
Michael Hicks
Curriculum Vitae

I. Personal Information

I.A. UID, Last Name, First Name, Middle Name, Contact Information
UID: 112776114
Last Name: Hicks
First Name: Michael
Mailing Address: 5246 Iribe Center for Computer Science and Engineering (IRB), Department of
Computer Science, University of Maryland, College Park, MD 20742
Email: mwh@cs.umd.edu
WWW: http://www.cs.umd.edu/~mwh/
Twitter: @michael_w_hicks
Blog: http://www.pl-enthusiast.net/ and https://blog.sigplan.org/ (editing)

I.B. Academic Appointments at UMD
Professor, Department of Computer Science, July 2013 to present
Associate Professor, Department of Computer Science, July 2008 to 2013
Affiliate Associate Professor, Department of Electrical and Computer Engineering, July 2008 to 2011
Assistant Professor, Department of Computer Science, July 2002 to 2008
Affiliate Assistant Professor, Department of Electrical and Computer Engineering, July 2005 to 2007.

I.C. Administrative Appointments at UMD
Associate Co-Chair for Undergraduate Education, Dept of Computer Science, since September 2017.
Director, Maryland Cybersecurity Center (MC2), November 2011 to 2013.

I.D. Other Employment
Chief Technical Officer, Correct Computation, Inc., September 2018 to present.
Consultant, Stealth Software Technologies, Inc., June 2019 to present.
Consultant, Wilson Sonsini Goodrich and Rosati, February 2014–2017.
Visiting Researcher, Microsoft Research, Redmond, Washington, June–August 2015.
Consultant, Finnegan, Henderson, Farabow, Garrett & Dunner, LLP, February–October 2014.
Visiting Professor, Ecole Normale Superieure, Paris, France. October 2012.
Adjunct, IDA CCS, Bowie, Maryland. October 2006–March 2016.
Visiting Scholar, The Computer Laboratory, University of Cambridge, England. September 2008–August
2009.
Visiting Researcher, Microsoft Research, Cambridge, England. September 2008–November 2008.
Post-doctoral Research Associate, Department of Computer Science, Cornell University, Ithaca, New
York. July 2001–July 2002.
Lecturer, Department of Computer and Information Science, University of Pennsylvania, Philadelphia,
Pennsylvania. August 1999–December 1999.
Scientist, NEC Research Institute, Princeton, New Jersey. May 1998–August 1999 (part time).
Software Engineer, ARINC, Inc., Annapolis, Maryland. June 1993–April 1997.

I.E. Educational Background
Ph.D. in Computer and Information Science, University of Pennsylvania, Philadelphia, Pennsylvania.
2001 (won ACM SIGPLAN Doctoral Dissertation Award, 2002)

M.Sc. in Computer and Information Science, 1996.
B.Sc. in Computer Science with Honors; Pennsylvania State University, State College, Pennsylvania.
Magna Cum Laude and Department Standard Bearer, 1993.

II. Research, Scholarly and Creative Activities

†Indicates a student or post-doc advised or co-advised by Dr. Hicks.
‡Indicates work performed in part while student advised or co-advised by Dr. Hicks.
⋆Indicates a student advised or co-advised by Dr. Hicks for this project.

II.B. Chapters
II.B.1 Books

1. Jose Manuel Calderon Trilla, Michael Hicks, Stephen Magill, Piotr Mardziel, and Ian Sweet†.
Probabilistic Abstract Interpretation: Sound Inference and Application to Privacy. In Foundations
of Probabilistic Programming, chapter 11, pages 361–389, Cambridge University Press,
November 2020.

II.C. Articles in Refereed Journals

1. James Parker†, Michael Hicks, Andrew Ruef‡, Michelle L. Mazurek, Dave Levin, Daniel
Votipka⋆, and Kelsey Fulton⋆. Build It, Break It, Fix It: Contesting Secure Development. ACM
Transactions on Privacy and Security (TOPS), 23(2), April 2020.

2. Benjamin C. Pierce, Michael Hicks, Crista Lopes, and Jens Palsberg. ACM Conferences and the
Cost of Carbon. Communications of the ACM, 63(3):35-37, March 2020.

3. Karla Saur†, Michael Hicks, and Jeffrey S. Foster. C-Strider: Type-Aware Heap Traversal for C.
Software, Practice, and Experience, May 2015.

4. Christopher M. Hayden‡, Karla Saur†, Edward K. Smith†, Michael Hicks, and Jeffrey S. Foster.
Efficient, general-purpose dynamic software updating for C. ACM Transactions on Programming
Languages and Systems (TOPLAS), 36(4):13, October 2014.

5. Piotr Mardziel†, Stephen Magill†, Michael Hicks, and Mudhakar Srivatsa. Dynamic enforcement
of knowledge-based security policies using probabilistic abstract interpretation. Journal of
Computer Security, 21:463–532, October 2013.

6. Christopher M. Hayden†, Edward K. Smith†, Eric A. Hardisty⋆, Michael Hicks, and Jeffrey S.
Foster. Evaluating dynamic software update safety using efficient systematic testing. IEEE
Transactions on Software Engineering, 38(6):1340–1354, December 2012.

7. Polyvios Pratikakis‡, Jeffrey S. Foster, and Michael Hicks. Locksmith: Practical static race
detection for C. ACM Transactions on Programming Languages and Systems (TOPLAS),
33(1):Article 3, January 2011.

8. Michael Hicks and Jeffrey S. Foster. SCORE: Agile research group management.
Communications of the ACM, 53(10):30–31, October 2010.

9. Jeffrey A. Meister⋆, Jeffrey S. Foster, and Michael Hicks. Serializing C intermediate
representations for efficient and portable parsing. Software, Practice, and Experience, 40(3):225–
238, February 2010.

10. Peter Sewell, Gareth Stoyle⋆, Michael Hicks, Gavin Bierman, and Keith Wansbrough. Dynamic
rebinding for marshalling and update, via redex-time and destruct-time reduction. Journal of
Functional Programming (JFP), 18(4):437–502, July 2008.

11. Saurabh Srivastava†, Michael Hicks, Jeffrey S. Foster, and Patrick Jenkins⋆. Modular
information hiding and type safe linking for C. IEEE Transactions on Software Engineering,
34(3):1–20, May 2008.

12. Gareth Stoyle⋆, Michael Hicks, Gavin Bierman, Peter Sewell, and Iulian Neamtiu†. Mutatis
Mutandis: Safe and flexible dynamic software updating (full version). ACM Transactions on
Programming Languages and Systems (TOPLAS), 29(4), July 2007.

13. Nikhil Swamy†, Michael Hicks, Greg Morrisett, Dan Grossman, and Trevor Jim. Safe manual
memory management in Cyclone. Science of Computer Programming (SCP), 62(2):122–144,
October 2006. Special issue on memory management.

14. Michael Hicks and Scott M. Nettles. Dynamic software updating. ACM Transactions on
Programming Languages and Systems (TOPLAS), 27(6):1049–1096, November 2005.  

15. James Rose†, Nikhil Swamy†, and Michael Hicks. Dynamic inference of polymorphic lock types.
Science of Computer Programming (SCP), 58(3):366–383, December 2005. Special Issue on
Con- currency and Synchronization in Java programs.

16. Michael Hicks, Angelos D. Keromytis, and Jonathan M. Smith. A secure PLAN. IEEE
Transactions on Systems, Man, and Cybernetics, Part C, 33(3):413–426, August 2003. Special
Issue on Technologies Promoting Computational Intelligence, Openness and Programmability in
Networks and Internet Services.

17. D. Scott Alexander, William A. Arbaugh, Michael Hicks, Pankaj Kakkar, Angelos Keromytis,
Jonathan T. Moore, Carl A. Gunter, Scott M. Nettles, and Jonathan M. Smith. The SwitchWare
active network architecture. IEEE Network, 12(3):29–36, 1998. Special issue on Active and
Controllable Networks.

II.D. Published Conference Proceedings
II.D.1. Refereed Conference Proceedings

1. Kesha Hietala‡, Robert Rand†, Shih-Han Huang‡, Xiaodi Wu, and Michael Hicks. A Verified
Optimizer for Quantum Circuits. In Proceedings of the ACM Conference on Principles of
Programming Languages (POPL), January 2021. Acceptance rate 61/258 (23.6%)

2. Ian Sweet†, David Darais, and Michael Hicks. Short Paper: Probabilistically Almost-Oblivious
Computation. In Proceedings of the ACM SIGPLAN Workshop on Programming Languages and
Analysis for Security (PLAS), November 2020.

3. Yiyun Liu†, James Parker†, Patrick Redmond, Lindsey Kuper, Michael Hicks, and Niki Vazou.
Verifying Replicated Data Types with Typeclass Refinements in Liquid Haskell. In Proceedings
of the ACM Conference on Object-Oriented Programming Languages, Systems, and Applications
(OOPSLA), October 2020.

4. Daniel Votipka⋆, Kelsey Fulton⋆, James Parker†, Matthew Hou†, Michelle L. Mazurek, and
Michael Hicks. Understanding security mistakes developers make: Qualitative analysis from
Build It, Break It, Fix It. In Proceedings of the USENIX Security Symposium (USENIX SEC),
August 2020. Acceptance rate 157/977 (16.1%). Distinguished Paper (11/157).

5. David Darais‡, Ian Sweet†, Chang Liu‡, and Michael Hicks. A Language for Probabilistically
Oblivious Computation. In Proceedings of the ACM Conference on Principles of Programming
Languages (POPL), January 2020. Acceptance rate 68/247 (27.5%)

6. Leonidas Lampropoulos†, Michael Hicks, and Benjamin C. Pierce. Coverage Guided, Property
Based Testing. In Proceedings of the ACM Conference on Object-Oriented Programming
Languages, Systems, and Applications (OOPSLA), October 2019. Acceptance rate 72/201 (36%)

7. Robert Rand†, Kesha Hietala†, and Michael Hicks. Formal Verification vs. Quantum
Uncertainty. In 3rd Summit on Advances in Programming Languages (SNAPL), May 2019.
Acceptance rate 9/21 (42%).

8. Aseem Rastogi‡, Nikhil Swamy, and Michael Hicks. Wys*: A DSL for Verified Secure Multi-

party Computations. In Proceedings of the Symposium on Principles of Security and Trust
(POST), April 2019. Acceptance rate 10/37 (37%)

9. Andrew Ruef†, Leonidas Lampropoulos†, Ian Sweet†, David Tarditi, and Michael Hicks.
Achieving Safety Incrementally with Checked C. In Proceedings of the Symposium on Principles
of Security and Trust (POST), April 2019. Acceptance rate 10/37 (37%)

10. Luis Pina, Anastasios Andronidis, Michael Hicks, and Cristian Cadar. MVEDSUa: Higher
availability dynamic software updates via multi-version execution. In Proceedings of the
International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), April 2019. Acceptance rate 74/350 (21.1%)

11. James Parker†, Niki Vazou†, and Michael Hicks. LWeb: Information Flow Security for Multi-
Tier Web Applications. In Proceedings of the ACM Conference on Principles of Programming
Languages (POPL), January 2019. Acceptance rate 77/267 (28.8%)

12. Shih-Han Hung⋆, Kesha Hietala†, Shaopeng Zhu⋆, Mingsheng Ying, Michael Hicks, and
Xiaodi Wu. Quantitative Robustness Analysis of Quantum Programs. In Proceedings of the ACM
Conference on Principles of Programming Languages (POPL), January 2019. Acceptance rate
77/267 (28.8%)

13. George T. Klees†, Andrew Ruef†, Benjamin Cooper†, Shiyi Wei†, and Michael Hicks.
Evaluating Fuzz Testing. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS), October 2018. Acceptance rate 134/809 (16.6%) Winner of the
NSA’s 2018 Best Scientific Cybersecurity Paper Competition

14. Archibald Samuel Elliott⋆, Andrew Ruef†, Michael Hicks, and David Tarditi. Checked C:
Making C Safe by Extension. In Proceedings of the IEEE Conference on Secure Development
(SecDev), September 2018. Acceptance rate 14/29 (48%)

15. Ian Sweet†, Jose Manuel Calderon Trilla, Chad Scherrer, Michael Hicks, and Stephen Magill.
What's the over/under? probabilistic bounds on information leakage. In Proceedings of the
Symposium on Principles of Security and Trust (POST), April 2018. Acceptance rate 14/45 (31%)

16. Shiyi Wei†, Piotr Mardziel, Andrew Ruef†, Jeffrey S. Foster, and Michael Hicks. Evaluating
Design Tradeoffs in Numeric Static Analysis for Java. In Proceedings of the European
Symposium on Programming (ESOP), April 2018. Acceptance rate 36/114 (32%)

17. ThanhVu Nguyen, Timos Antopoulos, Andrew Ruef†, and Michael Hicks. A counterexample-
guided approach to finding numerical invariants. In Proceedings of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE), September 2017. Acceptance rate 72/295 (24%)

18. Timos Antonopoulos, Paul Gazzillo, Michael Hicks, Eric Koskinen, Tachio Terauchi, and Shiyi
Wei†. Decomposition Instead of Self-Composition for Proving the Absence of Timing Channels.
In Proceedings of the ACM Conference on Programming Language Design and Implementation
(PLDI), June 2017. Acceptance rate 47/322 (14.6%)

19. Mário S. Alvim, Piotr Mardziel, and Michael Hicks. Quantifying vulnerability of secret
generation using hyper-distributions. In Proceedings of the Symposium on Principles of Security
and Trust (POST), April 2017. Acceptance rate 14/40 (35%)

20. Andrew Ruef†, Michael Hicks, James Parker†, Dave Levin, Michelle L. Mazurek, and Piotr
Mardziel†. Build It, Break It, Fix It: Contesting Secure Development. In Proceedings of the ACM
Conference on Computer and Communications Security (CCS), October 2016. Acceptance rate
137/831 (16.5%)

21. Karla Saur†, Tudor Dumitras, and Michael Hicks. Evolving NoSQL databases without downtime.
In Proceedings of the International Conference on Software Maintenance and Evolution
(ICSME), October 2016. Acceptance rate 37/127 (29%)

22. Luis Pina† and Michael Hicks. Tedsuto: A General Framework for Testing Dynamic Software
Updates. In Proceedings of the International Conference on Software Testing (ICST), April 2016.
Acceptance rate 35/130 (26.9%)

23. Karla Saur†, Joseph Collard‡, Nate Foster, Arjun Guha, Laurent Vanbever, and Michael Hicks.
Safe and Flexible Controller Upgrades for SDNs. In Proceedings of the Symposium on SDN
Research (SOSR), March 2016. Acceptance rate 17/69 (24.6%)

24. Matthew Hammer†, Kyle Headley†, Nicholas Labich‡, Jeffrey S. Foster, Michael Hicks, David
Van Horn, and Joshua Dunfield. Incremental Computation with Names. In Proceedings of the
ACM Conference on Object-Oriented Programming Languages, Systems, and Applications
(OOPSLA), October 2015. Acceptance rate 53/210 (25.2%)

25. Andrew Ruef†, Michael Hicks, James Parker†, Dave Levin, Atif Memon, Jandelyn Plane, and
Piotr Mardziel†. Build It Break It: Measuring and Comparing Development Security. In
Proceedings of the USENIX Workshop on Cyber Security Instrumentation and Test (CSET),
August 2015.

26. Chang Liu†, Michael Hicks, Austin D Harris, Mohit Tiwari, Martin Maas, and Elaine Shi.
Ghostrider: A hardware-software system for memory trace oblivious computation. In
Proceedings of the International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), March 2015. Acceptance rate 48/278 (17.3%).
Winner of best paper award.

27. Luıs Pina†, Luıs Veiga, and Michael Hicks. Rubah: Dynamic Software Updating for Java on a
stock JVM. In Proceedings of the ACM Conference on Object-Oriented Programming
Languages, Systems, and Applications (OOPSLA), October 2014. Acceptance rate 52/181
(28.7%).  

28. Piotr Mardziel†, Mário S. Alvim, and Michael Hicks. Adversary gain vs. defender loss in quanti-
fied information flow. In (Unofficial) Proceedings of the International Workshop on Foundations
of Computer Security (FCS), July 2014.  

29. Matthew Hammer†, Yit Phang Khoo†, Michael Hicks, and Jeffrey S. Foster. Adapton:
Composable, demand-driven incremental computation. In Proceedings of the ACM Conference
on Programming Language Design and Implementation (PLDI), June 2014. Acceptance rate
52/287 (18.1%)

30. Chang Liu†, Yan Huang, Elaine Shi, Jonathan Katz, and Michael Hicks. Automating efficient
RAM- model secure computation. In Proceedings of the IEEE Symposium on Security and
Privacy (Oak- land), May 2014. Acceptance rate 44/324 (13.6%)

31. Aseem Rastogi†, Matthew A. Hammer†, and Michael Hicks. Wysteria: A programming language
for generic, mixed-mode multiparty computations. In Proceedings of the IEEE Symposium on
Security and Privacy (Oakland), May 2014. Acceptance rate 44/324 (13.6%)

32. Piotr Mardziel†, Mario Alvim, Michael Hicks, and Michael Clarkson. Quantifying information
flow for dynamic secrets. In Proceedings of the IEEE Symposium on Security and Privacy
(Oakland), May 2014. Acceptance rate 44/324 (13.6%).  

33. Andrew Miller†, Michael Hicks, Jonathan Katz, and Elaine Shi. Authenticated data structures,
generically. In Proceedings of the ACM Conference on Principles of Programming Languages
(POPL), January 2014. Acceptance rate 51/220 (23.2%).

34. Aseem Rastogi†, Piotr Mardziel†, Matthew Hammer†, and Michael Hicks. Knowledge inference
for optimizing secure multi-party computation. In Proceedings of the ACM SIGPLAN Workshop
on Programming Languages and Analysis for Security (PLAS), June 2013.  

35. Chang Liu†, Michael Hicks, and Elaine Shi. Memory trace oblivious program execution. In Pro-
ceedings of the Computer Security Foundations Symposium (CSF), June 2013. Acceptance rate
19/73 (26%). Winner of the NSA’s 2014 Best Scientific Cybersecurity Paper Competition  

36. Luis Pina and Michael Hicks. Rubah: Efficient, general-purpose dynamic software updating for
Java. In Proceedings of the Workshop on Hot Topics in Software Upgrades (HotSWUp), June
2013.  

37. Yit Phang Khoo,†Jeffrey S. Foster, and Michael Hicks. Expositor: Scriptable time-travel
debugging with first class traces. In Proceedings of the International Conference on Software
Engineering (ICSE), May 2013. Acceptance rate 85/461 (18.5%).  

38. Mudhakar Srivatsa and Michael Hicks. Deanonymizing mobility traces: Using a social network
as a side-channel. In Proceedings of the ACM Conference on Computer and Communications
Security (CCS), October 2012. Acceptance rate 80/423 (18.9%).  

39. Christopher M. Hayden†, Edward K. Smith†, Michail Denchev⋆, Michael Hicks, and Jeffrey S.
Foster. Kitsune: Efficient, general-purpose dynamic software updating for C. In Proceedings of
the ACM Conference on Object-Oriented Programming Languages, Systems, and Applications
(OOPSLA), October 2012. Acceptance rate 57/228 (25%).  

40. Stephen Magill⋆, Michael Hicks, Suriya Subramanian⋆, and Kathryn S. McKinley. Automating
object transformations for dynamic software updating. In Proceedings of the ACM Conference on
Object-Oriented Programming Languages, Systems, and Applications (OOPSLA), October 2012.
Acceptance rate 57/228 (25%).  

41. Piotr Mardziel†, Michael Hicks, Jonathan Katz, and Mudhakar Srivatsa. Knowledge-oriented
secure multiparty computation. In Proceedings of the ACM SIGPLAN Workshop on
Programming Languages and Analysis for Security (PLAS), June 2012. Acceptance rate 9/12
(75%). Number of submissions lower than usual due to location (China).  

42. Edward K. Smith†, Michael Hicks, and Jeffrey S. Foster. Towards standardized benchmarks for
dynamic software updating systems. In Proceedings of the Workshop on Hot Topics in Software
Upgrades (HotSWUp), pages 11–15, June 2012. Acceptance rate 9/13 (69%).  

43. Christopher M. Hayden†, Karla Saur†, Michael Hicks, and Jeffrey S. Foster. A study of dynamic
software update quiescence for multithreaded programs. In Proceedings of the Workshop on Hot
Topics in Software Upgrades (HotSWUp), pages 6–10, June 2012. Acceptance rate 9/13 (69%).
 

44. Christopher M. Hayden†, Stephen Magill†, Michael Hicks, Nate Foster, and Jeffrey S. Foster.
Specifying and verifying the correctness of dynamic software updates. In Proceedings of the
International Conference on Verified Software: Theories, Tools, and Experiments (VSTTE), pages
278–293, January 2012. Acceptance rate 20/54 (37%).  

45. Nataliya Guts†, Michael Hicks, Nikhil Swamy, and Daan Leijen. A demo of Coco: a compiler for
monadic coercions in ML. In Informal proceedings of the ML Workshop, September 2011.  

46. Nikhil Swamy, Nataliya Guts†, Daan Leijen, and Michael Hicks. Lightweight monadic
programming in ML. In Proceedings of the ACM International Conference on Functional
Programming (ICFP), pages 15–27, September 2011. Acceptance rate 33/92 (35.9%). Featured
on the Lambda the Ultimate blog, July 2011  

47. Kin-Keung Ma†, Yit Phang Khoo†, Jeffrey S. Foster, and Michael Hicks. Directed symbolic
execution. In Eran Yahav, editor, Proceedings of the Static Analysis Symposium (SAS), volume
6887 of Lecture Notes in Computer Science, pages 95–111. Springer, September 2011.
Acceptance rate 22/67 (32.8%).

48. Piotr Mardziel†, Stephen Magill†, Michael Hicks, and Mudhakar Srivatsa. Dynamic enforcement
of knowledge-based security policies. In Proceedings of the Computer Security Foundations
Symposium (CSF), pages 114–128, June 2011. Acceptance rate 21/81 (25.9%).  

49. Christopher M. Hayden†, Edward K. Smith†, Michael Hicks, and Jeffrey S. Foster. State transfer
for clear and efficient runtime upgrades. In Proceedings of the Workshop on Hot Topics in
Software Upgrades (HotSWUp), pages 179–184, April 2011. Acceptance rate 9/17 (52.9%).  

50. Jong hoon (David) An†, Avik Chaudhuri⋆, Jeffrey S. Foster, and Michael Hicks. Position paper:
Dynamically inferred types for dynamic languages. In Informal Proceedings of the Workshop on
Scripts to Programs (STOP), January 2011.  

51. Jong hoon (David) An†, Avik Chaudhuri⋆, Jeffrey S. Foster, and Michael Hicks. Dynamic
inference of static types for Ruby. In Proceedings of the ACM Conference on Principles of
Programming Languages (POPL), pages 459–472, January 2011. Acceptance rate 49/209
(23.4%).  

52. Piotr Mardziel† , Adam Bender⋆, Michael Hicks, Dave Levin⋆, Mudhakar Srivatsa, and
Jonathan Katz. Secure sharing in distributed information management applications: problems and
directions. In Proceedings of the Annual Conference of the International Technology Alliance
(ACITA), September 2010.  

53. Jean-Phillipe Martin, Michael Hicks, Manuel Costa, Periklis Akritidis, and Miguel Castro.
Dynamically checking ownership policies in concurrent C/C++ programs. In Proceedings of the
ACM Con- ference on Principles of Programming Languages (POPL), pages 457–470, January
2010. Acceptance rate 39/206 (19%).  

54. Yit Phang Khoo†, Jeffrey S. Foster, Michael Hicks, and Vibha Sazawal. Triaging checklists: a
substitute for a PhD in static analysis. In Proceedings of the Workshop on the Evaluation and
Usability of Programming Languages and Tools (PLATEAU), October 2009.  

55. Yit Phang Khoo†, Michael Hicks, Jeffrey S. Foster, and Vibha Sazawal. Directing javascript with
arrows. In Proceedings of the ACM SIGPLAN Dynamic Languages Symposium (DLS), pages 49–
58, October 2009. Acceptance rate 10/27 (37%).  

56. Michael Furr⋆, Jong hoon (David) An⋆, Jeffrey S. Foster, and Michael Hicks. The Ruby
intermediate language. In Proceedings of the ACM SIGPLAN Dynamic Languages Symposium
(DLS), pages 89– 98, October 2009. Acceptance rate 10/27 (37%).  

57. Nikhil Swamy, Michael Hicks, and Gavin S. Bierman. A theory of typed coercions and its
applications. In Proceedings of the ACM International Conference on Functional Programming
(ICFP), pages 329–340, August 2009. Acceptance rate 26/85 (31%).  

58. Pavlos Papageorge†, Justin McCann⋆, and Michael Hicks. Passive aggressive measurement with
MGRP. In Proceedings of the ACM SIGCOMM Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications (SIGCOMM), pages 279–290,
August 2009. Acceptance rate 27/270 (10%).  

59. Brian J. Corcoran†, Nikhil Swamy‡, and Michael Hicks. Cross-tier, label-based security
enforcement for web applications. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD), pages 269–282. June 2009. Acceptance rate
63/397 (16%).  

60. Iulian Neamtiu‡ and Michael Hicks. Safe and timely dynamic updates for multi-threaded
programs. In Proceedings of the ACM Conference on Programming Language Design and
Implementation (PLDI), pages 13–24. June 2009. Acceptance rate 41/196 (21%).  

61. Suriya Subramanian⋆, Michael Hicks, and Kathryn S. McKinley. Dynamic software updates for
Java: A VM-centric approach. In Proceedings of the ACM Conference on Programming
Language Design and Implementation (PLDI), pages 1–12. June 2009. Acceptance rate 41/196
(21%).  

62. Michael Furr⋆, Jong hoon (David) An⋆, Jeffrey S. Foster, and Michael Hicks. Static type
inference for Ruby. In Proceedings of the ACM Symposium on Applied Computing, Object-
oriented Programming Languages and Systems Track (OOPS), pages 1859–1866, March 2009.
Acceptance rate 4/9 (44%) for OOPS track, 315/1084 (29%) overall.  

63. Dave King⋆, Boniface Hicks, Michael Hicks, and Trent Jaeger. Implicit flows: Can’t live with
’em, can’t live without ’em. In R. Sekar and Arun K. Pujari, editors, Proceedings of the
International Conference on Information Systems Security (ICISS), volume 5352 of Lecture Notes
in Computer Science, pages 56–70. Springer, December 2008. Acceptance rate 21/81 (26%).  

64. Yit Phang Khoo†, Jeffrey S. Foster, Michael Hicks, and Vibha Sazawal. Path projection for user-
centered static analysis tools. In Proceedings of the ACM Workshop on Program Analysis for
Software Tools and Engineering (PASTE), pages 57–63, November 2008. Acceptance rate 13/26
(50%).  

65. Polyvios Pratikakis†, Jeffrey S. Foster, Michael Hicks, and Iulian Neamtiu†. Formalizing
soundness of contextual effects. In Otmane Aıt Mohamed, Cesar Munoz, and Sofiene Tahar,
editors, Proceedings of the International Conference on Theorem Proving in Higher Order
Logics (TPHOLs), volume 5170 of Lecture Notes in Computer Science, pages 262–277. Springer,
August 2008. Acceptance rate 16/45 (36%).  

66. Nikhil Swamy† and Michael Hicks. Verified enforcement of automaton-based information
release policies. In Proceedings of the ACM SIGPLAN Workshop on Programming Languages
and Analysis for Security (PLAS), pages 21–32, June 2008. Chosen as one of two Distinguished
papers for the workshop. Acceptance rate 13/24 (54%).  

67. Nikhil Swamy†, Brian Corcoran†, and Michael Hicks. Fable: A language for enforcing user-
defined security policies. In Proceedings of the IEEE Symposium on Security and Privacy
(Oakland), pages 369–383, May 2008. Acceptance rate 28/249 (11.2%).  

68. Iulian Neamtiu†, Michael Hicks, Jeffrey S. Foster, and Polyvios Pratikakis†. Contextual effects
for version-consistent dynamic software updating and safe concurrent programming. In
Proceedings of the ACM Conference on Principles of Programming Languages (POPL), pages
37–50. January 2008. Acceptance rate 35/212 (16.5%).  

69. Brian Corcoran†, Nikhil Swamy†, and Michael Hicks. Combining provenance and security
policies in a web-based document management system. In On-line Proceedings of the Workshop
on Principles of Provenance (PrOPr), November 2007.
http://homepages.inf.ed.ac.uk/jcheney/propr/.  

70. Nick L. Petroni, Jr.†and Michael Hicks. Automated detection of persistent kernel control-flow
attacks. In Proceedings of the ACM Conference on Computer and Communications Security
(CCS), pages 103–115, October 2007. Acceptance rate 55/303 (18%).  

71. Nikhil Swamy†, Michael Hicks, and Simon Tsang. Verified enforcement of security policies for
cross-domain information flows. In Proceedings of the 2007 Military Communications
Conference (MILCOM), October 2007.  

72. Jeffrey S. Foster, Michael W. Hicks, and William Pugh. Improving software quality with static
analysis. In Proceedings of the ACM Workshop on Program Analysis for Software Tools and
Engineering (PASTE), pages 83–84, June 2007. Acceptance rate 4/4 (100%) for research
presentations category.  

73. Trevor Jim, Nikhil Swamy†, and Michael Hicks. Defeating scripting attacks with browser-
enforced embedded policies. In Proceedings of the International World Wide Web Conference
(WWW), pages 601–610, May 2007. Acceptance rate 10/63 (16%) for the security track, 111/740
(15%) overall.  

74. Saurabh Srivastava†, Michael Hicks, and Jeffrey S. Foster. Modular information hiding and type
safety for C. In Proceedings of the ACM Workshop on Types in Language Design and
Implementation (TLDI), pages 3–14, January 2007. Acceptance rate 6/12 (50%).  

75. Polyvios Pratikakis†, Jeffrey S. Foster, and Michael Hicks. Existential label flow inference via
CFL reachability. In Kwangkeun Yi, editor, Proceedings of the Static Analysis Symposium (SAS),
volume 4134 of Lecture Notes in Computer Science, pages 88–106. Springer-Verlag, August
2006. Acceptance rate 23/80 (29%).  

76. Nikhil Swamy†, Michael Hicks, Stephen Tse⋆, and Steve Zdancewic. Managing policy updates
in security-typed languages. In Proceedings of the Computer Security Foundations Workshop
(CSFW), pages 202–216, July 2006. Acceptance rate 25/96 (26%). Note: though termed a
workshop, based on citation rate and number of submissions, CSFW has effectively been a

conference for many years; as of 2007, CSFW has been renamed CSF and is termed a
symposium.  

77. Iulian Neamtiu†, Michael Hicks, Gareth Stoyle⋆, and Manuel Oriol†. Practical dynamic software
updating for C. In Proceedings of the ACM Conference on Programming Language Design and
Implementation (PLDI), pages 72–83, June 2006. Acceptance rate 36/174 (21%).  

78. Polyvios Pratikakis†, Jeffrey S. Foster, and Michael Hicks. Context-sensitive correlation analysis
for detecting races. In Proceedings of the ACM Conference on Programming Language Design
and Implementation (PLDI), pages 320–331, June 2006. Acceptance rate 36/174 (21%).  

79. Boniface Hicks, Dave King, Patrick McDaniel, and Michael Hicks. Trusted declassification:
high- level policy for a security-typed language. In Proceedings of the ACM SIGPLAN Workshop
on Programming Languages and Analysis for Security (PLAS), pages 65–74, June 2006.
Acceptance rate 10/18 (56%).  

80. Michael Hicks, Jeffrey S. Foster, and Polyvios Pratikakis†. Inferring locking for atomic sections.
In On-line Proceedings of the ACM SIGPLAN Workshop on Languages, Compilers, and
Hardware Support for Transactional Computing (TRANSACT), June 2006.
http://www.cs.purdue.edu/ homes/jv/events/TRANSACT/transact-06.tgz. Acceptance rate 10/19
(53%).  

81. Michael Hicks, Boniface Hicks, Stephen Tse, and Steve Zdancewic. Dynamic updating of
information- flow policies, March 2005. In Proceedings of the International Workshop on
Foundations of Computer Security (FCS), pages 7–18, June 2005. Acceptance rate 11/30 (37%).

82. Iulian Neamtiu†, Jeffrey S. Foster, and Michael Hicks. Understanding source code evolution
using abstract syntax tree matching. In Proceedings of the International Workshop on Mining
Software Repositories (MSR), pages 1–5, May 2005. Acceptance rate 22/38 (58%).  

83. Manuel Oriol† and Michael Hicks. Tagged sets: a secure and transparent coordination medium.
In Jean-Marie Jacquet and Gian Pietro Picco, editors, Proceedings of the International
Conference on Coordination Models and Languages (COORDINATION), volume 3454 of
Lecture Notes in Computer Science, pages 252–267. Springer-Verlag, April 2005. Acceptance
rate 19/88 (22%).  

84. Pavlos Papageorgiou† and Michael Hicks. Merging network measurement with data transport
(extended abstract). In Proceedings of the IEEE Passive/Active Measurement Workshop (PAM),
volume 3431, pages 368–371. Springer-Verlag, March 2005. Acceptance rate 36/84 (43%).  

85. Gareth Stoyle⋆, Michael Hicks, Gavin Bierman, Peter Sewell, and Iulian Neamtiu†. Mutatis
Mutandis: Safe and flexible dynamic software updating. In Proceedings of the ACM Conference
on Principles of Programming Languages (POPL), pages 183–194, January 2005. Acceptance
rate 31/172 (18%).  

86. Polyvios Pratikakis†, Jaime Spacco⋆, and Michael Hicks. Transparent proxies for Java futures.
In Proceedings of the ACM Conference on Object-Oriented Programming Languages, Systems,
and Applications (OOPSLA), pages 206–223, October 2004. Acceptance rate 27/173 (16%).  

87. Michael Hicks, Greg Morrisett, Dan Grossman, and Trevor Jim. Experience with safe manual
memory management in cyclone. In Proceedings of the ACM International Symposium on
Memory Management (ISMM), pages 73–84, October 2004. Acceptance rate 15/43 (35%).  

88. James Rose†, Nikhil Swamy†, and Michael Hicks. Dynamic inference of polymorphic lock types.
In Proceedings of the ACM Conference on Principles of Distributed Computing (PODC)
Workshop on Concurrency and Synchronization in Java Programs (CSJP), pages 18–25, July
2004. Acceptance rate 11/24 (46%).  

89. Gavin Bierman, Michael Hicks, Peter Sewell, Gareth Stoyle, and Keith Wansbrough. Dynamic
rebinding for marshalling and update with destruct-time λ. In Proceedings of the ACM
International Conference on Functional Programming (ICFP), pages 99–110, August 2003.
Acceptance rate 24/95 (25%).  

90. Gavin Bierman, Michael Hicks, Peter Sewell, and Gareth Stoyle. Formalizing dynamic software
updating. In On-line Proceedings of the Second International Workshop on Unanticipated
Software Evolution (USE), April 2003. http://www.informatik.uni-bonn.de/~gk/use/2003/Papers/
papers.html.  

91. Michael Hicks, Adithya Nagarajan†, and Robbert van Renesse. User-specified adaptive
scheduling in a streaming media network. In Proceedings of the IEEE Conference on Open
Architectures and Network Programming (OPENARCH), pages 87–96. April 2003. Acceptance
rate 12/50 (24%).  

92. Seo-Kyu Song, Stephen Shannon, Michael Hicks, and Scott Nettles. Evolution in action: Using
active networking to evolve network support for mobility. In James Sterbenz, Osamu Takada,
Christian Tschudin, and Bernhard Plattner, editors, Proceedings of the Fourth International
Working Conference on Active Networks (IWAN), volume 2546 of Lecture Notes in Computer
Science, pages 146–161. Springer-Verlag, December 2002. Acceptance rate 20/53 (38%).  

93. Trevor Jim, Greg Morrisett, Dan Grossman, Michael Hicks, James Cheney, and Yanling Wang.
Cy- clone: A safe dialect of C. In Proceedings of the USENIX Annual Technical Conference.
USENIX, pages 275–288. June 2002. Acceptance rate 25/107 (23%).  

94. Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and James Cheney.
Region-based memory management in Cyclone. In Proceedings of the ACM Conference on
Programming Language Design and Implementation (PLDI), pages 282–293. ACM, June 2002.
Acceptance rate 28/169 (17%).  

95. Michael Hicks, Jonathan T. Moore, David Wetherall, and Scott Nettles. Experiences with
capsule- based active networking. In Proceedings of the DARPA Active Networks Conference and
Exposition (DANCE), pages 16–24. IEEE, May 2002.  

96. Michael Hicks, Jonathan T. Moore, and Scott Nettles. Compiling PLAN to SNAP. In Ian W.
Mar- shall, Scott Nettles, and Naoki Wakamiya, editors, Proceedings of the Third International
Working Conference on Active Networks (IWAN), volume 2207 of Lecture Notes in Computer
Science, pages 134–151. Springer-Verlag, October 2001. Acceptance rate 10/22 (45%).  

97. Michael Hicks, Jonathan T. Moore, and Scott Nettles. Dynamic software updating. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 13–23. ACM, June 2001. Acceptance rate 30/144 (21%).  

98. Jonathan T. Moore, Michael Hicks, and Scott Nettles. Practical programmable packets. In
Proceedings of the Twentieth IEEE Computer and Communication Society INFOCOM
Conference, pages 41–50. IEEE, April 2001. Acceptance rate 192/830 (23%).  

99. Michael Hicks and Scott Nettles. Active networking means evolution (or enhanced extensibility
required). In Hiroshi Yashuda, editor, Proceedings of the Second International Working
Conference on Active Networks (IWAN), volume 1942 of Lecture Notes in Computer Science,
pages 16–32. Springer-Verlag, October 2000.  

100. K. G. Anagnostakis, M. W. Hicks, S. Ioannidis, A. D. Keromytis, and J. M. Smith.
Scalable resource control in active networks. In Hiroshi Yashuda, editor, Proceedings of the
Second International Working Conference on Active Networks (IWAN), volume 1942 of Lecture
Notes in Computer Science, pages 343–358. Springer-Verlag, October 2000.  

101. Michael Hicks, Stephanie Weirich, and Karl Crary. Safe and flexible dynamic linking of
native code. In Robert Harper, editor, Types in Compilation, volume 2071 of Lecture Notes in
Computer Science. Springer-Verlag, September 2000. Selections from the Third ACM SIGPLAN
workshop of the same name.  

102. Pankaj Kakkar, Michael Hicks, Jonathan T. Moore, and Carl A. Gunter. Specifying the
PLAN network programming language. In Higher Order Operational Techniques in Semantics
(HOOTS), volume 26 of Electronic Notes in Theoretical Computer Science, pages 87–104.
Elsevier, September 1999.  

103. Michael Hicks, Suresh Jagannathan, Richard Kelsey, Jonathan T. Moore, and Cristian
Ungureanu. Transparent communication for distributed objects in java. In Proceedings of the

ACM SIGPLAN Java Grande Conference, pages 160–170. ACM, June 1999. Acceptance rate
20/38 (53%).  

104. Michael Hicks and Angelos D. Keromytis. A secure PLAN. In Stefan Covaci, editor,
Proceedings of the First International Working Conference on Active Networks IWAN), volume
1653 of Lecture Notes in Computer Science, pages 307–314. Springer-Verlag, June 1999.
Reprinted with extensions in DARPA Active Networks Conference and Exposition (DANCE).  

105. Michael Hicks, Jonathan T. Moore, D. Scott Alexander, Carl A. Gunter, and Scott Nettles.
PLANet: An active internetwork. In Proceedings of the Eighteenth IEEE Computer and
Communication Society INFOCOM Conference, pages 1124–1133. IEEE, March 1999.
Acceptance rate 184/600 (31%).  

106. Michael Hicks, Luke Hornof, Jonathan T. Moore, and Scott Nettles. A study of large object
spaces. In Proceedings of the ACM SIGPLAN International Symposium on Memory Management
(ISMM), pages 138–145. ACM, October 1998.  

107. Michael Hicks, Pankaj Kakkar, Jonathan T. Moore, Carl A. Gunter, and Scott Nettles. PLAN: A
packet language for active networks. In Proceedings of the Third ACM SIGPLAN International
Conference on Functional Programming Languages (ICFP), pages 86–93. ACM, September
1998. Acceptance rate 30/77 (39%).  

108. D. Scott Alexander, Michael W. Hicks, Pankaj Kakkar, Angelos D. Keromytis, Marianne Shaw,
Jonathan T. Moore, Carl A. Gunter, Trevor Jim, Scott M. Nettles, and Jonathan M. Smith. The
SwitchWare Active Network Implementation. In Notes of the ACM SIGPLAN Workshop on ML,
pages 67–76, September 1998.  

109. Michael Hicks, Pankaj Kakkar, Jonathan T. Moore, Carl A. Gunter, and Scott Nettles. Network
programming with PLAN. In Luca Cardelli, editor, Proceedings of the IEEE Workshop on Inter-
net Programming Languages, volume 1686 of Lecture Notes in Computer Science, pages 127–
143. Springer-Verlag, May 1998.  

110. Michael W. Hicks, Jonathan T. Moore, and Scott M. Nettles. The measured cost of copying
garbage collection mechanisms. In Proceedings of the ACM SIGPLAN International Conference
on Functional Programming (ICFP), pages 292–305. ACM, June 1997. Acceptance rate 25/78
(32%).  

II.D.4. Other

111. Andrew Ruef† and Michael Hicks, Build it, break it, fix it: Competing to build secure systems,
The Next Wave, 21(1), 2015. Invited article.

112. Gilles Barthe, Michael Hicks, Florian Kerschbaum, and Dominique Unruh. The Synergy
Between Programming Languages and Cryptography (Dagstuhl Seminar 14492). Dagstuhl
Reports, 4(12):29-47, 2015.

113. Michael Hicks. POPL’12 program chair’s report (or, how to run a medium-sized conference).
SIGPLAN Notices, 47(4), April 2012.

114. Christopher M. Hayden, Eric A. Hardisty, Michael Hicks, and Jeffrey S. Foster. Efficient
systematic testing for dynamically updatable software. In Proceedings of the Workshop on Hot
Topics in Software Upgrades (HotSWUp), October 2009. Invited article.

115. Jonathan T. Moore, Michael Hicks, and Scott M. Nettles. Chunks in PLAN: Language support
for programs as packets. In Proceedings of the 37th Annual Allerton Conference on
Communication, Control, and Computing, September 1999. Invited article.

116. Dan Grossman, Michael Hicks, Greg Morrisett, and Trevor Jim. Cyclone: a type-safe dialect of
C. C/C++ Users Journal, 23(1), January 2005. Invited article.

II.E. Conferences, Workshops, and Talks
II.E.2. Invited Talks

1. “A Verified Optimizer for Quantum Circuits,” invited talk, University of Massachusetts Systems
Lunch (given remotely), October 23, 2020. Held virtually. (See
https://www.cics.umass.edu/event/systems-lunch-2)

2. “Evaluating Fuzz Testing,” keynote, Meeting on Hot Topics on the Science of Security

(HotSOS), September 24, 2020. Held virtually. (See https://cps-vo.org/node/71596)

3. “Contesting Secure Software Development,” keynote, Computer Security Foundations
Symposium, June 23, 2020. (See https://www.ieee-security.org/TC/CSF2020/program.html)

4. “Wysteria: A Programming Language for Generic, Mixed-Mode Multiparty Computations,”
Johns Hopkins Applied Physics Lab (JHUAPL), January 17, 2020.

5. “Contesting Secure Development to Understand Security Mistakes.” UPenn CIS Department

Seminar, November 5, 2019. (See https://events.seas.upenn.edu/event/cis-seminar-contesting-
secure-development-to-understand-security-mistakes/)

6. “Coverage Guided, Property Based Testing,” Microsoft Research Seminar, July 31, 2019. (See
https://www.microsoft.com/en-us/research/video/coverage-guided-property-based-
testing/)

7. “What is Programming Languages Research?” Invited talk at the Programming Languages
Mentoring Workshop (PLMW) at ACM SIGPLAN Symposium on Principles of Programming
Languages (POPL), January 2019. (See https://popl19.sigplan.org/track/PLMW-2019-
papers#program and https://www.youtube.com/watch?v=70_DFytfnWw&t=3s)

8. “Evaluating Design Tradeoffs in Numeric Static Analysis for Java,” Invited talk, Workshop on
Dependable and Secure Software Systems, ETH Zurich, Oct 19-20, 2018. See https://eth-
sri.github.io/workshop2018

a. Also gave a shorter version of this talk at the European Symposium on Programming
(ESOP), April 15, 2018, Thessaloniki, Greece. See https://www.etaps.org/2018/esop

9. “Building Security In: Programming Language-based Techniques for Ensuring Software
Security”, Invited lecture, 9th International Summer School on Information Security and
Protection, Canberra, Australia, July 9, 2018. See
https://cs.anu.edu.au/cybersec/issisp2018/schedule.html

10. “Evaluating Fuzz Testing”,

a. Best scientific cybersecurity paper award acceptance talk, National Security Agency,
October 10, 2019.

b. Invited lecture, 9th International Summer School on Information Security and Protection,
Canberra, Australia, July 10, 2018. See
https://cs.anu.edu.au/cybersec/issisp2018/schedule.html

c. Keynote talk, Cornell Programming Languages Retreat, September 7, 2018. See
https://www.cs.cornell.edu/courses/cs7190/2018fa/pl-retreat-2018.html

d. Colloquium talk, Department of Computer and Communications Sciences, October 22,
2018. See https://memento.epfl.ch/event/ic-colloquium-evaluating-fuzz-testing-an-
adventu-2/

11. “Languages for Oblivious Computation,” invited talk at the ACM Workshop on Programming
Languages and Analyses for Security (PLAS), co-located with the ACM SIGSAC Conference on

Computer and Communications Security (CCS), October 30, 2017.
http://plas2017.cse.buffalo.edu/

12. “Programming Languages Meet Cryptography,” series of three invited lectures at the Cornell,
Maryland, Max Planck Pre-doctoral Research School, August 8-13, 2017 in Saarbruecken,
Germany. http://cmmrs.mpi-sws.org/

13. “Rubah: DSU for Java on a Stock JVM,” invited presentation to the Microsoft HDInsight Team,
Microsoft, Redmond, WA, June 29, 2017.

14. “Dynamic Software Updating with Kitsune,” invited presentation to the Microsoft SQL server
team, Microsoft, Redmond, WA, Jun 27, 2017.

15. “Scientifically evaluating security-conscious development using the Build it, Break it, Fix it

programming contest,” invited talk at Google Security and Privacy Research Summit, Google
main campus, Mountain View, CA, June 6, 2017.

16. “Dynamic Enforcement of Knowledge-based Security Policies,” invited talk at Immuta, Inc., a

startup company whose product performs in private data management, College Park, MD, March
22, 2017. (See https://twitter.com/ImmutaData/status/844709889851174912)

17. “What is research and how to do it?” Invited talk, Programming Languages Mentoring Workshop
(PLMW)

a. at ACM SIGPLAN Symposium on Principles of Programming Languages (POPL),

January 2017. (See http://popl17.sigplan.org/track/PLMW-2017)
b. at ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI), June 2017.

18. “Tackling Software Insecurity with Abstract Interpretation,” Invited talk, Workshop on the Next
40 Years of Abstract Interpretation (N40AI), collocated with POPL, January 2017. (See
http://popl17.sigplan.org/track/N40AI)

19. “Build it, Break it, Fix it: Contesting Secure Development,”
a. Seminar talk, Maryland Cybersecurity Center Symposium, Dec 5, 2016
b. Seminar talk, Imperial College, London, UK, June 27, 2016.
c. Invited talk, Microsoft Research, Redmond, July 11, 2016. See

https://www.microsoft.com/en-us/research/video/build-it-break-it-fix-it-contesting-
secure-development/

20. “PL and Crypto: Case studies in their combination,” Seminar talk, University of California, San

Diego, March 15, 2016.

21. “Oblivious Computation,” NSF Workshop on Formal Methods for Security, November 2015.

22. “Build It Break It: Measuring and Comparing Development Security,” UMD Computer Science
Research Seminar Series, October 2015.

23. “Build it, break it, fix it: A security-minded programming contest,” RISE Seminar talk, Microsoft

Research, Redmond, July 2015.

24. “Authenticated Data Structures, Generically,”
a. Dagstuhl Seminar on the Synergy between Programming Languages and Cryptography,

Wadern, Germany, December 1, 2014.  
b. Colloquium talk, Max Planck Institute for Software Systems (MPI-SWS), Saarbrucken,

Germany, December 5, 2014.  

25. “Memory-Trace Oblivious Program Execution,”
a. Dagstuhl Seminar on the Synergy between Programming Languages and Cryptography,

Wadern, Germany, December 1, 2014.  
b. NSA Best Scientific Cybersecurity Award Paper presentation, September 18, 2014.  

26. “Build-it, break-it, fix-it: Recapping the results,” 5th Annual NIST National Initiative on Cyber-

security Education (NICE) Workshop on “Shaping the Future of Cybersecurity Education,”
Columbia, Maryland, November 5, 2014.

27. “Rubah: DSU for Java on a stock JVM,” 
a. Invited talk, Laboratory for Telecommunications Sciences, June 2014.
b. Invited talk, Microsoft Research, Redmond, August 2014.

28. “Adapton: Composable, Demand-Driven Incremental Computation,” invited talk, Microsoft

Research, August 2014.

29. “Wysteria: A Programming Language for Generic, Mixed-Mode Multiparty Computations”
a. OOPSLA PC Workshop talk, May 14, 2014.  
b. Invited talk, Computer Science Department Seminar, Stevens Institute of Technology,

February 24, 2014. See http://www.stevens.edu/news/content/cs-department-seminar-
michael-hicks-university-maryland-wysteria-programming-language

c. USUKITA “bootcamp” talk, London, England, January 5, 2014.  

30. “Expositor: Scriptable time-travel debugging with first class traces,” Software Reliability Group
Seminar, Imperial College, London, UK, January 8, 2014. http://srg.doc.ic.ac.uk/seminars/ 14-01-
hicks/

31. “Authenticated Data Structures, Generically,” joint PL/Systems seminar, Microsoft Research,
Cambridge, November 22, 2013. See
http://research.microsoft.com/apps/video/dl.aspx?id=205246  

32. “Secure Computation: Combining PL and Crypto Research,” University of Maryland
Undergraduate Research Seminar series, October 25, 2013.  

33. “Build-it, break-it, fix-it: A new security contest,” 4th Annual NIST National Initiative on
Cybersecurity Education (NICE) Workshop on “Shaping the Future of Cybersecurity Education,”
Gaithersburg, Maryland, September 18, 2013.  

34. “On-line patching for better security, and other security challenges,” Colloquium talk, Johns
Hopkins Applied Physics Lab, May 10, 2013. Cf.
http://www.youtube.com/watch?v=eF1NBkSKUzw  

35. “Expositor: Scriptable time-travel debugging with first class traces,”
a. Colloquium talk, Max Planck Institute for Software Systems (MPI-SWS), Saarbrucken,

Germany, November 30, 2012.

b. Seminar talk, Microsoft Research, Redmond, WA, December 3, 2012.See http://research.
microsoft.com/apps/video/default.aspx?id=179198  

36. “Directed Symbolic Execution,” seminar talk, Ecole Normale Superieur, Paris, France, October

11, 2012.  

37. “Kitsune: Efficient, General-purpose Dynamic Software Updating for C,”
a. Colloquium talk, Johns Hopkins University, Department of Computer Science,

November 12, 2012.  
b. Seminar talk, Microsoft Research, Redmond, July 13, 2012. See http://research.

microsoft.com/apps/video/default.aspx?id=169667  
c. Invited talk at Symantec Research Labs, Herndon, VA, March 21, 2012.  
d. Invited Tech. talk at Cyberpoint, Inc., Baltimore, MD, March 6, 2012.  “Polymonads:

reasoning and inference,” seminar talk, Madrid Institute for Advanced Studies (IMDEA),
Madrid, Spain, June 1, 2012.  

38. “Cybersecurity: Past, Present, Looking ahead,” Keynote, Maryland Francis King Carey School of

Law Symposium on Cybersecurity: Safeguarding Information in a Digital Age, March 30, 2012.

39. “Dynamic Enforcement of Knowledge-based Security Policies,”
a. Georgia Institute of Technology ISC invited talk, April 12, 2013
b. Dagstuhl Seminar on Quantitative Security Analysis, Wadern, Germany, November 27,

 2012
c. Seminar talk, Microsoft Research, Cambridge, UK, October 12, 2012. See http://research.

  microsoft.com/apps/video/default.aspx?id=174740
d. Dagstuhl Seminar on Web Application Security, Wadern, Germany, October 4, 2012
e. Seminar talk, Ecole Normale Superieur, Paris, France, May 30, 2012
f. Technical talk, First Maryland Cybersecurity Center (MC2) Symposium, May 17, 2012
g. Colloquium talk, George Washington University, March 20, 2012
h. USUKITA “bootcamp” talk, Weybridge, England, June 22, 2011
i. Guest speaker at University of Maryland CyberClub, Oct 27, 2011

40. “Dynamic inference of static types for Ruby,”  

a. Dagstuhl Seminar on Foundations of Scripting Languages, Wadern, Germany, January
2012

b. Colloquium talk, Department of Computer Science, Cornell University, October 14, 2011
c. Systems Seminar, University of Delaware, December 3, 2010
d. Computing Laboratory seminar, University of Oxford (United Kingdom), September 17,

 2010

41. “Software Synthesis for cost-effective development of correct, efficient software,” given at the
ISAT outbrief to DARPA program managers and the deputy director on October 4, 2011. I co-
chaired this ISAT study with Armando Solar-Lezama of MIT.  

42. “Lightweight monadic programming in ML,”  

a. Seminar, Institut National de Recherche en Informatique et en Automatique (INRIA)
Paris- Rocquencourt, June 24, 2011.  

b. Automated Reasoning Group seminar, University of Cambridge Computer Laboratory,
July 1, 2011.

43. “Evaluating dynamic software update safety using efficient systematic testing,” Computer
Science Department seminar, University of Texas at Austin, April 15, 2010.  

44. “Secure Provenance Policies in SELinks,” Workshop on Provenance in Secure and Advanced

Computer Systems, University of Edinburgh, Scotland, May 13, 2009.  

45. “Systematic Testing for Dynamically Updatable Software”, Systems Research Group Seminar,
University of Cambridge Computer Laboratory, May 7, 2009.  

46. “A Theory of Typed Coercions and its Applications”,  

a. Departmental Seminar, Chalmers Institute of Technology (Gothenburg, Sweden), April
28, 2009

b. AutomatedReasoningGroupseminar,UniversityofCambridgeComputerLaboratory,March
17, 2009

47. “Type-directed coercion insertion for security enforcement”, Dagstuhl Seminar on Web

Application Security, Wadern, Germany, April 2, 2009.  

48. “Practical Dynamic Software Updating for C”,
a. Departmental Seminar (Colloquium talk), University of Kent at Canterbury Computer

Laboratory, March 10, 2009.  
b. Departmental Wednesday Seminar (Colloquium talk), University of Cambridge

Computer Laboratory, October 15, 2008.  

49. “Cross-tier, Label-based Security Enforcement for Web Applications”, invited talk, Security and
Privacy Day @ Stony Brook, SUNY Stony Brook, May 30, 2008.  

50. “Building Secure Web Applications with SELinks”, invited talk, IARPA STONESOUP

workshop, May 9, 2008.

51. “Automated Detection of Persistent Kernel Control-Flow Attacks”, invited talk, Microsoft
Research, Silicon Valley, October 2007.  

52. “SELINKS: A language for provably secure web applications”, Distinguished Lecturer talk, IBM

T.J. Watson Research Laboratory, July 2007.  

53. “CMOD: Modular Type Safety and Information Hiding for C”  
a. Seminar talk, Department of Computer Science, The University of Wisconsin, Madison,

March 2007.  
b. Seminar talk, Department of Computer Science, Stanford University, February 2007.  
c. Microsoft Research, Redmond, Washington, July 2006.  
d. Triforce Programming Language Research Group Seminar, Harvard University,

November  2006. 

54. “LOCKSMITH: Context-sensitive Correlation Analysis for Detecting Races”  
a. Colloquium talk, Department of Computer Science, University of Massachusetts

(Amherst), November 2006.  
b. Seminar talk, Department of Computer Science, Cornell University, April 2007. 

55. “Making Concurrent Software Safer”, Summer School on Language-based Techniques for

Concurrent and Distributed Software, July 2006.  

56. “Static Analysis to Improve Software Quality” (with Jeff Foster), National Research Council of

Canada, Institute for Information Technology invited talk, June 2006.  

57. “Cyclone: A Safe Dialect of C”, Trust and Security Seminar, Department of Computer Science,
University of Illinois Urbana-Champaign, November 2005.  

58. “Practical Dynamic Software Updating for C”  

a. Seminar talk, Department of Computer Science and Engineering, University of
California, Berkeley, February 2007.  

b. Colloquium talk, Department of Computer Science, the University of Virginia, December
2006.  

c. MIT Programming Language Group Seminar, November 2006.  
d. Colloquium talk, Department of Computer Science, the Pennsylvania State University,

 November 2005.  
e. IFIP Working Group 2.4 meeting (invited participant), Jackson’s Mill, West Virginia,

October 2005.  
f. Microsoft Research, Redmond, Washington, August 2005. (See http://research.microsoft.

com/apps/video/default.aspx?id=104614.)  
g. IBM T.J. Watson Research Lab, Hawthorne, New York, June 2005. 

59. “Analyzing code that changes on the fly”, Dagstuhl Seminar on Multi-version Program Analysis,

Wadern, Germany, June 2005. 

60. “Safe and Predictable Dynamic Software Updating”
a. Principles of Programming Seminar, Carnegie-Mellon University, Pittsburgh, July 2004.
b. NTT/Docomo Research Laboratory, San Jose, California, August 2004. 

61. “Transparent Proxies for Java Futures”, Seminar talk, the Johns-Hopkins University, May 2004.

62. “Safe and Flexible Memory Management in Cyclone”

a. Microsoft Research, Redmond, Washington, February 2004.  
b. Short talk at the Second Workshop on Semantics, Program Analysis, and Computing

Environments for Memory Management (SPACE), 2004.  
c. Dagstuhl Seminar on Language-based Security, Wadern, Germany, October 2003.  
d. Colloquium talk, Department of Computer Science, Purdue University, August 2003.  

63. “Dynamic Software Updating”  

a. Colloquium talk, The Computer Laboratory at Cambridge University, Cambridge,
England, October 2001.  

b. Microsoft Research Lab, Cambridge, England, October 2001.  
c. ULTRA Seminar, Heriot-Watt University, Edinburgh, Scotland, October 2001.  
d. Principles of Programming Seminar, Carnegie-Mellon University, Pittsburgh, December

 2000.

II.E.3. Refereed Presentations

1. Robert Maxwell and Michael Hicks. Using students to pen test your network (for credit).
Presentation at EDUCAUSE Security Professionals Conference, Saint Louis, MO, April 2013.

2. Amol Deshpande and Michael Hicks. Toward on-line schema evolution for non-stop systems.
Presented at the 11th High Performance Transaction Systems Workshop, September 2005.

II.E.5. Refereed Posters

1. Yit Phang Khoo, Michael Hicks, Jeffrey S. Foster, and Vibha Sazawal. Directing javascript with
arrows (poster summary). In Poster Proceedings of the ACM International Conference on
Functional Programming (ICFP), September 2008.  

2. Iulian Neamtiu† and Michael Hicks. Dynamic Software Updating for the Linux Kernel. Work-
in-progress poster/presentation at the USENIX Symposium on Operating Systems Design and
Implementation (OSDI), November 2006.  

3. Iulian Neamtiu†, Michael Hicks, Gareth Stoyle⋆, and Manuel Oriol⋆. Ginseng: A System for
Dynamic Software Updating. Poster presented at the ACM Conference on Programming
Language Design and Implementation (PLDI), June 2006.  

4. Pavlos Papageorgiou† and Michael Hicks. Merging network measurement with data transport.
Poster presented at the IEEE Passive/Active Measurement Workshop (PAM), March 2005.  

5. Carl Gunter, Michael Hicks, Pankaj Kakkar, Jonathan Moore, Scott Nettles, and Jonathan Smith.
PLAN: Language-Based Safety and Security for Active Networks. Work-in-progress
poster/presentation at the ACM Symposium on Operating Systems Principles (SOSP), October
1997.

II.E.9. Non-Refereed Posters

1. Michael Hicks. Programming Languages for Reliable, Available, and Secure Software. Invited
poster at the 25th National Academy of Sciences Kavli Frontiers of Science Symposium,
November 7–9, 2013.  

II.F. Professional Publications
II.F.1. Reports and Non-Refereed Monographs

1. David Darais, Chang Liu, Ian Sweet, and Michael Hicks. A Language for Probabilistically
Oblivious Computation. CoRR, abs/1711.09305, November 2017.

2. Aseem Rastogi, Nikhil Swamy, and Michael Hicks. Wys*: A Verified Language Extension for
Secure Multi-Party Computations. CoRR, abs/1711.06467, November 2017.

3. Piotr Mardziel, Mario Alvim, Michael Hicks, and Michael Clarkson. Quantifying information
flow for dynamic secrets (extended version). Technical Report CS-TR-5035, Department of
Computer Science, the University of Maryland, College Park, May 2014.  

4. Aseem Rastogi, Matthew A. Hammer, and Michael Hicks. Wysteria: A programming language
for generic, mixed-mode multiparty computations (extended version). Technical Report CS-TR-
5034, Department of Computer Science, the University of Maryland, College Park, May 2014.  

5. Matthew Hammer, Yit Phang Khoo, Michael Hicks, and Jeffrey S. Foster. Adapton: Composable,
demand-driven incremental computation. Technical Report CS-TR-5027, Department of
Computer Science, the University of Maryland, College Park, July 2013.  

6. Yit Phang Khoo, Jeffrey S. Foster, and Michael Hicks. Expositor: Scriptable Time-Travel
Debugging with First-Class Traces. Technical Report CS-TR-5021, Department of Computer
Science, University of Maryland, College Park, February 2013.  

7. Nataliya Guts, Michael Hicks, Nikhil Swamy, Daan Leijen, and Gavin Bierman. Polymonads.
Technical Report, University of Maryland Department of Computer Science, July 2012.  

8. Christopher M. Hayden, Stephen Magill, Michael Hicks, Nate Foster, and Jeffrey S. Foster.
Specifying and verifying the correctness of dynamic software updates. Technical Report CS-TR-
4997, University of Maryland Department of Computer Science, November 2011. Extended
version of VSTTE’12 paper with proofs of theorems and additional discussion.  

9. Christopher M. Hayden, Edward K. Smith, Eric A. Hardisty, Michael Hicks, and Jeffrey S.
Foster. Evaluating dynamic software update safety using efficient systematic testing. Technical
Report CS- TR-4993, University of Maryland, Department of Computer Science, September
2011.  

10. Jonathan Turpie, Elnatan Reisner, Jeffrey S. Foster, and Michael Hicks. Multiotter: Multiprocess
symbolic execution. Technical Report CS-TR-4982, University of Maryland Department of
Computer Science, August 2011.  

11. Nikhil Swamy, Nataliya Guts, Daan Leijen, and Michael Hicks. Lightweight monadic
programming in ML. Technical Report MSR-TR-2011-039, Microsoft Research, May 2011.  

12. Kin-Keung Ma, Yit Phang Khoo, Jeffrey S. Foster, and Michael Hicks. Directed symbolic
execution. Technical Report CS-TR-4979, University of Maryland Department of Computer
Science, April 2011.  

13. Piotr Mardziel, Stephen Magill, Michael Hicks, and Mudhakar Srivatsa. Dynamic enforcement of
knowledge-based security policies. Technical Report CS-TR-4978, University of Maryland
Depart- ment of Computer Science, April 2011. Extended version contains proofs of theorems.  

14. Jong hoon (David) An, Avik Chaudhuri, Jeffrey S. Foster, and Michael Hicks. Dynamic inference
of static types for Ruby. Technical Report CS-TR-4965, University of Maryland Department of
Computer Science, July 2010. Extended version of POPL 2011 paper contains proofs of
theorems.  

15. Michael Hicks and Jeffrey S. Foster. Adapting Scrum to managing a research group. Technical
Report CS-TR-4966, University of Maryland, Department of Computer Science, September 2010.

16. Christopher M. Hayden, Eric A. Hardisty, Michael Hicks, and Jeffrey S. Foster. A testing based
empirical study of dynamic software update safety restrictions. Technical Report CS-TR-4949,
University of Maryland, Department of Computer Science, November 2009.  

17. Yit Phang Khoo, Michael Hicks, Jeffrey S. Foster, and Vibha Sazawal. Directing javascript with
arrows (functional pearl). Technical Report CS-TR-4923, University of Maryland, Department of
Computer Science, August 2008. Extended version of ICFP 2008 poster summary.  

18. Yit Phang Khoo, Jeffrey S. Foster, Michael Hicks, and Vibha Sazawal. Path projection for user-
centered static analysis tools (long version). Technical Report CS-TR-4919, University of
Maryland, Department of Computer Science, August 2008.  

19. Nikhil Swamy† and Michael Hicks. Verified enforcement of automaton-based information
release policies. Technical Report CS-TR-4906, University of Maryland, Department of
Computer Science, 2008. Full version of PLAS 08 paper.  

20. Nick L. Petroni, Jr.†and Michael Hicks. Automated detection of persistent kernel control-flow
attacks. Technical Report CS-TR-4880, Department of Computer Science, University of
Maryland, October 2007.  

21. Iulian Neamtiu†, Michael Hicks, Jeffrey S. Foster, and Polyvios Pratikakis†. Contextual effects
for version-consistent dynamic software updating and safe concurrent programming (extended
version). Technical Report CS-TR-4875, University of Maryland, Department of Computer
Science, July 2007.  

22. Nikhil Swamy†and Michael Hicks. Fable: A language for enforcing user-defined security policies
(extended version). Technical Report CS-TR-4876, University of Maryland, Department of
Computer Science, July 2007.  

23. Saurabh Srivastava†, Michael Hicks, and Jeffrey S. Foster. Appendix to CMod: Modular
information hiding and type-safe linking for C. Technical Report (TBD), University of Maryland,
College Park, 2007.  

24. Michael Hicks, Nikhil Swamy†, and Simon Tsang. Toward specifying and validating cross-
domain policies. Technical Report CS-TR-4870, Department of Computer Science, University of
Maryland, April 2007.  

25. Nikhil Swamy†, Michael Hicks, Stephen Tse, and Steve Zdancewic. Managing policy updates in
security-typed languages (extended version). Technical Report CS-TR-4793, Department of

Com- puterScience,UniversityofMaryland,August2006. Contains full formal development and
proofs for CSFW 06 paper.  

26. Saurabh Srivastava†, Michael Hicks, Jeffrey S. Foster, and Bhargav Kanagal⋆. Defining and
enforcing C’s module system. Technical Report CS-4816, Department of Computer Science,
University of Maryland, July 2006. Contains full formal development and proofs for TLDI 07
paper.  

27. Polyvios Pratikakis†, Jeffrey S. Foster, and Michael Hicks. Context-sensitive correlation analysis
for detecting races (extended version). Technical Report CS-TR-4789, Department of Computer
Science, University of Maryland, June 2006. Extends PLDI 2006 paper with full formal
development.  

28. Boniface Hicks, Dave King, Patrick McDaniel, and Michael Hicks. Trusted declassification:
high- level policy for a security-typed language (extended version). Technical Report NAS-TR-
033-2006, Department of Computer Science and Engineering, the Pennsylvania State University,
June 2006. Extended version of the PLAS 2006 paper with full formal development.  

29. Michael W. Hicks, Pankaj Kakkar, Jonathan T. Moore, Carl A. Gunter, and Scott M. Nettles.
PLAN: A packet language for active networks (extended version). Unpublished manuscript, May
2006. Unifies and consolidates ICFP 98, IPL 98, and Allterton 99 papers.  

30. Iulian Neamtiu†, Michael Hicks, Gareth Stoyle⋆, and Manuel Oriol†. Practical dynamic software
updating for C (extended version). Technical Report CS-TR-4790, Department of Computer
Science, University of Maryland, March 2006. Extended version of PLDI 06 paper.  

31. Polyvios Pratikakis†, Michael Hicks, and Jeffrey S. Foster. Existential label flow inference via
CFL reachability. Technical Report CS-TR-4700, Department of Computer Science, University
of Mary- land, July 2005. Contains full formal development and proofs of SAS 06 paper.  

32. Michael Hicks, Greg Morrisett, Dan Grossman, and Trevor Jim. Safe and flexible memory
management in Cyclone. Technical Report CS-TR-4514, University of Maryland Department of
Computer Science, July 2003.  

33. Michael Hicks, Adithya Nagarajan†, and Robbert van Renesse. User-specified adaptive
scheduling in a streaming media network. Technical Report CS-TR-4430, Department of
Computer Science, University of Maryland, March 2003. Extends OPENARCH ’03 paper with
full algorithmic description and analysis.  

34. Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and James Cheney.
For- mal type soundness for Cyclone’s region system. Technical Report CS 2001-1856, Cornell
University, November 2001. Proves formal results of PLDI ’02 paper.  

35. Michael Hicks and Stephanie Weirich. A calculus for dynamic loading. Technical Report MS-
CIS- 00-07, University of Pennsylvania, April 2000. Formalism and proof for system presented in
Types in Compilation paper.  

36. Michael Hicks. Types and Intermediate Representations. Technical Report MS-CIS-98-05,
Department of Computer and Information Science, University of Pennsylvania, April 1998.  

37. Michael Hicks. PLAN system security. Technical Report MS-CIS-98-25, Department of
Computer and Information Science, University of Pennsylvania, April 1998.  

38. Jonathan T. Moore, Michael Hicks, and Scott Nettles. General-purpose persistence using flash
memory. Unpublished manuscript, April 1997.  

II.F.5. Other

1. Michael Hicks. Dynamic Software Updating. PhD thesis, Department of Computer and

Information Science, University of Pennsylvania, August 2001. Winner of the 2002 ACM
SIGPLAN Doctoral Dissertation award.

II.H. Completed Creative Works

II.H.8. Software and Applications

These software packages were developed as part of research I supervised or participated in. Most are
freely distributed, or are available upon request.

1. MVEDSUa, developed 2017 – 2019; framework for fault-tolerant dynamic software updating of
C programs, combining my prior Kitsune framework with another one called Varan.

2. Checked C, developed 2016 – present; extension to Clang/LLVM implementation of C for
enforcing spatial safety. Available at https://github.com/Microsoft/checkedc

3. Build it, Break it, Fix it (BIBIFI) developed 2012 – present; a web platform for hosting novel
programming-meets-hacking contests. Hosted at https://builditbreakit.org with code available
upon request.

4. LWeb, developed 2012 – present; a information flow-secure platform for developing web
applications in Haskell. Basis for BIBIFI. Code available upon request.

5. Java-Fuzz, developed August 2016 – March 2018; a random, mutation-based testing tool for
Java programs. Available upon request.

6. Jana, developed April 2015 – present; an abstract interpreter for Java bytecode programs, aiming
to prove numeric properties. Foundation of the Blazer analysis for finding timing side channels
(or proving their absence). Available at https://github.com/plum-umd/JANA

7. Prob, developed June 2011 – present; a static analysis for probabilistic programs, for the
purposes of enforcing knowledge-based security policies. Available at
https://github.com/GaloisInc/TAMBA (code/prob subdirectory)

8. Wys*: A Verified Language Extension for Secure Multiparty Computations, developed March
2015 – 2016; a new programming language for developing secure applications, distributed as part
of F*, a programming language developed in collaboration with Microsoft Research. Based on
Wysteria. Available at https://www.fstar-lang.org/

9. KVolve: An extension to the redis key-value store to support lazily-implemented dynamic
updates the store’s contents, developed since April 2015 – August 2016. Available at
https://github.com/plum-umd/kvolve

10. C-Strider, A toolkit for building heap traversal-based tools for C programs, developed April
2014 – August 2016. Available at https://github.com/plum-umd/c-strider

11. ObliVM: A privacy-preserving computation framework that allows one or multiple organizations
to perform secure data analysis without disclosing their private data, developed March 2015 –
August 2016. Available at http://www.oblivm.com/

12. Rubah, developed October 2012 – October 2014; a library and program rewriting system to
support dynamic software updating services in Java programs (follow-on to Kitsune). Available
at https://github.com/plum-umd/rubah

13. Kitsune, developed October 2010 - 2016; a library and compiler for support dynamic software
updating services in C programs. Available at http://kitsune-dsu.com

14. Expositor, developed 2013 - 2014; a framework for scriptable, time-travel debugging. Available
at https://bitbucket.org/khooyp/expositor

15. Adapton, developed 2013 - present; a framework for demand-driven, incremental computation.
Available at https://bitbucket.org/khooyp/adapton.ocaml.

16. Wysteria, developed 2013 - 2016; a programming language for secure multiparty computation.
Available at https://bitbucket.org/aseemr/wysteria/wiki/Home

17. LambdaAuth, developed 2014 - 2015; a programming language for authenticated data
structures. Available at http://amiller.github.io/lambda-auth/

18. LockSmith, a tool for statically discovering race conditions in C programs, at
http://www.cs.umd.edu/projects/PL/locksmith/, developed 2005 - 2009 (released June 2006).
LockSmith checks that the program consistently follows the guarded-by pattern, in which some

mutual exclusion lock is held consistently by any thread that accesses a location that may
simultaneously be accessed by other threads.

19. Rubydust, developed October 2009 - 2013. Rubydust is a Ruby library that can be used to infer
types for Ruby methods based on information gathered during testing.

20. Measurement Manager Protocol (MGRP), at http://www.cs.umd.edu/projects/MGRP/,
developed 2007 - 2009 (released May 2010). MGRP is a Linux-kernel extension that permits
network measurement tools to be written so that they transparently piggyback on top of existing
traffic, to infer high-quality measurements at lower overhead.

21. Path Projection, at http://www.cs.umd.edu/projects/PL/PP/, developed 2008 - 2012 (released
June 2008). Path Projection is novel user interface toolkit that helps users visualize, navigate, and
understand program paths, a common component of many static analysis tools' error reports.

22. Arrowlets, at http://www.cs.umd.edu/projects/PL/arrowlets/, developed 2008 - present (released
September 2008). Arrowlets is a JavaScript library that uses the concept of arrows to ease the
task of composing event-handlers, a common need in Javascript programming.

23. SELinks, a secure web programming language, at http://www.cs.umd.edu/projects/PL/selinks,
developed 2007 - 2010 (released May 2008). {\sc SElinks extends the Links web programming
language type system with support for specifying security policies so that type checking is
equivalent to security checking: type-correct programs correct enforce their security policies.

24. CMod, a module system for C programs, at http://www.cs.umd.edu/projects/PL/CMod,
developed 2006 - 2010 (released October 2006). CMod wraps the standard C compiler and linker
to enforce programming patterns that effectively define a module system for legacy C programs;
type safe linking and information hiding are provable consequences.

25. BEEP, browser modifications to support Browser-enforced Embedded Policies, at
http://www.research.att.com/~trevor/beep.html, developed 2006 - 2007 (released February 2007).
BEEP is a system by which a web server can embed a security policy within its pages,
implemented as a Javascript function. While rendering a page, the browser will only execute
script programs that are approved by this function, defeating script injection attacks.

26. Ginseng, a system for dynamically updating C programs, at http://www.cs.umd.edu/projects/dsu/,
developed 2004 - 2011 (released June 2006). Ginseng compiles a C program to accept a dynamic
patch that can replace functions, global variables, and type definitions on the fly; Ginseng
generates dynamic patches mostly automatically from the deployed and updated source code for
the program.

27. Cyclone, a safe dialect of C for more reliable and secure systems programming, at
http://cyclone.thelanguage.org/, developed 2001 - 2007. A hallmark of Cyclone is type safety
alongside a high degree of control over data layout and memory management.

28. MediaNet, an overlay network for user-specified adaptations to streaming media, at
http://www.cs.umd.edu/projects/medianet/, developed 2002 - 2004. MediaNet is written in
Cyclone and employs many of its advanced memory management features.

29. Java Transparent Proxy Framework, a toolkit for proxy programming, at
http://www.cs.umd.edu/~polyvios/proxyc/, developed 2004. The framework uses static analysis
to track the flow of proxies beginning from user-annotated program points. The analysis results
are used to re-write the program, inserting code to wrap and unwrap proxies as necessary.

30. The Flashed updgradeable webserver and an implementation for dynamically updateable
applications, developed 2000 - 2001. Superceded by Ginseng; this is the dynamic updating
implementation I developed as part of my doctoral dissertation, on top of the Popcorn compiler
for Typed Assembly Language.

31. The SNAP Active (Programmable) Network, at http://www.cis.upenn.edu/~dsl/SNAP/,
developed 2001 - 2002. SNAP defines a bytecode language for constructing programs that reside
in network packets, e.g., to define their routing or quality-of-service. SNAP is distinguished in
being efficient with tight controls over worst-case resource usage.

32. The PLANet Active (Programmable) Network, at http://www.cis.upenn.edu/~dsl/PLAN/,
developed 1998 - 2001. PLANet's packet language PLAN is an ML-like language that can be
compiled to SNAP.

33. The Oscar Garbage Collection Testbed, at http://www.cis.upenn.edu/~oscar/, developed 1997 -
1998. Defines a heap snapshot and replay system for measuring the costs of garbage collection
mechanisms.

II.J. Sponsored Research
II.J.1. Grants

1. AFOSR FA95502110051 Software Assurance for Quantum Programs, $218,875, January 2021-
2024. PI: Michael Hicks. (This is part of a $506,651 multi-institutional grant with UChicago, and
co-PI Robert Rand; UMD is the lead.)

2. NSF CCF-1955610: Collaborative Research: SHF: Medium: Bringing Python Up to Speed,
$374,390, July 2020-2023. PI: Michael Hicks. (This is part of a $1.2M multi-institution grant
with UPenn and UMass Amherst; UMD is the lead institution.)

3. DARPA FA87501910008: Symbolic Input Unification and Minimization, $34,802, Nov 2018 –
Dec 2018. PI: Michael Hicks.

4. NSF CNS-1801545 SaTC: CORE: Medium: Collaborative: Understanding Security in the
Software Development Lifecycle: A Holistic, Mixed-Methods Approach, $698,957, Sep 2018 –
2022. Lead PI: Michelle Mazurek, co-PI: Michael Hicks. (This is part of a multi-institution grant
with University of South Florida.)

5. DOE ASCR grant: Efficient and Reliable Mapping of Quantum Computations onto Realistic
Architectures, $4,467,131, Sep 2018 – 2022. Lead PI: Andrew Childs. Co-PIs: Michael Hicks,
Xiaodi Wu, Alexey Gorshkov.

6. NSF CNS-1563722 TWC: Medium: Collaborative: New Protocols and Systems for RAM-Based
Secure Computation, $464,196. May 2016—2019. Lead PI: Jonathan Katz, co-PI: Michael
Hicks. (This is part of a multi-institution grant with George Mason University.)

7. DARPA FA87501520104: SOUCIS: Sound Over- & Under-Approximations of Complexity &
Information Security, $1,209,032. April 2015—2018. Lead PI: Michael Hicks, co-PI: David Van
Horn and Jeffrey S. Foster. (This is part of a $2.52M multi-institution grant with UC Berkeley
and Yale, each with one additional co-PI; UMD is the lead institution.)

8. DARPA FA8750-16-C-0022: TAMBA: Testing and Modeling of Brandeis Artifacts, $521,524.
October 2015—October 2019. PI: Michael Hicks. (This is part of a multi-institution grant led by
Galois, Inc.; Hicks is the only UMD PI.)

9. NSF CNS-1314857 TWC: Medium: Collaborative: DIORE: Digital Insertion and Observation
Resistant Execution, $799,499. August 2013-2018. PI: Elaine Shi, co-PIs: Michael Hicks and
Bobby Bhattacharjee. (This is part of a $1.2M multi-institution grant with one other PI at UT
Austin. Bhattacharjee became UMD PI when Shi left UMD.)

10. NSF CNS-1111599 TC: Large: Collaborative Research: Practical Secure Two-Party
Computation: Techniques, Tools, and Applications, $1M. August 2011-2018. PI: Jonathan Katz,
co-PI: Michael Hicks. (This is part of a multi-institution grant, with UVA as lead institution.)

11. Establishing a Science of Security Research Lablet at the University of Maryland, NSA,
$1,487,608. February 2014–February 2017. Lead PI: Jonathan Katz, co-PI: Michael Hicks
(among 11 others).

12. Secure Information Flows in Hybrid Coalition Networks, US Army Research Lab and UK
Ministry of Defence International Technology Alliance in Network and Information Science
(USUKITA) program BPP15, $244,233 PI: Michael Hicks, co-PI Jonathan Katz. May 2015–
2016.

13. NSF EDU-1319147 EDU: Competing to Build Secure Systems, $300,000. September 2013-2016.
PI: Michael Hicks, co-PIs: Atif Memon, David M. Levin, and Jandelyn D. Plane.

14. Secure Information Flows in Hybrid Coalition Networks, US Army Research Lab and UK
Ministry of Defence International Technology Alliance in Network and Information Science
(USUKITA) program BPP13, $356,615 PI: Michael Hicks, co-PI Jonathan Katz. May 2013–
2015.

15. University of Maryland Partnership with the Laboratory of Telecommunications Sciences,
Contract Number H9823013D00560002, Protecting against Malware on Android, $371K. April
5, 2012–September 30, 2014. PI: Jeffrey S. Foster, co-PI: Michael Hicks.

16. NSF CCF-0910530 SHF: Large: Collaborative Research: Ever Ready: Perpetually Available
Software Systems, $642K. August 2009–2014. PI: Michael Hicks. (This is part of a multi-
institutional team grant with two other PIs for a total award of $2.3M.)

17. NSF CCF-0915978 SHF: Small: User-Centered Software Analysis Tools, $500K. September
2009– 2013. PI: Jeffrey S. Foster, co-PI: Michael Hicks.

18. Securing Information Flows, US Army Research Lab and UK Ministry of Defence International
Technology Alliance in Network and Information Science (USUKITA) program BPP11, $333K.
co-PIs: Michael Hicks and Jonathan Katz. May 2011–2013.

19. University of Maryland Partnership with the Laboratory for Telecommunications Sciences (LTS),
Dynamic Software Update Automation for Servers and Event-Driven Programs, $407K. January
2010– 2013. PI: Michael Hicks, co-PI: Jeff Foster.

20. NSF CNS-0905419 RECOVERY: TC: Medium: Collaborative Research: Techniques to Retrofit
Legacy Code with Security, $300K. September 2009–2012. PI: Michael Hicks. (This is part of a
multi-institutional team grant with three other PIs for a total award of $1.2M.)

21. NSF CCF-0541036 Scalable, Precise, and Effective Analyses for Detecting Race Conditions,
$360K. September 2006–2010. PI: Michael Hicks, co-PI: Jeffrey S. Foster.

22. US Army Research Lab and UK Ministry of Defence International Technology Alliance in
Network and Information Science (USUKITA) program BPP09, $197K. co-PIs: Michael Hicks
and Jonathan Katz. May 2009–2011.

23. NSF CNS-0346989 CAREER: Programming Languages for Reliable and Secure Low-level
Systems, $550K. June 2004-2010. PI: Michael Hicks.

24. University of Maryland Partnership with the Laboratory for Telecommunications Sciences (LTS),
Safe and Robust Dynamic Software Updating for Real-time Embedded Applications, $327K,
August 2007–January 2010. PI: Michael Hicks, co-PI: Jeff Foster.

25. Army Research Lab Communications and Networking Collaborative Technology Alliance (ARL
C&N CTA) program TIP-07-4, End-to-End Security of Cross-Domain Information Flows, $245K
(funds to Maryland). October 2006–October 2009. PI: Michael Hicks.

26. ARL C&N CTA program (supported by DARPA DSO), Provably Enforcing Decentralized,
Multi-level Security Policies in Distributed, Web-based Applications, $83K. March 1, 2007–
September 30, 2009. PI: Michael Hicks.

27. NSF CCF-0524036 Collaborative Research: CT-T: Flexible, Decentralized Information-flow
Control for Dynamic Environments, $280K. September 2005-2009. PI: Michael Hicks. (This is
part of a multi-institutional team grant with three other PIs for a total award of $1.1M.)

28. DARPA #HR00110610019 Computer Science Study Group Panelist, $77K. March 2006-2007.
PI: Michael Hicks.

29. NSF IIS-0613601 SoD-HCER: Evaluation of Complex Designs–A Comparative Study, $100K.
July 2006–2008. PI: Michael Hicks (transferred from Vibha Sazawal in January 2007).

II.K. Fellowships, Gifts and Other Funded Research
II.K.2. Gifts

1. Advancing Checked C, Microsoft Research Award (gift), $119,477. March 2019-December 2020.
PI: Michael Hicks.

2. Contesting Secure Development Effectiveness, Google Research Award (gift), $55,256. March
2017–2018. PI: Michelle Mazurek, co-PI: Michael Hicks.

3. Boombox: Dynamic Software Updates for Software Defined Networks, Google Research Award
(gift), $51,037. September 2014–2015. PI: Michael Hicks.

4. Connecting the Theory and Practice of Incremental Computation via Servo, gift from Mozilla
Corporation, $88,294. May 2014–2015. co-PIs: Michael Hicks and Jeff Foster.

5. Improving the efficiency of static analysis of C source code using multiple tools, Cisco Systems
Inc (Unrestricted gift), $35,000. 2007. PI: Jeffrey S. Foster, co-PI: Michael Hicks.

II.M. Centers for Research, Scholarship, and Creative Activities
II.M.2. Centers Directed

1. Maryland Cybersecurity Center (MC2), (first) Director from November 2011 to 2013.

II.M.3. Symposia Organized (through Maryland Cybersecurity Center)

1. Maryland Cybersecurity Center Symposium, May 2012.
2. Maryland Cybersecurity Center Symposium, May 2013.

II.N. Patents
II.N.1. Device

1. Chang Liu, Michael Hicks, and Elaine Shi, US 62/017,758, Memory Trace Oblivious Program
Execution and Method, US PTO, Submitted, 2014 July.

II.O. Other Research/Scholarship/Creative Activities

1. Build-it, Break-it, Fix-it, a security-oriented programming contest. My role: Co-inventor,
director. First offered August 2014, then again in Spring and Fall of 2015, and Fall 2016. The
nationwide contest pits student “builder” teams against “breaker” teams, where the former tries to
build software resilient against attack from the latter. Intended outcomes are to (a) impress upon
students the value of “building security in,” and (b) to gather data to research common errors, and
to learn what most often correlates with success. https://builditbreakit.org/. The latter two
offerings were also part of a Coursera Cybersecurity Capstone project.

III. Teaching, Mentoring and Advising.

III.A. Courses Taught

1. CMSC 330, Organization of Programming Languages, 145 students, Spring 2021.
2. CMSC 330, Organization of Programming Languages, 145 students, Spring 2019.
3. CMSC 330, Organization of Programming Languages, 145 students, Spring 2018.
4. CMSC 631, Program Analysis and Understanding, 28 students, Fall 2017.
5. CMSC 330, Organization of Programming Languages, 215 students, Spring 2017.
6. CMSC 396H, Honors Seminar, 13 students, Fall 2016.
7. CMSC 838G, Mechanized Proof and Verified Software, 8 students, Spring 2016.
8. CMSC 330, Organization of Programming Languages, 129 students, Fall 2015.
9. CMSC 330, Organization of Programming Languages, 130 students, Spring 2015.
10. CMSC 433, Programming Language Technologies and Paradigms, 50 students, Fall 2014
11. CMSC 838G, Software Security, 10 students, Spring 2014
12. CMSC 433, Programming Language Technologies and Paradigms, 50 students, Fall 2013

13. CMSC 631, Program Analysis and Understanding, 26 students, Spring 2013
14. CMSC 330, Organization of Programming Languages, 113 students, Spring 2013
15. CMSC 498L, Cybersecurity lab (co-taught with 4 other profs, 25 students, Fall 2012
16. CMSC 498B, Secure Maryland (penetration testing), 7 students, Spring 2012
17. CMSC 631, Program Analysis and Understanding, 13 students, Fall 2011
18. CMSC 838G, Software Security, 5 students, Spring 2011
19. CMSC 433, Programming Language Technologies and Paradigms, 40 students, Fall 2010
20. CMSC 330, Organization of Programming Languages, 66 students, Spring 2010
21. CMSC 631, Program Analysis and Understanding, 9 students, Fall 2009
22. CMSC 631, Program Analysis and Understanding, 16 students, Fall 2007
23. CMSC 412, Operating Systems, 42 students, Spring 2007
24. CMSC 631, Program Analysis and Understanding, 20 students, Fall 2006
25. CMSC 433, Programming Language Technologies and Paradigms, 44 students, Spring 2006
26. CMSC 412, Operating Systems, 50 students, Fall 2005
27. CMSC 838Z, Language-based Security, 7 students, Spring 2005
28. CMSC 412, Operating Systems, 45 students, Fall 2004
29. CMSC 838Z, Tools and Techniques for Software Dependability, 8 students, Spring 2004
30. CMSC 433, Programming Language Technologies and Paradigms, 48 students, Fall 2003
31. CMSC 838Y, Agile and Adaptive Programming, 10 students, Spring 2003
32. CMSC 433, Programming Language Technologies and Paradigms, 47 students, Fall 2002

III.B. Teaching Innovations
III.B.3. Software, Applications, Online Education, etc.

1. Software Security - I developed a massively-open on-line course (MOOC) under the UMD-
Coursera agreement, on this topic, as part of a specialization on cybersecurity. I fully developed
the content for this course, including videos, lecture notes, and projects. See
https://www.coursera.org/course/softwaresec. As of January 2019, this course has had 35,000+
participants.

2. Cybersecurity Capstone – I developed the Capstone project for the UMD specialization on
cybersecurity, based on our Build-it, Break-it, Fix-it contest. We hosted two capstones in 2015
and one in 2016.

III.B.4. Instructional Workshops and Seminars Established

1. Using LLVM for Program Analysis and Transformation (co-presented with Andrew Ruef):
This tutorial was given at the Conference on Programming Language Design and Implementation
(PLDI) in June 2013, having 47 attendees (the most of any tutorial that year), and again in June
2014. It was organized to give programming language researchers and implementers with
information about how to use the Low Level Virtual Machine (LLVM) project to approach
program transformation and analysis. Cf. http://pldi2013.ucombinator.org/tutorials.html

2. Using Symbolic Execution to Find Software Vulnerabilities: This tutorial was given at the

Second Maryland Cybersecurity Center Symposium in May 2013, having 25 attendees. It
presented an overview of symbolic execution technology and a tutorial on how to use the KLEE
tool in particular. Cf. http://www.cs.umd.edu/~mwh/se-tutorial/

III.B.5. Course or Curriculum Development

1. CMSC 330 - Organization of Programming Languages In 2017, I redesigned much of the
material and slides, to further streamline connections (and support in-class exercises), and

supervised the development of several new projects. In 2018, I swapped out the use of Prolog
(introduced by me in 2013) and replaced it with Rust, a new, security-oriented programming
language. In 2015, I developed new content on writing secure software, including new lectures
and a new project. In 2013, I reintroduced logic programming to the course, and redesigned
projects and lecture material to make better connections between course elements, including this
new unit.

2. CMSC 388N - Build it, Break it, Fix it: Competing to Secure Software (2019) This short

winter course employs the Build it, Break it, Fix it contest which I co-developed to teach students
about how to build secure software.

3. CMSC 498B - Secure Maryland (2012) This is a new course on penetration testing. Seven

students piloted the course. We train them in scanning, vulnerability assessment, and
exploitation, and educate them in the ethics of penetration testing. The most novel feature of the
course is that they are permitted to attack the University's own networks in a supervised setting
via public-facing interfaces. When vulnerabilities are discovered, they contact the system owners
to work to fix the problems. In The 2012 iteration of the course revealed literally hundreds of
vulnerabilities, the majority of which were fixed before the semester concluded.

4. CMSC 412 - Operating Systems (2004,2005,2007) I substantially revised the content of the

course—I created new lecture notes, new projects, and shifted focus more toward core operating
systems and systems-building concepts (and away from networking and distributed systems,
taught in other courses). I added an introductory project that uses Cyclone, a research
programming language, and extended the remaining projects so that Cyclone could be used
optionally; several students used Cyclone for their projects and two started independent study
projects involving Cyclone with me afterward.

5. CMSC 433 - Programming Language Technologies and Paradigms

(2002,2003,2006,2010,2013,2014) I substantially reworked the course content twice. In 2006, I
focused the material on advanced programming techniques for sequential, concurrent, and
distributed software. I initially revised most of the lecture notes, and selectively created new
lecture notes and new projects with each offering of the course. In 2010, I focused the material
almost entirely on concurrent/parallel programming, with some material on distributed
programming. I completely redesigned all projects and lecture notes.

6. CMSC 631 - Program Analysis and Understanding (2006,2007,2009,2011,2013,2017) This

course focuses on programming language semantics, and foundations and implementation
techniques of program analyses. Some of the material of the course was inherited from my
earlier course, CMSC 838Z (see below). For the first offering I added some new lecture material,
and for the second I reorganized the material to be more bottom-up. In both cases I designed new
projects and homework assignments. For the 2013 offering, I developed new material involving
the use of a proof assistant to ensure that students' formalizations and proofs are checked for
correctness automatically. In the 2017 offering, I moved the course to be based in its majority on
the use of a proof assistant.

7. CMSC 838Y - Agile and Adaptive Programming (2003) This course focuses on novel

techniques for building reusable, reconfigurable, and adaptable software components and
systems. I developed the lecture material and helped students design research projects.

8. CMSC 838Z - Tools and Techniques for Software Dependability (2004), Language-based

Security (2005) The theme of these courses is programming language-oriented techniques for

building reliable and secure software. I developed the course content, lectures, and several
substantial projects. Most of the project materials and some of the lecture materials from the
2004 offering were subsequently included in CMSC 631, Program Analysis and Understanding.

III.C. Advising: Research or Clinical

III.C.1. Undergraduate

1. Paaras Bhandari, June 2020 – present.
2. Jerry Peng, May 2018 – present.
3. Deena Postol, January 2020 – August 2020 (co-mentored with David Van Horn).
4. Technica+Research team advisor, Nov 8-10 2019, for a team of six undergraduate women: Nhi

Ngo, June Tian, Aishwarya Jayan, Amel Hassan (Tufts), Qundeel Rafiq, and Gagandeep
Samra (the rest from UMD).

5. George Klees, September 2018 – present. (Supervised George when he was a high school student,
also, June – September 2017. Work we did together eventually won the 2018 NSA Best
Scientific Cybersecurity Paper competition.)

6. Yiyun Liu, May 2018 – August 2020; 2020 CRA outstanding undergraduate researcher,
honorable mention (see https://cra.org/about/awards/outstanding-undergraduate-
researcher-award/#2020)

7. Aaron Eline, October 2019 – December 2019.
8. Ivan Quiles, June 2019 – December 2019.
9. Shriraj Gandhi, January 2019 – June 2019.
10. Hasan Touma, August 2018 – August 2019.
11. Pei-Jo Yang, May 2018 – June 2019.
12. Matthew Hou, January 2018 – June 2018 (CMSC 499 in Spring’18)
13. Gavriel Epstein, January 2018 – June 2018.
14. Adam Fiergang, June 2017 – August 2017.
15. Benjamin Cooper, June 2017 – June 2018 (including CMSC 499 in Fall’17).
16. Ryan Forsyth, January-May 2016 (CMSC 499, Spring’16).
17. Jerry Tan, January 2016-June 2017.
18. Steven Sosnick, September 2015-December 2015 (co-mentored with Atif Memon)
19. Kyle Headley, June 2014–August 2015 (co-mentored with Jeff Foster)
20. Ilse Haim, January 2014–December 2014
21. Andrew Ruef, June 2010–2013 (he is now my Ph.D. student)
22. James Parker, Spring 2012–2013
23. Edward (Ted) Smith, Summer 2009–2013 (co-mentored with Jeff Foster)
24. Ryan Sims, November 2010–December 2011
25. Michail Denchev, June 2010–December 2011
26. QUEST-program mentor, Fall 2010, for a team of five undergraduates: Mitchell Kochman,

Sebastian Gomez, Melinda Jih, Brad Klein, Jeremy Prince
27. Andrew Ferguson, Winter 2010–Summer 2010
28. QUEST-program mentor, Fall 2009, for a team of six undergraduates: Jeremy Erdman, Andrew

Duch, Cameron Rose, Nicole Thomas, Haren Arcot, and Akshay Goyal
29. Elliott Sprehn, December 2008–May 2008
30. Jeffrey S. Meister, Summer 2007–Summer 2008 (co-mentored with Jeff Foster).  
31. Neha Gupta, Spring 2005
32. Hariharan Sivaramakrishnan (ECE), Spring 2004–Spring 2005
33. Christopher Wamble, Summer 2003.This was as part of the Ronald E. McNair Post-

Baccalaureate Achievement Program, which aims to increase the participation of under-
represented groups in graduate school

34. Martha Gebremichael, Spring 2003
35. Michael Nelson, Spring 2003

III.C.2. Master’s

1. Yiyun Liu, August 2020 – present. (Previously supervised as UMD undergraduate student.)
2. James Parker, LMonad: Information Flow Control for Haskell Web Applications. Defended and

graduated December 2014. My role: Advisor.
 - Part-time research programmer 2015-2018; returned as PhD student in 2018.
3. Nate Parsons, Implementing and Typing a Core Calculus for Mixed-mode Secure Multi-party

Computations. Graduated December 2013. My role: advisor.
4. Jong hoon (David) An, Dynamic Inference of Static Types for Ruby, defended July 2010,

graduated August 2010.  My role: co-advisor (with Jeff Foster).
5. Elnatan Reisner. Graduated August 2011. My role: co-advisor (with Jeff Foster)
6. Jonathan Turpie. Graduated August 2011. My role: co-advisor (with Jeff Foster). Currently a

software engineer at Amazon.
7. Surupa Biswas, Memory Overflow Protection for Embedded Systems using Run-time Checks,

Reuse and Compression, Department of Electrical and Computer Engineering. Defended Au- gust
2004, graduated August 2004.  My role: committee member

8. Adithya Nagarajan (SE). Graduated Spring 2003. My role: Co-advisor.
9. James Rose. Graduated Spring 2004. My role: Advisor.

III.C.3. Doctoral

1. Kesha Hietala. A Verified Software Toolchain for Quantum Programming. My role: advisor, Fall
2016–present. Advanced to candidacy September 2020.

2. Ian Sweet. My role: advisor, Fall 2016–present. (Also supervised during Spring/Summer 2016 as
post-undergraduate research assistant).

3. Sangyung Hong. Practical Hardware Attacks on Deep Learning. My role: proposal committee
member. Advanced to candidacy May 2020.

4. Eddie Schoute. Architecture-Respecting Quantum Circuit Transformations. My role: proposal
committee member. Advanced to candidacy April 2020.

5. Shih-Han Hung. Classical proofs for quantum computation. My role: proposal committee
member. Advanced to candidacy April 2020.

6. Daniel Votipka, A Human-Centric Approach to Software Vulnerability Discovery. My role:
proposal and dissertation committee member. Advanced to candidacy, April 2019. Defended
November 2020. Currently an Assistant Professor at Tufts University.

7. Aravind Machiry (University of California, Santa Barbara), Protecting Smart Devices from the
Bottom-up. My role: co-advisor (Aravind was an intern in my lab June-August 2019, and I
served on his dissertation committee), June 2019 – August 2020; defended August 2020.
Currently a post-doc at UPenn (August-December 2020); starts as an Assistant Professor at
Purdue in January 2021.

8. James Parker, Advanced Language-based Techniques for Correct, Secure Networked Systems.
My role: advisor, January 2019—June 2020. (Previously MS student, see above.) Advanced
to candidacy, June 2019. Defended May 2020. Currently a Research Engineer at Galois, Inc.

9. Andrew Glaudell (University of Maryland Dept of Physics). My role: dissertation committee
member. Defended December 2019.

10. Phuc (Phil) Nguyen, Higher-order Symbolic Execution. My role: proposal and dissertation
committee member. Advanced to candidacy January 2019. Defended October 2019.
Currently a Software Engineer at Google.

11. Danny Kim, Improving Existing Static and Dynamic Malware Detection Techniques with
Instruction-level Behavior. My role: Dean’s representative (ECE). Defended February 2019.

12. Richard Johnson, Implicit CPU-GPU Parallelization and Hybrid Memory Hierarchies for Next
Generation HPC Systems. My role: Proposal committee member. Advanced to candidacy
December 2018.

13. Andrew Ruef. Tools and Experiments for Software Security. My role: advisor, Spring 2014–Fall
2018. Advanced to candidacy October 2017, defended October 2018. Currently a researcher
at IDA/CCS.

14. Willem Wyndham. My role: advisor, Fall 2016-2018.
15. Xiao Wang. My role: dissertation committee member. Defended June 2018. Currently an

assistant professor at Northwestern.
16. David Darais, Mechanizing Abstract Interpretation. My role: Proposal and dissertation committee

member. Advanced to candidacy October 2016, defended May 2017. Currently an assistant
professor at U. Vermont.

17. Ahmed Kosba, Verifiable Computation in Practice: Tools and Protocols. My role: Proposal
committee member. Advanced to candidacy April 2017.

18. Kartik Nayak, Efficient Oblivious Computation. My role: Proposal and dissertation committee
member. Advanced to candidacy April 2017, defended June 2018. Currently an assistant
professor at Duke University.

19. Andrew Miller, Provable Security and Safely Composable Abstractions for Cryptocurrencies. My
role: Proposal and dissertation committee member. Advanced to candidacy December 2015,
defended July 2016. Currently an assistant professor at UIUC.

20. Chang Liu. Trace Oblivious Program Execution. My role: co-advisor (with Elaine Shi), Fall
2012–present. Advanced to candidacy Fall 2015, defended July 2016. Post-doc at UC
Berkeley 2016 -- 2018. Currently a quant researcher at Citadel Securities, since September
2018.

21. Alex Malozemoff, Efficient Secure Computation For Real-World Settings and Security Models.
Defended May 2016. My role: dissertation committee member. Currently a researcher at
Galois, Inc.

22. Kristopher Micinski, Interaction-Based Security Policies for Mobile Apps. Advanced to
candidacy March 2016. My role: proposal committee member. Currently a visiting lecturer at
Haverford College.

23. Luis Pina, Practical Dynamic Software Updating (for Java). My role: co-advisor (Luis was a
Ph.D. student at Instituto Superior Tecnico,  Lisbon, Portugal, visiting my group), Fall
2012–Spring 2015; defended January 2016 (left early to take a research position). Currently
an assistant professor at the University of Illinois, Chicago (UIC).

24. Aseem Rastogi, Language-Based Techniques for Practical and Trustworthy Secure Multi-Party
Computations. My role: advisor, Fall 2012–present. Advanced to candidacy Fall 2014,
defended January 2016. Currently a researcher at Microsoft Research, India.

25. Karla Saur, Dynamic Upgrades for High Availability Systems. Advanced to candidacy May 2014,
defended September 2015. My role: co-advisor (with Jeff Foster), Spring 2012–Fall 2015.
Currently a researcher at Intel Labs, Portland.

26. Jeff Stuckman, Developing and Validating Security Vulnerability Indicator Metrics. Advanced to
candidacy May 2013. My role: Proposal committee member.

27. Piotr Mardziel, Modeling, Quantifying, and Limiting Adversary Knowledge. Advanced to
candidacy March 2012, defended December 2014, graduated January 2015. My role: advisor,
Summer 2009–January 2015. Currently a post-doc at Carnegie Mellon.

28. Peter Fontana, Towards a Unified Theory of Timed Automata. Advanced to candidacy April 2012,
defended February 17, 2014. My role: Proposal and dissertation committee member.
Currently at NIST.

29. Arnar Birgisson (Chalmers University of Technology, Sweden), Tracking Dependencies for
Security and Privacy. Defended November 2013. My role: opponent. (The opponent is a
special role in Swedish defenses: he begins the defense by presenting context on the research
area, and then engages the candidate with roughly one hour of probing questions following
the candidate’s talk.) Currently at Google.

30. Khoo Yit Phang, User-Centered Program Analysis Tools. Advanced to candidacy May 2010,
defended June 2013, graduated August 2013. My role: co-advisor (with Jeff Foster), Spring
2007–Summer 2013. Currently at Mathworks.

31. Aaron Schulman, Add Wireless Broadcast to the Internet. Advanced to candidacy May 2012,
Defended July 2013. My role: Proposal and dissertation committee member. Won the ACM
SIGCOMM Dissertation Award. Currently an assistant professor at UCSD.

32. Justin McCann, Automating Performance Diagnosis in Networked Systems. Advanced to
candidacy December 2010, defended April 2012, graduated August 2012. My role: Advisor,
Spring 2010–May 2012.

33. Chris Hayden, Clear, Correct, and Efficient Dynamic Software Updates. Advanced to candidacy
May 2010, defended April 2012, graduated August 2012. My role: co-advisor (with Jeff
Foster), Spring 2007–May 2012. Currently in industry.

34. Kin Keung (Martin) Ma, Improving Program Testing and Understanding via Symbolic Execution.
Defended December 2011, graduated December 2011. My role: co-advisor (with Jeff Foster),
Spring 2009–December 2011. Currently at Google.

35. Adam Bender, An Accountability Architecture for the Internet. Defended November 2010,
graduated December 2010.  My role: dissertation committee member. Currently at Google.

36. Matthew Simpson (UMD ECE), Optimizing Memory Safety Checks Using Dynamic Pointer
Disambiguation. Proposed August 2008, defended November 3, 2010. My role: dissertation
committee member.

37. Nathaniel Ayewah. Static Analysis in Practice. Defended July 2010, graduated August 2010.
 My role: dissertation committee member. Currently at Microsoft.

38. Saurabh Srivastava, Satisfiability-based Program Reasoning and Synthesis. Advanced to
candidacy Winter 2008, defended April 2010, graduated Spring 2010. My role: co-advisor
(with Jeff Foster and Sumit Gulwani), Spring 2005–2010. Co-founder of 20n. Previously a
post-doc at Berkeley.

39. Suriya Subramanian (University of Texas at Austin CS), Dynamic Software Updates: a VM-
centric Approach. Defended April 2010, graduated May 2010.  My role: Co-advisor (with
Kathryn McKinley), August 2007 – May 2010. Previously at Microsoft Research, India. Now
at a startup company.

40. Michael Furr. Combining Static and Dynamic Typing in Ruby. Defended October 2009, graduated
December 2009.  My role: dissertation committee member. Currently at Amazon.

41. Pavlos Papageorgiou (UMD ECE), The Measurement Manager: Modular and Efficient End-
 to-end Measurement Services. Advanced to candidacy May 2007, defended November
2008, graduated December 2008. My role: advisor, Summer 2004–Fall 2008. Now at Google,
Inc.

42. Iulian Neamtiu, Practical Dynamic Software Updating. Received Masters degree Spring 2005.
Advanced to candidacy Fall 2006, defended July 2008, graduated Summer 2008. My role:
advisor, Fall 2003–August 2008. Previously an Associate Professor at UC Riverside. Now at
the New Jersey Institute of Technology.

43. Polyvios Pratikakis, Sound, Precise and Efficient Static Race Detection for Multi-Threaded
Programs. Advanced to candidacy Fall 2007, defended July 2008, graduated Summer 2008.
My role: Co-advisor (with Jeff Foster), Summer 2003–Summer 2008. Now at FORTH (a
Greek research institute) and the University of Crete as an assistant professor.

44. Nikhil Swamy, Language-Based Enforcement of User-Defined Security Policies as Applied to
Multi-tier Web Programs. Advanced to candidacy Spring 2007, defended July 2008,

graduated Summer 2008. My role: advisor, Spring 2004–Summer 2008. Now a Principal
Researcher at Microsoft Research.

45. Nick L. Petroni, Jr, Property-based integrity monitoring of operating system kernels. Advanced to
candidacy Spring 2006, defended December 2007, graduated Spring 2008. My role: co-
advisor (with Bill Arbaugh), Spring 2006–December 2007. Thesis one of two nominated by
the University of Maryland for the ACM Doctoral Dissertation Award. Previously at
IDA/CCS (government research lab). Currently at a startup.

46. Boniface Hicks (Pennsylvania State University, Dept CSE), Bridging the Semantic Gap in
Security Policy. Proposed December 2005, defended August 3, 2007. My role: external
dissertation committee member. Now at St. Vincent’s Archabbey.

47. Yu David Liu (Johns Hopkins University, Dept. CS), Assemblages: Modules for Large-scale
Distributed Software. Proposed May 2004, defended September 2007, graduated December
2007. My role: Proposal and dissertation committee external member. Currently an Associate
Professor at SUNY Binghamton.

48. Chadd Williams, Using Historical Data from Source Code Revision Histories to Detect Source
Code Properties. Defended July 2006, graduated August 2006. My role: dissertation
committee member. Currently an Associate Professor at Pacific University.

49. Jeremy Manson. The Java Memory Model. Defended September 2004, graduated Winter 2004.
My role: dissertation committee member. Currently at Google, Inc.

50. Rajiv Gandhi, Broadcast Scheduling. Defended May 2003, graduated August 2003. My role:
dissertation committee member. Currently an Associate Professor at Rutgers, Camden.

51. Jonathan Turpie.  My role: advisor, Winter 2010–August 2011. Currently at Amazon.
52. Brian Corcoran. My role: advisor, Summer 2007–Summer 2009.
53. Eric Hardisty. My role: co-advisor (with Jeff Foster), Winter 2008–Summer 2009.
54. Gary Jackson. My role: co-advisor (with Jeff Foster), Fall 2005–Fall 2007.
55. Mujtaba Ali. My role: advisor, Spring 2004–Spring 2005.

III.C.4. Post-doctoral

1. Liyi Li, November 2020 – present.
2. Michael Coblenz, September 2020 – present. Co-advised by Adam Porter.
3. Leonidas Lampropoulos, September 2018 – July 2020. Co-advised by Benjamin Pierce (UPenn).
4. Robert Rand, September 2018 – July 2020. Co-advised by Xiaodi Wu.
5. Tamara Rezk, April 3, 2018. Served on Jury of her Habilitation à diriger des Recherches from

Université Côte d’Azur. This is a post-doctoral thesis awarded 10 years after the PhD,
summarizing work to that point.

6. Paul Gazzillo, June 2017---April 2018. Co-advised with Eric Koskinen (Stevens Tech). To start
as Assistant Professor at UCF, July 2017.

7. Shiyi Wei, September 2015—August 2017. Currently an assistant professor at UT Dallas.
8. Piotr Mardziel, January 2015–June 2016. Currently a post-doc at CMU.
9. Matthew Hammer, September 2012–August 2015. Currently an assistant professor at CU

Boulder.
10. Nataliya Guts, January 2011–July 2012.  
11. Stephen Magill, January 2010–August 2011. Currently a researcher at Galois, in Portland, OR.  
12. Manuel Oriol, Spring 2004–Spring 2005. Currently a senior lecturer at the University of York,

United Kingdom.  

III.C.5. Other Research Directions (K-12 Interactions)

1. Yael Pinsky (Montgomery Blair High School), Summer 2019.

2. George Klees (Montgomery Blair High School), Summer 2017 (predominantly) – April 2018
(part-time). Now at UMD as an undergraduate in CS. Research project was foundation of CCS
2018 paper which later won the NSA’s Best Scientific Cybersecurity Paper Award.

3. Arun Dillipan (Poolesville High School), Summer 2014.
4. Edward (Ted) Smith (Walt Whitman High School), Summer 2008. Went to UMD for

undergraduate school, and then to graduate school at UMass, Amherst. Now at Google, Inc.
5. William C. Burton (Montgomery Blair High School), Summer 2007. Went to Princeton for

undergraduate school, and then to graduate school at MIT.
6. Richard Matthew McCutchen (Montgomery Blair High School), Fall 2005. Attended UMD for

his undergraduate degree; currently a graduate student at MIT.

III.D. Mentorship
III.D.1. Junior Faculty

1. Huaishu Peng (mentor), January 2019—present
2. John Dickerson (mentor), September 2016—present.
3. David Van Horn (mentor), January 2013—2018 (tenured in 2019).

III.G. Other Teaching Activities

1. CMSC 396H: Guest lecture and discussion lead, 2015 Nov, This class exposes undergraduates to
research. I conducted a guest lecture on a cybersecurity-related research paper and organized the
class discussion.

2. CMSC 798F: How to conduct great research, 2015 Nov and 2018 April, I gave a guest lecture on
how to write a good research paper, which included a hands-on exercise

IV. Service and Outreach

IV.A. Editorships, Editorial Boards, and Reviewing Activities
IV.A.1. Editorships

1. Founder and Editor in Chief, PL Perspectives, the blog of the ACM Special Interest Group on
Programming Languages (SIGPLAN), June 2019 – present.

2. Journal guest co-editor, Logical Methods in Computer Science (LMCS), Special issue on the best
papers of the 2010 European Symposium on Programming

3. Associate Editor, ACM Transactions on Programming Languages and Systems (February 2012–
November 2016)

IV.A.3. Reviewing Activities for Journals and Presses

1. Communications of the ACM (CACM)
2. ACM Transactions on Programming Languages and Systems (TOPLAS)
3. ACM Transactions on Code Optimization (TACO)
4. IEEE Transactions on Software Engineering (TSE)
5. IEEE Security and Privacy Magazine (S&P)
6. ACM Transactions on Modeling and Computer Simulation (TOMACS)
7. Elsevier Information Processing Letters (IPL)
8. Elsevier Theoretical Computer Science (TCS)
9. Elsevier Journal of Systems Software (JSS)
10. Elsevier Journal of Object Technology (JOT)

11. Springer Acta Informatica
12. Software: Practice and Experience (SPE)

IV.A.4. Reviewing Activities for Agencies and Foundations

1. Computing Innovation Fellows 2020 Reviewer
2. NSF CCF panelist, Spring 2019
3. External reviewer, NSF SATC, Fall 2018
4. NSF FMitF panelist, Spring 2018
5. Expert Reviewer, Software Security Knowledge Area, Cyber Security Body of Knowledge

project (http://www.cybok.org), 2017-2018
6. NSF CCF panelist, Spring 2016
7. NSF SaTC panelist, Fall 2013
8. NSF SaTC panelist, Spring 2012
9. NSF CCF panelist, Spring 2010
10. NSF CCF panelist, Spring 2008
11. NSF CNS panelist, Spring 2006
12. NSF CCF panelist, Spring 2005
13. NSF CCF panelist, Spring 2004
14. NSF SBIR panelist, Fall 2003
15. NSF SBIR panelist, Fall 2002
16. External reviewer, NSF CCR INT panel, Fall 2002

IV.A.5. Reviewing Activities for Conferences

1. Review Committee (RC) member, ACM SIGPLAN Conference on Object-Oriented
Programming, Languages, and Applications (OOPSLA), October 2021.

2. Program Committee (PC) member, ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), June 2021.

3. External Review Committee (ERC), ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), March 2021.

4. ERC member, ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), June 2020.

5. Co-organizer, ACM SIGPLAN Workshop on Programming Languages and Quantum
Computing (PLanQC), January 2020.

6. Associate Chair (1 of 6), ACM Conference on Computer and Communications Security (CCS),
October 2019.

7. PC member, IEEE Conference on Cybersecurity Development (SecDev), September 2019.
8. PC member, Summit on Advances in Programming Languages (SNAPL), May 2019
9. ERC member, ACM International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), March 2019.
10. Member, POPL Student Research Competition (SRC) judging committee, January 2019
11. Associate Chair (1 of 4), IEEE Symposium on Security and Privacy, May 2018.
12. PC member, IEEE Conference on Cybersecurity Development (SecDev), September 2018.
13. PC member, ETAPS Symposium on Principles of Security and Trust (POST), April 2018.
14. PC member, ACM Conference on Computer and Communications Security (CCS), October 2017.
15. PC member, IEEE Conference on Cybersecurity Development (SecDev), September 2017.
16. PC member, USENIX Workshop on Advances in Security Education (ASE), August 2017.
17. PC member, International Symposium on Engineering Secure Software and Systems (ESSoS),

July 2017.
18. PC member, IEEE Symposium on Security and Privacy, May 2017.

19. Program Chair, IEEE Conference on Cybersecurity Development (SecDev), November 2016.
20. Best Paper Awards Committee member, Cybersecurity Awareness Week (CSAW), November

2016.
21. PC member, USENIX Workshop on Advances in Security Education (ASE), August 2016.
22. Program Co-Chair, Computer Security Foundations Symposium (CSF), June 2016.
23. PC member, ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI), June 2016.
24. Program Co-Chair, Computer Security Foundations Symposium (CSF), June 2015.
25. PC member, Summit on Advances in Programming Languages (SNAPL), May 2015.
26. PC member, IEEE Symposium on Security and Privacy, May 2015.
27. Selection Committee, 2014 IBM "PL Day", October 2014.
28. PC Member, ACM SIGPLAN Conference on Object-Oriented Programming, Languages, and

Applications (OOPSLA), October 2014.
29. PC member, Computer Security Foundations Symposium (CSF), June 2014.
30. PC member, ACM SIGPLAN “Off the Beaten Track” Workshop, January 2014.
31. PC member, ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI), June 2013.
32. ERC member, ACM SIGPLAN-SIGACT Symposium on the Principles of Programming

Languages (POPL), January 2013.
33. PC Member, International Workshop on Hot Topics in Software Upgrades, June 2012.
34. Program Chair, ACM SIGPLAN-SIGACT Symposium on the Principles of Programming

Languages (POPL), January 2012. PC Chair precluded from submitting to the conference.
35. PC Member, ACM SIGPLAN Conference on Object-Oriented Programming, Languages, and

Applications (OOPSLA), October 2011.
36. Co-organizer (PC Chair and General Chair), International Workshop on Hot Topics in

Software Upgrades, April 2011.
37. PC Member, ACM SIGPLAN Workshop on Types in Language Design and Implementation

(TLDI), January 2011.
38. PC Member, ACM SIGPLAN International Conference on Functional Programming (ICFP),

August 2010.
39. ERC Member, ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI), June 2010.
40. PC Member, ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and

Engineering (PASTE), June 2010.
41. PC Member, European Symposium on Programming (ESOP), March 2010.
42. Member, PLDI Student Research Competition (SRC) judging committee, June 2009
43. PC Member, IEEE Symposium on Security and Privacy (Oakland), May 2009.
44. PC Member, ACM SIGPLAN-SIGACT Symposium on the Principles of Programming

Languages (POPL), January 2009. PC members were held to a higher standard for paper acceptance.
45. PC Member, ACM SIGSAC Conference on Computer and Communications Security (CCS),

2008.
46. PC Member, First Workshop on Compiler and Architectural Techniques for Application

Reliability and Security (CATARS), 2008 (in conjunction with the International Conference on
Dependable Systems and Networks (DSN 2008))

47. RC member, International Symposium on Memory Management (ISMM), 2008.
48. PC Member, International Conference on Coordination Models and Languages

(COORDINATION), 2008.
49. PC Member, ACM SIGPLAN Conference on Object-Oriented Programming Languages,

Systems, and Applications (OOPSLA), 2007. PC members were held to a higher standard for paper
acceptance.

50. PC Member, International Conference on Coordination Models and Languages
(COORDINATION), 2007.

51. PC Member, ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 2007. PC members were precluded from submitting to the conference.

52. General Chair and Technical Program Chair, Workshop on Programming Languages and
Analysis for Security (PLAS), 2007.

53. PC Member, Workshop on Programming Languages and Analysis for Security (PLAS), 2006.
54. PC Member, Workshop on Formal Techniques for Java-like Languages (FTfJP), 2006.
55. PC Member, ACM SIGPLAN Workshop on Semantics, Program Analysis, and Computing

Environments for Memory Management (SPACE), 2006.
56. PC Member, ACM Symposium on Applied Computing (SAC), Object-oriented Programming

Systems (OOPS) track, 2005.
57. PC Member, ACM Workshop on Synchronization and Concurrency in Object-Oriented

Languages (SCOOL) 2005.
58. PC Member, ACM/USENIX Virtual Execution Environments Conference (VEE) 2005.
59. PC Member, Workshop on Formal aspects of Unanticipated Software Evolution (FUSE) 2004.
60. PC Member, International Conference on Parallel Processing (ICPP) 2004.
61. PC Member, International Working Conference on Active Networking (IWAN) 2004.
62. PC Member, International Working Conference on Active Networking (IWAN) 2003.
63. PC Member, Workshop on Unanticipated Software Evolution (USE) 2003.
64. PC Member, International Working Conference on Active Networking (IWAN) 2002.
65. PC Member, Workshop on Unanticipated Software Evolution (USE) 2002.
66. PC Member, International Working Conference on Active Networking (IWAN) 2001.

IV.A.6. Historical Editorships, etc. (10+ years ago)

1. External reviewer, International Conference on Concurrency Theory (CONCUR)  
2. External reviewer, IEEE/IFIP International Conference on Dependable Systems and Networks

(DSN)  
3. External reviewer, ETAPS International European Conference on Object Oriented Programming

(ECOOP).  
4. External reviewer, ACM International Conference on Functional Programming (ICFP)  
5. External reviewer, International Conference on Parallel Processing (ICPP)  
6. External reviewer, IEEE International Parallel and Distributed Processing Symposium (IPDPS)

 
7. External reviewer, International Working Conference on Active Newtorks (IWAN)  
8. External reviewer, ACMConferenceonObject-

OrientedProgrammingSystems,LanguagesandApplications(OOP- SLA)  
9. External reviewer, USENIX Symposium on Operating System Design and Implementation

(OSDI)  
10. External reviewer, USENIX Annual Technical Conference  
11. External reviewer, USENIX Security Symposium  
12. External reviewer, ACM Conference on Programming Language Design and Implementation

(PLDI)  
13. External reviewer, ACM Conference on the Principles of Programming Languages (POPL)  
14. External reviewer, ACM Conference of the Special Interest Group in Communications

(SIGCOMM)  
15. External reviewer, ACM Symposium on Operating Systems Principles (SOSP)  

IV.B. Committees, Professional & Campus Service
IV.B.1. Campus Service – Department

1. Co Associate-Chair of Undergraduate Education (focus: Curriculum), August 2017 –

December 2019.
2. Co-Chair, Teaching Evaluation Committee, Fall 2019.
3. Member, Tenure and Promotion committee for Prof. Michelle Mazurek, Associate Professor,

2019.
4. Chair, Tenure and Promotion committee for Prof. David Van Horn, Associate Professor, 2018.
5. Chair, Programming Languages, Software Engineering, and Human-Computer Interaction Field

Committee, 2018 – 2019.
6. Member (elected), Department Council, 2018 - 2019.
7. Member, Merit Pay Committee, 2017 – 2018.
8. Member (elected), Department Council, 2017 - 2018.
9. Chair, Programming Languages, Software Engineering, and Human-Computer Interaction Field

Committee, 2017 – 2018.
10. Chair, Honors Program, Fall 2016.
11. Member (elected), Department Council, 2016 - 2017.
12. Member, Undergraduate Scholarships and awards committee, 2016 - 2017.
13. Member, Undergraduate Education Committee, CS Faculty retreat, May 2016.
14. Chair, Undergraduate Scholarships and awards committee, 2015 - 2016.
15. Member, Department Council, 2015 - 2016.
16. Chair, Tenure and Promotion committee for Dr. Jandelyn Plane, Principal Lecturer, 2016.
17. Co-Director (with Rich Gerber), CS Education for Tomorrow, 2015 - 2016.
18. Chair, Strategic planning subcommittee on undergraduate education, 2014 - 2015.
19. Co-Director (with Adam Porter), CS Education for Tomorrow, 2014 - 2015.
20. Member, Department Council, 2014 - 2015.
21. Chair, Undergraduate Scholarships and awards committee, 2014 - 2015.
22. Member, Admissions Committee, 2014
23. Member, Committee to develop curriculum for Advanced Cybersecurity Experience for Students

(ACES) honors program, June 2012 – November 2013.
24. Member, Teaching Evaluation Committee, 2011 - 2013.
25. Member, Tenure Committee for Assistant Professor Nick Feamster, Fall 2012.
26. Member, Faculty hiring committee for positions in cybersecurity and software systems, Fall 2011

- Spring 2012.
27. Member, Teaching Evaluation Committee, 2011 - 2012.
28. Member, Faculty hiring committee for director of Maryland Cybersecurity Center, Fall 2010 -

Spring 2011.
29. Member, Faculty hiring committee for positions in cybersecurity, Fall 2010 - Spring 2011.
30. Member, Honors Program committee, Fall 2010 - Spring 2011.
31. Member, Teaching Evaluation Committee, 2010 - 2011.
32. Elected Member, Department Council, 2010 - 2011. 6 professors are elected annually by the rest

of the faculty to sit on this committee.
33. Member, Honors Program committee, Fall 2009 - Spring 2010.
34. Member, Friday Faculty Lunch committee, Fall 2009 - Spring 2010.
35. Member, Teaching Evaluation Committee, 2009 - 2010.
36. Elected Member, Department Council, 2009 - 2010.
37. Member, Graduate Admissions committee, Spring 2008.
38. Faculty speaker, undergraduate recruiting day, March 13, 2008.
39. Elected Member, Department Council, 2007 - 2008.
40. Chair, Graduate Student Evaluation committee, 2008.
41. Member, Faculty panel to advise undergraduates interested in pursuing graduate school,

November 8, 2007.

42. Member, Undergraduate Curriculum Evaluation committee, Spring 2007–2008.
43. Chair, Graduate Student Evaluation committee, 2007.
44. Chair, Faculty Retreat Committee on Undergraduate Education, Fall 2005 - Spring 2006.
45. Chair, Graduate Student Evaluation committee, 2006.
46. Member, Graduate Admissions committee, Spring 2005.
47. Chair, Graduate Student Evaluation committee, 2005.
48. Member, Faculty Retreat Committee on Graduate Student Recruiting, Admissions, and Retention,

Fall 2003 - Fall 2004.
49. Member, Friday Faculty Lunch committee, Fall 2003 - Spring 2004.
50. Faculty judge, High-school programming contest, Spring 2003.
51. Member, Graduate Admissions committee, Spring 2003.
52. Member, Education sub-committee to revise the introductory undergraduate curriculum for

computer science, Fall 2002.
53. Member, Lab committee, Fall 2002 - Spring 2003.
54. Member, Education committee, Fall 2002 - present.
55. Member, Programming Languages, Software Engineering, and Human-Computer Interaction

Field Committee, Fall 2002 - present.

IV.B.2. Campus Service – College

1. Member, UMIACS Steering Committee, 2020 - 2021.
2. Member, UMIACS APT Committee, 2016 - 2017.
3. Member, Hiring committee for the Maryland Cybersecurity Center Senior position (hosted by

UMIACS), 2015 - 2016.
4. Member, UMIACS APT Committee, 2015 - 2016.
5. Member, Hiring committee for the Maryland Cybersecurity Center Director (hosted by

UMIACS), January - October 2013.
6. Member, Committee to develop Oral communications class in response to new University

requirement, August 2010—October 2010.
7. Member, UMIACS APT Committee, 2009 - 2010.
8. Member, UMIACS APT Committee, 2006 - 2007.
9. Member, Business Office Coordinator search committee, July 2005.

IV.B.3. Campus Service – University

1. Chair, Provost’s Computing Science Working Group, April 2019 – December 2019.
2. Chair, Security Enhancements Subcommittee, President's Task Force on Cybersecurity, April -

June 2014
3. Chair, Infrastructure Focus Area, IT Strategic Planning task force. One of four Chairs; output was

a document presenting the University's strategic plan for IT, 2013.
4. Director, Maryland Cybersecurity Center (MC2) (a joint effort of the CMNS and Engineering

colleges), Oct 2011 - 2013.
5. Team mentor, QUEST program (jointly run by the Smith school, the Engineering school, and

CMNS), Fall 2010.
6. Team mentor, QUEST program, Fall 2009.
7. Panelist for CAREER proposal preparation workshop, June 13, 2005.

IV.B.6. Offices and Committee Memberships

1. Steering committee Vice Chair, Developing Secure Systems Summit (DS3), since November
2019.

2. Steering committee, ACM SIGPLAN Workshop on Principles of Secure Compilation
(PriSC), since February 2019.

3. Steering committee Chair, ACM SIGPLAN-SIGACT Symposium on the Principles of
Programming Languages (POPL); member, July 2015 – present; Chair since January 2018.

4. Steering committee, IEEE Computer Security Foundations Symposium, October 2014 –
December 2019.

5. Steering committee, IEEE Conference on Cybersecurity Development (SecDev), September 2017
– December 2019.

6. Member of advisory board, Proceedings of the ACM on Programming Languages (PACMPL)
journal, January 2016 – present.

7. Chair, ACM Special Interest Group on Programming Languages (SIGPLAN), July 2015 –
July 2018 (elected position). Serving in role of Past Chair from July 2018 – 2021.

8. Steering committee, ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), July 2015 – 2018.

9. Steering committee, ACM SIGPLAN Conference on Systems, Programming, Languages and
Applications: Software for Humanity (SPLASH), July 2015 – July 2018.

10. Steering committee, ACM SIGPLAN International Conference on Functional Programming
(ICFP), July 2015 – July 2018.

11. Member, ACM SIGPLAN ad hoc committee on Empirical Evaluations, August 2017—present.
See http://sigplan.org/Resources/EmpiricalEvaluation/

12. Member, ACM SIGPLAN ad hoc committee on Climate Impact, March 2017—present. See
http://www.sigplan.org/Resources/Climate/

13. Member, Program Review Committee, Institute for Defense Analyses (IDA) Center for
Computing Sciences (CCS), Bowie, Maryland. October 2013–March 2016.

14. Invited participant, National Science Foundation (NSF) Workshop on Formal Methods and
Security, College Park, MD, November 19-20, 2015.

15. Steering Committee, ACM SIGPLAN-SIGACT Symposium on the Principles of Programming
Languages (POPL), January 2011 – 2014.

16. Invited participant, National Academy of Sciences Kavli Frontiers of Science Symposium (one of
five computer scientists invited, out of more than 100 participants), November 2013.

17. Invited participant, National Science Foundation (NSF) Workshop on Formal Methods: Future
Directions and Transitions to Practice, San Diego, CA, December 5 - 6, 2012.

18. Steering Committee, 1st Workshop on Theory and Practice of Provenance (TaPP), February
2009.

19. Member of DARPA Information Processing Technology Office (IPTO) Futures Panel, Fall 2007.
This panel consists of a few select faculty gathered to help IPTO chart its research goals and to
develop potential programs.

20. Member of DARPA Computer Science Study Panel (CS2P), 2006 - 2009. This panel consists of a
dozen select junior faculty from U.S. institutions, convening four times during 2006, and twice
during 2007.

21. Participant, National Science Foundation, Computer Systems Research Future Directions
Workshop, March 2010.

22. Invited participant, NSF workshop on Virtual Execution Environments for Scientific Computing,
September 2010.

23. Invited participant, NSF workshop on Trustworthy Computing, November 2010.
24. Member of DARPA Information Science and Technology Board (ISAT), September 2009 - 2012.

This panel consists of 30 individuals (largely faculty and researchers) from U.S. institutions
which advises DARPA by conducting studies on topics of increasing relevance and impact.

25. Member, CyberMaryland 2.0 Task Force, April - October 2012. Panel commissioned out of the
Maryland Department of Business and Economic Development (DBED) to examine progress
toward goals for increasing Maryland's impact and standing in the cybersecurity arena.

IV.B.7. Leadership Roles in Meetings and Conferences

1. Moderator, Panel on the POPLmark Challenge 15 Year Retrospective, co-located with POPL,
January 21, 2020 (see https://popl20.sigplan.org/track/POPL-2020-poplmark-15-year-
retrospective-panel).

2. Co-organizer, Conference on Advancing Interdisciplinary Integration of Computational Thinking
in Science, supported by National Science Foundation grant 1812860 and 1812916. Held May 2-
5, 2019, in College Park, MD.

3. Co-organizer, Dagstuhl Seminar on the synergy between programming languages and
cryptography, November 30 - Dec 5, 2014.
http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=14492

4. Co-organizer, ISAT workshop on Fostering Programming Language Adoption, February 2013.
5. Organizer, Principles of Programming Languages Mini-Workshop, held at the University of

Maryland, October 2, 2011.
6. Local arrangements chair, ACM SIGPLAN International Conference on Functional Programming

(ICFP), September 2010.
7. Co-organizer, ISAT study on Software Synthesis, August 2010 - 2011
8. Tutorials Chair, ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI), June 2010.
9. Co-organizer, the Mid-Atlantic Programming Languages Seminar (MAPLS), held in conjunction

with the New Jersey Programming Languages Seminar (NJPLS) at the University of Maryland,
November 2007.

10. Co-organizer, the Mid-Atlantic Programming Languages Seminar (MAPLS), held in conjunction
with the New Jersey Programming Languages Seminar (NJPLS) at the University of Maryland,
November 2005.

IV.B.8. Other Non-University Committees, Memberships, Panels, etc.

1. Invited participant, White House Office of Science and Technology panel on policies for public
access to government funded research, March 17, 2020.

2. Invited participant, NSA-sponsored workshop on Secure Coding, September 10-11, 2018.
3. Member, USM Chancellor’s Task Force on Cyber Security, November 2010–February 2011.
4. Member, Panel on Research Evaluation, European Computer Science Summit, October 24-26,

2016, Budapest, Hungary.

IV.C. External Service and Consulting
IV.C.1. Community Engagements, Local, State, National, International
IV.C.2. International Activities
IV.C.3. Corporate and Other Board Memberships
IV.C.4. Entrepreneurial Activities
IV.C.5. Consultancies (to local, state and federal agencies; companies; organizations)
IV.C.6. Historical External Service and Consulting (10+ years ago)
IV.C.7. Other

IV.D. Non-Research Presentations
IV.D.1. Outreach Presentations

1. Career day speaker, Eastern Middle School, May 2, 2014; May 6, 2016.

IV.D.2. Other

IV.E. Media Contributions
IV.E.1. Internet
IV.E.2. TV
IV.E.3. Radio
IV.E.4. Digital Media
IV.E.5. Print Media
IV.E.6. Blogs

1. The Programming Languages Enthusiast, http://www.pl-enthusiast.net. Launched June 2014;
300K total pageviews as of December 2017. (Co-edited and authored with Swarat Chaudhuri,
Rice University, 2014-2015.)

IV.F Community & Other Service

1. Committee Chair, Cub Scout Pack 1250, Laurel, MD, August 2012–March 2015.
2. Youth Soccer coach, Greater Laurel United Soccer Club, August 2013–May 2016.

V. Awards, Honors and Recognition
V.1. Research Fellowships, Prizes and Awards

1. Co-author of Distinguished paper at USENIX Security Symposium, 2020.
2. Co-author of paper winning the NSA’s Best Scientific Cybersecurity Competition, 2018.
3. IEEE Technical Committee on Security and Privacy Community Service award, 2017
4. University of Maryland Distinguished Scholar-Teacher, 2015-2016.
5. Co-author of paper winning the ASPLOS Conference’s Best Paper Award, 2015.
6. Co-author of paper winning the NSA’s Best Scientific Cybersecurity Competition, 2013.
7. NSF CAREER Award, 2004.
8. ACM SIGPLAN Doctoral Dissertation award, 2002.
9. Information Assurance Institute (IAI) Postdoctoral Research Fellowship, Department of

Computer Science, Cornell University, 2001.
10. ARINC Technical Excellence Award, 1995.
11. Member of Phi Beta Kappa National Honors Society, 1993.

V.2 Teaching Awards

1. Department of Computer Science Faculty Teaching Award, Spring 2014.
2. Department of Computer Science Faculty Teaching Award, Spring 2007.
3. Department of Computer Science Faculty Teaching Award, Spring 2005.
4. Department of Computer Science Faculty Teaching Award, Spring 2003

