
rNFU~ TION ~~~EN~ES 77,3253.50 (1994) 32.5

Measuring Prime Program Complexity

MARVIN V. ZELKOWITZ

~~~~~nt of Computer Science and 
Institute for Aduanced Computer Studies, 
University of Maryland, 
College Park, MD 20742 

and 

JIANHUI TIAN 

IBM PRGS Toronto Lab. 
895 Don Mills Road, 
North York, Ont. 
MU lM6, Canada 

ABSTRACT 

This paper uses the prime program decomposition of a program as the basis for a 
measure that closely correlates with our intuitive notion of program complexity. This 
measure is based upon the information theory ideas of randomness and entropy such 
that results about structured programming, data abstractions, and other programming 
paradigms can be stated in quantitative terms, and empirical means can be used to 
validate the assumptions used to develop the model. As a graph-based model, it can be 
applied to several graphical examples as extensions not otherwise available to source- 
code based models. This paper introduces the measure, derives several properties for it, 
and gives some simple examples to demonstrate that the measure is a plausible 
approximation of our notions concerning structured programming. 

1. INTRODU~ION 

This paper develops a program complexity metric based upon the 
information theoretic concepts of complexity and randomness to quantify 
programming concepts like structured programming and data abstractions. 
The graph-based prime program decomposition of a flow graph is used to 
develop these ideas. 

W/y do we need such Q measure? Program complexity is of significant 
interest within software engineering. Numerous “truths” are afforded 

0 Elsevier Science Inc. 1994 
655 Avenue of the Americas, New York, NY 10010 0020-0255/94,‘$7.00 



326 M. V. ZELKOWITZ AND J. TIAN 

daily: 

(a) Complex programs are larger to build, thus cost more. 
(b) Complex programs are more unreliable. 
(c) Data abstraction, object-oriented design, and structured program- 

ming are all techniques which lower program complexity, and hence 
improve development cost and performance of such software. 

All of these have serious economic consequences; however, anecdotal 
data are only loosely correlated. An effective measure could tie together 
many of these concepts. In addition, without quality metrics, ad hoc 
solutions may be imposed which are not optimal. For example, since size is 
often used as a measure, several guidelines limit module size to 100 lines 
of code or a page of text. However, at least one study has shown that such 
artificial limits to module size or complexity are suboptimal with respect to 
error rates [5]. What is clearly needed is an effective measure for such 
complexity. 

We would also like to predict system size and cost-factors crucial to 
any engineering discipline, Source code measures are generally ineffective 
since the numbers are only available once the project is completed. We 
would like to base our measurement notion on a graphical structure to be 
able to develop quantitative results about the specifications and design 
phases of development [16]. 

Our notion of complexity comes from three sources: (1) We base our 
definition of complexity on the measures of information content and 
randomness that grew out of information theory. (2) This research builds 
upon the work of Halstead, McCabe, Basili, Boehm, and others who have 
studied related measures. (3) The graph-based prime program decomposi- 
tion of a flowgraph is the formal model we propose as a basis for our ideas 
of programming complexity. 

The remainder of this section will briefly describe these separate roots 
for program complexity, while Section 2 will describe our prime program 
complexity measure in greater detail. Section 3 develops several properties 
of this measure, and Section 4 gives some examples of its use. 

1.1. INFORMATION THEORY 

Aspects of information theory and theoretical computer science have 
been converging for the past 30 years. Fundamental work in this area is 
due to Chaitin [lo] and Kolmogorov [13]. The randomness (or algotithmic 
complexity) of a string of numbers is determined by the minimal length of a 
program which can compute that string. Thus, the 192 digits in the string 



MEASURING PRIME PROGRAM COMPLEXITY 327 

“1234., .9899100” can be described by the 27-character pseudo-Pascal 
program “for I := 1 to 100 do write(I).” However, a random string of 192 
digits would, in general, exhibit no such structure, and its shortest repre- 
sentation would be a program to write each digit in turn. If we increase the 
string to the 5,888,894 digits “1234.. ~999999100~0,” then we only need 
to marginally increase the program complexity to the 31-character string 
“for I := 1 to 1000000 do write(I).” However, a random string of 5,888,896 
digits would need a significantly larger program describing its structure. 

The actual bound on a random string of length 12 is actually n + c for 
some constant c (i.e., the II digits encoding the string and an ‘%&e~preter” 
of length c to decode and print out the digits). Unfortunately, we cannot 
determine the minimal complexity of a given string since minimal program 
size for a given function runs into undecidability and the limits of our 
axiom systems [91. However, we use such complexity as a theoretical limit 
to compare against specific program complexity. 

The most common way to measure a program is to give its size, either in 
terms of source lines, with or without comments, or object code. Numerous 
studies have shown that as poor as it is, ease of collection and approximate 
reliabili~ have kept its usefulness as a complete metric in spite of its 
numerous shortcomings (e.g., application and language specific, known 
only after project finished, ignores all other developmental factors like 
tools, environment, quality of staff, etc.) [4]. 

Because of such problems, other complexity metrics have been pro- 
posed [7]. The software science measure of Halstead is based upon 
variable and token counts in a program, but has no component that 
addresses the control structure such as loop or conditional statements [12]. 
McCabe’s cyclomatic complexity addresses aspects of the control flow (its 
loop structure), but has no data component [15]. Knots are related to 
cyclomatic structure and evaluates the linearity of the control graph. On 
the other hand, measures like data bindings [31 or the def-use testing 
criteria of Rapps and Weyuker 1171 look at data interaction with little 
control flow information. Productivity measures like the COCOMO model 
[6] were developed to address development time and effort, and hence do 
not directly address complexity or reliability. Other measures look at 
assorted attributes of a project (e.g., size, development environment, 
machines available, programming language used, function points) and use 
a statistical approach for developing projections [l, 18]. 

While all of these measures capture some aspects of the programming 
process, and some are useful for large scale projections of cost, effort, 



328 M. V. ZELKOWITZ AND J. TIAN 

time, and reliability in large developments, we are interested in studying 
the science of programming by identifying those characteristics of the 
source program that reflect on the programming process. In addition, we 
believe that both control and data interactions affect complexity, which 
some of the other models do not address. We believe that the prime 
program decomposition adds this to the previous discussion of information 
theory complexity. 

1.3. PlUME PROGRAMS 

The prime program was developed by Maddux [141 as a generalization 
of structured programming to define the unique hierarchical decomposi- 
tion of a graph. We will assume that graphs contain two classes of nodes. 
~~nc~~~~ nodes represent computations by a program, and are pictured as 
circles or boxes with a single arc entering such a node and a single arc 
leaving such a node. Conditionals are represented as function nodes with 
multiple output arcs. A second class of node, joins, is represented as a 
point where two arcs flow together to form a single output arc. We can 
describe the decomposition of a graph via its function nodes alone. 

A properprogram is a graph containing one input arc, one output arc, 
and for each (function) node in the graph, there is a path from the input 
arc through that node to the output arc. A prime program is a proper 
program of more than one node that contains no proper subprograms of 
more than one node (i.e., no two arcs can be cut to extract another proper 
subprogram). For example, Figure l(a) is a prime, while Figure l(b) is not. 
In Figure l(b), arcs A-C and F-G can be cut to extract proper program 

(a) (b) 

Fig. 1. Proper programs. 



MEASURING PRIME PROGRAM COMPLEXITY 329 

C-D-E-F. Note that for simplicity, we often omit the join nodes. Thus, 
the entrance to node C in Figure l(b) is given by Figure 2(a), but actually 
means a graph with the added join node of Figure 2(b). 

Replacing any prime subprogram in a graph by a single function node 
creates a unique hierarchical decomposition of a graph into primes [ill. 
The prime programs containing up to three nodes are the usual structured 
programming constructs such as if, while, and repeat statements (Figure 3), 
but the number of such primes is infinite (e.g., Figure l(c) is a prime of six 
nodes). In particular, we can create primes of arbitrary sizes (e.g., the 
lattice pattern of Figure l(c) can be extended indefinitely). 

In order to assure uniqueness of the prime decomposition, we will 
always represent linear sequences of function nodes as a single function 
node. Thus, the functionality which could be represented as: 

will be represented by the single node: 

where D is the functional composition of A, B, and C (i.e., D =A 0 B 0 C). 
Since our goal is to understand the complexity of programs from some 

application domain (e.g., all Pascal, C, or Ada programs), we will assume 
that function nodes represent constructs from that domain. For example, 
for Pascal programs, we will assume that conditional nodes can only be 
Boolean expressions (representing if, while, and repeat statements) or 
expressions that evaluate to an enumerated type (representing a case 
statement), and other function nodes can only be sequences of assignment 
and procedure call statements. Similarly, although our model will permit 

(a) (b) 

Fig. 2. Omission of join nodes. 



330 M. V. ZELKOWITZ AND J. TIAN 

(a) sequences (b) if - then CC) while do 

Cd) repeat-until (e) if - then - else (f) do-while-do 

Fig. 3. Primes of up to three function nodes. 

side effects in conditionals, we will assume the usual programming 
guage restrictions about no side effects in such Boolean expressions. 

lan- 

2. PRIME PROGRAM STRUCTURAL COMPLEXITY 

In order to compare two programs, we present here a modification of 
the earlier Hierarchical Abstract Computer (HAC) measure [2]. Programs 
are represented by their graphs, and we hypothesize the existence of a 
computer designed to execute that particular graph. Instructions for this 
machine, like most machine languages, have an operation code, operand 
addresses, and next instruction locations, but will be variable in size to 
minimize storage costs. As programs become more complex, the operation 
field, operand fields, and next location fields must become larger to handle 



MEASURING PRIME PROGRAM COMPLEXITY 331 

the increased number of names relevant to the program. Computing the 
sizes of these fields is our concept of program complexity. 

Assume a program is represented as a hierarchical decomposition of its 
graph. Each node in the graph is either a primitive operation or a function 
implemented by another graph (e.g., Figure 4 consists of a sequence of two 
function nodes, the first of which is an if-then-else graph). 

Instructions (e.g., function nodes) have the syntax: 

( label > : ( opcode) ( data Zist > ( ( label fist )) 

where: 

(label) represents the label on that instruction (e.g., name of node), 
(opcode) represents the function to be performed, 
(data list > is a list of data names, and 
(label list) are the following instructions (i.e., the set of successor 
nodes). Label 1 is the unique entry node to the proper program graph, 
and exit arcs (those that exit without going to another function node, 
although they may pass through other joins) have the unique label exit. 

We cannot determine the frequency of execution of any program node 
-in fact, such determination is undecidable and will vary depending upon 

h4. I ____----- I---------- 

I 

I L________________J I 
I 

+ 

I 

I r = a s+l I 

I I 
I I 
L---_______ __________J 

t 

Fig. 4. Prime decomposition of program 



332 M. V. ZELKOWITZ AND J. TIAN 

data values. Therefore, we will assume equal distribution of each HAC 
instruction, data reference, and label. For this reason, if there are n 
objects of a given type in a HAC program, the size of the relevant field is 
log+ 

Given the graph representation for program P, we define its HAC 
program as follows: 

DEFINITION. LA program P consist of subgraphs {G,, . . . , Gk}. Let L be 
the set of nodes and f be the set of instructions in P (unique functions 
performed by the program nodes or the name of a subgraph of PI. Let 
Doi be the set of data objects in G,. For each node j E Gi, each instruction 
has an assembly language-like syntax of: 

labeli, :opcodej(data listj~(label listi*) 

for labeljl, label listi EL, opcodej EZ, and data listi EDGE. If execution 
control is at labeljl, then opcodej executes (i.e., accesses and modifies) 
data items data listi, and the next instruction is chosen from one of the 
nodes in label li.stiz. If the next node is the label exit, the machine halts. 

The ~owgraph containing the program entry arc of P is graph G,. 
Consider the (prime) decomposition of the program in Figure 4 into the 

two prime HACs: 

HAC M,: L,: m2 
Lz: add 

CL,) /*call M2 */ 
abs, y, 1 (exit) /* y=abs+l and halt*/ 

HAC M*: L,: test x,0 (L,,L,) - 
L,: assign x, abs (exit> /* x=abs and exit*/ 
L,: negassign x,abs (exit) /*x= -absandexit*/ 

In this case, 

D,, = {y,abs, 1) 

L,,=(L,,exit} 

ZMl = {m2,add) 

D,,= {O,x,abs} 

L M2={L4,LS,exit) 

ZiM2 = {test, assign, negassignf 

To compute program complexity, consider two computers built exactly 
for M, and A4,. The size of an instruction is the number of bits required to 
encode instructions on these computers, and the program size is the 
number of bits necessary to contain these programs. If there are n 



MEASURING PRIME PROGRAM COMPLEXITY 333 

possibilities for any instruction field, the field must be log, n bits wide, and 
it can be viewed as the amount of information contained within that field. 

For program (i.e., graph) M which consists of the subgraphs {G,, . . . , GkJ, 
let ZGI be the set of opcodes in Gi, let DGi be the set of data objects 
referenced in G,, and let L,, be the set of labels in Gi. The number of 
nodes in M will be given by [MI. 

DEFINITION. Znstmction size: If instruction j in graph G (i.e., node in G) 
has data list {kj} and label list {Z,}, we define instntction size for instruction 
j as: 

(For easy reading, we omit I --- I when it is clear what the meaning is.) Since 
the HAC machine is tailored to a specific graph to execute, the label field 
only needs information about the specific nodes that follow a given 
executing node. 

DEFINITION. Module complexity: If G is a graph (i.e., program module), 
then C(G)=x(Z,) where Zj is the size of instruction j in G. 

DEFINITION. Program complexity: If M consists of the subgraphs 
{G ,,. . .,G,l, then C(M) = C(C(G,)) where C(Gj) is the complexity of 
module Gj. 

We can define such a complexity for any decomposition of a flowgraph. 
However, we are particularly interested when the decomposition is prime. 

DEFINITION. Prime program structural complexity: If M = {G,, . . . , Gk) is 
the prime program decomposition of a program graph, we call C(M) the 
prime program structural complexity, and write it as C’(M). 

Since the prime decomposition of a program is unique, we will not 
always indicate this decomposition when discussing C’(M) for a particular 
program M. In the general case, however, since C(M) depends upon the 
decomposition, it must be indicated. If no decomposition is given, we mean 
the HAC program consisting of the entire program M. 

Out initial model does not differentiate among parameters, local, and 
global variables. Data references are assumed to be as specified by the 
programmer. Arguments to functions will simply be given as data objects 
on the HAC instruction that calls another HAC subprogram, while all 
other data references in instructions will be considered global references. 

From the decomposition of Figure 4, we can compute the size of the 
HAC program necessary to represent this graph: 



334 M. V. ZELKOWITZ AND J. TIAN 

For M, : 

The instruction field size will be log,Z = log,2 = 1.00. 
Each data field size will be log,D = log,3 = 1.58. 

For M2 : 

The instruction field size will be log, I = 1.58. 
Each data field size will be log,D = 1.58. 

Complexity of each instruction is then: 

Instruction L,: 1.00 + 0 + 0 = 1.00. 
Instruction L,: 1.00 + 3 X 1.58 + 0 = 5.74 
The complexity of M, is then 1.00 + 5.74 = 6.74 bits. 
Instruction L,: 6.74 
Instruction L,: 4.74 
Instruction L,: 4.74 
The complexity of Mz is then 6.74 + 4.74 + 4.74 = 16.22 bits. 
The complexity of the program is then 6.74 + 16.22 = 22.96 bits. 

We believe that this model captures: 

l The overall modular structure of a program in terms of the size of each 
module-Highly complex code will have complex primes and numer- 
ous opcodes, increasing the size of the HAC instruction, and hence its 
complexity. 

l The data connectivity amongprogram modules in terms of the number of 
data objects-With few data items referenced in each module, data 
fields in each instruction are kept small. 

3. PROPERTIES OF THIS MEASURE 

Using C(M) and C’(M), we can develop several quantitative results 
about program structure. 

DEFINITION. Let C,(M) be the total size of all operation fields in HAC 
M, let C,(M) be the total size of all data fields in HAC M, and let C,(M) 
be the size of all label fields in HAC M. 

THEOREM 1. C(M) = C,(M) + C,(M) + C,(M). Similarly, C’(M) = 
C;(M) + C~O4) + C&kf). 

Proof. C(M) comes from summing over all instructions j in M. n 

DEFINITION. If A4 is a graph, then the hierarchical decomposition of M 
into graphs M, and Mz can be written as M =M, IM2. We will assume M2 



MEASURING PRIME PROGRAM COMPLEXITY 335 

is a subgraph of M (i.e., M, contains a call to M2). M will contain 
M, + M2 - 1 nodes (i.e., one of the nodes of M, will be a call to M2, which 
is replaced by the body of M2 in M). 

An important rationale for computing complexity measures is the desire 
to choose among several programs that compute the same function-Which 
one is better? Unfortunately, this is a difficult problem, as the following 
shows: 

THEOREM 2. The minimal complexity of a graph which computes the same 
function as a given graph M is undecidable. 

Proof. This is an application of Theorems 4.1 and 4.2 from [9]. From 
Theorem 4.1, if Ycomputes the minimal complexity of a set of programs P 
of sizes up to N, then for p E P, 9(p) G IpI + c for some constant c. 

However, P cannot be the set of all programs of size less than or equal 
to N since there must be programs with lesser complexity which cannot be 
computed by Z? We show this using Theorem 4.2 of [9]: There must be 
some program q of size less than N with complexity less than or equal to 
IqI +c where 9(q) does not halt. Therefore, q is not in P and not 
computed by Z Therefore, there are programs whose minimal complexity 
is not greater than N + c which we cannot compute. n 

Although this result does not permit us to always calculate this minimal 
complexity, we can still determine the relative complexity between two 
program graphs in many cases. For most of what follows, we will consider 
those graphs where each instruction node is unique. This will avoid many 
of the undecidability problems of general graphs. For example, most of the 
programs in the next section of this paper obey this property. We will call 
such programs Unique-instruction programs: 

DEFINITION. Unique instruction programs: Let U be the set of all pro- 
grams such that every instruction in each node is unique. 

Let us first ignore data complexity and investigate various properties of 
control flow complexity (C, and C,). 

THEOREM 3. Zf M=M,IM,, then C,(M)=C,(M,)+C,(M,), i.e., con- 
trol flow complexity is independent of modular decomposition. 

Proof. If M2 is extracted from M, then proper subprogram M, is 
replaced in M by a single function node with the instruction name m2. 
The number of arcs in either the remainder of M or in M, are the same 
except for the following renaming: 

(1) Arcs in M that previously went to the entry node of M2 are 
relabeled with the name of the new instruction node m,; and 

(2) The exit arcs from M2 are relabeled exit. 



336 M. V. ZELKOWITZ AND J. TIAN 

Since the number of labels in any instruction does not change, every 
instruction has the same label complexity, and for the new node in M for 
the instruction m2, its label complexity is 1 x log,1 = 0. 

THEOREM 4. If ME& and if M=M,IM,, then C,(M)>C,(M,)+ 
C,(M,). 

Proof. For each instruction in M, the operation field is log,M and C, is 
M log,M. We need to show that: 

Mlog,M=(M,+M*-l)log,(M,+M,-l)>M,log,M,+M,log,M, 

Let F(x,y)=(x+y-l)log,(x+y-l)--xlog,x-ylog,y. We need to 
show that F(x, y) > 0 for x, y z 2. 

F(x,y)=(x+y-l)log,(x+y-l)-xlog,x-ylog,y 

F(2,2) =310g,3-210g,2-210g,2>0 

dF(X,Y) 
dX =l%(x+Y-l)+(x+Y-1) (x+;_l) j& 

e 

-10&X-X$& 
e 

=log,(x+y- 1) -log,x 

>O,because ~22. 

JF(XTY) 
JY 

=log*(x+Y-l)+(x+Y-l)cx+~_l) & 
e 

-l%Y -Y$& 
e 

= log,( x +y - 1) - log, y 

>O, because x&2. 

Because F is a rational function, from the above we have F(X, Y) > 0 for 
x,y>2. w 

Given all N-node U graphs, we would like to characterize the minimal 
complexity that can be achieved. We show that the intuitive structured 
programming constructs achieve this minimal value. We will first look at 
instruction complexity (C,) minimization, and then study label branching 
minimization CC,>. 

THEOREM 5. Zf P E U is a prime program such that I PI z 3, then there is 
anotherprogram Q E U such that (PI = IQ] and C;(Q) < C;(P). 

Proof. Assume I PI =N. Since we can create primes of arbitrary size, 
consider a prime P’ such that I P’l =N- la 2. Replace some function 



MEASURING PRIME PROGRAM COMPLEXITY 337 

node in P’ by a two-node prime Q’, and build the program Q = P’ IQ 
which results in IQ\ =N. 

For Na4, we have: C;(Q)=C;(P’)+C;<el>=<N-l)log,(N-l)+ 
2log,2<~N-l)log,N+2~(N-l~log,N+log,N=Nlog,N=C;~P~. 

For N=3, we have: C;(Q>=C;(P’)+C;(Q’)=210g,2+210g22=4< 
3 log*3 = c;(P). n 

THEOREM 6. For all programs P E U such that IP( = N, the minimal 
possible instruction complexity is bounded by 2 N - 2. 

Proof. From Theorem 5, we know that in the prime decomposition of 
any program P with N nodes, for any prime with at least k nodes such 
that k > 3, we can reduce the complexity of P by creating program P’ of 
N nodes by replacing the prime with two primes of k - 1 and two nodes. 
We can apply this process N - 1 times. This leads to the decomposition: 

(1) IPI=N, and 
(2) P=P,I.*.IP,_, and 
(3) Each Pi is a two-node prime. 

The resulting complexity is: C;< PI = (N - 1) X (2 log, 2) = 2 N - 2. n 

Note that minimal instruction complexity is linearly related to the 
number of nodes, that is, the traditional lines of code measure. 

Let us now consider the additional label component to complexity. 

THEOREM 7. If program P E U is a program of N nodes that minimizes 
instruction complexity C;, then C;(P) = N - 1. 

Proof. From Theorem 6, P = P,( *.a lP,_ 1 and each Pi is a two-node 
prime. In order to minimize CL, we wish to maximize the number of 
two-node sequence primes (Figure 3(a)) because there will only be a single 
output arc (with label complexity of 0) for each node in the sequence. 

However, we cannot have a sequence prime embedded within another 
prime. Consider that case: 

BEGIN 

A; 
BEGIN B; C END 

END 

This condition is equivalent to the single prime: 

BEGIN 

A; 

B; 
,- 
L 

END 



338 M. V. ZELKOWITZ AND J. TIAN 

However, we can embed a two-node sequence within other two-node 
primes. That is, if we use CONDITION.. . END to represent any of if, 
while, or repeat primes (i.e., any two-node prime consisting of a single 
binary conditional and a single function node) or a default single function 
node, we minimize Ci with the following construct applied recursively: 

CONDITION 

CONDITION...END 

CONDITION...END 

END 

This represents an alternating pattern of sequence and CONDITION~~~~~~. 
(Note that we are limiting the length of sequences to 2. However, in this 
case, adding more CONDITION.. .END primes internal to the outer 
prime does not add to CL since each new node adds label complexity of 0.) 

Therefore, given the (N- 1) two-node primes, we minimize CL if: 

(1) Half of the primes are two-node CONDITION primes with total 
label complexity of: 

210gz2+O=2 

(2) Half of the primes are two-node sequence primes with label com- 
plexity of: 

110g,1+110g,1=0+0=0 

c~=((N-1)/2x2)+((N-1)/2xO)=N-1. n 

THEOREM 8. For all programs P E U such that I PI = N, and P is composed 
of two-node primes, 

C’(P)=3N-3+Cj,(P). 

Proof. This is an obvious consequence of Theorems 6 and 7. n 

Consider the more general case of minimizing CL for arbitrary pro- 
grams P in U. We minimize the label complexity by maximizing the 
number of function nodes relative to the number of conditionals. We can 
do this by having arbitrary long sequences of function nodes with a total 
label complexity of 0. To avoid this situation, we define our set U of 
programs to be those with only two function nodes in a given prime 
program sequence. 



MEASURING PRIME PROGRAM COMPLEXITY 339 

For each conditional node, on each arc leaving that node we can attach 
this two-node sequence of function nodes. The label complexity of that 
conditional, for k outgoing arcs, is k log, k, and we get a total label 
complexity for the conditional plus 2k function nodes of: 

(klog,k+O+ . ..+O)=klog.k. 

The average complexity per node in P is then 

k log, k/(2k + 1) 

which is minimized for k = 1 (i.e., the single two-node sequence prime). 
This obviously limits program size, so since (§) increases for increasing k, 
the minimal practical control structure is k= 2, which states that CL is 
minimized when we have two outgoing arcs for each conditional node, and 
each outgoing arc has two function nodes on it. 

If we let BEGIN.. . MIDDLE.. . END represent either of the two 
three-node primes of Figure 3(e) and 3(f) consisting of a single conditional 
expression and two function nodes (e.g., the if-then-else and the 
do-while-do constructs), we can demonstrate the minimal CL with the 
structure: 

BEGIN 

A; 

B; 
MIDDLE 

c; 

D; 
END 

This structure consists of two sequence primes as function nodes within a 
three-node prime, or a total of four function nodes and one conditional 
node with a total label complexity of 21og,2 = 2. Structures A, B, C, and 
D can be either primitive instructions or recursive repetitions of this basic 
pattern. We summarize this discussion with the following: 

THEOREM 9. The minimal average label complexity for any program that 
limits prime sequences to length two is l/3. 

Proof. Assuming we limit sequences to length 2, from the above discus- 
sion we get the minimal program P with the structure that maximizes the 



340 M. V. ZELKOWITZ AND J. TIAN 

4 
r----------i 
I I I 

j2 13 I 
r- -1' 

'I I 
11 I f I 

ll I I I 
II I 

‘eS’ 

I I 

II I I I I 
II I I I 1 
II l I I 
I l I I l I 
I’ ’ ’ I 
I I-- --J I 
I I 
L __-__-___- A 

Fig. 5. Construction of minimal complexity. 

number of function nodes for a single conditional node: 

A; 
BEGIN 

B; 

C; 
MIDDLE 

D; 

E; 
END 

which has one conditional and five function nodes, and CL(P) = 2/6 = l/3. 
n 

THEOREM 10. For all programs P E U with no prime function sequence 
greater than 2 such that 1 PI = N, the minimal possible label complexity has an 
upper bound of N/2 as N gets large. 

Proof. From Theorem 9, Figure 5 demonstrates the structure that has 
the maximum number of function nodes (4) for each conditional (1). As 
more complex programs are built, each of the function nodes can be 
recursively replaced by a prime program with the structure of Figure 5. 
Therefore, if P has minimal label complexity x for an N-node program, 
then we build a larger minimal program P’ which consists of four function 
nodes similar to P and a new conditional. At each level in order to create 



MEASURING PRIME PROGRAM COMPLEXITY 341 

P’, we combine four of the primitive five-node structures with a new 
conditional to create a new subgraph with one three-node prime. That is, 
given the primitive five-node structure, we add: 

one conditional node (Node 1 of Figure 5) 
two sequence primes (to contain the four structures-Boxes 2 and 3 of 
Figure 5) and 
one function node for the newly created structure (Box 4 of Figure 5) 

Thus, we add two labels (with complexity 2) to node 1 and a total of four 
nodes, or an average complexity of 0.5. The total label complexity becomes 
(x + 0.5)/2, which since x starts at l/3 (from Theorem 91, approaches 0.5 
as a ratio as the number of nodes N increases. W 

THEOREM 11. For all programs P E U with prime function sequences not 
greater than 2, the minimal C’(P) is bounded above by (2.5) I PI - 2 + CL< P). 

Proof. This is an obvious consequence from Theorems 6 and 10. n 

Note that Theorem 11 is not a strict bound on minimal label complexity 
since the decomposition of all programs that minimizes C; is different 
from the minimization of CL. Therefore, different programs minimize each 
complexity measure, and no one program achieves this bound. 

Our final result shows that data complexity is also positively affected by 
our modularization technique-modularization reduces complexity. 

THEOREM 12. Zf M=M,IM,, then C,(M)~C,(M,)+C,(Mz). 

Proof. Since modularization does not add any data references to any 
HAC mstructron, D,, CD, and D,,cD,. 

C,( M) =Cd, log, D, , for dj data references in instruction jEjV 

= Cd, log, D, , for d, data references in instruction j@kf, 

+ zdj log, D, , for dj data references in instruction j@f, 

a=, log, D,,, for d, data references in instruction jEM, 

+CdjlOg,D,, 7 for dj data references in instruction jEM, 

=C,(M,) +Co(K). 



342 M. V. ZELKOWITZ AND J. TfAN 

3.1. SUMMARY OF RESULTS 

With the previous results, we know that instruction complexity is 
minimized when we use only two node primes such as the if, repeat, and 
while constructs (i.e., Figures 3(a)-3(d)). In addition, we know that label 
complexity is reduced when we use a combination of two and three node 
primes. Thus, using three node primes (Figures 3(e) and 3(f)), we increase 
the complexity of the program. Therefore, our model is consistent with the 
body of anecdotal evidence that structured “gotoless” programming is 
effective. Based upon this theory, we know that it is impossible to find a 
“new” control structure that is inherently simpler than what we already 
have since any new control structure will have to involve a prime of more 
than three nodes. Although we have limited our results to unique instruc- 
tion programs, the results suggest that our anecdotal evidence is appropri- 
ate. 

4. FEASIBILITY 

We present several examples that demonstrate that this model is 
consistent with our intuitive notions of complexity, although we certainly 
do not view this as a proof of the correctness of this model. We first give 
examples of the usefulness of this measure using using textual (e.g., source 
program) formats, and then give a graph example where other textual 
measures are not applicable. 

4.1. EXAMPLE A. DATA ABSTRACTIONS 

Current programming practice encourages the use of data abstractions 
as a means to enhance the quality of the program by encapsulating clusters 
of data activity into small defined objects and operations. While the 
practice has existed for many years, only recently have programming 
languages been available that provide sufficient facilities to create the 
abstractions conveniently and efficiently. 

Figure 6(a) contains an Ada program which adds two rational numbers. 
Each number is implemented as pairs of integers. Figure 6(b) contains a 
modified version of the program which contains an abstraction of the data 
using a new data type rational and a new operator + which sums data 
objects of this new type. Figure 7 contains the HAC representations of 
these programs. Note that the model can be extended to include parame- 
ters to procedures as data items on the function call. (Contrast this it to 



MEASURING PRIME PROGRAM COMPLEXITY 343 

procedure adhrational(x1, x2, yl, y2: 

in integer; 

zl,z2: out integer) is 

begin 

zl:=xl*y2+yl* x2; 

z2:=x2* y2; 

end add-rational; 

procedure main is 

xl,x2,yl,y2,zl,z2: integer; 

begin 

add-rational (xl,x2,yl,y2,zl,z2); 
- 

end main; 

(a) Add rationals (no abstraction) 

package rational_arith is 

type rational is record 

numerator,denominator:integer: 

end record; 

function “ + ” (x, y: in rational) return rational; 

end rational_arith; 

package body rational_arith is 
function “ + ” (x, y: in rational) return rational is 

begin 

return(x.numerator * y.denominator + 

y.numerator * x.denominator. 

x.denominator * y.denominator); 

end “ + “; 

end rational-arith; 

with rational_arith; use rational-arith; 

procedure main is 

x, y, z: rational; 

begin 
- 

z:=x+y 

end main; 

(b) Add rationals (data abstraction) 

Fig. 6. Ada data abstraction example. 

the previous example where node L,‘s data (0, x, and abs) were static data 
inside machine M,.) 

By applying the complexity measure, we observe that for the initial 
program (Figure 7(a)). Prime program structural complexity is 15.48 + 40 = 
55.48 bits, while for typed rationals (Figure 7(b)), it is 4.74 + 40 = 44.74 bits. 
The addition procedures have the same complexity (40 bits) since they 
perform the same transformation on the same primitive data objects. The 
reduction in complexity is due to the abstraction in one of the calling 
procedures caused by encapsulating the rational data type as a single 
concept. The program is able to deal with a single data object x, instead of 
multiple data objects, x1 and x2. 

4.2. EX4MPLE B. DATA COUPLING 

Minimizing data coupling should reduce complexity. There are many 
possible ways to modularize the structure in Figure S(a), two of which are 
shown in Figures 8(b) and 8(c). The first decomposition, however, is 



344 M. V. ZELKOWITZ AND J. TIAN 

MAIN: 
- 

ADD ~TIONALxl,x2,yl,y2,zl,z2 

ADD RATIONAL: 
* xl,y2,tl 

* n2,yl,t2 
+t1,t2,z1 
* x2,y2,22 

(a) HAC for nonabs~ra~t~on program 

MAIN: 
- 

+x, y, z 
- 

“ + “: 
* x.num, y.den, tl 
* y.num, x.den, t2 
+ tl, t2, z.num 
* x.den, y.den, t.den 

(b) HAC for abstraction program 

Fig. 7. Prime sequential form for Ada example. 

accompanied by nine dependencies between the modules, while the second 
realizes a small coupling (two dependencies), implying a more natural 
modularization and a smaller complexity. Figure 9(a) illustrates a program 
which possesses this coupling pattern, Figure 9(b) illustrates a modulariza- 
tion of this program according to the first decomposition, while Figure 9(c) 
illustrates a modularization according to the improved decomposition. 
Application of the HAC complexity on these programs yields a complexity 
of 143.48 for the original program, a complexity of 2+ 53.18 + 73.32= 
128.50 for the complex decomposition, showing that some modularization 
is better than none, and a complexity of 2 + 49.74 + 61.18 = 112.92 for the 
improved decomposition, demonstrating that our measure is sensitive to 
data references. 

4.3. EX4MPLE C. TOOL COMPLEXITY 

This measure has applications beyond source programs. For example, it 
can form the basis for measuring the integration across tools within a 
software engineering environment. It may provide the basis for evaluating 
alternative design decisions before implementation begins 181. 

For example, a common feature for many of these tools is a 
graphically-based specifications methodology using data flow diagrams, 
“bubble charts,” or other pictorial information. Measuring the structure of 
these designs would be an important analysis tool, but such measurements 
are lacking. 

Consider data flow through a typical compiler in Figure 10. In this 
example, the compiler has two inputs (grammatical description of the 
programming language and a given source program to compile), and has 



MEASURING PRIME PROGRAM COMPLEXITY 345 

f”““““““““‘~___--~-~~-,, ‘_““, 

I 
I 
I 
I 
I 
I Y 

I 

I 
I 
I 

I 
I 
I 
I 
I 

I 
I 

I 
-I 
31 

I 

F3 

Fig. 8. Data coupling. 

one output (the machine language translation of the input source pro- 
gram). We can represent this graphically and compute the complexity 
measure on the result: 

(1) Convert the structure chart to a proper program by adding one 
input node with no input data items that branches to the given input nodes 



346 M. V. ZELKOWITZ AND J. TIAN 

r”““““““““‘“‘“f 
I 
I 
i 

I 
:_,_____,____________~~ L~-~c-l.w------mw~ 

w 

Fig. 8. Continued. 

(dashed arrows and lines in Figure 10). Do a similar transformation to the 
output data. 

(2) Compute the prime program decomposition of this graph (dotted 
lines surrounding boxes M,, M,, and M3 in Figure 10): 

Compiler =M,lM21M3 

PROG: 15,: FIX,,x,,X,,& 
L,: F,X,,X,,X,,X,,X, 
L,: FJ~,&,X~,&,XvXs 
L,: F~X~,&>xv~,X,,tx,z 
L,: E;-%I~X,,~X,,~X,~~X~S 

L,: F,X,,X,,,X,,,X,~,X,~.X,S~Y 

a. Original Program before Decom~sition 

F.,: F, X,,X,7X,>X4 F7: F, X,,-%,X,,X4 

Fz X,,X,,X,,X,,X, F, X,,X,,&,X,>X, 

F4 &,X~~XIO~X,,,X,Z F3 X,,-X,,X,,&i,&>-% 

F,: F3 X,,&,X,,&,,X,,-% F,: F4 &X9,X,0,&7X,, 

5 X9, Xtoi XI,, X,,,X,s & &X,o~X,,~XwX,, 

Fs X~,X,,,X,~,X~~,X~~,X~S~Y FG ~~~~~~~~~~~~~~~~~~~~~~~~ 

PROG: F7 PROG: F, 

F8 F8 

b. Decomposition of Figure 8(b) C. Decomposition of Figure 8(c) 

Fig. 9. Prime descriptions of Figure 8. 



MEASURING PRIME PROGRAM COMPLEXITY 347 

M . . . . . . . . . . . . . . 1. 

M . . . . . . . . . . . . . 2 

: : 
: : 
: grammar production 
: : r - Parse&en 
: : & 
: : t 
: : k 

: r+-l : __-__x : : &,_I :.......................... 3 . . . . . . . . . . . . . . . . . . . . . . . . . M 
_31 parser * 

: 1 
: I 

: ; ’ tkxt char > Input - 
tokfin 

: : Scanner 

: : :~.~......~......~..~..~.~~~.~~,~,~.~,~.~~..,~...~~~: 
: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..~.~ 

i ma$i;e_lang triple 
Code Gen - 

triple 
Optimizer - 

Int, Code <token,production> 

. . . . . . . . . . . . . . . . . . ..I...r........................._._._____.._____........................................................ 

Fig. 10. Compiler structure. 

M3 scanner module- 

L,: Input 
L,: Scanner t,t:E ‘kien 9 

which has V/=2, D]=3, II,/=4.16, ]1,/=4.16, and complexity(M,)=8.32. 
M2 parser module- 

Start text, grammar CL,, LJ 
L,: M, text, token CL,) 
L,: ParserGen grammar, production (L,) 
L,: Parser token, production, (token, prod-number) (exit> 

where (token,prod_number~ is the record structure of token produced by 
the scanner and the grammatical production number from the language 
grammar. This HAC will have complexity of: 

]II=4, /r)]=5, ]1,/=8.64, /1,]=6.64, 11;]=6.64,]~~,1=8.96,and 

Complexity( M,) = 30.88. 



348 M. V. ZELKOWITZ AND J. TIAN 

M, Entire compiler- 

L,: M, (token,prohnumber) (L2) 

Lz: IntCode (tokenprod-number), triple ( L3) 

L,: Optimizer triple, triple (L4) 
L,: CodeGen triple, machine- language (exit) 

where triple is the intermediate translation of the parsed program. This 
has complexity: 

1Z1=4, lDl=3, IZ,I=3.58, 11,1=5.16, 11,1=5.16, lZ,l=5.16, and 

Complexity(M,) = 19.06. 

The total complexity of this top level design is then 8.32 + 30.88 + 19.06 = 
58.26. 

Using this measure, alternative designs can be evaluated early in the 
development cycle, and give indications of alternative strategies that can 
be applied. All too often, the only criterion used in such an evaluation is 
the experience of the designer. In this case, we have objective criteria that 
are easily programmable into such an environment that can be used as a 
design aid before source (or even design) code has been written. 

5. CONCLUSIONS 

In this paper, we have presented a model of program complexity that 
uses information theoretic ideas of complexity. Using a subset of realistic 
program graphs, we have demonstrated that intuitive notions of structured 
programming are consistent with this model, and for this subset of pro- 
gram graphs, we have demonstrated bounds on program complexity. 

We have given several examples in various programming domains that 
indicate that the measure is so far consistent with our intuitive notions of 
complexity. This measure can be applied to either source program text or 
as a measure of the integration within a programming environment. As a 
design structural complexity measure before the source program is written, 
we can use it as a means to evaluate alternative specifications. 



MEASURING PRIME PROGRAM COMPLEXITY 349 

While this is a useful beginning, this paper only explored the set of 
unique instruction programs. While an interesting subset, we obviously 
need to expand the results to more complete sets of program graphs. The 
model also considers data interactions in its C, component, and obviously 
that component needs further work. Tradeoffs between data and control 
complexity would be a needed aspect of this work. 

The measures proposed here may not be optimal for these activities. 
However, we firmly believe that a combination of information theoretic 
ideas of complexity combined with the prime program decomposition will 
provide a basis for an effective programming language complexity mea- 
sure. 

Research support for this paper was prouided in part by National Science Foundation 
Grant CCR-8819793 to the University of Maryland. EarIy work on the HAC model was 
aided by William Rail. 

REFERENCES 

1. A. J. Albrecht and J. E. Gaffney, Software function, source lines of code and 
development effort prediction: A software science validation, IEEE Trans. on 
Sof~are ~n~nee~~g 9(6):639-647 (Nov. 1983). 

2. W. Bail and M. V. Zeikowitz, Program complexity using hierarchical abstract 
computers, J. of Computer Languages 13(3):109-123 (1988). 

3. V. Basili and A. J. Turner, Iterative enhancement: A practical technique for 
software development, ZEEE Trans. on Software Engineering 1(4):390-396 (Dec. 
1975). 

4. V. R. Basili and D. H. Hutchens, An empirical study of a syntactic complexity 
family, iEEE Trans. on Sofhyare Eng~nee~ng 9@i):f%-672 (Nov. 1983). 

5. V. R. Basili and B. T. Perricone, Software errors and complexity: An empirical 
investigation, Comm. of the ACM 27(1):42-51 (Jan. 1984). 

6. B. Boehm, Software Engineeting Economics, Prentice-Hall, Englewood Cliffs, NJ, 
1981. 

7. D. N. Card and R. L. Glass, Measuring Software Design Quality, Prentice-Hall, 
Englewood Cliffs, NJ, 1990. 

8. S. Cardenas and M. V. Zelkowitz, A management tool for the evaluation of software 
designs, IEEE Trans. on Software En~nee~ng 17(9):961-971 (Sept. 1991). 

9. G. Chaitin, Information-theoretic limitations of formal systems, J. of the ACM 
21:403-424 (1974). 

10. G. Chaitin, A theory of program size formally identical to information theory, J. of 
the ACM 22329-340 (1975). 

11. J. Gannon, M. S. Hecht, and R. S. Herbold, Prime program decomposition, in 16th 
Hawaii Intentions Conference on System Science, Jan. 1983, pp. 25-29. 

12. M. Halstead, Elements of Software Science, Elsevier, New York, 1977. 
13. A. N. Kolmogorov, Three approaches to the quantitative definition of information, 

Problems of Information Transmission I l:l-7 (1965). 



350 M. V. ZELKOWITZ AND J. TIAN 

14. R. Maddux, A study of program structure, Ph.D. dissertation, University of Water- 
loo, Canada, July 1985. 

15. T. J. McCabe, A complexity measure, IEEE Trans. on Software Engineeting 
2(6):308-320 (1976). 

16. H. D. Rombach, Design measurement: Some lessons learned, IEEE Software 
7(2X17-25 (Mar. 1990). 

17. S. Rapps and E. Weyuker, Data flow analysis techniques for test data selection, in 
Sixth ACM/IEEE International Conference on Software Engineering, Tokyo, Japan, 
1982, pp. 272-278. 

18. C. E. Walston and C. P. Felix, A method of programming measurement and 
estimation, IBM Systems J. 16(1):54-73 (1977). 

Received 20 June 1991; revised 3 July 1992, 10 September 1992 


