University of Maryland. 
Since PLUM's runtlme environment is based upon a 
stack implementation, the deletion policy was 
chosen as the basicmechanism. Also since PLUM is a 
diagnostic system, total error checking in pointer 

variable usage was desired. This report is a 
description of the algorithms implemented, and a 
preliminary report on the results of that 
implementation. 

2. PL/I Pointers 

In PL/I local storage is stack orlen~e~ (as in 
ALGOL) while pointers are used to allocate from a 
heap. Pointers contain the location of the storage 
that is allocated, While a based variable is used 
to describe that storage• For example, consider the 
statements: 

DECLARE X BASED CHARACTER(8); 
DECLARE P POINTER; 
ALLOCATE X SET(P); 

The first declaration declares X to be a template 
describing a character string of length 8. Notice 
that it is simply a description of storage - it is 
not storage itself. The second declaration declares 
P to be a pointer variable whose own storage is 
allocated when the block containing P is entered. 
The third statement allocates an area described by 
X (character string of length 8) and assigns its 
address to P. 

The storage allocated to Pc an be accessed visa 
based reference as in: 

DECLARE X BASED CHA~L~CTER(8); 
DECLARE Y BASED CHAP~CTER(8); 
DECLARE P POINTER; 
• . . (P->X) . . . 

In this example, (P->X) is the X component of the 
storage pointed to by P• Since X and Y have exactly 
the same description, in this case (P->X) could 
have been replaced by (P->Y). 

This example points out an important feature of 
PL/I pointer variables - pointers are not typed. 
That is every usage of a pointer variable must be 
followed by a based variable describing the 
contents of the structure pointed to. 

391 



in considering all that has been written so far, 
the following errors may exist in using PL/I 
pointers: 

I. ~llxed Mode - The storage pointed to by a 
pointer is of a different data type than the based 
variable used to access it. 

2. Dangling References - A pointer points to 
storage that was freed, either implicitly by 
exiting the block containing the storage or 
explicitly via a FREE statement. 

3. Inaccessible References - Storage may be 
explicitly allocated via an ALLOCATE statement, and 
then the pointer is set to some other value. In 
this case the storage is forever lost since it can 
never be returned to the system. 

The first class of errors above is generally 
particular to PL/I since many languages force 
pointers to he type checked at compile time [6]. 
However, the latter two classes are not particular 
to PL/I, and can occur in almost any language that 
has pointers. 

3. Pointer Error Checking 

3. I. Mixed Mode 

In order to eliminate this form of error, typed 
pointers were first proposed. Declarations like the 
following were first considered: 

DECLARE P POINTER (CHARACTER(8}} ; 

This would declare P to be a pointer which could 
only point to a character string of length 8. 
However, this is not PL/I. A similar effect, 
however, could have been achieved via the PL/I 
declaration: 

DECLARE X BASED(P) CHARACTER(8); 

In tnis case X is a based (template} character 
string of length 8, and is pointed to by P. If P 
may not point to any other data type (e.g. DECLARE 
Y BASED(P} REAL would be illegal}, then it is 
possible to type check all references at compile 
time. All that would be necessary at runtime would 
be a check for valid pointer references. 

If we had been designing a new language, this 
approach would have been taken; however, the goal 
of PLUM is to be a diagnostic PL/I checkout 
compiler. Because of this, and since runtime 
execution speed was not of primary importance, it 
was decided that compile time type checking was too 
restrictive, and we opted for a runtime check. 

In order to provide this runtlme check, pointers 
were implemented with the following runtime storage 
structure: 

+ @ 

l SYMBOL I STORAGE l 
1 TABLE ! ADDRESS ! 

'4- -I '  I "  

I LINKAGE ! 
! INFORMATION ! 
@ @ 

When storage .is allocated, besides setting the 

address of the storage into the STORAGE ADDRESS 
field of the pointer v a r i a b l e ,  the address of the 
based variable °s symbol table entry is also 
included. (Since PLUM is a diagnostic system, a 
runtime symbol table exists for all variables in 
the program. ) Every use of a based reference is 
preceded by the code: 

CALL RESOLVE(pointer, based reference) 

If the symbol table address of the based variable 
used with the pointer reference is the same as that 
contained in the SYMBOL TABLE field of the pointer 
variable, then a valid reference exists, and the 
operation proceeds normally. If the references do 
not match, then a runtlme routine compares the 
attributes of both based variables and checks for 
compatibility. 

For example, consider the example: 

DECLARE X BASED FIXED BINARY; 
DECLARE Y BASED FIXED BINARY; 
DECLARE P POINTER; 

~ATE X SET(P); 
P->Y = P->X + 2; 

In this example, the ALLOCATE statement sets 
with the value: 

up P 

@ @ ÷ 

1 X ! address ! 
! ! allocated! 

Before each usage of a based reference, the RESOLVE 
routine is called. In the assignment statement, 
the code generated is: 

CALL ~-.SOLVE(P, X) 
LOAD register, P->X 
ADD register, 2 

/* compute RHS */ 
CALL RESOLVE(P, Y) 
STORE register, P->Y 

/* set assigned value */ 

In this case, the second call to RESOLVE (e.g. 
RESOLVE(P,Y)) takes significantly more time than 
the first call to RESOLVE. Since P points to a 
variable of format X, the runtlme routine must 
check that X and Y have exactly the same form. For 
PL/I structures, this results in a tree walking 
algorithm that checks corresponding leaf nodes of 
the structure for compatibility. 

Note that this implementation is a restriction of 
PL/I. PLUM does not allow a user to set up a 
structure and then access it via a different data 
type (e.g. setting up a based character string, 
then accessing the individual bits of the string by 
overlaying a bit string on top of it). If the user 
wishes to perform that function, then the UNSPEC 
builtin function can be used. By using UNSPEC, the 
user is explicitly declaring that type checking is 
to be ignored - PLUM will not allow the user 
(implicitly or inadvertently) to ignore type 
checking. 

The RESOLVE routine was relatively easy to 
implement in PLUM since a runtlme symbol table 
exists; however, it is also possible to implement 
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in a standard compiler. If a based variable is a 
simple scalar variable, then the field S~,BOL TABLE 
could slmoly be •anencoding of the attributes of 
the variable. If the based variable is a complex 
structure, then SYMBOL TABLE could point to a 
condensed llst of attributes for each element of 
the structure. 

3.2. Dangling References 

The most difficult aspect of pointers is how to 
decide whether they point to valid addresses. In 
Algol-68 [4] this is accomplished by not allowing 
pointers to point to variables declared in an inner 
block. In another scheme [5] Lomet uses tombstones 
to access storage by accessing the allocated 
storage indirectly via these tombstones. However, 
the tombstones must remain even if the storage for 
the variable is deallocated. In [2], a brief 
algorithm is presented for solving this problem in 
EULER; however, the details of such an implement- 
ation are lacking. 

In PL/I storage is allocated in areas. Thus a user 
can specify an area variable, which is initially an 
unformatted hunk of memory, and add the phrase: 

IN(area variable) 

to the ALLOCATE statement. In order to accommodate 
these, all storage allocation in PLUM is within 
areas. Three different areas exist. 

The first type of area is the syste m area. This is 
all of memory outside of the user's stack. All 
storage that is allocated without an explicit area 
specified comes from this system area. 

A second type of area is the area variable - a 
block of storage set aside by the programmer. 

A third form of area is the stack area associated 
with a given block. Since the ADDR builtin function 
allows for accessing the address of any local 
variable, this stack area is also considered to be 
an area variable. As will shortly be explained, 
when any area variable is deallocated, all pointers 
pointing into it are found. By making normal block 
termination the same as area deallocation, the same 
algorithms can be used. 

In each area variable (and stack activation 
record), all allocated storage is chained together 
so it is possible to find all storage allocated 
within a given area. In addition all pointers that 
point to a given variable are also linked together 
via the LINKAGE INFORMATION field of the pointer. 
Thus in: 

ALLOCATE X SET(P); 
Q-P; /* Q is a pointer also */ 

the storage for X (figure I) will contain a pointer 
to Q, and Q will have a pointer to P. When the 
storage for X is freed, either by a FREE statement, 
or by exitlng the block containing the address 
pointed to, this list is scanned, and all pointers 
on it are set to a null value. (Actually they are 
set to a value that will invoke an error message 
the next time that they are examined by the resolve 
routine.) 

3.3. Inaccessible Storage 

The previous section also shows how inaccessible 
storage is discovered. Whenever a pointer°s value 
is altered it is deleted from the list of pointers 
pointing to a given based allocation. If this llst 
now contains no entries, then nothing points to the 
allocation any longer, and is therefore inaccess- 
ible. 

In addition to the linkage field in pointers, all 
pointers declared within a given block (or area) 
are linked together. Whenever a block is exited 
(or area deallocated) this list is scanned, and any 
pointers still containing non-null values are 
unllnked from their based references. This enables 
the discovery of inaccessible references caused 
when the last pointer to it is deallocated. 

It should be noted that this process is recursive. 
It may turn out that when a pointer is deallocated, 
a based area may now be inaccessible. It is then 
necessary to go through the area and set to null 
any pointer pointing into it. In addition any 
pointers in the area are unlinked from what they 
point to, which may make some other area 
inaccessible, etc. (See figure 2.) 

There is still one type of error that PLUM doesn't 
catch. If a ring structure is allocated, and then 
the last reference to any element of the ring is 
deallocated, then each allocation within the ring 
will have a pointer to it, but nothing will point 
to the ring itself. Periodic garbage collection 
could work in this case since all allocated storage 
is chained together; however, this has not as yet 
been done. Unlike dangling reference errors, this 
error will not permit invalid answers since no 
illegal references are allowed - only the loss of 
some storage. 

For both dangling references and inaccessible 
storage, code was added to the RESOLVE routine 
described earlier. If the SYMBOL TABLE field of a 
pointer has no value in it, then it is a null 
reference, and an appropriate message generated. 

P Q 

X 

< j yl 

, /  
data 

Figure I. Runtime structures 
statements: 

ALLOCATE X SET(P); 
Q=P; 

after executing the 
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,In all cases, the call to RESOLVE is delayed as 
long as possible. For example, the left hand side 
of the assignment statement is resolved after the 
right hand side expression is evaluated in order to 
avoid the (remote) possibility of an expression 
that involves a function call which deallocates the 
left hand side variable. In addition, based arrays 
are resolved after all subscripts have been 
evaluated. 

One further problem remained - based references as 
arguments to a subroutine. In this case, since PL/1 
uses a call by reference parameter mechanism, the 
called procedure does not know that the parameter 
is based, and may well proceed to deallocate it via 
its global pointer name, and then reference it via 
its parameter. In order to prevent this, PLUM 

assumes that pointers contain storage, and based 
variables are simply descriptions of this storage. 
With this interpretation, it is meaningless to paSS 
a based reference to a procedure. If that effect 
is desired, then the pointer itself can be passed, 
and the variable referenced via a based variable 
declared within the procedure. 

• ~ile this is a restriction from PL/I, we believe 
that it is" reasonable for most applications. In 
order to accommodate a larger class of programs, 
however, we make the special case that if a based 
reference is passed as an argunent .to a subroutine, 
then it is placed into temporary storage, and hence 
passed by value. Thus any deallocatlon has no 
effect. 

PLUM 5:05A <U. OF MD. PL/I> 06/13/76 
I P:PROCEDURE OPTIONS(MAIN); 
2 DECLARE A BASED POINTER, 
2 B BASED POINTER, 
2 C BASED POINTER, 
2 P POINTER, 
2 Q POINTER; 
2 /* ALLOCATE C */ 
3 ALLOCATE C SET(P); 
3 /* ALLOCATE B */ 
4 ALLOCATE B SET(Q); 
5 Q->B=P; 
5 /* ALLOCATE A */ 
6 ALLOCATE A SET(P); 
7 P->A:Q; 
7 /* FREE ALL LINKS */ 
8 Q=NULL; 
9 P=NULL; 

10 STOP; 
11 END; 

COMPILE TIME 158 MSEC. 

***** IN 9 ERROR EX 107 Nothing points 
to A any longer. It will be freed. 

***** IN 9 ERROR EX 107 Nothing points 
to B any longer. It will be freed. 

***** IN 9 ERROR EX 107 Nothing points 
to C any longer. It will be freed. 

***** IN 10 EX 24 Program stop 
EXECUTION TIME 201MSEC. 

Figure 2. cascading effect of freeing pointers 
whichpoint to othar based pointers. 

4; Test Results 

After implementing pointers, we were somewhat 
concerned about the efficiency of the resulting 
system. While execution time was not of prime 
importance, we did not want pointers to be so 
expensive to use that no one would avail themselves 
of the feature. In addition, since the vast 
majority of users did not need or even know about 
pointers, we wanted to keep the overhead to s 
minimum. 

For programs that do not use pointers essentially 
no overhead was added. Three instructions were 
added to every procedure activation and termination 
via the code: 

SET pointer-fleld:O; 
IF polnters-in-block THEN 

CALL polnter-lnitialization 

Since the IF test is almost always false, no 
additional code needs to be executed. Also, no code 
is added to the body of a procedure. Thus it is 
estimated that each program increased in execution 
time by under I% - a negligible figure. 

In order to test the implementation of pointers, 
the following typical program was written. A linked 
list of 10 elements was created, and then deleted 
(figure 3a). This was repeated 500 times for a 
total of 5000 allocations. The program implemented 
the linked lists in two different manners. In one, 
an array was declared, and the program did its own 
allocation by having the array element contain the 
index of the next element in the list. Figure 3b 
gives the basic code that did the allocation. The 
variable NEXT is the index of the next array 
element on the free llst while HEAD is the index of 
the first allocated element. In figure 3c the same 
basic code is shown using pointer variables. In 
this case HD points to the head of the list and 
HD->P points to the next element. 

After each allocation, the program was modifed to 
have 0, 4, 8, 12 and 16 references to an element in 
the list. Thus the overhead of accessing based 
references, relative to their allocation, could be 
monitored. 

(a) 

IF NEXT=0 THEN 
CALL 'OUTOFSPACE 

NEW=NEXT; 
NEXT=A(NEXT) ; 
A(NEW)-H~D; 
HEAD=NEW; 

DECLARE P BASED POINTER; 
DECLARE Q POINTER; 
DECLARE HD POINTER; 
ALLOCATE P SET(Q) ; 
Q->P=HD; 
HD=Q; 

(b) (c) 

Figure 3. (a) List structure created 
(b) Allocation using arrays 
(c) Allocation using pointers 
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The results of this test are graphed in figure 4. A 
total of 4 different programs were tested. Line (a) 
is the time required with no subscript checking in 
the array allocation. Line (b) is array allocation 
with subscript checking turned on. Line (c) is the 
pointer implementation where type checking was not 
needed. That is, the pointer was accessed via the 
same based reference as it was assigned. Finally 
llne (d) is the case where full type checking was 
needed since the pointer was accessed via a based 
variable that was different, but had the same 
attributes. (Note that lines (c) and (d) do not 
meet at 0 accesses. This is because line (d) still 
had to type check the based reference on the FREE 
statement, in order to check for errors in PL/I. ) 

As expected, the runs without subscript checking 
took the least time since inline code was generated 
for subscripts. This code is comparable to the 
code produced by a production compiler. Similarly 
the run with full pointer type checking took the 
most time due to the complex tree walking algorithm 
that is needed. 

What was most surprising were lines (b) and (c). 
Most users run PLUM with subscript checking turned 
on. Since PL[~4 is a diagnostic system, subscript 
checking is an important diagnostic tool, and from 
a practical point of view, it is also the default 
condition, and most users, being lazy, prefer not 
to modify the defaults unless they run into 
explicit problems with it. Similary, we believe 
that for most users of pointers, the based variable 
used for the assignment to a pointer will be the 
same based variable used in its access. Thus full 
type checking is usually unnecessary and only 
dangling references need to be checked. 

With no accesses of based storage between 
allocations, the pointer implementation took about 
50% more time than the array implementation with 
subscript checking; however, with more than six 
accesses per allocation, the pointer implementation 
is more efficient. That is, the overhead to perform 
subscript checking is more than the overhead to 
perform pointer validity checking. While we may be 
able to speed up subscript checking, the validity 
checking for pointers (without type checking) is 
inherently a simpler operation. 

(Note that further details of the implementation 
(somewhat dated since it was written before the 
actual implementation began) as well as how the 
PL/I controlled storage class was implemented can 
be found in [7].) 

5. Conclusions 

The results of this test seem to indicate the 
opposite of what we expected. For the majority of 
programs that will use pointers in PLUM, execution 
times will be comparable, or even less, than the 
corresponding program which uses linked arrays. By 
typing pointers, an efficient algorithm has been 
implemented which is inherently simpler than the 
equivalent subscript checking algorithm. While it 
is possible to use a significant amount of time for 
pointer type checking (llne d of figure 4), our 
approach is that for the vast majority of users Who 
do not know (or care) about pointers no overhead is 

CO 

[-- 

f~ 

04 

v-- 

D 

f 
s- no tYP echecklng 

(a) No subscript checking 

4 8 12 
Accesses per allocatlon/deallocation 

Figure 4. Pointer-Array timing comparison 
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introduced. For the majority of those Who do use 
pointers, then the implementation is efficlent. 
Finally for those Who insist on executing more 
complex programs than is generally necessary, they 
will pay in execution time. In any case, error 
checking will be performed regardless of what they 
do. 
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