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ABSTRACT
Location-based services, which employ data from smartphones, ve-
hicles, etc., are growing in popularity. To reduce the threat that
shared location data poses to a user’s privacy, some services ano-
nymize or obfuscate this data. In this paper, we show these meth-
ods can be effectively defeated: a set of location traces can be
deanonymized given an easily obtained social network graph. The
key idea of our approach is that a user may be identified by those
she meets: a contact graph identifying meetings between anony-
mized users in a set of traces can be structurally correlated with
a social network graph, thereby identifying anonymized users. We
demonstrate the effectiveness of our approach using three real world
datasets: University of St Andrews mobility trace and social net-
work (27 nodes each), SmallBlue contact trace and Facebook social
network (125 nodes), and Infocom 2006 bluetooth contact traces
and conference attendees’ DBLP social network (78 nodes). Our
experiments show that 80% of users are identified precisely, while
only 8% are identified incorrectly, with the remainder mapped to a
small set of users.

Categories and Subject Descriptors
C.2.0 [General]: Security and protection

General Terms
Security, Management

Keywords
Information Flow, Graph Deanonymization, Spatio-temporal Data

1. INTRODUCTION
Applications that employ sensor data (e.g., location, accelera-

tion) generated by everyday mobile devices such as smartphones,
tablets, and cars have become quite popular [3, 11, 15, 21, 32].
As examples, CarTel [15] collects location information from GPS
sensors in cars to infer traffic conditions, and GreenGPS [11] com-
putes fuel-optimal routes from OBD-II sensors installed in cars.
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Human mobility patterns have been used for urban planning and
traffic forecasting [13]. While useful, these services pose a risk:
a user’s mobility trace, if revealed, can provide information about
habits, interests and activities—or anomalies to them—which in
turn may exploited for illicit gain via theft, blackmail, or even phys-
ical violence [2].

To reduce the risk of exposing too much information, it has been
suggested that those who collect mobility traces could anonymize
them by removing personally identifying information (PII), such as
name, address, or birthday. Unfortunately, prior work has shown
that PII removed from other kinds of datasets can be recovered
by employing auxiliary information [24]; this recovery process is
called deanonymization. The key question is: in the case of mo-
bility traces does there exist readily available auxiliary information
with which an adversary could effectively perform deanonymiza-
tion? In this paper, we show that the answer is ‘yes.’

Mobility traces can be deanonymized by exploiting the social
network of the participating users. Such social networks are read-
ily available: friend relationships can be found from public Face-
book data, co-authorship relationships from DBLP, and business
relationships from LinkedIn. The key insight is that a pattern of
meetings between users suggests they have relationship; this rela-
tionship may be mirrored in their social network and thus the social
network can be used to recover PII removed from a trace.

The key idea behind our approach is to identify discriminating
features in the social network graph when performing deanonymi-
zation. To illustrate what we mean, consider the simplified exam-
ple in Figure 1. Let us consider four users, b, c, d, and e, and
their respective anonymized user identities b′, c′, d′ and e′. Sup-
pose that we have deanonymized users b′ = b and c′ = c (e.g.,
they are the landmark nodes). In this example, we observe that
the following feature can be used to discriminate d and e: d is a
friend of both b and c, whereas e is a friend of only b. Let f(b)
denote the set of b’s friends in the social network; then the follow-
ing constraints hold d ∈ f(b) ∩ f(c) and e ∈ f(b) \ f(c). One
can now transfer these constraints to the contact graph as equations
over variables vd and ve (the nodes in the contact graph that poten-
tially maps to node d and node e in the social network) and require
that vd ∈ f(b′) ∩ f(c′) and ve ∈ f(b′) \ f(c′) (for notational sim-
plicity, f is overloaded to operate on both the social network and
the contacts graph). In this example, solving for the variables vd
and ve results in an unique solution, namely, vd = d′ and ve = e′.
On the other hand if both d′ and e′ exhibited identical contact pat-
terns with b′ and c′, we will not be able to discriminate user d from
user e. Hence, both the mappings {d = d′ and e = e′} and {d = e′

and e = d′} would seem equally likely from the point of view of the
deanonymization algorithm.

We validate our approach using three real world datasets: Uni-
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Figure 1: Deanonymization requires Discriminative Features:
the Contact Graph is on the left, the Social Network on the right

St Andrews Smallblue Infocom06
Comm network type WiFi IM Bluetooth

No comm nodes 27 125 78
Duration (days) 30 30 4

Granularity (secs) 300 300 120
No contacts 18,241 240,665 182,951

Social network type Facebook Facebook DBLP
No social nodes 27 400 616

Figure 2: Datasets

versity of St Andrews mobility traces and social network (27 nodes
each), SmallBlue contact traces and Facebook social network (125
nodes), and Infocom 2006 bluetooth contact traces and conference
attendee’s DBLP social network (78 nodes). Our initial results
show that our approach deanonymizes 80% of the nodes in the
traces correctly, 8% incorrectly, and the remaining 8% it is able
to correctly map a node to a small set of users (no more than three),
one of which is the correct one.1 Our results also show that even
when about 25% of the social network and the contact graph is
intentionally modified (e.g., edges/nodes are added/removed) our
approach is effective; further, when a small fraction (5%) of select
node mappings (in particular, nodes with low centrality score) are
known a priori, then the effectiveness of our approach can exceed
95% (i.e., 95% of nodes are correctly mapped).

The next section sets up the problem more formally and de-
scribes our evaluation datasets. Section 3 presents our approach
in detail and evaluates it on these datasets. Section 4 evaluates
the impact on deanonymization of adding noise to the data and of
using inaccurate or incomplete social network graphs. Section 5
discusses related work, and Section 6 concludes.

2. PROBLEM SETUP

2.1 Notation and Terminology
VS denotes the set of users with each user having a unique iden-

tifier. L denotes the set of location identifiers with each location
having a unique identifier. d(l1, l2) denotes the distance between
two locations l1 and l2 in L. We write A to denote a location trace
of the form 〈u, l, t〉∗, where u ∈ VS , l ∈ L and t is a timestamp.

1Nodes in the remaining 4% are correctly mapped to a set of four or more
users

Similarity Measure St Andrews Smallblue Infocom06
Graph edit distance 8 / 62 28 / 375 22 / 212

/ Num edges
Common sub-graph 18 / 27 72 / 125 42 /78

/ Num nodes

Figure 3: Graph Similarity Measures

VC denotes the set of anonymized user identifiers, i.e., the map-
ping between the set of users VS and VC is unknown. L′ denotes
the set of obfuscated location identifiers. We remark the location
identifiers may be obfuscated using several techniques including
the addition of random noise or generalization (i.e., reducing the
granularity of location information). For instance, a location l in L
may be perturbed to locations l′1 and l′2 in L′ with probability p and
(1−p) respectively for some 0≤ p≤ 1 (random noise); or two lo-
cations l1 and l2 in L may be mapped to the same location l′ in L′

(generalization). We remark that the efficacy of deanonymization
degrades with the extent of location obfuscation.
A′ denotes an anonymized location trace of the form 〈u′, l′, t〉∗,

where u′ ∈ VC , l′ ∈ L′ and t is a time stamp. The goal of deanony-
mization is to infer the mapping between the set of users in VS and
VC . As discussed earlier, the technique used for deanonymization
depends on the nature of available auxiliary information. In this pa-
per we consider auxiliary information that is represented by a social
network S = (VS , ES), where an edge in set ES has the form 〈u1,
u2, r12, w12〉 such that u1, u2 ∈ VS (note that users in the social
network correspond to non-anonymous user identifiers), r12 ∈R an
directed relationship between users u1 and u2 and R is a finite set
of relationship types (e.g., manager, friend, colleague, co-author,
etc.). In addition to relationship type we consider two types of an-
notations w12 to the social network links: one that corresponds to
the strength of a relationship denoted by a weight between [0, 1]
(e.g., normalized number of co-authored papers) and second that
corresponds to periodicity at which a relationship is active (e.g.,
colleague relationship is active every day from 9am-5pm).

In order to structurally match (and de-anonymize) a mobility
trace against a social network we construct a contact graph C. In-
tuitively a contact graph captures pair-wise meetings between two
users. Given two events 〈u′1, l′1, t1〉 and 〈u′2, l′2, t2〉 in an anony-
mized location trace, we say that there is a contact between users
u1 and u2 if d(l′1, l

′
2) ≤ τ1 and |t1 − t2| ≤ τ2, for some thresh-

olds τ1, τ2 ≥ 0. Given a sequence of contacts between two users
u′1 and u′2 we apply Fourier transform to detect periodicity in such
contacts. We construct contact graphs at different time granulari-
ties − based on the most dominant periodicity of contacts derived
by applying the Fourier transform. The contact graph C thus gen-
erated is of the form C = (VC , EC), where the edges in EC are of
the form 〈u′1, u′2, c12, w12〉 and the class type c12 is obtained by
manual classifying contacts based on the time-of-the-day and w12

denotes the frequency of contacts within the period of interest.

2.2 Datasets
In this section we briefly review the datasets that were used in our

study. A description of these datasets [4, 1, 28] is shown in Figure
2. The St Andrews university dataset captures the WiFi hotspot
(within the university) to which a user (a student volunteer) is con-
nected at intervals of 300 seconds. We assume that two users are in
contact if they are both connected to the same WiFi hotspot for an
interval of time that spans 600 seconds. The contact graph includes
a weight − the frequency of inter-user contacts over the duration
of the trace. The St Andrews dataset also includes a social network
(gathered from Facebook) on the same set of student volunteers.
The social network has 0/1 link weights based on two users being a
friend on the Facebook social network. We note that in our datasets
the ground truth, that is, the mapping between nodes in the social
network and the contact graph is given to us.

The Smallblue dataset captures contacts between users using an
instant messenger on an enterprise network. Two users are said to
be contact if they exchange chat messages back and forth with each
other. A session of such chat messages between a pair of users
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Figure 4: Degree Distribution: St Andrews, Smallblue and Infocom06

constitutes one contact. The contact graph is constructed in a sim-
ilar manner with link weights that correspond to the frequency of
inter-user contacts over the duration of the trace. In addition to the
mobility trace the dataset also includes a social network (gathered
from Facebook) on a superset of users. The social network has 0/1
link weights based on two users being a friend on the Facebook
social network.

The Infocom06 dataset is a Bluetooth contact trace of Infocom
2006 conference attendees that volunteered to contribute their mo-
bility information. When two users are within Bluetooth connec-
tivity range (typically less than 10 meters), a Bluetooth connec-
tion is established between the user devices. If such a connection
lasts for 600 seconds we assume that the users are in contact with
each other (we ignored contacts during session breaks and lunch
breaks). In addition the dataset also includes a list of 616 atten-
dees (names and affiliations) of Infocom 2006. The volunteers (78
of them) are a strict subset of the conference attendees. We use
DBLP (co-authorship database [9]) to construct a social network
over the conference attendees − the social network has 0-1 link
weights based on the normalized number of co-authored papers be-
tween two users: if Pu1 and Pu2 denote the set of papers that in-
cludes user u1 and u2 on the author list then the weight of the link
between the users is given by |Pu1∩Pu2 |

|Pu1
∪Pu2

| .

2.3 Structural Similarity
The key hypothesis of our approach is that the social network

and the contact graph bear structural similarities. We show that this
is indeed the case using three well accepted measures of graph sim-
ilarity: graph edit distance (minimum number of edges that need to
be added and/or deleted for an exact match), maximum common
sub-graph (number of vertices in the largest common sub-graph)
and node degree distribution. We remark that the graph edit dis-
tance measure typically applies to graphs that have identical num-
ber of vertices, while the latter measures do not impose such a re-
striction. In order to simplify the measurement of such graph sim-
ilarity measures we round-off edge weights in the social network
and the contact graph to either 0 or 1.

Figure 3 shows graph similarity measures using the graph edit
distance and the maximum common sub-graph measures. Figure 4
shows the degree distributions of the contact graph and the social
network using the datasets. These figures show that the contact
graph and the social network tend to bear a lot of similarity; in our
datasets, the average ratio of graph edit distance to the number of
edges is about 10.3% (lower the better), the average ratio maximum
common sub-graph to the number of nodes is about 60% (higher
the better), the average Kullback and Leibler (KL) symmetrised

divergence measure [31] between the node degree distributions is
about 0.062 bits (lower the better).

3. GRAPH DE-ANONYMIZATION
We examine a two step solution to match the contact graph against

the social network. In the first step we bootstrap the matching prob-
lem by exploiting inherent heterogeneity in the graphs to identify
landmark nodes. In the second step we extend a mapping between
landmark nodes to all the nodes in the graph by identifying discrim-
inating features in the original graph. We explore three techniques
for this second step. In the remainder of this section we describe
our algorithm in detail and evaluate each of the techniques using
the previously described datasets. Results were computed on an
Intel i5 quad-core processor operating at 2.4 GHz with 4 GB RAM
running RedHat Enterprise Linux 5.4.

3.1 Initial Landmarks Selection
For the first step, we identify landmark nodes using a node cen-

trality measure [25, 7], which is a measure of the relative impor-
tance of a vertex within a graph. Centrality is very well studied
metric in both graph theory and social network analysis, e.g., to de-
termine how important a person is within a social network or how
well-used a road is within an urban network. We identify land-
mark nodes as those with high centrality metric. Past work [12]
has shown that node centrality in contact graphs and social net-
works generally follows a heavy tailed distribution; hence, there
are a small number of nodes (outliers) with a high centrality score,
while a vast majority of the nodes belong to the tail of the distribu-
tion. Therefore we identify the top k central nodes, for k� |VC |,
|VS |, in both the contact graph and the social network as landmark
nodes; we experimentally show that for small values of k the set
of top-k centrality nodes in both the social network and the contact
graph are likely to be the same. Further, given k landmark nodes
in both the contact graph and the social network there are at most
k! mappings between them. Since k is typically small even a brute
force enumeration of all possible mappings is feasible.

While there are several measures of centrality, in this paper we
adopt the node betweeness metric. The betweenness centrality mea-
sure (as applied to a static graph) for node n is a normalized mea-
sure over the number of all-pair shortest paths in a graph that in-
cludes node n. In general, if a large number of shortest paths pass
through node n, then node n has a higher betweeness centrality
measure. We use this betweeness measure for centrality computa-
tion in the static social network

For the contract graph we observe that in a contact graph a ‘path’
exists over time. Hence, the standard shortest path based definition
of node betweeness does not directly apply to the contact graph.
Hence, we develop a novel centrality measure that applies to con-



tact graphs. First, we recognize that a path between two nodes A
and B in the contact graph is via a sequence of contacts N1, N2,
· · · , Nr−1. Hence, we adopt the following definition of paths in
contact graph:

DEFINITION 1. Opportunistic path [12]
A r-hop opportunistic path PAB =(VP , EP ) between nodes A

and B consists of a node set VP = {A, N1, N2, · · · , Nr−1, B} ⊂
V and an edge set EP = {〈A, N1, w1〉, 〈N1, N2, w2〉, · · · , 〈Nr−1,
B, wr〉} ⊂ E such that Ni 6= Nj for any 1 ≤ i < j ≤ r − 1. The
path weight is the probability pAB(T ) that A may reach B along
PAB within time T .

We model the inter-contact timeXk between nodesNk andNk+1,
as a random variable with a probability density function (PDF)
pXk (x). In our datasets we observed that pXk (x) was exponen-
tially distributed: pXk (x) = wke−wkx. However, we remark that
the approach is applicable to any arbitrary distribution. Assuming
that pXk (x) is exponentially distributed, Y =

∑r
k=1Xk following

a hypoexponential distribution [27], such that

pY (x) =

r∑
k=1

G
(r)
k pXk (x), (1)

where the coefficients G(r)
k =

r∏
s=1,s6=k

ws
ws−wk

.

From Eq. (1), the path weight is written as

pAB(T ) =

∫ T

0

pY (x)dx =

r∑
k=1

G
(r)
k · (1− e

−wkT ), (2)

The centrality metric Ci for a node i is then defined as follows:

Ci =
1

N − 1
·

N∑
j=1,j 6=i

pij(T ), (3)

where N is the total number of nodes in the network. Intuitively,
this metric is a measure of distance from a randomly chosen node
in the network to node i. Due to the heterogeneity of the pairwise
contact frequency in different traces, different values of T were
adaptively chosen; T is set as 1 hour for the Infocom traces, 6 hours
for the St Andrews and Smallblue traces.

Figures 5 and 6 shows the centrality scores of nodes in the con-
tact graph and the social network respectively. We observe due to
the inherent heterogeneity of these graphs, only a few select nodes
have high centrality scores. More interestingly, we observe that the
same of set of nodes that have high centrality score in the contact
graph also has a high centrality score in the social network. Indeed
we note that the set of top-k nodes (ordered by centrality score) is
identical for both the contact graph and the social network. For e.g.,
node identifiers 1, 7 and 18 in the St Andrews dataset are the top
3 central nodes in both the contact graph and the social network;
node identifiers 8, 25, 41, 55, 100 and 119 are the top 6 central
nodes in the both the contact graph and the social network in the
Smallblue dataset; node identifiers 8, 24, 34, 47 and 72 are the top
5 central nodes in the both the contact graph and the social network
in the Infocom06 dataset.

Note that at this stage we still do not have a mapping between the
landmark nodes; however, given k landmark nodes there are at most
k! mappings. In the subsequent sections we propose techniques
to start with a mapping of landmark nodes and de-anonymize the
rest of the contact graph. We repeat this exercise for all such k!
mappings between the landmark nodes; using a goodness-of-fit test
on the thus derived mappings we select the most likely mapping
between the nodes in the contact graph and the social network.
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Figure 7: Distance Vector Results

Given a possible mapping between such landmarks, the next
step is to use various graph features to deduce mappings for other
nodes. Formally, LC = {c1, · · · , ck} and LS = {s1, · · · , sk} de-
note the landmark nodes in the contact graph and the social net-
work respectively, and the initial mapping is ci = si for all 1 ≤
i ≤ k. Given this initial mapping, we consider three possible
techniques—distance vectors, spanning tree matching, and local
sub-graph features—detailed in the next three subsections.

3.2 Distance Vector
The first technique we consider is to map nodes that have sim-

ilar distance vectors. For each non-landmark node in the contact
graph and the social network, its distance vector contains distances
between the node to the k landmark nodes. Hence, for a node n,
its distance vector is given by {dn1, · · · , dnk}, where dni denotes
the distance from node n to landmark i (i.e., ci in the contact graph
and si in the social network).

Given two nodes c in the contact graph and s in the social net-

work we quantify a mapping score aswcs =−
√∑k

i=1(dci − dsi)2.
Now we construct a bipartite graph with vertex set (VC \ LC) ∪
(VS \ LS), where VC and VS are the set of vertices in the con-
tact graph and the social network respectively; for every node c
∈ VC \ LC and s ∈ VS \ LS we add an edge between node c
and node s with weight wcs. Now the node mapping problem re-
duces to a maximum weighted bipartite graph matching problem
that determines matching pairs of vertices in VC \LC and VS \LS
respectively. We use the Hungarian algorithm [6] that solves the
weighted graph matching problem in bipartite graphs in O(|V |3),
where V is the set of vertices and E is the set of edges in the bipar-
tite graph. The result of this algorithm is pairs of matched nodes s′

∈ VC \LC and s ∈ VS \LS . We denote the overall matching score
as

∑
s∈VS\LS

ws′s. We repeat this procedure for all k! mappings
between landmark nodes and finally select the mapping that results
in the highest matching score.

Figure 7(a) shows the accuracy of de-anonymization as we vary
k. We observe that initially as k increases the accuracy of de-
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Figure 5: Node Centrality in Contact Graph: St Andrews, Smallblue and Infocom06
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Figure 6: Node Centrality in Social Network: St Andrews, Smallblue and Infocom06. Notice that the peaks (high centrality nodes)
in the contact graph (Figure 5) and the social network (Figure 6) match.

anonymization process improves − since larger number of land-
marks improves the precision of node distance vectors. However,
as k increases further the set of landmark nodes in the contact graph
and the social network are no longer identical; hence, the overall
efficacy of node mapping decreases.

Figure 7(b) shows the computation cost of deriving node map-
pings given a mapping for landmark nodes. We note that given a
landmark mapping the computation cost does not increase signif-
icantly with k − the number of landmark nodes. As k increases
we need to compute distances from more landmark nodes to all the
other nodes in both the contact graph and the social network. This
operation costs O(k|E|). Once such distances are computed the
cost of computing similarity is O(k|V |2). However, the cost of the
weighted bipartite graph matching O(|V |3) which dominates the
computation cost is independent of k. Note that Figure 7 shows the
cost for a given landmark node mapping − hence, the overall com-
putation cost has to be scaled with k! (for every possible landmark
node mapping). We observe that on the 125 node Smallblue dataset
with k = 5 nodes the total time to de-anonymize is 5!*200 seconds
or about 6.7 hours.

3.3 Randomized Spanning Trees
An obvious approach to performing the mapping would be to

compute general graph isomorphism between the contact and so-
cial network graphs. However, general graph isomorphism is an
NP-hard problem, so this approach would be computationally in-
tractable for large contact graphs and social networks. We observe
that a classical approach to derive mappings between entities in a
high dimensional space is to project them to a lower dimensional
space wherein it may be easier to identify such mappings. Follow-
ing this observation, we significantly lower the complexity of the
graph mapping by reducing it to randomized tree mapping problem,
for which poly-time algorithms exist [29].

In this solution we project both the contact graph C and the so-
cial network S into randomized spanning trees. We note given any
graphG the number of spanning trees of graphG is given by Kirch-
hoff’s theorem [14]: 1

|V |∗Π
|V |−1
i=1 λi, where λi are the non-zero

eigenvalues of G’s Laplacian matrix. The Laplacian matrix Q of
a graph G is defined as Q = D − A, where D is a diagonal matrix
with the ith diagonal element set to the degree of node i and A is
the adjacency matrix of graph G (i.e., the ijth element in A is 1
if there exists an edge between node i and j; 0 otherwise). Kirch-
hoff’s theorem also allows us to explicitly enumerate all spanning
trees of a graph and thus enables us to select a random set of such
spanning trees.

Given two such spanning treesCT and ST we seed the mappings
between landmark nodes and then apply a classical tree-to-tree edit-
ing algorithm [29] to derive node mappings between other nodes in
the tree. The runtime complexity of the tree-to-tree editing algo-
rithm is O(|VC ||VS |). We quantify the efficacy of a mapping using
the graph edit distance between the labeled contact graph and the
social network. Over multiple such randomized spanning trees and
all k! landmark node mappings we select the mapping that has the
least edit distance between the labeled contact graph and the social
network.

Figure 8(a) shows the accuracy of de-anonymization as we in-
crease the number of randomized spanning trees (with the number
of landmark nodes k set to 4) constructed from the contact graph
and the social network. The figure also shows the accuracy of de-
anonymization as we increase the number of landmark nodes (with
the number of randomized spanning trees set to 128). The figure
indicates that the accuracy of de-anonymization can be as large as
72%, 80% and 68% respectively for St Andrews, Smallblue and
Infocom06 datasets.

Figure 8(b) shows the tree mapping for a given pair of span-
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Figure 8: Randomized Spanning Tree Results

ning trees CT and ST . We observe that on the 125 node Smallblue
dataset with k = 5 nodes and 128 randomized spanning trees, the
total time to de-anonymize is 5!*128*4.02 seconds or about 6.2
hours.

3.4 Recursive Sub-Graph Matching
For our final technique, we propose to use sub-graph features

to derive mappings between the contact graph and the social net-
work. We start with the seed set of landmark nodes and recursively
expand such mappings to other nodes in the contact graph. The
key idea is to model the node mapping as a constraint satisfaction
problem (CSP) [22]. We leverage the social network to derive con-
straints on node mappings as follows. For each node a in the so-
cial network we create a variable xa in the CSP. We constrain all
variables xa to take values from the set VC , where VC denotes ver-
tices in the contact graph. If there is a link between users a and
b in the social network we introduce conjunctive constraints of the
form: xa ∈ f(xb) and xb ∈ f(xa), where f(xa) denotes the set of
edges incident on node xa in the contact graph. Indeed since the
contact graph and the social network may not have an exact map-
ping the CSP may have no feasible solutions. Hence, we solve for
MAX-CSP that minimizes the number of constraint violations (i.e.,
minimizes the number of unsatisfied constraints).

In general solving such a MAX-CSP is a NP-hard problem. In-
stead we solve a dynamic CSP problem that only introduces con-
straints of the form xa ∈ f(xb) such that value of xb has already
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Figure 9: Recursive Sub-Graph Matching Results

dataset log2 |aut(C)| log2 |aut(S)| log2 |V |!
St Andrews 7.7 7.9 93
Smallblue 18.2 18.4 696
Infocom06 16.5 18.6 382

Figure 10: Number of Automorphisms

been determined − the dynamic CSP is bootstrapped using land-
mark node mappings, i.e., the value of xli is assumed to be known
for every landmark node li. We use a CSP solver in ILOG [16]
to recursively expand the set of node mappings from the landmark
nodes to span all the nodes in the contact graph. The CSP solver ex-
ploits a combination of backtracking (e.g., to undo incorrect node
mappings), constraint propagation and local search to optimally
solve the dynamic MAX-CSP problem. Further, the CSP solver ex-
ploits the absence of cyclical dependences in our constraints (note
that we introduce a constraints xa ∈ f(xb) only when the value of
xb is known) to scalably solve the node mapping problem.

Figure 9(a) shows the accuracy of de-anonymization as we in-
crease the number of landmark nodes. The figure indicates that
the accuracy of de-anonymization can be as large as 82%, 88%
and 80% respectively for St Andrews, Smallblue and Infocom06
datasets. Figure 8(b) shows the time taken to solve the dynamic
MAX-CSP problem for a given landmark node mapping. We ob-
serve that on the 125 node Smallblue dataset with k = 5 nodes, the
total time to de-anonymize is 5!*15.12 seconds or about 0.5 hours.
We note that the computational complexity of recursive sub-graph
matching using the dynamic CSP approach (without backtrack-
ing) is O(|V | ∗ max_node_degree). With limited backtracking
(say, at most b local backtrackings) the complexity is still pseudo-
polynomial in |V |: O(|V | ∗max_node_degreeb).

3.5 Optimality: Graph Automorphism Bound
In this section we present solutions to analyze the efficacy of

graph de-anonymization. First, we make a simple observation that
efficacy of node mapping is fundamentally limited by number of
graph automorphisms. Automorphism of a graph is a form of sym-
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metry in which a graph is mapped onto itself while preserving
edge−vertex connectivity. Formally, an automorphism of a graph
G = (V ,E) is a permutation σ of the vertex set V , such that the pair
of vertices (u, v) form an edge if and only if the pair (σ(u), σ(v))
also form an edge. It is easy to see that no graph de-anonymization
algorithm will be able to distinguish between such pairs of vertices
(u, v). It may possible to conclude that (u, v) ∈ {u′, v′} (i.e., both
the mappings {u = u′ and v = v′} and {u = v′ and v = u′} are
equally likely) but the exact mapping between {u, v} and {u′, v′}
may be indeterminate.

For example, if the graph G is completely connected then the
number of automorphisms is |V |!, i.e., any permutation of vertex
labels results in an isomorphic graph. Similarly, a graph that has
no edges also has |V |! automorphisms. Hence, such graphs are
completely resilient to graph de-anonymization. Let us consider
another example wherein the graph G has a star topology, wherein
one vertex v0 has degree n and all the other vertices {v1, · · · vn}
have exactly one edge to v0. In such a graph one can determine the
mapping for node v0, however, any permutations on vertex labels
{v1, · · · , vn} results in an isomorphic graph. Indeed a graph with
a star topology has (|V | − 1)! automorphisms.

While graph automorphisms (and its counting version, i.e., de-
termining the number of automorphisms) is a NP-complete prob-
lem there are various tools that are very effective in estimating
the number of automorphisms for a given graph. For example,
Saucy2 [8] has been effective in computing the number of auto-
morphisms in graphs of size ranging from 3K to 5M and number
of automorphsisms ranging from 4−108000 in under 30 minutes.
Figure 10 shows the number of graph automorphisms on both the
contact graphs C and the social networks S in our datasets. We
note that the maximum possible information gain achievable by
any graph denonymization algorithm is given by: log2 |V |! − log2

max(|aut(C)|, |aut(S)|), where |aut(G)| denotes the number of
automorphisms of graph G.

We derive an upper bound on accuracy that may be achieved
by any de-anonymization algorithm using the number of graph au-
tomorphism. In particular, if the social network S has |aut(S)|
automorphisms and contact graph C has |aut(C)| automorphisms
then the accuracy of any de-anonymization algorithm cannot ex-
ceed min(1 − ηC

|VC |
, 1 − ηS

|VS |
), where ηS is the smallest natural

number such that ηS ! ≥ |aut(S)| and ηC is the smallest natural
number such that ηC ! ≥ |aut(C)|.

Figure 11 shows a comparison of our algorithms: DV (landmark
based distance vectors), ST (randomized spanning trees), SG (re-
cursive sub-graph matching) and OPT (automorphism bound). Our
results show that the recursive sub-graph matching approach con-
sistently outperforms the other approaches. The figure also shows
that the nodes in the contact graphs exhibit significant heterogene-
ity: the automorphism bound on St Andrews, Smallblue and Info-
com06 datasets is 82%, 94% and 90% respectively. We note that
the recursive sub-graph matching can achieve up to 97.6%, 95.7%
and 91.1% of optimality respectively on St Andrews, Smallblue
and Infocom06 datasets.

4. EVALUATION: TOLERANCE TO NOISE
AND OBFUSCATION

This section presents an evaluation of the efficacy of our algo-
rithms on altered datasets. In particular we will examine the ef-
ficacy of our algorithms when: (i) the social network or the con-
tact graph is obfuscated, (ii) a small subset of nodes mappings are
known a prior (e.g., insiders reveal their identities or some node
mappings are inadvertently leaked), and (iii) examine the efficacy
of de-anonymization when stale social networks are used. Our re-
sults show that even when about 25% of the social network and
the contact graph is intentionally modified (e.g., edges/nodes are
added/removed) our approach is effective; further, when a small
fraction (5%) of select node mappings (in particular, nodes with
low centrality score) are known a priori, then the effectiveness of
our approach can exceed 95% (i.e., 95% of nodes are correctly
mapped).

4.1 Noisy Social Network
Figure 12 shows the accuracy of node de-anonymization when

the social network is obfuscated. We examined three different types
of noise that could be added to the social network. First we add/delete
edges in the social network− for example, when edit distance / No
of edges is 0.1 then 5% of randomly selected edges are deleted from
the graph, followed by introducing edges between 5% of the ran-
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Figure 13: Accuracy with Obfuscated Mobility Traces

domly chosen pairs of nodes. Note that in this case no new nodes
are introduced into the social network.

Second we introduce spurious nodes into the social network, that
is, users that did not participate in the mobility trace. Note that for
both the Smallblue and Infocom06 dataset we have the social net-
work over a superset of users that participated in the mobility trace;
hence, we randomly add nodes from the social network (including
respective edges to nodes that were already part of the social net-
work). For example, when Spurious Nodes / No of Nodes equals 0.1
then 10% of randomly chosen nodes is added to the social network
as follows: let VS denote the set of vertices in the current social
network; let ngh(VS) denote the set of neighbors of vertices in VS ;
we pick one vertex at random from the set ngh(VS) \ VS and add
it to the social network; the process is repeated until the required
number of nodes are added to the social network. In this case, the
size of the resulting social network has 10% more nodes than the
contact graph.

Third we randomly remove nodes (and all incident edges) from
the social network. For example, when Missing Nodes / No of
Nodes equals 0.1 then 10% of randomly chosen nodes (and respec-
tive edges) is removed from the social network. In this case, the
resulting social network is 10% fewer nodes than the contact graph.

In all of Figure 12 we used our recursive sub-graph matching
algorithm since it performed the best under normal circumstances.
The x-axis in the figures quantifies the extent of obfuscation and
the y-axis shows the accuracy of our algorithm. We note that in
general the efficacy of our algorithm degrades gracefully with the
extent of obfuscation. Compared to the other modifications, adding
spurious nodes into social network has the most deleterious effect
on deanonymization. Intuitively, adding spurious nodes increases
the number of possible node mappings by reducing the number of
discriminating features.

4.2 Noisy Contact Graph
Figure 13 shows the accuracy of node de-anonymization when

the mobility trace is obfuscated. In this experiment we use the lo-
cation information available from the St Andrews trace. We note
that in both the Smallblue and Infocom06 dataset we only have
the contacts. We examine the efficacy of our recursive sub-graph
matching algorithm as we add more noise to the mobility trace− in
our experiments we add IID (independent and identical distributed)
noise to the location of each user each point in time. As shown in
past work, one can use physical limitations on the speed at which a
user may move and aggregate mobility models to de-obfuscate the
mobility trace. In particular, we use the mobility trace to construct
a Markovian mobility model built over all users: Pr(lt+1|lt), the
probability that a user may be location lt+1 at time t+ 1 given that
the user was at location lt at time t.

We use the Markovian mobility model (built over all users) to en-
rich per-user mobility traces. In particular, we used two techniques
to refine the obfuscated mobility trace: (i) using Viterbi decoding
[31] to deduce the location of user u at time t (this algorithm is
quadratic in the number of states = number of location identifiers)
and (ii) using Kalman filtering [31] for both backward and forward
smoothing to deduce the location of user u at time t (this algorithm
is cubic in the number of states = number of location identifiers).
We note that these both Viterbi decoding and Kalman smoothing
is applied as a pre-processing to enrich the mobility trace − the
enriched mobility trace is then used as input by the recursive sub-
graph matching algorithm.

Figure 13 shows the effectiveness of adding location noise to: (i)
all nodes in the mobility trace and (ii) to only landmark nodes in the
mobility trace. We note that using more sophisticated smoothing
and state estimation algorithms (e.g., Kalman filter) enhances the
efficacy of de-anonymization (at a added computational cost). We
also note that adding noise to the mobility traces of landmark nodes
is not quite effective; this is because we detect landmark nodes
that are outliers with respect to node centrality score. In general
the centrality score of landmark nodes are significantly higher than
the remaining nodes; hence, even with added location noise the
centrality score of landmark nodes tend be outliers. For example,
consider a star topology contact graph, wherein all nodes {v1, v2,
· · · , vn} are in contact with node v0 and there is no contact between
two nodes vi and vj such that 1 ≤ i < j ≤ n. Even with added
location noise we see that it is easy to identify node v0.

Figure 13 also shows the efficacy of our algorithm when p% of
user mobility traces are identical, that is, we randomly select p%
nodes and for each selected node v we select a random node v′

and set the mobility trace of v to be identical to that of v′. Doing
so makes the nodes v and v′ automorphic in the contact graph,
thereby, decreasing the effectiveness of de-anonymization. We note
that this approach is more effective in lowering the efficacy of our
algorithm than adding IID location noise to user mobility traces.
Note that in this approach to location obfuscation the use of Viterbi
decoding or Kalman filter does not enhance the effectiveness of de-
anonymization.

4.3 Known Node Mappings
In certain cases one may a priori know the mappings between a

small subset of nodes in the social network and the contact graph.
This could be due to information that is inadvertently leaked or due
to insiders (who participated in the mobility trace) that reveal their
mapping information. Figure 14 shows the increase in effectiveness
of de-anonymization when more node mappings are revealed. We
simply add known node mappings in addition to high centrality
node mappings as a seed mapping and uses recursive sub-graph
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matching algorithm to derive the node mappings for other nodes
in the contact graph. For example, when Known Node Mappings
/ No of Nodes is 0.1 then 10% of node mappings are assumed to
be known a priori. We observe that given about 30% random node
mappings the accuracy of de-anonymization exceeds 95%.

We remark that knowing the node mappings for high centrality
nodes is not quite useful for de-anonymization since our algorithm
can detect such mappings with high fidelity. On the other hand,
the figure shows the effectiveness of de-anonymization when low
centrality nodes are revealed (these are nodes that are hard to de-
anonymize).

In the next experiment we sort nodes in ascending order of their
centrality score. In Figure 14, when Known Low Centrality Nodes
/ No of Nodes equals 0.1 then the mappings of 10% of nodes that
have the least centrality score are assumed to be known a priori.
We observe that given 10% random node mappings in the Info-
com06 dataset the de-anonymization algorithm achieves an accu-
racy of 83%, while given the same number of node mappings for
low centrality nodes achieves an accuracy of 90% (see Figure 14).

4.4 Which Social Network to Use?
Figure 15 shows the effectiveness of de-anonymization when

we use different social networks. In particular, for the Infocom06
dataset we constructed social networks (from DBLP publication
database) based on co-authorship information from year 2003, 2004,
· · · , 2009 (note that Infocom06 dataset is a mobility trace col-
lected from the Infocom conference conducted in 2006). Figure
15 shows that the effectiveness of de-anonymization initially in-
creases as we approach 2006-07 and then decreases. However,
we observed that the de-anonymization is most effective using the
2007 co-authorship social network. We conjecture that this is be-
cause authors who met at the 2006 conference collaborated and

co-authored papers that were subsequently published in 2007. We
could in part verify this conjecture by measuring the number of co-
authored papers in 2006 and 2007 respectively, by authors who met
frequently during the 2006 conference − indeed our dataset shows
a 12% increase in the number of such co-authored papers. Hence,
the effectiveness of 2007 social network (over the 2006 social net-
work) can be explained by its stronger causal relationship with the
contact graph in 2006. We remark that this observation serves as a
measure to quantify the effectiveness of conferences in increasing
collaborative research amongst authors.

5. RELATED WORK
Location privacy (as applied to mobile users) requires that it be

hard to track the location of a user given a mobility trace. In partic-
ular several authors have examined the predictability and unique-
ness of user location traces using diverse tools; for a survey on
past work we refer the readers to [19]. For example, 802.11 user
fingerprinting [26] attempts to identify a user using implicit iden-
tifiers such as IP addresses or the service set identifier (SSID) be-
ing actively searched by a user’s device; others have suggested RF
(Radio Frontend) fingerprinting [5] to uniquely identifier a user’s
device; others have proposed the use of triangulation (e.g., based
on received signal strength from multiple vantage points) to further
improve the precision of a user’s location [17]; others have sug-
gested that a user be fingerprinted using a historical set of locations
visited by that user (e.g., a per-user Markovian mobility model as
discussed earlier in Section 1); [20] proposes a framework for rec-
ognizing mobile users’ activities based on the places they visit and
also the temporal patterns of their visit.

More recently, Shokri et al. [30] proposed a solution to quantify
location privacy with the goal of providing a unified framework that
can be used to evaluate various location obfuscation mechanisms.
Their paper presents solutions to quantify location privacy given an
obfuscated mobility trace and the Markovian mobility model. They
show that the effectiveness of an anonymized mobility trace in pro-
tecting location privacy not only depends upon the extent of obfus-
cation but also the fidelity of the auxiliary information. However,
their location privacy metrics only apply to auxiliary information
of the type per-user Markovian mobility model.

Several authors have explored the use of auxiliary data (some-
times referred to as side channel information) to break privacy. A
generic template for violating privacy using auxiliary information
is often represented as follows [24]: anonymized data + auxiliary
information = de-anonymized data. Side channels in the form of
timing analysis [10] and power analysis [18] have been extensively
studied in literature. More recently, authors have used side-channel
information (e.g., zipcode, age and sex of users) to de-anonymize
the Netflix Prize dataset [24].



The closest related work is [23] that proposes using graph dea-
nonymization for social networks. Their approach in principle is
similar to our recursive sub-graph matching approach. However,
our work presents various key solutions over prior work: (i) using
node centrality to identify landmark nodes and bootstrap deanony-
mization, (ii) reductions to weighted graph matching and tree edit
distance problem, (iii) dynamic CSP formulation can be viewed as
a alternate formulation of the approach presented in [23], and (iv)
lower bounds based on automorphism. Finally, to the best of our
knowledge, this paper presents the first attempt to leverage social
networks as a side-channel to de-anonymize user mobility traces.

6. SUMMARY
In this paper we explored an alternate source of auxiliary infor-

mation − inter-user correlations which can be often inferred from
publicly available social networks to de-anonymize mobility traces.
A vast majority of past work developed detailed per-user models
(e.g., a per-user Markovian mobility model) and used such mod-
els to identify the most probable user that could have generated an
anonymized trace. In contrast, this paper studied the use of inter-
user correlation models to address this problem. In particular, we
exploited structural similarities between two sources of inter-user
correlations (the contact graph and the social network) and devel-
oped techniques to leverage such structural similarities to deduce
mapping between nodes in the contact graph with that in the so-
cial network, thereby de-anonymizing the contact graph (and thus
the underlying mobility trace). We validated our hypothesis using
three real world datasets and showed that the proposed approach
achieves over 80% accuracy, while incurring no more than a few
minutes of computational cost in de-anonymizing these mobility
traces.
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