
ADAPTON: Composable, Demand-
Driven Incremental Computation

Abstract
Many researchers have proposed programming languages that sup-
port incremental computation (IC), which allows programs to be
efficiently re-executed after a small change to the input. However,
existing implementations of such languages have two important
drawbacks. First, recomputation is oblivious to specific demands
on the program output; that is, if a program input changes, all de-
pendencies will be recomputed, even if an observer no longer re-
quires certain outputs. Second, programs are made incremental as
a unit, with little or no support for reusing results outside of their
original context, e.g., when reordered.

To address these problems, we present λcdd
ic , a core calculus

that applies a demand-driven semantics to incremental computa-
tion, tracking changes in a hierarchical fashion in a novel demanded
computation graph. λcdd

ic also formalizes an explicit separation be-
tween inner, incremental computations and outer observers. This
combination ensures λcdd

ic programs only recompute computations
as demanded by observers, and allows inner computations to be
reused more liberally. We present ADAPTON, an OCaml library
implementing λcdd

ic . We evaluated ADAPTON on a range of bench-
marks, and found that it provides reliable speedups, and in many
cases dramatically outperforms state-of-the-art IC approaches.

1. Introduction
Incremental computation (IC), a.k.a. self-adjusting computation, is
a technique for efficiently recomputing a function after making a
small change to its input. In recent years, researchers have shown
that for certain algorithms, inputs, and classes of input changes, IC
delivers large, even asymptotic speed-ups over full reevaluation [5,
6]. IC has been developed in many different settings [11, 17, 19,
32], and has even been used to address open problems, e.g., in
computational geometry [7].

IC systems work by recording traces of computations and then
reusing portions of those traces as inputs change. Unfortunately,
prior IC approaches have two major limitations in trace reuse. First,
because traditional IC imposes a total ordering on traces (typically,
because of reliance on the Dietz-Sleator order-maintenance data
structure [9, 15]), several straightforward kinds of reuse are impos-
sible. For example, consider using IC to implement a spreadsheet,
so that visible formulae are minimally recomputed as spreadsheet
cells are changed, hidden, and shown. Traditional IC omits three
common reuse patterns:

• Sharing, in which a computation is used in different contexts,
e.g., F(A1..A100) appears as a subformula in two different
computations or cells. Previous IC systems would recompute
the second F(A1..A100) rather than reuse the previous result.

• Swapping, in which the order of subcomputations is changed,
e.g., changing F(A1..A100) + F(B1..B100) to F(B1..B100) ∗
F(A1..A100). Previous IC systems would recompute F(A1..
A100) or F(B1..B100) due to their reliance on a total ordering.

• Switching, in which computations are toggled back and forth,
e.g., a computation of F(A1..A50) is replaced by F(A51..A100),
which is then replaced by F(A1..A100). Previous IC systems
would recompute the F(A1..A50) results from scratch, even if
that subcomputation could be reused.

A second major problem with prior IC approaches is that they are
ill-suited to interactive computations, because they are inherently
eager. When an input value is changed, all values derived from
that input are updated. But in many interaction scenarios, users
may not need such updates. For example, suppose cell S!B1 on
spreadsheet S contains F(T !A1..T !A100); here S!Ai refers to cell
Ai in spreadsheet S. Now suppose the user hides S and switches
to T to edit A1 and other cells. Then there is no need to update
S!B1 until the user switches back to S to display it. Yet standard IC
recomputes dependencies on each change, regardless of demand.

In this paper, we introduce ADAPTON, a new IC approach re-
alized in a functional programming language, that addresses the
limitations discussed above. The key insight behind ADAPTON is
to combine traditional IC-style reuse with a mechanism for memo-
izing thunks, as in lazy computation. In ADAPTON, updates to mu-
table ref cells signal the potential need for recomputation, but such
recomputation is delayed until thunks accessing cells’ dependents
are force d. Under the hood, both ref s and thunks are implemented
almost identically using a demanded computation graph (DCG).
The DCG captures the partial order of which computation’s re-
sults are used in which other computations. As a result, ADAP-
TON provides very efficient support of the sharing, swapping, and
switching patterns, since partial computations can be reused more
effectively. ADAPTON’s laziness avoids recomputing undemanded
values. (Section 2 gives a high-level overview of ADAPTON.)

We formalize ADAPTON as the core calculus λcdd
ic . Follow-

ing Levy’s call-by-push-value calculus [23], λcdd
ic includes explicit

thunk and force primitives, to make laziness apparent in the lan-
guage, and adds ref , get , and set to model changeable state. A key
feature of λcdd

ic , and of ADAPTON, is that it explicitly separates in-
ner computations—which may read but not write ref s—from outer
computations, which can allocate and mutate ref s and thus poten-
tially precipitate change propagation. We should note that, to our
knowledge, this clear inner/outer separation is absent from previ-
ous treatments of IC. (Section 3 presents λcdd

ic .)
We formalize an incremental semantics for λcdd

ic that captures
the notion of prior knowledge, which consists of the demanded
computation traces of prior computations. This semantics declar-
atively specifies the process of reusing traces from prior knowl-
edge by (locally) patching their inconsistencies. We prove that the
patching process is sound in that patched results will match what
(re)computation from scratch would have produced. (Section 4
presents our incremental semantics.)

We have implemented ADAPTON as an OCaml library (Sec-
tion 5). We compared ADAPTON’s performance against that of a
traditional IC system using a range of standard subject programs

1 2013/11/16

from the IC literature, e.g., map, filter, sort, etc. We created micro-
benchmarks that invoke these programs with varying levels of de-
mand (e.g., demand a single element vs. all elements) and with
varying change patterns (e.g., swapping and switching).

Our results show that ADAPTON greatly outperforms traditional
IC for lazy interactions: where traditional IC gets 2× to 20×
speedups over naive recomputation, ADAPTON gets 7× to 2000×
speedups. For one program (mergesort), traditional IC actually
incurs a 6.5× slowdown, whereas ADAPTON provides a 300×
speedup. ADAPTON provides similarly significant speedups on the
switching and swapping patterns, whereas traditional IC often in-
curs substantial (4× to 500×) slowdowns. ADAPTON does not per-
form as well as traditional IC when all output is demanded—it can
be 1.5× to 3.5× slower—but still achieves a significant speedup
over naive recomputation.

As a more practical measure of ADAPTON’s utility, we devel-
oped the ADAPTON SpreadSheet (AS2), which uses ADAPTON as
its recomputation engine. We found that ADAPTON successfully in-
crementalized the (stateless) specification for formulae evaluation;
a pair of simple benchmarks showed speedups of up to 20× com-
pared to naive recomputation. On the same benchmarks classic IC
techniques performed poorly, always resulting in a slowdown (up
to 100×). (Section 6 presents our experimental results.)

While most prior work on IC requires a total ordering of events,
which compromises reuse, Ley-Wild et al. have recently studied
non-monotonic changes [24, 26]. Non-monotonic IC supports the
swapping pattern mentioned above, but does not support sharing
or switching. Moreover, non-monotonic IC has never been imple-
mented, and is (in our opinion) far more complicated than ADAP-
TON. An increasingly popular computational paradigm related to
IC is functional-reactive programming (FRP) [13, 14, 21]. FRP pro-
vides some reuse of computations under a changing signal, but is
more specialized than ADAPTON (and IC in general). We have im-
plemented an FRP library using ADAPTON; for space reasons we
relegate discussion of it to our supplemental technical report. (Sec-
tion 7 compares to IC, non-monotonic IC, and FRP in detail.)

In sum, we believe that ADAPTON offers a compellingly sim-
ple, yet general approach for programming incremental, interactive
computation.

2. Overview of ADAPTON
We illustrate how ADAPTON works using a simple example in-
spired by a typical user interaction with a spreadsheet. ADAPTON’s
programming model is based on an ML-like language with explicit
primitives for thunks and mutable state, where changes to the latter
eventually propagate to update previous results.

Consider the following toy language for formulae in spreadsheet
cells:
type c e l l = M formula
and formula = Num of int | Plus of c e l l × c e l l

Values of type cell are formula addresses, i.e., mutable references
containing a cell formula. Here the M constructor (for “mutable”)
is equivalent to ref type constructor in ML. A formula consists of
either an integer (Num) or the sum of two other cells (Plus).

We begin by building an initial expression tree, illustrated to
the right of the code below. Note that, since it is not otherwise
indicated, all of this code runs at the outer layer, hence it is allowed
to allocate new memory:

l e t n1 : c e l l = ref Num 1 in
le t n2 : c e l l = ref Num 2 in
le t n3 : c e l l = ref Num 3 in
le t p1 : c e l l = ref Plus n1 n2 in
le t p2 : c e l l = ref Plus p1 n3 in · · ·

+

+

1 2

3

p2

Given a cell of interest, we can evaluate it using the obvious
interpreter with a few extra calls for reuse:
eval : c e l l → U int
eval c = thunk (inner (case get c of
| Num x ⇒ x
| Plus c1 c2 ⇒ force (eval c1) + force (eval c2)))

Here thunk creates a suspended computation, which is typed by the
U constructor, e.g., U int is equivalent to unit → int . Thunks are
demanded by calling force , as in the recursive calls to eval . The
body of the thunk is an expression wrapped in inner , indicating
that expression occurs at the inner layer. Inner layer computations
may only read ref cells—e.g., via the call to get above—and not
allocate or change them. This restriction enables inner computa-
tions to be incrementally reused. Thus, in this example, each nested
call to eval is a computation that can be updated and/or its results
reused when ref s are modified at the outer layer. To illustrate how
changes are made and propagated, consider the code shown at the
top of Figure 1. Although written as a block of code, we envision
the user entering this code a line at a time at an interactive top level.
On lines 1 and 2, the user calls eval to produce a thunk that, when
forced, will compute the values of p1 and p2, respectively. Then
on lines 3 and 4, the user forces evaluation and displays the result
using a function
display : U int → unit (∗ force arg and display i t ∗)

(In this example the user refreshes the display manually, rather than
having it update automatically, to illustrate varying demand.) The
computation on line 3 evaluates the formula of cell p1, which recur-
sively forces the (trivial) evaluation of leaf cells n1 and n2. Next,
line 4 computes the value of p2. Since p2 has p1 as a subexpression,
we would like to reuse the prior computation of p1. ADAPTON ac-
complishes this reuse via demanded computation graphs (DCGs).

Sharing. In ADAPTON, DCGs operate behind the scenes by
recording inner layer computations. Figure 1a shows the DCG after
evaluating line 4. Lines 1 and 2 only create thunks and otherwise
do no computation, and line 3 essentially creates what is the left
side of Figure 1a. We depict DCGs growing from the bottom of
the INNER line upwards. We use a dotted line to identify opera-
tions performed at the outer layer that affect the inner layer graph,
and color graph edges when they are touched as the result of that
operation; edges are shown in blue when created or refreshed, and
pink when they are dirtied. Rather than draw outer layer edges for
n1, t1, p2, etc. to their respective nodes, we write the names in the
nodes themselves, to avoid clutter.

Each node in the DCG corresponds to a reference cell (depicted
as a square) or a thunk (depicted as a circle). Edges that target ref-
erence cells are produced by get operations, and edges that target
thunks are produced by force operations. Though not shown in the
figure, each thunk node records a (suspended) expression and, once
forced, its valuation; each reference node records the reference ad-
dress and its content. Thunk nodes may have outgoing edges, where
the leftmost edge was created first and the rightmost last. In the fig-
ure, the leftmost edge from t2 goes to p2 because t2 is the result
of eval p2, which calls get on its argument. The rightmost edge
corresponds to the forced recursive eval call that gets n3. One key
feature of ADAPTON is that it tries to memo-match previously com-
puted results whenever possible. Here, the middle edge out of t2
memo-matches the result of eval p1 previously computed when t1
was forced on line 3; memo-matched expressions are depicted with
a gray background. Prior IC implementations would not be able to
reuse t2’s result in this manner because they enforce a monolithic,
total order of events; in this case we are reusing (i.e., sharing) a
previous computation in the event history.

Dirtying and lazy change propagation Next, on line 5, the user
decides to change the value of leaf n1, and on line 6, they de-

2 2013/11/16

1 l e t t1 : U int = eval p1 in
2 l e t t2 : U int = eval p2 in
3 display t1 ; (∗ demands (eval p1) ∗)
4 display t2 ; (∗ memo matches (eval p1) ∗)
5 set n1 ← Num 5; (∗ mutate leaf value ∗)
6 display t1 ; (∗ does not re−eval p2 ∗)
7 set p2 ← Plus n3 p1; (∗ swaps operand c e l l s ∗)
8 display t2 ; (∗ memo matches twice ∗)

p1

n1 n2

t1
eval p1

eval n1 eval n2
get

get get

force force

p2

n3

t2
eval p2

eval n3
get

get

force

force

OUTER
INNER

 line 4

force

thunk

ref

Graph features

dirty

constructed/
refreshed

memo match
IC actions

(a) Sharing

p1

n1 n2

t1

p2

n3

t2

OUTER
INNER

 line 5

p1

n1 n2

t1

p2

n3

t2

 line 6 forceset

(b) Dirtying and lazy change propagation

p1

n1 n2

t1

p2

n3

t2

OUTER
INNER

 line 7

p1

n1 n2

t1

p2

n3

t2

 line 8 set force

(c) Swapping

Figure 1: Spreadsheet example.

mand and display the updated result. Since a ref cell changed, the
memoized thunk valuations may be inconsistent, and hence ADAP-
TON needs to repair the computation. Figure 1b shows how this
repair and recomputation is done via the DCG. When the outer
layer mutates the ref on line 5, ADAPTON performs dirtying to
mark nodes and edges that may need recomputation. As shown in
the figure, ADAPTON traverses the graph from the mutated node
downwards, dirtying the nodes and edges that (transitively) de-
pend on the changed reference cell n1 (viz., the thunks for eval n1
and eval p1). When the outer layer demands a computation on line
6, ADAPTON performs propagation by selectively traversing dirty
nodes and edges from the bottom upwards and left to right, re-
pairing dirty graph components by reevaluating dirty thunk nodes,
which in turn replace their graph components with up-to-date ver-
sions; in the figure, the refreshed nodes/edges are in blue. Impor-
tantly, this traversal order reflects evaluation (and demand) order,

allowing change propagation to lazily avoid repair to components
not currently under demand. In this example, line 6 re-demands the
first result for t1 but since there is no demand of t2, ADAPTON
does not recompute its value.

Swapping. Next, on line 7, the outer layer updates p2 by swap-
ping its two subcomponents. This kind of structural change defeats
traditional IC reuse, but DCGs support it naturally. In the figure,
we can see that the outer layer update on line 7 dirties an additional
node and edge. Then line 8 demands the result t2, which initiates
propagation to recompute the thunk eval p2. As shown in the fig-
ure, propagation is able to memo-match eval p1 (as in the original
computation) and eval n3, even though they occur in a different
order.

Switching. Finally, suppose the user updates expression p1 but
then changes her mind and switches it back:

9 set p1 ← Num 4; display t2 ;
10 set p1 ← Plus n1 n2; display t2

After line 9 the eval p1 thunk in the graph would be updated to
point to a new thunk that evaluates Num 4, and would no longer
point to the eval n1 and eval n2 thunks. However, these thunks
are still available for reuse, and when the user switches back on
line 10, the eval p1 thunk is restored to its original state, memo-
matching the previous eval n1 and eval n2 results. We call this
pattern switching because it switches back to previously computed,
but currently inactive, results; once again, traditional IC would fail
to achieve reuse in this case.

3. Core calculus
We formalize ADAPTON as λcdd

ic , a core calculus for incremental
computation in a setting with lazy evaluation. λcdd

ic is an exten-
sion of Levy’s call-by-push-value (CBPV) calculus [22], which is
a standard variant of the simply-typed lambda calculus with an ex-
plicit thunk primitive. It uses thunks as part of a mechanism to syn-
tactically distinguish computations from values, and to make eval-
uation order syntactically explicit. λcdd

ic adds reference cells to the
CBPV core, along with notation for specifying inner- and outer-
layer computations.

As there exist standard translations from both call-by-value
(CBV) and call-by-name (CBN) into CBPV, we intend λcdd

ic to be
in some sense canonical, regardless of whether the host language
is lazy or eager. We give a translation from a CBV language variant
of λcdd

ic in the appendix of the supplemental technical report.

3.1 Syntax, typing and basic semantics for λcdd
ic

The top of Figure 2 gives the formal syntax of λcdd
ic , with new

features highlighted. Figure 3 gives λcdd
ic ’s type system. As most

of the type rules are standard we weave discussion of them into our
presentation of the language.
λcdd

ic inherits most of its syntax from CBPV. Terms consist of
value terms (written v) and computation terms (written e), which
we alternatively call expressions. Types consist of value types
(written A, B) and computation types (written C, D). Standard value
types consist of those for unit values () (typed by 1), injective val-
ues inji v (typed as a sum A + B), pair values (v1, v2) (typed as a
product A × B) and thunk values thunk e (typed as a suspended
computation U C).

Standard computation types consist of functions (typed by ar-
row A → C, and introduced by λx.e), and value-producers (typed
by connective F` A, and introduced by ret v). These two term
forms are special in that they correspond to the two introduction
forms for computation types, and also the two terminal computa-
tion forms, i.e., the possible results of computations.

3 2013/11/16

Values v ::= x | () | (v1, v2) | inji v | thunk e | a
Comps e ::= λx.e | e v | let x← e1 in e2 | ret v

| fix f .e | f | case (v, x1.e1, x2.e2)
| split (v, x1.x2.e) | force` v | inner e
| ref v | get v | set v1←v2

Value types A, B ::= 1 | A + B | A× B | U C | M A
Comp. types C, D ::= A→ C | F` A
Comp. layers ` ::= inner | outer
Typing env. Γ ::= ε | Γ, x:A | Γ, f :C | Γ, a:A

Store S ::= ε | S, a:v
Terminal comps ẽ ::= λx.e | ret v

Figure 2: Values and computations: Term and type syntaxes.

Other standard computation terms consist of function applica-
tion (eliminates A→ C), let binding (eliminates F` A), fixed point
computations (fix f .e binds f recursively in its body e), pair split-
ting (eliminates A×B), case analysis (eliminates A+B), and thunk
forcing (eliminates U C).

Mutable stores and computation layers. The remaining (high-
lighted) forms are specific to λcdd

ic ; they implement mutable stores
and computation layers. Mutable (outer layer) stores S map ad-
dresses a to values v. Addresses a are values; they introduce the
type connective M A , where A is the type of the value that they
contain. The forms ref, get and set introduce, access and update
store addresses, respectively.

The two layers of a λcdd
ic program, outer and inner, are ranged

over by layer meta variable `. For informing the operational seman-
tics and typing rules, layer annotations attach to force terms (viz.,
force` v) and the type connective for value-producing computa-
tions (viz., F` A). A term’s layer determines how it may interact
with the store. Inner layer computations may read from the store, as
per the typing rule TYE-GET, while only outer layer computations
may also allocate to it and mutate its contents, as enforced by typ-
ing rules TYE-REF and TYE-SET. As per type rule TYE-INNER,
inner layer computations e may be used in an outer context by ap-
plying the explicit coercion inner e ; the converse is not permitted.
This rule employs the “layer coercion” function (C)`, defined in
Figure 5, to enforce layer purity in a computation. It is also used to
similar purpose in rules TYE-INNER and TYE-FORCE. The TYE-
INNER rule employs the environment transformation |Γ |, which fil-
ters occurrences of recursive variables f from Γ , thus making the
outer layer’s recursive functions unavailable to the inner layer.

Operational Semantics. The basic reduction semantics for λcdd
ic

proves judgments of the form S1 ` e ⇓ S2; ẽ, read as “under S1,
computation expression e reduces to terminal ẽ, producing store
S2.” For space reasons we omit the semantics; they can be found
in the appendix of the supplemental technical report. Additionally,
they can easily be recovered from the incremental semantics, given
in the next section—where the incremental semantics uses a trace,
the standard semantics uses a value that corresponds to the last
element of the trace.

4. Incremental semantics
In Figure 4, we give the incremental semantics of λcdd

ic . It defines
the reduction to traces judgment K; S1 ` e ⇓ S2; T , read as “un-
der prior knowledge K and store S1, expression e reduces to store
S2 and trace T .” We refer to our traces as demanded computation

Prior knowledge K ::= ε | K, T
Traces T ::= T1·T2 | t | ẽ
Trace events t ::= forcee

ẽ[T] | get
a
v

trm(T) trm(T1·T2) = trm(T2)

trm(forcee
ẽ[T]) = trm(T)

trm(geta
v) = ret v

trm(ẽ) = ẽ

Figure 6: Traces and prior knowledge

traces (DCT) as they record what thunks and suspended expres-
sions a computation has demanded; these are the analogue of the
DCG presented in Section 2. Prior knowledge is simply a list of
such traces. The first time we evaluate e we will have an empty
store and no prior knowledge. As e evaluates, the traces of sub-
computations will get added to the prior knowledge K under which
subsequent sub-computations are evaluated. If the outer layer mu-
tates the store, this knowledge may be used to support change prop-
agation, written K; S ` T1 yprop T2 . The given rules are sound,
but non-deterministic and non-algorithmic; a practical, determinis-
tic algorithm is given in Section 5.1.

4.1 Trace structure and propagation semantics
Prior knowledge and traces. Figure 6 defines our notions of prior
knowledge and traces. Prior knowledge K consists of a list of traces
from prior reductions. Traces T consist of sequences of trace events
that end in a terminal expression. Trace events t record demanded
computations. Traced events geta

v record the address a that was
read and the value v to which it mapped. Traced events forcee

ẽ[T]
record the thunk expression e that was forced, its terminal expres-
sion ẽ (i.e., the final term to which e originally reduced), and the
trace T that was produced during its evaluation. Thus traces are hi-
erarchical: trace events themselves contain traces which are locally
consistent—there is no global ordering of all events. This allows
change propagation to be more compositional, supporting, e.g.,
the sharing, switching and swapping patterns shown in Figures 1a
to 1c. DCTs are closely related to the DCGs shown and discussed
in Section 2; the key difference between the two, as the names
suggest, is that DCGs are graphs whereas DCTs are trees. Hence,
DCTs do not explicitly represent the sharing found in DCGs, but
are easier to define and reason about formally; a shared sub-graph
in the DCG corresponds to a a subtree in the DCT that is duplicated
several times (one duplicate per use).

Figure 6 also defines trm(T) as the rightmost element of trace
T , i.e., its terminal element, equivalent to ẽ in the normal evaluation
judgment. It also defines when prior knowledge is well-formed.

Reduction to traces. Rules INCR-APP and INCR-BIND are simi-
lar to a standard semantics, except that they use trm(T) to extract
the lambda or return expression, respectively, and they add the trace
T1 from the first sub-expression’s evaluation to the prior knowledge
available to the second sub-expression. The traces produced from
both are concatenated and returned from the entire computation.

Rule INCR-FORCE produces a force event; notice that the ex-
pression e from the thunk annotates the event, along with the trace
T and the terminal expression ẽ at its end. Rule INCR-GET sim-
ilarly produces a get event with the expected annotations. Rules
INCR-TERM, INCR-REF, and INCR-SET all return the expected ter-
minal expressions.

Rule INCR-FORCEPROP performs memoization of inner-layer
forces by uses change propagation to repair the memoized trace.
Importantly, we do not initiate change propagation at a set, and

4 2013/11/16

Γ ` v : A (Under Γ , value v has value type A.)
TYV-VAR
Γ(x) = A
Γ ` x : A

TYV-UNIT

Γ ` () : 1

TYV-INJ
exists i in {1, 2} Γ ` v : Ai

Γ ` inji v : A1 + A2

TYV-PAIR
Γ ` v1 : A1 Γ ` v2 : A2

Γ ` (v1, v2) : A1 × A2

TYV-THUNK
Γ ` e : C

Γ ` thunk e : U C

TYV-REF
Γ(a) = A

Γ ` a : M A

Γ ` e : C (Under Γ , expression e has computation type C.)

TYE-VAR
Γ(f) = C
Γ ` f : C

TYE-LAM
Γ, x:A ` e : C

Γ ` λx.e : A→ C

TYE-RET
Γ ` v : A

Γ ` ret v : F` A

TYE-APP
Γ ` e : A→ C Γ ` v : A

Γ ` e v : C

TYE-BIND

Γ ` e1 : F` A Γ, x:A ` e2 : (C)`

Γ ` let x← e1 in e2 : (C)`

TYE-CASE
forall i in {1, 2}

Γ ` v : A1 + A2 Γ, xi:Ai ` ei : C
Γ ` case (v, x1.e1, x2.e2) : C

TYE-SPLIT
Γ ` v : A1 × A2

Γ, x1:A1, x2:A2 ` e : C
Γ ` split (v, x1.x2.e) : C

TYE-FIX
Γ, f :C ` e : C
Γ ` fix f .e : C

TYE-FORCE

Γ ` v : U (C)`

Γ ` force` v : (C)`

TYE-INNER

|Γ | ` e : (C)inner

Γ ` inner e : (C)`

TYE-REF
Γ ` v : A

Γ ` ref v : Fouter M A

TYE-GET

Γ ` v : M A
Γ ` get v : F` A

TYE-SET

Γ ` v1 : M A Γ ` v2 : A
Γ ` set v1←v2 : Fouter 1

Figure 3: Typing semantics of λcdd
ic

K; S1 ` e ⇓ S2; T (Reduction to traces: “Under knowledge K and store S1, e reduces, yielding S2 and trace T”.)

INCR-TERM

K; S ` ẽ ⇓ S; ẽ

INCR-APP
trm(T1) = λx.e2 K; S1 ` e1 ⇓ S2; T1

K, T1; S2 ` e2[v/x] ⇓ S3; T2

K; S1 ` e1 v ⇓ S3; T1·T2

INCR-BIND
trm(T1) = ret v K; S1 ` e1 ⇓ S2; T1

K, T1; S2 ` e2[v/x] ⇓ S3; T2

K; S1 ` let x← e1 in e2 ⇓ S3; T1·T2

INCR-CASE
K; S1 ` ei[v/xi] ⇓ S2; T

K; S1 ` case (inji v, x1.e1, x2.e2) ⇓ S2; T

INCR-SPLIT
K; S1 ` e[v1/x1][v2/x2] ⇓ S2; T

K; S1 ` split ((v1, v2), x1.x2.e) ⇓ S2; T

INCR-FIX
K; S1 ` e[fix f .e/f] ⇓ S2; T

K; S1 ` fix f .e ⇓ S2; T

INCR-FORCE
K; S1 ` e ⇓ S2; T trm(T) = ẽ

K; S1 ` force` (thunk e) ⇓ S2; force
e
ẽ[T]

INCR-FORCEPROP

forcee
ẽ1 [T1] ∈ K

K; S ` forcee
ẽ1 [T1] yprop forcee

ẽ2 [T2]

K; S ` forceinner (thunk e) ⇓ S; forcee
trm(T2)

[T2]

INCR-INNER
K; S ` e ⇓ S; T

K; S ` inner e ⇓ S; T

INCR-REF
a /∈ dom(S)

K; S ` ref v ⇓ S, a:v; ret a

INCR-GET
S1(a) = v

K; S1 ` get a ⇓ S2; get
a
v

INCR-SET

K; S ` set a←v ⇓ S, a:v; ret ()

Figure 4: Operational semantics of λcdd
ic : Reduction (to traces), propagating incremental changes.

(C)` (F`1 A)`2 = F`2 A
(A→ C)` = A→ (C)`

Γ1 ` Γ2 (Under Γ1, context Γ2 is a consistent extension.)

EXT-REFL

Γ ` Γ

EXT-CONS
Γ1 ` Γ2

a fresh for Γ2

Γ1 ` Γ2, a:A

Γ ` Swf
(Under Γ , store S is well-formed.)

SWF-EMP

Γ ` εwf

SWF-CONS
Γ ` Swf

Γ ` a : M A
Γ ` v : A
Γ ` S, a:vwf

Figure 5: Auxiliary typing judgements: Layer coercion, context extension and store typing.

5 2013/11/16

thus we delay change propagation until a computation’s result it is
actually demanded. Rule INCR-FORCEPROP non-deterministically
chooses a prior trace of a force of the same expression e from K
(that is, it chooses a memo match for the computation e) and
recursively switches to the propagating judgement described below.
The prior trace to choose as the memo match is the first of two non-
deterministic decisions of the incremental semantics; the second
concerns the propagating specification, below.

Propagating changes by checking and patching. The change
propagation judgment K; S ` T1 yprop T2 updates a trace T1 to be
T2 according to knowledge K and the current store S.

K; S ` T1 yprop T2 (Change propagation)

PROP-CHECKS
S ` T

√

K; S ` T yprop T

PROP-PATCH
K; S ` e ⇓ S ′; T ′

T1{e : T ′}
patch
; T2

K, T ′; S ` T2 yprop T3

K; S ` T1 yprop T3

In the base case (rule PROP-CHECKS), there are no changes
remaining to propagate through the given trace, which is consistent
with the given store, as determined by the checking judgment S `
T
√

(explained shortly). The recursive case (rule PROP-PATCH)
arbitrarily chooses an expression e and reduces it to a trace T ′

under the current store S. (The choice of e is the second non-
deterministic decision of this semantic specification.) This new
subtrace is patched into the current trace according to the patching
judgment T1{e : T ′}

patch
; T2. The patched trace T2 is processed

recursively under prior knowledge expanded to include T ′, until
the trace is ultimately made consistent.

The checking judgement, written S ` T
√

, ensures that a trace
is consistent with a store.

CHECK-TRM S ` ẽ
√

CHECK-SEQ S ` T1·T2
√

when S ` T1
√

and S ` T2
√

CHECK-FORCE S ` forcee
ẽ[T]

√
when trm(T) = ẽ and S ` T

√

CHECK-GET S ` geta
v
√

when S(a) = v

The interesting rules are CHECK-FORCE and CHECK-GET. The
first checks that the terminal expression ẽ produced by each force is
consistent with the one last observed and recorded in the trace; i.e.,
it matches the terminal expression trm(T) of trace T . The second
rule checks that the value retrieved from an address a is consistent
with the current store.

The patching judgement is written as ẽ{e : T}
patch
; T ′:

ẽ{e : T2}
patch
; ẽ

(T1·T2){e : T3}
patch
; T ′

1 ·T
′
2 when T1{e : T3}

patch
; T ′

1 , T2{e : T3}
patch
; T ′

2

(forcee
ẽ[T1]){e : T2}

patch
; forcee

ẽ[T2]

(force
e1
ẽ [T1]){e2 : T2}

patch
; force

e1
ẽ [T3] when T1{e2 : T2}

patch
; T3, e1 6= e2

(geta
v){e : T2}

patch
; geta

v

Conceptually, patching a DCT T simulatenously replaces all occur-
rences of a forced thunk’s trace with an update-to-date version. The
definition is above straightforward: All the rules are congruences
except for the first force rule, which performs the actual patching.
It substitutes the given trace for the existing trace of the forced
expression in question, based on the syntactic equivalence of the
forced expression e. This means that all force events whose forced
computation is e will be updated “all at once,” simulating the shar-
ing pattern of DCGs.

In sum, the incremental semantics defined above is a declarative
specification for an efficient implementation. Below, we prove that
this specification is sound, in the sense that it always yields a result
consistent with non-incremental evaluation. In the next section, we

type 'a aref
val aref : 'a → 'a aref
val get : 'a aref → 'a
val set : 'a aref → 'a → unit

type 'a athunk
val force : 'a athunk → 'a
val thunk : (unit → 'a) → 'a athunk
val memo : ('fn → 'arg → 'a) → (('arg → 'a athunk) as 'fn)

Figure 7: Basic ADAPTON API

give an efficient algorithmic account of change propagation that
conforms to this specification.

4.2 Meta theory of incremental semantics
The following theorem says that trace-based runs under empty
knowledge in the incremental semantics are equivalent to runs in
the basic (non-incremental) semantics.

Theorem 4.1 (Equivalence of blind evaluation).
ε; S1 ` e ⇓ S2; T if and only if S1 ` e ⇓ S2; ẽ where ẽ = trm(T)

Next, we introduce well-formed knowledge, defined as

Γ ` K wf (Under Γ , knowledge K is well formed.)

KWF-EMP

Γ ` εwf

KWF-CONS
Γ ` K wf Γ ` S1 wf ε; S1 ` e ⇓ S2; T

Γ ` K, T wf

We now state and prove that the incremental semantics enjoys
subject reduction.

Theorem 4.2 (Subject reduction). Suppose that Γ ` K wf, Γ `
S1 wf, Γ ` e : C, and K; S1 ` e ⇓ S2; T then there exists Γ ′ such
that Γ ` Γ ′, Γ ′ ` S2 wf, and Γ ′ ` trm(T) : C

Finally, we prove that the incremental semantics is sound: when
seeded with (well-formed) prior knowledge, there exists a consis-
tent run in the basic (non-incremental) semantics.

Theorem 4.3 (Soundness). Suppose that Γ ` K wf and Γ ` S1 wf.
Then K; S1 ` e ⇓ S2; T if and only if S1 ` e ⇓ S2; trm(T)

This theorem establishes that every incremental reduction has
a corresponding basic reduction, and vice versa. This correspon-
dance establishes extensional consistency, i.e., the initial and final
conditions of the runs are equivalent.

5. OCaml library
We have implemented ADAPTON as an OCaml library implements
with the basic API shown in Figure 7. The fundamental data types
are aref and athunk, corresponding to M A and U C in λcdd

ic , respec-
tively. The functions operating on aref and athunk are named after
their counterparts in λcdd

ic .
The last function, memo, solves a practical implementation is-

sue while fixing the memoization choice left open by rule INCR-
FORCEPROP in λcdd

ic (Figure 4). In λcdd
ic , memoization is based on

syntactic equality, and occurs implicitly at force, but we cannot per-
form syntactic equality checks in OCaml. As such, the memo func-
tion creates memoized thunk constructors, which are unary func-
tions that return athunks. For example, we can define a memoized
constructor that computes fibonacci:
let memo fib = memo (fun memo fib n → if n <= 1 then 1 else

force (memo fib (n − 1)) + force (memo fib (n − 2)));;
print int (force (memo fib 10));; (∗ 89 ∗)

6 2013/11/16

1 function dirty(node)
2 foreach edge ∈ node.incomingset do
3 if ¬ edge.dirty then
4 edge.dirty←− true;
5 dirty(edge.source);

6 function propagate(node)
7 foreach edge ∈ node.outgoinglist do
8 if edge.dirty then
9 edge.dirty←− false;

10 if edge.target is athunk then
11 propagate(edge.target);

12 if edge.label 6= edge.target.value then
13 node.outgoinglist←− [];
14 evaluate(node);
15 return;

Algorithm 1: ADAPTON core pseudocode.

memo takes a function of two arguments (here, memo fib and n). It
returns a constructor (here, also called memo fib) that, when called
with an argument (e.g., 10), first checks a memoization table to see
if the constructor was previously called with the same argument.
If not, the constructor creates an athunk that, when forced, com-
putes its value by invoking the function with the constructor itself
(to make recursive calls) and the argument passed to the construc-
tor (e.g., 10); this athunk is then stored in the memoization table
and returned. Otherwise, the constructor returns the same athunk as
before. This simple choice of returning the same athunk is equiv-
alent to choosing the most recently patched occurrence of a trace
from the prior knowledge in rule INCR-FORCEPROP. To limit the
size of memoization tables, we implement them using weak hash
tables, relying on OCaml’s garbage collector to eventually remove
athunks that are no longer reachable.

ADAPTON does not provide an equivalent to inner in λcdd
ic , since

OCaml’s type system makes it hard to enforce layer separation stat-
ically. In ADAPTON, an inner level computation implicitly begins
when force is called and ends when the call returns.

5.1 ADAPTON change propagation algorithm
As described in Section 4, λcdd

ic leaves open the choice of an ex-
pression e to patch in rule PROP-PATCH, allowing several possible
change propagation algorithms. ADAPTON implements an efficient
change propagation algorithm that avoids re-evaluating thunks un-
necessarily.

ADAPTON operates on an acyclic demanded computation graph
(DCG), corresponding to demanded computation traces T . Simi-
lar to the visualization in Section 2, each node in the graph rep-
resents an aref or an athunk, and each directed edge represents a
dependency pointing from an athunk to another aref or athunk. The
DCG is initially empty at the beginning of the execution. Nodes are
added to the DCG whenever a new aref or athunk is created via aref,
thunk, or a memo constructor (when memoization misses). Edges
are added when an athunk calls get or force; edges are labeled with
the value returned by that call. We maintain edges bidirectionally:
Each node stores an ordered list of outgoing edges that is appended
by each call to get or force, as well as an unordered set of incoming
edges. This allows us to traverse the DCG from caller to callee or
vice-versa.

As described in Section 2, the key to making ADAPTON efficient
is to split change propagation into two phases—dirtying and propa-
gation. Algorithm 1 lists the pseudocode for these two phases. The

dirtying phase occurs when we make calls to set to update inputs
to the incremental program. For each call to set, we traverse the
DCG starting from the aref backward, marking all traversed edges
as “dirty” (lines 1 to 5). Note that unlike Section 2, in our imple-
mentation only edges are dirtied; a node is implicitly dirty if any of
its outgoing edges are dirty.

The propagation phase occurs when we make calls to force to
demand results from the incremental program. For each call to force
on an athunk, we perform an inorder traversal starting from the
athunk’s dirty outgoing edges, re-evaluating athunks as necessary.
We check if we need to re-evaluate an athunk by iterating over its
dirty outgoing edges in the order they were added (line 7). For each
dirty edge, we first clean its dirty flag (line 9). If the target node
is an athunk, we recursively check if we need to re-evaluate the
target athunk (lines 10 to 11). Then, we compare the value of the
target aref or athunk against the label of the outgoing edge (line 12).
If the value is inconsistent, we know that at least one input to the
athunk has changed, so we need to re-evaluate the athunk (line 14),
and need not check its remaining outgoing edges (line 15). In fact,
we first remove all its outgoing edges (line 13), since some edges
may no longer be relevant due to the changed input; relevant edges
will be re-added when get or force is called during re-evaluation.
(We store incoming edges in weak hash tables, relying on OCaml’s
garbage collector to remove irrelevant edges.)

Note that, in both dirtying and propagation, we only traverse an
edge if it is clean or dirty, respectively. We can do so because the
above procedures maintain an invariant that, if an edge is dirty at the
end of a dirtying or propagation phase, then all edges transitively
reachable by traversing incoming edges beginning from the source
node will also be dirty; dually, if an edge is clean, then all edges
transitively reachable by traversing outgoing edges beginning from
the target node will also be clean. This greatly improves efficiency
by amortizing dirtying costs across consecutive calls to set, and
propagation cost across consecutive calls to force.

By traversing the DCG inorder, ADAPTON re-evaluates incon-
sistent nodes in the same order as a standard non-incremental lazy
evaluator would force thunks. Therefore, ADAPTON avoids re-
evaluating nodes unnecessarily, such as athunks that were condi-
tionally forced due to certain inputs, but may no longer be forced
under updated inputs.

6. Empirical evaluation
This section evaluates ADAPTON’s performance against traditional
IC on micro benchmarks and larger example modeling a spread-
sheet. We find that ADAPTON provides reliable speedups over naive
recomputation and often significantly outperforms traditional IC.

6.1 Micro-benchmark
We ran a micro-benchmark to evaluate the effectiveness of ADAP-
TON in handling incremental programs that are lazy, as well as
those that use the swapping and switching patterns. We also eval-
uate it on incremental batch programs, the target of traditional IC
where there is no repetition in the input and the entire output is
eagerly demanded.

• For lazy programs, we include standard list-manipulating bench-
marks from the IC literature: filter, map, quicksort, and merge-
sort. We run each program on a randomly generated list of
integers, and then demand the first item from the output list.

• For the swapping pattern, we use filter, map, fold applying min
and sum, and exptree, an arithmetic expression tree evaluator
similar to that in Section 2. We run each program on a randomly
generated list of integers (or balanced expression tree) and
demand the output. Then we randomly split the input into two

7 2013/11/16

lists (or pick two subtrees at the half the height), swap those
parts, and then re-demand the entire output.

• For the switching pattern, we wrote two programs, updown1
and updown2, that sort a list of integers in either ascending or
descending order depending on another input. updown1 does the
obvious thing, sorting the input list in one direction or the other,
whereas updown2 first sorts the input list in both directions
and then returns the appropriate one. (As we will show in the
results, the odd structure of updown2 is necessary to achieve
a speed-up in traditional IC.) After sorting an initial list of
integers and demanding the first output, we randomly remove
an item, randomly insert an item, toggle the sort direction, and
then demand the first output again.

• Finally, for batch programs, we use the same programs as the
swapping pattern, but instead of swapping parts of the input,
we randomly insert or remove a single list item (or replace a
leaf node in an expression tree with a binary node with two leaf
nodes or vice-versa) before demanding the entire output.

We measure the time it takes to run ADAPTON in comparison
to other variants that implement the same API. First, to compare
against prior IC work, we implemented EagerTotalOrder, which
uses the traditional, totally ordered, monolithic form of IC (in
particular, [2]). Second, as baseline, we compare against standard
lazy programs with LazyNonInc, which wraps lazy values and does
not provide incremental semantics or memoization. In particular,
'a aref and 'a athunk are simply records containing 'a lazy and a
unique ID, set throws an exception (thus requiring the program to
recompute the results from scratch), and memo just calls thunk.

We compile the micro-benchmarks using OCaml 4.00.1 and run
them on an 8-core, 2.26 GHz Intel Mac Pro with 16 GB of RAM
running Mac OS X 10.6.8. We run 2, 4, or 8 programs in parallel,
depending on the memory usage of the particular program. For
most programs, we choose input sizes of 1e6 items. For quicksort
and mergesort, we choose 1e5 items, and for updown1 and updown2,
we choose 4e4 items, since these programs use up to 6GB of
memory under EagerTotalOrder. We report the average of 8 runs
for each program using seeds 1–8 to initialize OCaml’s random
number generator (to generate the input data, seed hash functions,
etc.), and each run consists of 250 change-then-propagate cycles for
changes that do not affect the input size. For changes that do affect
the input size, we run 250 pairs of cycles, e.g., alternating between
removing and inserting a list item, to ensure consistent input size.

In our initial evaluation, we observed that EagerTotalOrder
spends a significant portion of time in the garbage collector (some-
times more than 50%), which has also been observed in prior
work [3]. To mitigate this issue, we tweak OCaml’s garbage col-
lector under EagerTotalOrder, increasing the minor heap size from
2MB to 16MB and major heap increment from 1MB to 32MB.

Results. Table 1 summarizes the speed-up of ADAPTON EagerTo-
talOrder when performing each incremental change-then-propagate
computation over LazyNonInc. We also highlight table cells in gray
to indicate whether ADAPTON or EagerTotalOrder has a higher
speed-up.

We can see that ADAPTON provides a speed-up to all patterns
and programs. Also, ADAPTON is faster than EagerTotalOrder for
the lazy, swapping, and switching patterns. These results validates
the benefits of our approach.

For the batch pattern, ADAPTON gets only about half the speed-
up of EagerTotalOrder. This is expected, since EagerTotalOrder is
optimized for the batch pattern, whereas ADAPTON adds over-
head that is unnecessary if all outputs are demanded. Interestingly,
ADAPTON is faster for fold(min), since single changes are not as

pa
tte

rn

in
pu

t#

ADAPTON EagerTotalOrder

speed-up over speed-up over
LazyNonInc LazyNonInc

filter

la
zy

1e6 12.8 2.24
map 1e6 7.80 1.53

quicksort 1e5 2020 22.9
mergesort 1e5 336 0.148

filter

sw
ap

1e6 1.99 0.143
map 1e6 2.36 0.248

fold(min) 1e6 472 0.123
fold(sum) 1e6 501 0.128

exptree 1e6 667 10.1

updown1

sw
itc

h 4e4 22.4 0.00247
updown2 4e4 24.7 4.28

filter

ba
tc

h

1e6 2.04 4.11
map 1e6 2.21 3.32

fold(min) 1e6 4350 3090
fold(sum) 1e6 1640 4220

exptree 1e6 248 746

Table 1: ADAPTON micro-benchmark results.

likely to affect the result of the min operation as compared to other
operations such as sum.

Conversely, EagerTotalOrder actually incurs a slowdown over
LazyNonInc in many other cases. For lazy mergesort, EagerTo-
talOrder performs badly due to limited memoization between each
internal recursion in mergesort. Prior work solved this problem
by asking programmers to manually modify mergesort using tech-
niques such as adaptive memoization [3] or keyed allocation [16];
we are currently investigating alternative approaches.

EagerTotalOrder also incurs slowdowns for swapping and switch-
ing, except for exptree and updown2. Unlike ADAPTON, EagerTo-
talOrder can only memo-match about half the input on average for
changes considered by swapping due to its underlying total order-
ing assumption, and has to recompute the rest.

For updown1 in particular, the structure of the computation trace
is such that EagerTotalOrder cannot memo-match any prior compu-
tation at all, and has to re-sort the input list every time the flag input
is toggled. updown2 works around this limitation by uncondition-
ally sorting the input list in both directions before returning the
appropriate one, but this effectively wastes half the computation. In
contrast, ADAPTON is equally effective for updown1 and updown2:
It is able to memo-match the computation in updown1 regardless of
the flag input, and, due to laziness, incurs no cost to unconditionally
sort the input list twice in updown2.

Other experiments. In addition to the running times, we also
measured the memory consumed by ADAPTON and EagerTo-
talOrder. ADAPTON uses 3–98% less memory than EagerTo-
talOrder for the lazy, swapping, and switching patterns, and it uses
103–120% more memory for the batch pattern. Our supplemental
technical report contains a more detailed table summarizing mem-
ory usage as well as other results of our experiment.

Finally, we also ran ADAPTON on quicksort while varying the
demand size (recall that in Table 1, one element is demanded for the
lazy benchmarks). As expected, the speed-up decreases as demand
size increases, but ADAPTON still outperforms EagerTotalOrder
when demanding up to 1.8% of the output for quicksort. We also ob-
served that the dirtying cost also increases with demand size. This
is due to the interplay between dirtying and propagation phases: As
more output is demanded, more edges will be cleaned by the prop-
agation phase, and will have to be dirtied by the dirtying phase.

Our supplemental technical report provides more details of
these observations and our elapsed-time experiments.

8 2013/11/16

6.2 AS2: An experiment in stateless spreadsheet design
As a more realistic case study of ADAPTON, we developed the
ADAPTON SpreadSheet (AS2), which implements basic spread-
sheet functionality and uses ADAPTON to handle all change prop-
agation as cells are updated. This is in contrast to conventional
spreadsheet implementations, which have custom caching and de-
pendence tracking logic.

In AS2, spreadsheets are organized into a standard three-
dimensional coordinate system of sheets, rows and columns, and
each spreadsheet cell contains a formula. The language of formu-
lae extends that of Section 2 with support for cell coordinates,
arbitrary-precision rational numbers and binary operations over
them, and aggregate functions such as max, min and sum. It also
adds a command language for navigation (among sheets, rows and
columns), cell mutation and display. For instance, the following
script simulates the interaction from Section 2:

goto A1; =1; goto A2; =2; goto A3; =3;
goto B1; =(A1 + A2); goto B2; =(A1 + A3);
display B1; display B2; goto A1; =5; display B1;
goto B2; =(A3 + B1); display B2;

The explicit state of AS2 consists simply of a mutable mapping
of three-dimensional coordinates to cell formulae. We empirically
study different implementations of AS2 using a test script that
simulates a user loading dense spreadsheet (with s sheets, ten rows
and ten columns) and making a sequence of c random cell changes
while observing the (entire) final sheet s:

scramble-all; goto s!a1; print; repeat c{scramble-one; print}

The scramble-all command initializes the formulae of each sheet
such that sheet 1 holds random constants (uniformly in [0, 10k]),
and for i > 1, sheet i consists of binary operations (drawn uni-
formly among {+,−,÷,×}) over two random coordinates in sheet
i − 1. scramble-one changes a randomly chosen cell to a random
constant.

Figure 8 shows the performance of this test script. In the left
plot, the number of sheets varies, and the number of changes is
fixed at ten; in the right plot, the number of sheets is fixed at
fifteen, and the number of changes varies. In both plots, we show
the relative speedup/slowdown of ADAPTON and EagerTotalOrder
to that of naive, stateless evaluation. The left plot shows that as the
number of sheets grows, the benefit of ADAPTON increases. In fact,
our measurements show that with only four sheets, the performance
of the naive approach is overtaken by ADAPTON; the gap widens
exponentially for more sheets. By contrast, EagerTotalOrder offers
no incremental benefit, and the performance is always worse than
the naive implementation, resulting in slowdowns that worsen as
input sizes grow. We note that the speedups vary, depending on
random choices made by both scramble-one and scramble-all.1

The right plot shows that even for a fixed-sized spreadsheet, as
the number of changes grows, the benefit of ADAPTON increases
exponentially. As with the left plot, EagerTotalOrder again offers
no incremental benefit, and always incurs a slowdown (e.g., at the
right edges of each plot, we consistently measure slowdowns of
100x or more).

In both cases (more sheets and more changes), ADAPTON offers
significant speedups over the naive stateless evaluator. These per-
formance results makes sense: efficient AS2 evaluation relies criti-
cally on the ability to reuse results multiple times within a compu-
tation (the sharing pattern). While ADAPTON supports this incre-
mental pattern with ease, EagerTotalOrder fundamentally lacks the
ability to do so, and instead only incurs a large performance penalty
for its dependence-tracking overhead.

1 We plot an average of eight randomized runs for each coordinate.

S
p

ee
d

u
p

(o
ve

r
N

a
iv

e)

!"

#"

$"

%"

&"

'!"

#" (" '#"

)*+,-./"

0+1234.-+563*23"

!"

#"

$!"

$#"

%!"

%#"

%" &" $%" $&" %%" %&"

'()*+,-"

.)/012,+)341(01"

Num. Sheets (10 Changes) Num. Changes (15 Sheets)

Figure 8: ADAPTON Spreadsheet (AS2) performance tests.

7. Related Work
Incremental computation. The idea of memoization—improving
efficiency by caching and reusing the results of pure computations—
dates back to at least the late 1950’s [8, 28, 29]. Incremental com-
putation (IC), which has also been studied for decades [1, 20, 27,
30, 31], uses memoization to avoid unnecessary recomputation
when input changes. Early IC approaches were promising, but are
limited to caching final results.

Self-adjusting computation is a recent approach to IC that uses a
special form of memoization that caches and reuses portions of dy-
namic dependency graphs (DDGs) of a computation. These DDGs
are generated from conventional-looking programs with general re-
cursion and fine-grained data dependencies [4, 10]. As a result, self-
adjusting computation tolerates store-based differences between
the pending computation being matched and its potential matches
in the memo table; change-propagation repairs any inconsisten-
cies in the matched graph. Researchers later combined these dy-
namic graphs with a special form of memoization, making the ap-
proach even more efficient and broadly applicable [2]. More re-
cently, researchers have studied ways to make self-adjusting pro-
grams easier to write and reason about [11, 12, 25] and better per-
forming [18, 19].

ADAPTON is similar to self-adjusting computation in that it
applies to a conventional-looking language and tracks dynamic
dependencies. However, as discussed in Sections 1 and 2, we
make several advances over prior work in the setting of interac-
tive, demand-driven computations. First, we formally characterize
the semantics of the inner and outer layers working in concert,
whereas all prior work simply ignored the outer layer (which is
problematic for modeling interactivity). Second, we offer a com-
positional model that supports several key incremental patterns—
sharing, switching, and swapping. All prior work on self-adjusting
computation, which is based on maintaining a single totally ordered
view of past computation, simply cannot handle these patterns.

Ley-Wild et al. have recently studied non-monotonic changes
(viz., what we call “swapping”), giving a formal semantics and pre-
liminary algorithmic designs [24, 26]. However, these semantics
still assume a totally ordered, monolithic trace representation and
hence are still of limited use for interactive settings, as discussed in
Section 1. For instance, their techniques explicitly assume the ab-
sence of sharing (they assume all function invocations have unique
arguments), and they do not support laziness, which they leave for
future work. Additionally, to our knowledge, their techniques have
no corresponding implementations.

Functional reactive programming (FRP). The chief aim of FRP
is to provide a declarative means of specifying interactive and/or
time-varying behavior [13, 14, 21]. FRP-based proposals share
some commonalities with incremental computation; e.g., when an
input signal is updated (due to an event like a key press, or simply

9 2013/11/16

the passage of time), dependent computations are updated as well,
and this update process may take advantage of memoization.

However, FRP’s notion of incremental change is implicit, as part
of its evaluation model, rather than an explicit mechanism one can
program with, as with an IC system like ADAPTON. While it may
be possible, it is hard to imagine writing an efficient incremental
sorting algorithm using FRP. On the other hand, IC would seem
to be an appropriate mechanism for implementing an FRP engine.
As such, we have begun to experiment with an IC-based imple-
mentation of FRP using ADAPTON’s abstractions, and plan further
explorations in future work. More details about this FRP library are
available in the appendix of our supplemental technical report.

8. Conclusion
Within the context of interactive, demand-driven scenerios, we
identify key limitations in prior work on incremental computation.
Specically, we show that certain idiomatic patterns naturally arise
that result in incremental computations being shared, switched and
swapped, each representing in an “edge case” that past work cannot
handle efficiently. These limitations are a direct consequence of
past works’ tacit assumption that the maintained cache enabling
incremental reuse is monolithic and totally-ordered.

To overcome these problems, we give a new, more composable
approach that naturally expresses lazy (ie., demand-driven) evalu-
ation that uses the notion of a thunk to identify reusable units of
computation. This new approach naturally supports the idioms that
were previously problematic. We executed this new approach both
formally, as a core calculus that we prove is always consistent with
full-reevaluation, as well as practically, as an OCaml library (viz.,
ADAPTON). We evaluated ADAPTON on a range of benchmarks,
showing that it provides reliable speedups, and in many cases dra-
matically outperforms prior state-of-the-art IC approaches.

References
[1] M. Abadi, B. W. Lampson, and J.-J. Lévy. Analysis and caching of de-

pendencies. In International Conference on Functional Programming,
pages 83–91, 1996.

[2] U. A. Acar, G. E. Blelloch, M. Blume, R. Harper, and K. Tang-
wongsan. A library for self-adjusting computation. Electronic Notes
in Theoretical Computer Science, 148(2), 2006.

[3] U. A. Acar, G. E. Blelloch, M. Blume, and K. Tangwongsan. An ex-
perimental analysis of self-adjusting computation. In Proceedings of
the ACM Conference on Programming Language Design and Imple-
mentation, 2006.

[4] U. A. Acar, G. E. Blelloch, and R. Harper. Adaptive functional
programming. ACM Transactions on Programming Languages and
Systems (TOPLAS), 28(6):990–1034, 2006.

[5] U. A. Acar, A. Ihler, R. Mettu, and O. Sümer. Adaptive Bayesian
inference. In Neural Information Processing Systems (NIPS), 2007.

[6] U. A. Acar, G. E. Blelloch, K. Tangwongsan, and D. Türkoğlu. Ro-
bust kinetic convex hulls in 3D. In Proceedings of the 16th Annual
European Symposium on Algorithms, Sept. 2008.

[7] U. A. Acar, A. Cotter, B. Hudson, and D. Türkoğlu. Dynamic well-
spaced point sets. In Symposium on Computational Geometry, 2010.

[8] R. Bellman. Dynamic Programming. Princeton Univ. Press, 1957.

[9] M. A. Bender, R. Cole, E. D. Demaine, M. Farach-Colton, and J. Zito.
Two simplified algorithms for maintaining order in a list. In ESA 2002,
pages 152–164. Springer, 2002.

[10] M. Carlsson. Monads for incremental computing. In International
Conference on Functional Programming, pages 26–35, 2002.

[11] Y. Chen, J. Dunfield, M. A. Hammer, and U. A. Acar. Implicit
self-adjusting computation for purely functional programs. In Int’l
Conference on Functional Programming (ICFP ’11), pages 129–141,
Sept. 2011.

[12] Y. Chen, J. Dunfield, and U. A. Acar. Type-directed automatic incre-
mentalization. In ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI), Jun 2012.

[13] G. H. Cooper and S. Krishnamurthi. Embedding dynamic dataflow in a
call-by-value language. In In European Symposium on Programming,
pages 294–308, 2006.

[14] E. Czaplicki and S. Chong. Asynchronous functional reactive pro-
gramming for GUIs. In PLDI, 2013.

[15] P. F. Dietz and D. D. Sleator. Two algorithms for maintaining order
in a list. In Proceedings of the 19th ACM Symposium on Theory of
Computing, pages 365–372, 1987.

[16] M. Hammer and U. A. Acar. Memory management for self-adjusting
computation. In International Symposium on Memory Management,
pages 51–60, 2008.

[17] M. Hammer, U. A. Acar, M. Rajagopalan, and A. Ghuloum. A pro-
posal for parallel self-adjusting computation. In DAMP ’07: Declara-
tive Aspects of Multicore Programming, 2007.

[18] M. Hammer, G. Neis, Y. Chen, and U. A. Acar. Self-adjusting stack
machines. In ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA), 2011.

[19] M. A. Hammer, U. A. Acar, and Y. Chen. CEAL: a C-based language
for self-adjusting computation. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2009.

[20] A. Heydon, R. Levin, and Y. Yu. Caching function calls using precise
dependencies. In Programming Language Design and Implementa-
tion, pages 311–320, 2000.

[21] N. R. Krishnaswami and N. Benton. A semantic model for graphical
user interfaces. In M. M. T. Chakravarty, Z. Hu, and O. Danvy, editors,
ICFP, pages 45–57. ACM, 2011. ISBN 978-1-4503-0865-6.

[22] P. Levy. Call-by-push-value: A subsuming paradigm. Typed Lambda
Calculi and Applications, pages 644–644, 1999.

[23] P. B. Levy. Call-by-push-value: A Functional/imperative Synthesis,
volume 2. Springer, 2003.

[24] R. Ley-Wild. Programmable Self-Adjusting Computation. PhD the-
sis, Computer Science Department, Carnegie Mellon University, Oct.
2010.

[25] R. Ley-Wild, U. A. Acar, and M. Fluet. A cost semantics for self-
adjusting computation. In Proceedings of the 26th Annual ACM
Symposium on Principles of Programming Languages, 2009.

[26] R. Ley-Wild, U. A. Acar, and G. E. Blelloch. Non-monotonic self-
adjusting computation. In ESOP, pages 476–496, 2012.

[27] Y. A. Liu and T. Teitelbaum. Systematic derivation of incremental
programs. Sci. Comput. Program., 24(1):1–39, 1995.

[28] J. McCarthy. A basis for a mathematical theory of computation. In
P. Braffort and D. Hirschberg, editors, Computer Programming and
Formal Systems, pages 33–70. North-Holland, Amsterdam, 1963.

[29] D. Michie. “Memo” functions and machine learning. Nature, 218:
19–22, 1968.

[30] W. Pugh and T. Teitelbaum. Incremental computation via function
caching. In Principles of Programming Languages, pages 315–328,
1989.

[31] G. Ramalingam and T. Reps. A categorized bibliography on incre-
mental computation. In Principles of Programming Languages, pages
502–510, 1993.

[32] A. Shankar and R. Bodik. DITTO: Automatic incrementalization of
data structure invariant checks (in Java). In Programming Language
Design and Implementation, 2007.

10 2013/11/16

