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ABSTRACT

This paper presents a new approach to dynamically moni-
toring operating system kernel integrity, based on a property
called state-based control-flow integrity (SBCFI). Violations
of SBCFT signal a persistent, unexpected modification of the
kernel’s control-flow graph. We performed a thorough anal-
ysis of 25 Linux rootkits and found that 24 (96%) employ
persistent control-flow modifications; an informal study of
Windows rootkits yielded similar results. We have imple-
mented SBCFI enforcement as part of the Xen and VMware
virtual machine monitors. Our implementation detected all
the control-flow modifying rootkits we could install, while
imposing negligible overhead for both a typical web server
workload and CPU-intensive workloads when operating at 1
second intervals on a multi-core machine.

Categories and Subject Descriptors

D.4.6 [OPERATING SYSTEMS]: Security and Protec-
tion—Invasive software

General Terms
Security
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1. INTRODUCTION

Attackers that gain entry into computer systems frequently
wish to inject illicit functionality to maintain control, gather
information (e.g., keys pressed or packets sent), or neutralize
the defenses of the target system, among other objectives [3].
While past attacks often focused on modifications to user-
level libraries or system binaries, the operating system ker-
nel is an increasingly popular target [16]. Attackers typi-

9This version supplements the version appearing at ACM
CCS 2007 by including a more complete performance anal-
ysis. As such, Section 4 reflects an updated set of per-
formance experiments including new hardware, complete
SPECCPU2006 INT benchmarks, and numbers for both
VMware and Xen virtual machine environments. Other ref-
erences to that section have also been updated accordingly.

cally modify the kernel—using so-called “rootkits”—either
to implement their illicit functionality directly, to hide its
implementation in user-level objects, or both.

One way to detect kernel modifications is to verify ex-
pected invariants of the kernel’s state; violation of an invari-
ant suggests the kernel has been compromised. Invariants
may be checked directly, e.g., by using a virtual machine
monitor or a separate card to examine kernel memory [14,
37, 23], or may be checked indirectly via user-level tests [12,
8]. To date, most invariants have been designed to address
known attacks [24]. For example, attackers have been known
to modify the kernel’s system call table to point to malicious
code. To detect this attack, some systems regularly compare
the contents of the system call table to a previously observed
state [14, 23]; any difference suggests an attack. Unfortu-
nately, once one attack target is closed off, adversaries sim-
ply find other targets, e.g., device driver jump tables. To
end this cycle, we must devise properties that consider an
attacker’s higher-level goals, so that by checking those prop-
erties we can detect a wide range of attacks.

Based on an extensive analysis of existing rootkits, we be-
lieve that one property that meets this challenge is control-
flow integrity (CFI) [1]. This property dictates that soft-
ware execution must follow paths according to a control-flow
graph (CFQG) determined in advance; system call table modi-
fications are one instance of a CFI violation. More generally,
the goals of rootkits are squarely at odds with CFI. Since
the attacker’s main goal is to add surreptitious functionality
to the system, then either this functionality or the means
to hide it are most easily enabled by modifying the kernel’s
CFG to call injected code. Of 25 Linux rootkits we studied,
we found that 24 (96%) violate CFI.

This paper presents a technique for enforcing an approx-
imation of CFI that we call state-based CFI (SBCFI). CFI,
as originally proposed, is implemented using an in-line ref-
erence monitor [11] in which checks are added to the tar-
get program to validate each dynamically-computed branch
during execution. We observe that rootkit writers are mo-
tivated to make persistent modifications to the CFG, e.g.,
to add illicit functionality that performs keystroke logging
or packet analysis, or to hide such functionality when it is
implemented in user-level objects. Therefore, rather than
validating every branch as it happens, we periodically ex-
amine the kernel’s state and validate it as a whole. This
approach has two useful properties: (1) we can implement
the validation in an external monitor, which is more easily



protected from tampering; (2) we can trade off precision for
performance by altering monitoring frequency. Since most
CFG-modifying attacks are persistent, monitoring can be
infrequent enough to have essentially no overhead.

We have implemented SBCFI as part of the Xen and
VMware Workstation virtual machine monitors. The state
analysis proceeds in two steps. First, we check that none
of the kernel code has been modified, validating all static
branches. Second, we perform a garbage collection-style
traversal of the heap to find all usable function pointers, and
verify that they target valid code. We generate the traversal
code via a simple analysis of the kernel source. Our imple-
mentation supports dynamically-loadable kernel modules.

We applied our implementation to a default installation of
the RedHat Linux 7.3 distribution. Of the 25 Linux rootk-
its we studied, we could install 18 on this platform and our
SBCFI monitor detected all of those that modified the ker-
nel’s control-flow in some way (17 out of 18). Furthermore,
our SBCFI monitor added negligible overhead on top of that
imposed by the VMM when monitoring every second on a
multi-core system. The VMM overheads were themselves
often negligible, with a worst-case overhead of around 9%.
We expect VMM overheads to continue to decrease given
their popularity, particularly in data centers [4].

In summary, this paper makes the following contributions:

e We show that enforcing control-flow integrity can po-
tentially defeat a large class of kernel integrity viola-
tions. We studied 25 known Linux rootkits in detail
and found that 24 (96%) violate CFI. We further ar-
gue that future rootkits have incentive to violate CFI,
based on typical attacker goals. (Section 2)

e We describe a technique we call state-based control flow
integrity (SBCFI), which implements an approxima-
tion of CFI via periodic analysis of the kernel’s state
(Section 2.2). The monitor can be kept separate from
the target kernel, to protect it from tampering, and it
can detect rootkits that make persistent changes to the
CFG. All 24 of the CFI-violating rootkits we studied
also violate SBCFI.

e We describe our implementation of state-based CFI us-
ing the Xen virtual machine monitor (Section 3), and
we evaluate its effectiveness and performance against
Linux-based rootkits (Section 4). We show that we can
defeat all control-flow modifying rootkits in our corpus,
and that monitoring at intervals of 1 second or more
on a dual-core system imposes negligible overhead on
top of the cost of the VMM (which itself imposes at
most 9% overhead on our benchmarks, but typically
much less). To our knowledge, our SBCFI monitor is
the most effective kernel integrity monitor proposed
to date. Prior monitors limit the scope of their checks
to easy-to-find function pointers or invariants targeted
by specific known attacks; they may be difficult to ap-
ply to real systems; or they impose unacceptably high
overhead. (Section 5)

We begin by describing threats to kernel integrity and
proceed to motivate state-based CFI as a means to detect a
wide array of integrity-violating attacks.

2. MONITORING KERNEL INTEGRITY

In an attempt to introduce an illicit capability into a com-
puter system, an attacker may wish to modify the operating
system kernel K. The goal of the modification may be to
directly implement (part of) the illicit capability, to hide its
implementation in one or more user-level objects, or both.
We call such a modification an integrity violation. An attack
against the kernel’s integrity is called a rootkit.

Table 1 contains a list of Linux kernel rootkits that we
were able to obtain and analyze. The left section of the
table presents the set of attack goals that we identified for
each rootkit. Based on our analysis, the objectives of each
rootkit fall into one or more of the following categories:
user-space object hiding (HID), privilege escalation (PE),
reentry /backdoor (REE), reconnaissance (REC), and de-
fense neutralization (NEU). Hiding and privilege escalation
facilitate a user-space implementation of an illicit capability,
while the latter three implement some or part of an illicit
capability directly in the kernel.

The goal of an integrity monitor M is to detect integrity
violations of K. In the ideal case, M would detect violations
by verifying that K is behaving properly; any improper be-
havior would suggest an integrity violation. Because check-
ing complete behavioral correctness is extremely difficult,
a more practical goal is for the monitor to check a spe-
cific property p such that, if K is correct, then p holds.
Conversely, if p fails to hold, then K must be behaving
improperly. The challenge is choosing a p that considers
the attacker’s goals and addresses available mechanisms for
achieving those goals in the kernel. In other words, we want
to choose p such that attacks are likely to violate it. We
believe one such property is control-flow integrity [1].

2.1 Control-Flow Integrity

A program P satisfies the CFI property so long as its ex-
ecution only follows paths according to a control-flow graph
(CFG), determined in advance. If this graph approximates
the control flow of the unmodified P, then a violation of CFI
signals that P’s integrity has been violated. CFI enforce-
ment has been shown to be effective against a wide range
of common attacks on user programs, including stack-based
buffer-overflow attacks, heap-based “jump-to-libc” attacks,
and others.

Our analysis of Linux rootkits shows that an overwhelm-
ing majority of them, 24 out of 25 (96%), violate the control-
flow integrity of the kernel in some way. As far as we are
aware, we are the first to make this observation. Addition-
ally, our preliminary analysis of about a dozen Windows
kernel rootkits demonstrates a similar trend among those
threats. This suggests that CF1I is a useful property to mon-
itor in the kernel.

In Table 1, the middle group of columns characterizes the
changes made by each rootkit. For those attacks that make
some modification to the kernel’s control-flow, a mark was
placed in at least one of the columns under the heading
Control-flow Mods. Those threats that make changes to non-
control data [7] are marked in the adjacent column. (The
meaning of the marks P, B, and T is explained shortly.)
We categorize control-flow modifications further according
to which type of object is modified during the attack: ker-
nel text (labeled Text), processor registers (labeled Reg), or
function pointers (labeled FP). All rootkits but hp violate
CFIL
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X: provides functionality P: persistent T: transient B: both P and T
D: detected in testing N: did not detect - (dash): unable to test

Table 1: Analyzed kernel threats: functionality and mechanisms.

We wish to enforce CFI under the assumption of a pow-
erful adversary who has arbitrary read and write access to
kernel memory. Such an assumption is not unreasonable.
Loadable kernel modules (LKMs), which are common in
both Windows and Linux, have complete access to the ker-
nel’s address space, and may be loaded in response to events
not directly under a user’s control. Buffer overrun and other
vulnerabilities afford the attacker the ability to corrupt pos-
sibly arbitrary areas of kernel memory. Compromised hard-
ware devices, and even standard virtual devices, such as
Linux’s /dev/kmem or portions of its /proc file system, may
also provide the attacker access to kernel memory.

Abadi et al. [1] enforce CFI for a program P by rewriting
P’s binary. The target of each non-static branch is given a
tag, and each branch instruction is prepended with a check
that the target’s tag is in accord with the CFG. This strat-
egy provides protection against an attacker with access to
P’s memory under three conditions: (1) tags must not occur
anywhere else in P’s code; (2) P’s code must be read-only;
and (3) P’s data must be non-executable. These assump-
tions are easily discharged for applications. The first as-
sumption is discharged by rewriting the entire application at
once, preventing conflicts, and the latter two are discharged
by setting page table entries and segmentation descriptors
appropriately; as the page tables can only be modified within
the kernel, it is assumed they are inaccessible to the attacker.

Unfortunately, these assumptions cannot be so easily dis-
charged when monitoring the kernel itself. An attacker with
access to kernel memory could overwrite page table entries
to make code writable or data executable, violating assump-
tions (2) and (3). It is also unrealistic to expect to rewrite all
core kernel code and LKMs at the outset, and thus it is diffi-
cult to discharge the first assumption and avoid tag conflicts.
For that matter, it is nontrivial to compute a precise CFG
for the kernel in advance, due to its rich control structure,
with several levels of interrupt handling and concurrency.

2.2 State-based CFI Monitoring

To avoid these problems, we propose to enforce an approx-
imation of CFI using a new technique called state-based mon-
itoring; we call the resulting property state-based control-
flow integrity (SBCFTI).

A state-based monitor checks the system periodically, ra-
ther than in step with the program’s execution. More pre-
cisely, a state-based monitor My signals a violation when,
after K has taken n steps since it was last checked, it enters
a state s such that p does not hold. This has two benefits.
First, by analyzing K’s states, and not its transitions, My
is more easily separable from K, which makes M} better
protected from tampering. For example, M}’ can be kept in
a virtual machine or on a separate card. Second, M, can
be tuned to trade off performance and precision. Smaller



values of n have greater precision, while larger values of n
have better performance. Despite not dealing with transi-
tions directly, state-based monitoring can be effective be-
cause the program’s subsequent execution possibilities are
captured by its current state, i.e., its code and data. Ana-
lyzing this state, the monitor can determine whether p could
be violated during later execution.

We enforce SBCFI by ensuring that the CFG induced by
the current state is not different from the CFG of the initial
kernel. The details of our implementation are presented in
Section 3. In summary, our approach has two steps:

1. Validate kernel text, including static control-flow trans-
fers. The monitor keeps a copy or hash of K’s code. At
each check, it makes sure K’s code has not been mod-
ified by comparing it against the copy or hash. This
ensures that static branches occurring within the ker-
nel (e.g., direct function calls) adhere to the kernel’s
CFG.

2. Validate dynamic control-flow transfers. To validate
dynamically-computed branches, the monitor must con-
sider the dynamic state of the kernel—the heap, stack,
and registers—to determine potential branch targets.
Our implementation relegates its attention to function
pointers within the kernel. Analogous to a garbage
collector, the monitor traverses the heap starting at a
set of roots—in our case, global variables—and then
chases pointers to locate each function pointer that
might be invoked in the future. It then verifies that
these pointers target valid code, according to the CFG.

Because it monitors K'’s state periodically, an SBCFI mon-
itor can only be used to reliably discover persistent changes
to K’s CFG: if an attacker modifies the kernel for a short
period, but undoes his or her modifications in time less than
n, then M, may fail to discover the change.

Nevertheless, limiting our attention to persistent modifi-
cations to the CFG is extremely useful. Consider Table 1
again. For each modification that we identified in columns
7-10, we also determined whether the modification is per-
sistent, represented by a P, or transient, represented by a T.
Columns with a B indicate that both persistent and tran-
sient modifications of a given type are made. We found
that all of the analyzed threats make some persistent change
to the kernel. Furthermore, in all of the attacks in which
a control-flow modification is made, some portion of those
changes was found to be persistent. Thus the same 24 rootk-
its that violate CFI also violate SBCFI.

This makes sense from the attacker’s perspective: the goal
of a rootkit is to introduce surreptitious, long-term function-
ality into the target system, e.g., to facilitate later reentry,
reconnaissance (keystroke monitoring, packet sniffing, etc.),
or defense neutralization. Changes to the kernel CFG to fa-
cilitate this are thus indefinite, so SBCFI will discover them,
even for large values of n.

As an example of how an attacker might persistently mod-
ify the control-flow of the kernel, consider the Linspy Linux
rootkit. Linspy is a kernel-level keystroke logger that mod-
ifies the kernel in two ways. First, it redirects the write()
system call to look for write events from processes of interest.
Second, it creates a new character device, e.g., /dev/lin-
spy, to provide a malicious userspace process with access
to the collected data. The latter is performed by making

a simple function call to the kernel’s register_chrdev()
function. Linspy results in five SBCFI violations — one for
the modified system call, and four for the registered callback
functions (open(), release(), read(), ioctl()) associated
with the added character device.

The only attack that we encountered that does not cause
a persistent control-flow modification is the hp rootkit, and
therefore SBCFI will not detect it. hp performs simple pro-
cess hiding by removing the process from the kernel’s “all
tasks” list (while leaving it in its “to-be-scheduled tasks” list).
Other attacks utilize a similar technique for hiding modules,
but must make control-flow modifications elsewhere to en-
able execution of the module’s code.

While an SBCFI-based monitor detects many attacks that
would not be detected by previous kernel integrity moni-
tors, it is not a panacea. While current attacks always in-
ject some persistent modification, an attacker could avoid
detection by persistently applying transient attacks. For
example, a remote host could regularly send a packet that
overruns a buffer to inject some code which gathers local
information and then removes itself, all within the detec-
tion interval. Even so, this form of attack limits what the
attacker can do compared to having persistent code in the
kernel itself, e.g., to log keystrokes. A clever attacker might
find a way to corrupt a kernel data structure so that pe-
riodic processing in the kernel itself precipitates the buffer
overrun. Though much harder to construct, such an attack
would help avoid detection via a network intrusion detection
system, and could make information gathering more reliable.

Our implementation of SBCFI is also limited because we
relegate our attention to function pointers and not other
forms of computed branch, such as return addresses on the
stack, or in the extreme case, function pointers manufac-
tured by some complex computation. Not considering return
addresses prevents detection of stack smashing attacks, but
since these attacks are typically transient this is less of an
issue. We could miss modifications to portions of the stack
that are long-lived. To our knowledge, function pointers in
the kernel are usually stored in record fields directly, and
not computed.

In short, though SBCFI may miss attacks that would be
detected by CF1I, it is straightforward to build a SBCFI mon-
itor that is protected from tampering; that can detect the
types of mechanisms used by all of the control-flow modify-
ing rootkits we could find; and that significantly “raises the
bar” for constructing new attacks.

3. IMPLEMENTATION

To evaluate the usefulness of our approach, we imple-
mented a state-based CFI monitor for the Linux kernel. To
protect it from tampering, the kernel monitor operates sep-
arately from the target kernel being monitored, using a vir-
tual machine monitor (VMM)[14]. We have developed mon-
itors based on both the Xen [5] and VMware [34] VMMs.
Figure 1 illustrates the Xen implementation. In this con-
figuration, the VMM runs on top of the bare metal and
supports two virtual machines, one for the monitor and one
for the target. A process in the monitor VM performs the
SBCFT checking of the target, calling into the VMM to ac-
cess to the target VM’s memory and registers. The VMware
implementation runs a single VM containing the target ker-
nel, with the VMM itself running as a process within a host
operating system. The SBCFI monitoring process likewise
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Figure 1: SBCFI runtime monitor setup.

runs within the host OS, calling into the VM to access the
target’s state.

Much of the monitor process is generated automatically
from the target kernel’s source code and compiled binary,
as shown in Figure 2. The generation proceeds in several
stages. The Type & Global Extractor, Symbol Manager, and
Type Mapper are used to gather information about the tar-
get kernel’s symbols and type structure. This information
is passed as input to the Monitor Generator, a Python pro-
gram that generates C code to traverse the kernel’s heap
to look for function pointers. The generated code is linked
against VMM-specific routines in the monitor library for ac-
cessing the target’s memory.

As described in Section 2.2, to verify that the kernel’s
control-flow has not been modified, the kernel monitor per-
forms two tasks: (1) it validates that the kernel’s text has
not been modified and (2) it verifies that all reachable func-
tion pointers are in accord with the kernel’s CFG. We discuss
each of these points in turn.

3.1 Validating Kernel Text

For the Linux kernel, the set of allowable runtime code is
determined by two sources: (1) the static portion of the ker-
nel that is loaded by the boot loader and (2) a set of autho-
rized loadable kernel modules (LKMs), which can be loaded
or unloaded dynamically during kernel execution. The gen-
erated monitor takes as input trusted copies of the kernel
and LKM binaries for runtime comparison (this is shown by
the dashed line in Figure 2). The code verification procedure
works as follows:

1. Compare the executable sections of the static kernel in
the trusted store with those the in memory. If equal,
add the sections to the set of verified code regions V;
otherwise, add them to the invalid code regions set I.

2. Traverse the list of kernel LKMs kept by the target
kernel' to locate all currently loaded modules. For
each kernel module:

(a) Locate the trusted copy of the LKM. If no trusted
copy can be located, add the module to 1.

The address of the root of this list is determined by exam-
ining the trusted static kernel binary.

(b) Emulate the module loader to adjust all relocat-
able symbols in the trusted LKM copy based on
where the module is loaded in target memory.

(c) Compare the text sections of the emulated copy
to what is in memory at the expected location. If
equal, add the sections to V; otherwise add them
to I.

3. Report the set of invalid code regions I if nonempty.
(The set V is used in the next phase.)

Step 2b is necessary because LKMs are relocatable. When
emulating dynamic linking, a module’s external references to
kernel symbols are resolved to what the monitor believes is
potentially valid code and data; i.e., the targets must reside
in the text or static data area of the core kernel or one of the
modules in the module list. This avoids having to trust the
kernel’s module symbol table and has the effect of validating
any static, inter-module function calls.

To make text verification more efficient, we applied two
optimizations to this algorithm. First, we use a cryptograph-
ically secure hash algorithm to speed up all comparisons
(Steps 1 and 2c). Second, we cache the hashes of the relo-
cated, trusted LKMs computed in Step 2b. We can reuse
these when comparing to in-kernel modules whose position
has not changed since the last check.

3.2 Validating Dynamic Control-flow

Validating the kernel’s text ensures that all static control-
flow transfers—in particular, direct function calls—are in
accord with the kernel’s CFG. The monitor must also vali-
date all dynamic control-flow transfers; i.e., those for which
the transfer target is not known until run-time. For the x86
architecture, the two main sources of dynamic transfers are
(1) indirect calls to functions (i.e., via function pointers) or
labels (e.g., as part of a switch statement), and (2) function
call returns (regardless of whether the function was called
directly or indirectly). The latter category is typically im-
plemented by popping a return address off of the stack and
jumping to it, e.g., via the return instruction.

As already discussed, our kernel monitor does not con-
sider function call return targets or intraprocedural dynamic
branch targets. This is because such attacks, in and of them-
selves, do not create a persistent integrity violation in the
kernel. This leaves us with the task of verifying the targets
of function pointers that might be used by the kernel during
later execution. The first step is to identify the set of pos-
sible function pointers. A reasonable approximation of this
set is those function pointers reachable from a set of roots
via a chain of pointer dereferences, in the spirit of a garbage
collector (GC). We can construct a traversal algorithm to
find the reachable function pointers, given three inputs: (1)
the set of initial roots (e.g., global variable addresses, the
stack, and the registers); (2) the offsets within each object
at which there are pointers; and (3) an indication of which
pointers within an object are function pointers. With this,
a traversal algorithm can start at the roots and transitively
follow the pointers embedded in objects it reaches until all
function pointers have been discovered.

We gather the necessary inputs via static analysis of the
kernel’s source code and compiled binary, and the monitor
generator constructs the traversal code in three steps:

1. From the kernel source, extract all global variables and
their types (Section 3.2.1).
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2. Construct a type graph based on the type definitions
occurring in the kernel source. Each node in the graph
represents a type, and an edge from 77 to T> implies
objects of type 11 contain a pointer (or pointers) to
objects of type T>. The graph includes only types
from which function pointers can ultimately be reached
(Section 3.2.2).

3. Using the global variables as starting points and the
type graph as a specification, generate code to locate
all function pointers reachable from global variables
(Section 3.2.3).

As it discovers reachable function pointers, the traversal
algorithm will then validate those pointers according to an
approximation of the CFG, described in Section 3.2.4.

3.2.1 Finding the Roots

The first step in generating the traversal code is to iden-
tify the roots, which include the program’s global variables,
the stack, and the registers. The Type & Global Eztractor
(Figure 2) extracts the global variables and their types from
the kernel source using a simple C Intermediate Language
(CIL) [21] module.

We do not consider the stack and most of the registers in
our traversal code because, unlike global variables, their con-
tents cannot be given a static type: they will contain values
of different types depending on the current program counter
and calling context. To address this issue in a garbage col-
lection setting, the compiler can generate metadata used by
the GC traversal to designate the types of the registers and
stack frames at various program points. Constructing such
a compiler for C would be a substantial undertaking, and
would be complicated by C’s weak type system (discussed
below). In the absence of such data, a conservative garbage
collector [6] can pessimistically regard any stack or register
word as a pointer if it falls within the range of legal mem-
ory (among other validation criteria). In our setting this
approach is insufficient as we also need to know the type of
that memory, to know whether it contains function point-
ers that we must validate. We consider the x86 registers
idtr, gdtr, sysenter, the debug registers, eip, and the cr
registers as roots because the type of their contents is fixed.

procedure BUILDTYPEGRAPH()
Nodes < set of extracted types from kernel source
Edges «— 0
FPNodes «
for each Struct s € Nodes
for each member m € Members(s)
if IsFunctionPointer(m)
do do then FPNodes «— FPNodes|J{s}
if IsStruct(m)
then Edges — Edges|]J(s, Type(m))
for each Struct n € Nodes
ExcludeNode — true
for each Struct f € FPNodes
if PathEzists(Edges,n, f)
EzcludeNode «— false
then
break
if EzcludeNode
then RemoveNode(Nodes, Edges,n)
return (Nodes, Edges)

do do

Figure 3: Algorithm to generate type graph

Not considering the complete root set means we will miss
some CFG modifications; e.g., we will not notice modified
code pointers on the stack or in untyped registers, nor will
we notice modified code pointers in objects reachable only
from these locations. Nevertheless, because the contents of
the stack and the untyped registers are transient, ignoring
them should not cause us to miss persistent attacker modi-
fications.

3.2.2  Constructing the Type Graph

The next step is to construct the type graph. This hap-
pens in two steps. First, the Type & Global Extractor ex-
tracts all type definitions from the kernel source. With
these as input, the Monitor Generator builds the type graph
G(n, e) using the procedure in Figure 3. Figure 5 depicts the
type graph for the (simplified) types found in Figure 4, with
the function-pointer containing structures highlighted (den-



// @head, @type super_block(s_list)
struct list_head g_super_blocks;

struct list_head {
struct list_head =xnext;
struct list_head =xprev;

s

struct fs_struct {
struct dentry *root ;
struct vfsmount *rootmnt;

}s

struct dentry {
struct dentry xd_parent ;
struct inode *d_inode;
struct dentry_operations xd_op;

}

struct inode {
struct inode_operations *i_op;
struct file_operations *i_fop;
struct super_block xi_sb;
e
struct super_block {
// @headed, @type super_block(s_list)

struct list_head s_list;
struct dentry *s_root ;
struct super_operations #*sop;

}s

struct vfsmount {
struct vfsmount smnt_parent ;
struct dentry smnt_root ;
struct super_block sxmnt_sb;

b

Figure 4: Simplified Linux type definitions.

try_operations, inode_operations, super_operations, and
file_operations; definitions not shown in Figure 4).

Unfortunately, the type information in the kernel source
is not sufficient to identify all typed pointers. Because C’s
type system is not expressive enough to specify some use-
ful idioms, programmers use conventions to encode them.
For example, C does not provide polymorphism (generics),
so programmers often cast generic elements to/from void*
(or even int). Similarly, the Linux kernel makes heavy use
of list data structures embedded in other objects, and the
precise type of the target object of each next pointer is not
evident from the static type. There is also insufficient static
type information to disambiguate the current value of an
untagged union or the size of a dynamically-sized array.

We can overcome these limitations with user-provided an-
notations. For the purposes of our experiments, we have
annotated the embedded list cases (described below), but
left the arrays, unions, and other cases to future work; these
would probably have annotations similar to those provided
by Deputy [9, 38], with the advantage that they would only
be required on type definitions and not function declara-
tions. Because we do not annotate arrays, unions, and man-
ufactured or generic (void#) pointers, we may not find all
reachable function pointers and thus potentially miss some
violations. Nevertheless, even with this limitation we are
able to detect all control-modifying rootkits we could install
on our test platform.

We describe our embedded list annotations by example.
Consider the simplified super_block structure shown in Fig-
ure 4. Its member s_list is of type struct list_head,

file
operations

inode
operations

Figure 5: Function pointer reachability graph.

which contains fields that, according to the definition, link
to other list_head objects. By convention, these other
list_head objects are actually the s_list fields of other su-
per_blocks, allowing super_blocks to be chained together
into a linked list. Here, the linked list is headed by the
global variable g_super_blocks, and the last element of the
list will point to g_super_blocks itself, terminating the list.
Traversal code may cast each next or prev pointer to a su-
per_block to access its fields. Of course, such code must
check, before performing the cast, that a pointer is to an-
other super_block object by ensuring it does not point to
g_super_blocks, the head/terminator of the list.

So that the monitor can properly traverse embedded lists
of objects, we specify this convention using some simple an-
notations. We annotate each occurrence of a global variable
or structure field of type list_head with the type of the
objects into which the 1list_head actually points. If the
pointer is into the middle of a structure, we also include
the field name of the precise position; the start of the object
can thus be recovered by subtracting offsetof ( fname) from
the next or prev pointer. In Figure 4, we have added com-
ments including annotation @type super_block(s_list) above
both the s_list member and the g_super_blocks global.

Our example illustrates a “headed” list, in which each em-
bedded 1ist_head could point to another 1ist_head embed-
ded within the given @type, or to the head/terminator of the
list. We indicate this by annotating a list’s head with @head
(in the example, the g_super_blocks global variable is so
annotated) while the list_heads within a headed list are
annotated with @headed (in the example, the s_list fields
are so annotated). To cast such a field to its given @type
thus requires a check that the field does not point to the
head. Alternately, to represent a non-headed list, we can
annotate list_head occurrences as @nohead. This means
that they will always point to objects of the given @type.

For our Linux 2.4.18-3 kernel, we annotated 123 type def-
initions and 39 variable definitions. The process was fairly
straightforward and took us just under two days, working



sporadically, to complete. We believe that most of these
annotations could be inferred—and many of the generic, ar-
ray and union annotations as well—using a constraint-based
analysis along the lines of CCured [22].

3.2.3 Implementing the Traversal

The final step is to use the type graph to generate the
traversal code for the monitor. The generated code per-
forms a modified breadth first search (BFS), starting at each
global variable whose type appears in the type graph. When
an object is visited, all function pointers (if any) that are
part of the object are checked, and all neighbors (as deter-
mined by the type graph) are added to the queue of nodes
remaining to be visited (nodes are marked so they are not
revisited). The only exception to BFS ordering occurs when
a node is reached that contains one or more list heads an-
notated with @head. In these cases, each list is traversed
to completion, following the appropriate @headed link field
in its members; @headed links are ignored except during
such traversals. This approach ensures that all members are
reached and treated in a type-correct manner. Non-headed
list pointers (annotated @nohead) are treated like any other
neighbor pointer in the graph, processed according to BFS.

Because the traversal will be run within a process outside
of the target kernel, it requires a mechanism to map source-
level type and variable definitions to their low-level represen-
tation in the running kernel. Specifically, two source—binary
mappings are required. First, the monitor must know the
virtual addresses of the running kernel’s global variables.
The Symbol Mapper (see Figure 2) extracts these from the
kernel’s binary files. Second, the monitor must be able to
map source-level types to their binary representations in
memory. The Type Mapper (implemented in C) uses the
kernel compiler to generate this information from the ker-
nel’s source-level types.

3.2.4 Validating Function Pointers

Once the monitor has located a particular function pointer,
it must validate whether the target of that pointer is consis-
tent with the kernel’s CFG. We have identified four possible
approximations for determining consistency, which we list
from least to most precise:

e Valid code region. In this approximation, the monitor
simply requires that all pointers target some portion
of valid code, i.e., the set V calculated during the text
validation phase (Section 3.1). The performed check
is a range comparison within the (small) list of valid
ranges.

e Valid function. In this approximation, the monitor
maintains a list of valid kernel function start addresses
for code regions in the set V, and requires that all
function pointers target one of these addresses. The
performed check is set membership in the large set of
allowable function pointers.

e Valid function type. This approximation narrows the
set of functions that a given pointer can target by
maintaining a set of valid function addresses for each
function pointer type. The performed check is, first, a
lookup for the correct set and, second, a set member-
ship check.

e Valid points-to set. This approximation utilizes a static
or dynamic points-to analysis for each function pointer
in the kernel. At runtime, the monitor requires that
any encountered function pointer must target one of
the functions in its corresponding points-to set. The
performed check is the same as in the valid function
type case, but the number of sets is likely to be much
larger (one per data-structure member, rather than
one per-type).

In theory, these approximations could fail to detect an
attack that is able to persistently reuse some or all of the
kernel’s existing functionality (reminiscent of “jump-to-libc™-
style attacks [31]). However, we believe that the above ap-
proximations will defend against many such attacks because
of the difficulty of reusing complete functions for the wrong
purpose. Many modern jump-to-libc attacks work by jump-
ing into the middle of code or data that would not be consid-
ered valid by our approximations. We have implemented the
first two approximations and found that both were sufficient
to detect the control-modifying attacks in our corpus.

3.2.5 Monitor Timing

A natural approach to monitoring is to periodically pause
the target VM long enough for the monitor process to tra-
verse and validate the target kernel’s state. This pause can
be disruptive, however; in our benchmarks we have seen the
traversal take as long as two seconds. Instead, we could re-
duce the pause to be just long enough to copy the kernel’s
memory to the monitor process where it can be traversed
asynchronously. Unfortunately, to do this requires allocat-
ing a substantial amount of memory to the monitor process
that we would prefer to allocate to the target; the Linux
kernel, for example could occupy up to 1 GB of memory.

To avoid these problems, we allow the monitor process
to traverse the target kernel’s heap in parallel with the tar-
get VM’s execution. While better performing, this approach
could result in false positives because the monitor may view
the kernel’s memory inconsistently. For example, the mon-
itor could queue a pointer whose memory is freed by the
kernel before the monitor processes it, and thus the monitor
will examine stale data. As a result, it may incorrectly con-
clude that a bogus bit pattern is a valid pointer and follow it,
and/or that a bogus bit pattern is an invalid function pointer
and complain about it. In the worst case, the monitor could
end up traversing stale data indefinitely. Though perhaps
less likely, the same problems could arise even from a snap-
shot taken at a single moment in time, since the paused
kernel may be in the middle of a code sequence it assumes
will be atomic. For example, it could be in the middle of
adding, removing, or initializing an element in a list, and
thus the monitor could end up traversing uninitialized or
otherwise invalid pointers.

Our monitor implements three safeguards to mitigate prob-
lems due to traversing inconsistent states. First, before fol-
lowing a pointer (or validating a function pointer), the mon-
itor confirms that the pointer targets a valid kernel address
by consulting the target’s page tables. This prevents reading
nonsensical or non-kernel data. Second, the monitor places
an upper limit on the number of objects traversed to ensure
termination. For our experiments (Section 4), we utilized
an upper limit of 22° objects; the limit was never reached
during testing, but has been left in place for safety. For
our tests, at most 155,328 objects were encountered on any



single pass. Finally, when validating function pointers, our
monitor requires the same potential violation (determined
by the violating function pointer’s address and the address
it points to) to be detected in two consecutive monitor runs
before raising an alarm. When running at large intervals
(currently three seconds or greater), the second “validation”
run is commenced within three seconds, rather than wait-
ing for the entire monitor period to expire. This narrows
the window between detection and notification, while still
allowing the performance tuning to remain in place. We ex-
perienced no false positives during any of our experiments
using these simple techniques.

4. EXPERIMENTS AND RESULTS

In this section, we present the results of a series of exper-
iments performed using our VMM-based SBCFI monitor.
We used the Xen and VMware Workstation VMMs [5, 34]
for our test platforms because they could run unmodified
kernels on which we could install a large percentage of the
collected attacks.

We found that SBCFI could detect all of the control-flow
modifying attacks that we were able to install on our tar-
get system. We also measured the overhead that monitoring
imposed on the system. We found that the SBCFI monitor
itself incurs unnoticeable overhead for both a typical web
server workload and for CPU-intensive workloads when op-
erating at 1 second intervals on a separate processor from
the target kernel. The VMMs added up to 6.6% overhead
for two CPU configurations and up to 9.3% for 1 CPU con-
figurations (with or without the monitor), though much less
on average. The VMM overhead could potentially be re-
duced by using a more efficient VMM or by implementing
optimizations specific to control-flow monitoring.

4.1 Detection

To demonstrate the effectiveness of SBCFI at detecting
kernel attacks, we collected as many publicly available rootk-
its as we could and tested them on our target platform. Of
the 25 that we acquired, we were able to install 18 in our
virtual test infrastructure. The remainder either did not
support our test kernel version or would not install in a vir-
tualized environment. We installed the rootkits using one of
two mechanisms — malicious LKM loading or injection via
/dev/kmem, a virtual device object that gives direct access
to kernel virtual memory.

The protected kernel for all tests was the Linux 2.4.18-3
kernel, the default installation kernel for RedHat Linux 7.3.
No modifications were made to this kernel for testing. While
generating our monitor for this kernel, our source-code anal-
ysis tools extracted 1049 types and 22182 global names, 5105
of which were functions. Based on the calculated type graph,
we identified 400 globals as containing function pointers and
260 as viable starting points for reaching function pointers
somewhere in memory.

As shown in Table 1, we successfully detected all of the
attacks that make persistent modifications to the kernel’s
control-flow. For loaded LKMs, our monitor detected both
the existence of an untrusted module and any function poin-
ter references to that module. Direct-injection attacks, and
those module attacks that remove themselves from the mod-
ule list for stealth, were detected when a persistent pointer
targeted the injected code. On several occasions, our moni-
tor also detected the transient changes introduced as part of

Target Hardware Configuration
Machine Type: Dell Precision 490 Workstation

Processor: Intel Xeon Quad-core X5355, 2.66GHz
RAM: 4GB
Storage: 160GB SATA
Networking: Broadcom NetXtreme BCM5752 Gigabit

Target Software Configuration

Version: Xen-3.1.0 or
VMware Workstation 6.0.1-55017
Host OS: Debian Etch, full installation
Linux 2.6.18-5-686 kernel
Guest OS: RedHat Linux 7.3 full installation

Guest memory: 1200M

Table 2: SBCFI test platform summary.

the direct injection attacks (in addition to their persistent
changes). The only attack not detected, hp, makes no per-
sistent control-flow modifications. We encountered no false
positives during any of our benchmarks or detection tests.

At runtime, our monitor visited, on average, 82,097 ob-
jects and validated 39,278 function pointers per iteration.
The average runtime per iteration was 624 milliseconds for
our two-CPU configuration and 1.78 seconds for one CPU.
We found that these statistics varied greatly depending on
system load, but they never exceeded 155,328 nodes visited
and 58,803 function pointers. Maximum traversal time was
as long as 2.0 seconds for the two-CPU configuration and as
long as 4.8 seconds for one CPU. In general, the number of
objects visited increased with system uptime.

4.2 Performance

To evaluate the performance impact of SBCFI monitoring,
we measured the performance of the target VMM using sub-
sets of the SPECweb2005 and SPECCPU2006 benchmark
suites [32]. We conducted these benchmarks for each of the
Xen and VMware platforms. Additionally, we ran each test
on each platform in both one-CPU and two-CPU configu-
rations. In the one-CPU configuration, all virtual machines
and the VMM shared a single processor. In the two-CPU
configuration, the monitor’s VM and the target VM could
utilize separate processors simultaneously.

For the web benchmark tests, we ran the SPECweb2005
Ecommerce workload, which simulates dynamic and static
content delivery over both HT'TP and HTTPS. We used two
additional systems to act as a request-generating client and
a back-end (database) workload simulator (BeSim) respec-
tively. All SPECweb2005 requirements were met during the
Ecommerce tests. Details of the target system can be found
in Table 2 and details of the client and BeSim systems can
be found in Table 3.

In addition to the web benchmarks, we tested the integer
workloads (referred to collectively as SPECINT2006) of the
SPECCPU2006 benchmark suite on the target system. Like
the web benchmarks, we ran these tests both with and with-
out the monitor for one-CPU and two-CPU configurations.
The same target machine, summarized in Table 2, was used
for these tests.

4.2.1 Results
Table 4 shows the median Total Weighted Aggregate Byte



BeSim Hardware Configuration
Machine Type: Lenovo Thinkpad T60

Processor: Intel CoreDuo T2500, 2GHz
RAM: 1.5GB
Storage: 80GB IDE
Networking: Built-in Intel 82573L Gigabit

BeSim Software Configuration
OS: Gentoo Linux Base 1.12.9
Linux 2.6.20.1 kernel

Client Hardware Configuration
Machine Type: Dell Dimension 4700

Processor: Intel Pentium 4, 2.8GHz
RAM: 1GB
Storage: 40GB IDE
Networking: Netgear RTL-8169 Gigabit PCI

Client Software Configuration
OS: Debian Etch, full installation
Linux 2.6.18-5-686 kernel

Table 3: SPECweb2005 test platform summary.

Configuration | Total ABR | % Native | % VMM
Native 94547.6 0% —
Xen 3.1.0 94900.1 -0.4% 0%
SBCFTI (Cont.) 95018.3 -0.5% -0.1%
SBCFT (1s) 94941.7 -0.4% 0%
SBCFI (3s) 94351.3 0.2% 0.6%
VMware 6.0.1 94445.5 0.1% 0%
SBCFI (Cont.) 93459.1 1.2% 1.0%
SBCFT (1s) 94457.7 0.1% 0%
SBCFI (3s) 94155.4 0.4% 0.3%

Table 4: SPECweb2005 2CPU ECommerce results.

Rate (ABR) for three SPECweb2005 Ecommerce test runs,
performed for each of the listed configurations. There are
three types of configurations shown. The first row presents
measurements for the physical machine, without the VMM
installed. In this configuration, we installed the base Linux
distribution (Debian Etch) on the bare hardware and gave
it full access to two of the four processors and all 4GB of
RAM. This configuration provides a useful basis for deter-
mining the overhead incurred by the VMM itself. The sec-
ond row presents the same measurements for the Xen guest
machine, without any monitor. The following three rows
describe tests in which the measured Xen guest was being
monitored by our SBCFI implementation, which was config-
ured to run asynchronously at various periods (continuously,
every second, or every three seconds). Rows six through nine
describe the same tests as rows two through five, except that
VMware Workstation was used instead of the Xen VMM.
The second column provides the median ABR for three runs
in each configuration. The third and fourth columns show
the incurred overhead (as a percentage) in comparison with
the bare hardware (row one) and VMM only (row two or
row five) configurations respectively.

Table 5 is formatted the same as Table 4, except that the

Configuration | Total ABR | % Native | % VMM
Native 94035.1 0% —
Xen 3.1.0 92892.0 1.2% 0%
SBCFI (.55) 92412.6 17% 05%
SBCFI (1s) 92841.8 1.3% 0.1%
SBCFT (3s) 92982.9 1.1% -0.1%
VMware 6.0.1 93418.1 0.7% 0%
SBCFT (.5s) 93250.3 0.8% 0.2%
SBCFI (1s) 933471 0.7% 0.1%
SBCFT (3s) 93471.5 0.6% -0.1%

Table 5: SPECweb2005 1CPU ECommerce results.

Configuration | Time (s) | % Native | % VMM |

Native 9956 0% —
Xen 3.1.0 10610 6.6% 0%
SBCFT (Cont.) 10796 8.4% 1.8%
SBCFI (1s) 10687 7.3% 0.7%
SBCFI (3s) 10634 6.8% 0.2%
VMware 6.0.1 10543 5.9% 0%
SBCFI (Cont.) 10931 9.8% 3.7%
SBCFI (1s) 10607 6.5% 0.6%
SBCFI (3s) 10585 6.3% 0.4%

Table 6: SPECINT2006 2CPU median run times.

data reflects a one-CPU system configuration. Because the
SBCFI monitor and target VMM were required to share a
processor, we did not run the SBCFI monitor continuously
in this configuration. Instead, we ran the SBCFI monitor
every 500ms (rows three and seven).

From these results we make two observations. First, the
overhead incurred by running the VMM without the moni-
tor is small — less than 1% for VMware and just over 1% for
Xen when sharing a single processor. For the two-CPU con-
figuration, VMware showed a very small penalty (.1%) and
Xen actually performed slightly better (.4%) than the na-
tive Linux distribution. Second, SBCFI adds minimal (1%
or less) in all configurations; in some cases, performance ac-
tually improves slightly. At this time, we cannot directly
account for the performance improvements (virtualized over
native or with-monitor over without-monitor), but given the
complexity of modern machines and the susceptibility of per-
formance to change drastically following minor changes, we
are not surprised. Possible contributing factors include the
interaction of multiple schedulers (VMM and guest kernel)
and the system’s complex memory hierarchy.

Table 6 shows the results of the SPECINT2006 tests for
the two-CPU configuration. The results listed in the table
are organized similar to the web benchmark results. The
first column indicates which configuration was under test.
The second column shows the time in seconds for the median
of three runs of the twelve SPECINT2006 workloads. The
third and fourth columns show overhead relative to the raw
hardware and VMM-only configurations respectively. Ta-
ble 7 is similar to Table 6, but shows the results for our
one-CPU setup.

The SPECINT2006 experiments show that the majority
of the overhead is the result of the VMM and not SBCFI,
except for the one-CPU Xen configuration, where SBCFI




Configuration | Time (s) | % Native | % VMM |

[ Native [ 9954 [ 0% [ — ]
Xen 3.1.0 10883 9.3% 0%
SBCFT (5s) 12297 23.6% 13.0%
SBCFT (10s) 11649 17.0% 7.0%
SBCFT (30s) 11161 12.1% 2.6%
SBCFTI (60s) 11024 10.8% 1.3%
SBCFT (90s) 10973 10.2% 0.8%
VMware 6.0.1 10782 8.3% 0%
SBCFT (5s) 11127 11.8% 3.2%
SBCFI (10s) 10987 10.4% 1.9%
SBCFT (20s) 10860 9.1% 0.7%

Table 7: SPECINT2006 1CPU median run times.

imposes up to 13% penalty when operated at 5-second in-
tervals. In all cases, SBCFI itself imposes a tunable penalty,
trading off precision for performance, on top of the VMM,
with unnoticeable overhead when monitoring at 1-second in-
tervals for the two-CPU configuration (using either VMM)
and 90-second or 20-second intervals for the one-CPU con-
figuration when using Xen or VMware respectively.

4.2.2 Discussion

Our experiments show that the overhead of SBCFI on its
own is quite small, and that the primary cause of overhead
is due to the VMM itself, particularly when multiple pro-
cessors are available. We do not believe this reflects poorly
on SBCFT itself for two reasons.

First, the VMM overhead is a function of the VMM we
used, not of VMM technology in general. As described pre-
viously, we chose VMMSs and configurations in our test plat-
form to maximize threat testing rather than performance.
We ran Xen in its fully virtualized (as opposed to paravirtu-
alized) mode to support an unmodified kernel on which we
could use unmodified attacks. Xen can achieve better per-
formance for fully virtualized hosts with the use of special
drivers (around 2% of native on average [36]), and there is
nothing that precludes SBCFI monitoring of either paravir-
tualized or fully virtualized hosts using these drivers. Our
VMware implementation performance could be improved yet
further by using VMware’s high-performance ESX Server
(if provided with the appropriate APIs). The increasing
deployment of high-performance virtualization solutions [4]
provides further evidence that VMMSs can have reasonable
performance when compared to raw hardware.

Second, SBCFI could be implemented without a VMM,
e.g., as a separate card that accesses memory directly (in
which case, however, the monitor would not have access to
the machine’s registers). Petroni et al.’s Copilot system [23]
performs integrity monitoring in this way, and for compara-
ble monitoring rates they induce similarly low overheads on
the target kernel.

In short, our experiments show that SBCFI is effective
and practical, detecting all of the kernel attacks we could
install on our platform while imposing minimal impact on
top of the VMM.

5. RELATED WORK

There is a growing body of work in the area of kernel
integrity monitoring related to monitoring mechanisms, de-

tection algorithms, and advanced threats. Garfinkel et al.
first proposed using a virtual machine monitor to implement
a protected system integrity monitor, including invariant-
based kernel protection [14]. Their Livewire system is ca-
pable of verifying the kernel’s text regions, looking for spe-
cific types of data attacks that can be detected by querying
the system at different levels, and verifying static function
pointer tables (e.g., the system call table). Our implemen-
tation borrows their VMM-based mechanism but enforces a
far more comprehensive kernel integrity policy with SBCFI.

Zhang et al. [37], followed by Petroni et al. [23] propose
to deploy a kernel monitor on a trusted piece of hardware,
such as a PCI add-in card. While add-in hardware does not
generally have full access to the CPU’s state (most notably
its registers), it enjoys improved performance over VMM-
based monitoring and can be deployed in nearly any system.
While we have not done so, SBCFI could be implemented
using trusted hardware.

Seshadri et al. propose Pioneer, a technique for running
trusted software on an untrusted system in a verifiable way
(“verifiable code execution”) [28]. Unlike attestation-based
techniques [18, 13, 29, 26, 27, 30], which measure code and
data at load time, Pioneer is capable of running arbitrary
procedures in a trusted manner. The authors demonstrated
this capability by implementing a runtime kernel integrity
monitor and proving that it could detect real-world attacks
by verifying immutable text and data. While currently im-
practical for operational systems (e.g., it requires disabling
interrupts while running the verification procedure) verifi-
able code execution could be a viable future platform for
enforcing SBCFI.

Grizzard proposes to use a VMM to monitor the kernel’s
execution and validate its control flow [15]. The system
works by rewriting the target kernel to trap all dynamic
branches into the VMM before they are performed. The
control-flow monitor then verifies that the branch is consis-
tent with the kernel’s CFG, determined through prior train-
ing runs. Though he does not specifically describe CFI,
Grizzard’s implementation effectively enforces CFI for the
OS kernel. The clear advantage is that, by enforcing true
CFI, all violations of the CFG, even those that are tran-
sient, can be detected. The primary disadvantage of this
approach is the incurred overhead and the challenges facing
the reduction of that overhead. For the lmbench synthetic
benchmark, Grizzard reports an average of 30% performance
penalty (worst case 74%) on top of the VMM'’s existing over-
head. Another challenge is how to handle new kernel mod-
ules, particularly since the CFG is obtained via training.

Litty and Lie also propose a VMM-based system, called
Manitou, for validating the executing code of both user ap-
plications and the kernel within a guest VM [20]. The VMM
maintains a list of cryptographic hashes of the in-memory
representations of application and kernel-level code pages
that may be run within the VM. By default, the VMM sets
all guest VM pages as non-executable, using hardware sup-
port only recently available on the x86. Attempts to execute
such pages fault into the VMM, which will set the execute
bit and permit execution if the offending page matches one
in its trusted list (further logic is used to prevent subsequent
modifications).

Manitou’s use of execute bits prevents unauthorized code
from ever executing—a stronger guarantee than SBCFI. On
the other hand, the approach, as proposed, only enforces



that valid code pages are executed, not that execution pro-
ceeds according to a valid CFG; this is similar to the first
validation option presented in Section 3.2.4, and will miss at
least some “jump-to-libc’-style attacks, even persistent ones.
Manitou’s reliance on page faulting requires a VMM-based
implementation; SBCFI can be implemented using a PCI
card or other external device for greater tamper-resistance
of the monitor. As a possible inhibitor to practical deploy-
ment, Manitou’s use of execute bits prevent its operating
in an “audit only” mode in which execution may proceed
despite monitor warnings. This facilitates a trivial denial of
service by an attacker that is able to modify on-disk executa-
bles. Finally, overhead is incurred on every change to exe-
cutable content, such as during normal OS demand-paging.
Indeed, the approach has yet to be thoroughly studied on
real systems, and so the details of a practical implementa-
tion and its overhead are as yet unknown.

The commercial and applied security communities are also
interested in kernel integrity and rootkit detection (exam-
ples include [19, 8, 12, 25]). Existing tools look for specific
signs of compromise within the system by verifying invari-
ants of low-level data structures, by observing system API
behavior for inconsistencies, or both. Some tools enforce
control-flow properties for a small subset of kernel text and
data. SBCFI can be viewed as a generalization of these
techniques that provides far more complete protection. For
example, a number of recent tools verify specific kernel func-
tion pointers, such as those found in well-known jump tables
and kernel subsystems (e.g., the virtual file system) [19]. As
a result, improvising attackers have turned to making modi-
fications deeper within the system, finding function pointers
and code not verified by current tools [2]. SBCFI removes
this avenue from the attacker by checking a much larger,
systematically-determined set of function pointers. We con-
clude that SBCFI is the most effective kernel integrity mon-
itor to date: it is practical and efficient enough to use on
real systems, but detects far more attacks without a priori
knowledge of the specific changes an attacker might make.

As an alternative or complement to dynamic monitoring,
the kernel’s vulnerability to attack can be reduced by using
static analysis and special compilation. Deputy [9, 38] is a
compiler and annotation system for C with which program-
mers can enforce partial memory safety (a garbage collector
is required for complete protection), thereby ensuring at-
tackers cannot overrun buffers or perform similar attacks to
inject illicit functionality into the kernel in the first place.
Related systems include Cyclone [17] and CCured [22], but
both of these require representation-modifying compilation
(e.g., to introduce so-called “fat” pointers). All three systems
have been used to write kernel components [38, 10, 33], but
to date none has proven practical for a complete kernel. We
observe that some of Deputy’s annotations would be use-
ful in our SBCFI implementation, though we do not require
annotations on or within functions, and would not require
special compilation.

While the above systems operate at the source level, the
program’s binary can be rewritten to insert integrity-protec-
ting checks that occur during execution. Abadi et al. imple-
ment CFI enforcement in this way [1]. Their implementation
is an instance of a general technique called in-line reference
monitoring (IRM) that can be used to enforce a range of
policies [11, 35]. IRMs typically rely on control-flow and
other restrictions to guarantee that their checks are not cir-

cumvented (e.g., jumping to code that executes immediately
after the check). These restrictions can be difficult to enforce
within the kernel, as described in Section 2.1.

6. CONCLUSION

This paper has presented a new approach to dynamically
monitoring operating system kernel integrity based on a
property called state-based control-flow integrity (SBCFI),
an approximation of Abadi et al.’s Control-Flow Integrity
property. Violations of SBCFI indicate a persistent, unau-
thorized modification of the kernel’s control-flow graph, which
we have shown to be common in kernel attacks. We have im-
plemented a virtual machine monitor-based SBCFI monitor
for the Linux kernel. We demonstrated experimentally that
our monitor can successfully detect a substantial number of
real kernel attacks (17 of the 18 we injected in our test plat-
form) with no false positives and low overhead, on average
as compared to the VMM. We believe our SBCFI monitor
is the most effective kernel integrity monitor to appear in
the literature to date. In future research, we plan to explore
other properties that consider attacker incentives, to target
rootkits that SBCFI would fail to detect.
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