
Verified Enforcement of Stateful Information Release Policies

Nikhil Swamy Michael Hicks
University of Maryland, College Park
{nswamy,mwh}@cs.umd.edu

Abstract
Many organizations specify information release policies to
describe the terms under which sensitive information may
be released to other organizations. This paper presents a new
approach for ensuring that security-critical software cor-
rectly enforces its information release policy. Our approach
has two parts. First, an information release policy is speci-
fied as a security automaton written in a new language called
AIR. Second, we enforce an AIR policy by translating it into
an API for programs written in λAIR, a core formalism for a
functional programming language. λAIR uses a novel com-
bination of dependent, affine, and singleton types to ensure
that the API is used correctly. As a consequence we can cer-
tify that programs written in λAIR meet the requirements of
the original AIR policy specification.

1. Introduction
Many organizations, including financial institutions, health-
care providers, the military, and even the organizers of this
conference, wish to specify the terms under which sensitive
information in their possession can be released to their part-
ners, clients, or the public. Such a specification constitutes
an information release policy.

These policies are often quite complex. For example, con-
sider the policy that regulates the disclosure of military in-
formation to foreign governments as defined by the United
States Department of Defense [1992]. This policy includes
the following provisions: a release must be authorized by an
official with disclosure authority who represents the “DoD
Component that originated the information”; the system
must “edit or rewrite data packages to exclude information
that is beyond that which has been authorized for disclo-
sure”; a disclosure shall not occur until the foreign gov-
ernment has submitted “a security assurance [. . .] on the
individuals who are to receive the information”; and, that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $5.00

the release must take place in the Foreign Disclosure and
Technical Information System in which both approvals and
denials of a release request must be logged.

We would like to ensure that software systems that han-
dle sensitive data—including military systems, but also pro-
grams like medical-record databases, online auction soft-
ware, and network appliances—correctly enforce such a
high-level policy. As a concrete example, consider a spe-
cific kind of application called a cross-domain guard. These
are programs, like network firewalls, that mediate the trans-
fer of information between organizations at different trust
levels. Commercial guards, e.g., the Data Sync guard pro-
duced by BAE [Focke et al., 2006], do not enforce high-level
policies but rather implement low-level “dirty keyword” fil-
ters. Neither has the research community considered verified
enforcement of high-level release policies. FlowWall [Hicks
et al., 2007] is a firewall which, by virtue of being built with
the Jif programming language [Chong et al., 2006], is sure
to enforce a low-level filtering policy, but it does not appeal
to high-level information release criteria.

To fill this gap, this paper presents a methodology for
building highly-assured software that acts in accordance
with an information release policy. Our approach has two
parts. First, we define AIR, a formal language for defining
information release policies. AIR’s design follows from the
observation that an information release policy is a kind of
stateful authorization policy naturally expressed as an au-
tomaton [Schneider, 2000] (AIR stands for automata for
information release). Satisfaction of a release obligation
advances the state of the automation, and once all obliga-
tions have been fulfilled, the automaton reaches the accept-
ing state and the protected information can be released. AIR
allows one to express such automata in a natural way.

Second, we define λAIR, a core formalism for a program-
ming language in which type-correct programs can be shown
to correctly enforce an AIR policy. λAIR has three elements.

• First, λAIR provides singleton types to allow a program-
mer to associate sensitive data with an AIR automaton that
protects that data. For example, an object x implementing a
security automaton is given type !InstanceN , where N is a
type-level name unique to x. Then, an integer i protected by
x would be given type Protected Int N, which is essentially
a kind of dynamic labeling [Zheng and Myers, 2004]. While

the state of an automaton can change, its association to a pro-
tected value will not change until all policy obligations have
been fulfilled and the data is released, thus ensuring a kind
of complete mediation. Prior work on verified enforcement
of security automata via type checking [Walker, 2000] or in-
lined reference monitors [Erlingsson, 2004] is less flexible
and/or has a larger trusted computing base (Section 6).

• Second, a λAIR program can express a release obligation
with a dependent type, where an object having that type
serves as a proof that the obligation has been fulfilled. For
example, data could be released to a principal p only if
p acts for some principal q (where p and q are program
variables that store public keys). A proof of this fact could
be represented by an object with type ActsFor p q. Gen-
erally speaking, proof objects represent certificates which
are used to produce a certified evaluation of stateful pol-
icy logic—every authorization decision is accompanied by a
proof that all obligations mandated by the high-level policy
have been met. Certificates can be produced locally (e.g., by
calling a function acts for with type (x:Prin)→ (y:Prin)→
ActsFor x y which succeeds if and only if the acts-for rela-
tionship holds) or remotely. As a final wrinkle, we use affine
types to ensure that stale evidence about old policy states are
never used in authorization decisions.

• Finally, given these mechanisms, we provide a way to
compile an AIR policy to an API in λAIR, where each API
function corresponds to a automaton transition such that
the type of that function precisely expresses the evidence
necessary for a transition to succeed. Thus type-correct λAIR
programs must use the compiled AIR API correctly and,
as a consequence, meet the specifications of the high-level
policy. More precisely, we prove that the sequence of events
produced by a program’s execution is a word in the language
accepted by the AIR automaton.

Using our techniques, one could build a cross-domain
guard that adheres to high-level policy prescriptions; e.g.,
it would release information only after confirming that ap-
propriate security assurances have been received, that to-
be-released data packages have been rewritten appropriately,
and that audit logs have been updated.

Our use of AIR policies for information release de-
parts from prior work on declassification policies in that
we do not focus on establishing a noninterference-like
property for programs. However, our work complements
noninterference-oriented interpretations of information re-
lease. For example, additional support for robust declas-
sification [Zdancewic and Myers, 2001] could ensure that
an adversary never causes information to be released, and
furthermore, when it is released, it always follows the pre-
scription of the high-level AIR policy.

2. AIR: Automata for Information Release
This section presents AIR, our language for expressing infor-
mation release policies as automata.

Metavariables
id class and rule ids P principals
C state constructors n, i, j integers x,y,z variables

Core language
Declarations D ::= class id = (principal:P; states:

−→
S ;
−→
R)

States S ::= C | C of −→t
Rules R ::= id : R | id : T
Release R ::= When G release e with next state A
Transition T ::= When G do e with next state A
Guards G ::= x requested for use at y and

−−−→
∃x:t.C

Conditions C ::= A1 IsClass A2 | A1 InState A2
| A1 ActsFor A2 | A1 ≤ A2

Atoms A ::= n | x | id | P | C (
−→
A) | A1 +A2

| Self | Class(A) | Principal(A)

e is an expression and t is a type in λAIR. (cf. Figure 4)

Figure 1. Syntax of AIR

2.1 Overview and Formal Syntax

An AIR policy consists of one or more class declarations.
A program will contain instances of a class, where each in-
stance protects some sensitive data via a labeling. Protected
data can be accessed in two ways. First, each class C has an
owning principal P such that P and all who act for P may
access data protected by an instance of C. Second, each class
defines a release policy by which its protected data can be
released to an instance of different class.

The release policy is expressed using rules that define a
security automaton, which is a potentially infinite state ma-
chine in which states represent security-relevant configura-
tions. In the case of AIR, the security automaton defines con-
ditions that must hold before data can be released. Each class
instance consists of its current state, and each condition that
is satisfied transitions the automaton to the next state. These
transitions ultimately end in a release rule that allows data
to be released to a different class instance, potentially in a
modified form. Because sensitive data is associated with in-
stances rather than classes, multiple resources may be gov-
erned by the same policy template (i.e., the automaton de-
fined by the class) but release decisions are made indepen-
dently for each resource. Dually, related resources can pro-
tected by the same instance, thereby allowing release deci-
sions made with respect to one resource to affect the other.

The formal syntax for AIR policies is presented in Fig-
ure 1. We explain the syntax while stepping through our
running example, shown in Figure 2. Throughout, we use
the notation −→a to stand for the ordered sequence a1, . . . ,an.
Where the context is clear, we will also treat −→a as the set
{a1, . . . ,an}, or the infinite series a1,a2

A class declaration consists of a class identifier id, a
principal identifier P for the owning principal, a list

−→
S of

the automaton states, and finally a sequence of rules
−→
R that

define the automaton transitions. Our example declares a

single class with identifier US Army Confidential, owned by the
principal US Army. This class defines a policy that protects
confidential data owned by the U.S. Army. For simplicity,
our examples use a flat namespace for class identifiers, and
abstract names to represent principals.

Automaton states
−→
S are represented by terms constructed

from an algebraic datatype whose constructors are drawn
from the set C . The example has two kinds of states. The
nullary constructor Init represents the initial state of the au-
tomaton; all classes must have this state. The other kind of
state is constructed by applying the unary constructor Debt

to an argument of type Int. Constructors of the form C of −→t
may carry data as indicated by the types −→t . Types t (such
as Int) are drawn from the programming language λAIR in
which programs using AIR policies are written; λAIR is dis-
cussed in the next section.

Each rule in the rule set
−→
R is given a name id, and is

either a release rule R or a transition rule T. In both cases, a
rule begins with a guard G.

A guard G always begins by stating that a rule applies
when data x is requested for use at the protection level de-
scribed by an instance d of some class (typically d is differ-
ent than the one being defined). G also includes a conjunc-
tion of condition expressions C that restrict the applicability
of a rule; we discuss these in more detail below. Following
its guard, the rule specifies an λAIR expression e that can ei-
ther release information (perhaps after downgrading it by fil-
tering or encryption) or do some other action (like logging),
depending on whether the rule is a release rule or a transition
rule. A rule concludes with the next state of the automaton
following the release, specified as an atom A.

The first rule in our example US Army Confidential class is
a release rule Conf secret. The initial part of the rule’s guard
indicates that it applies when data protected by an instance of
this class is to be released to some class instance d. This is al-
lowed under the condition Class(d) IsClass US Army Secret,
which states that d must be an instance of the US Army Secret

class. When this condition is true, the release expression e is
simply the variable x, which indicates that the protected data
can be released without modification. Finally, the automaton
transitions to state Self, the state it is already in.

We have picked a small ontology for condition expres-
sions C based on integers, principals, classes and their
instances. In a list of condition expressions of the form
∃x1:t1.C1, . . . ,∃xn:tn.Cn, each xi is a variable of type ti and
is in scope as far to the right as possible, until the end of
the rule. We will omit the ∃x:t prefix if x is not free in some
condition C. Condition expressions C are typed binary pred-
icates over atoms A. For example, A1 ActsFor A2 is defined
for Principal-typed atoms A1 and A2, and asserts that A1 acts
for A2 according to some acts-for hierarchy among princi-
pals (not explicitly modeled here). Atoms include integers n,
variables x, identifiers id, principal constants P, state literals
constructed from an application of a state constructor C to

class US Army Confidential =
principal : US Army; states : Init, Debt of Int;

Conf secret :
When x requested for use at d and

Class(d) IsClass US Army Secret

release x with next state Self

Conf init :
When x requested for use at d and

Self InState Init

do with next state Debt(0)

Conf coalition :
When x requested for use at d and

Principal(Class(d)) ActsFor Coalition,
∃count:Int.Self InState Debt(count),
count ≤ 10

release
(log(...x...d);encrypt (pubkey (principal (class d))) x)

with next state Debt(count +1)

Figure 2. A simple risk-adaptive policy in AIR

a list of atoms, addition of integers and the implicit variable
Self. We also include two operators: Class(A) retrieves the
class of its argument A, a class instance, and Principal(C)
retrieves the principal that owns the class C.

2.2 A Risk-adaptive policy in AIR

The remainder of the class declaration in Figure 2 illus-
trates the other features AIR. Taken as a whole, the class
US Army Confidential can be thought of as implementing a
simple kind of risk-adaptive access control [Cheng et al.,
2007], in which information is released according to a risk
budget, with the intention of quantifying the risks vs. the
benefits of releasing sensitive information.

This class associates a fixed risk debt with each secure
resource, as reflected in the state Debt of Int. Each time
information about the resource is released we estimate the
risk associated with that release, and add that risk to our
debt. When the total risk debt exceeds a threshold then
further releases to coalition partners are not allowed. The
two remaining rules in the policy, Conf init and Conf coalition

implement this behavior.
The Conf init transition rule applies when processing a re-

lease request from any instance d. This rule can be thought of
as the class “constructor,” applying when the automaton is in
the Init state (condition Self InState Init). The “do” expression
initializes the risk budget to 0 by transitioning the automaton
to the Debt(0) state. The Conf coalition rule allows informa-
tion to be released to a coalition partner. In particular, if the
release target class is owned by a principal that acts for the
Coalition (expressed by Principal(Class(d)) ActsFor Coalition),
then information can be released only if the current risk debt
has not exceeded the budget, as expressed in the latter two
conditions. The first of these requires the current state of the

1 let x a1, a1 = get secret file and policy () in
2 let a2, channel = get request () in
3 (∗ generating evidence of policy compliance ∗)
4 let a2, a2 class = get class a2 in
5 let ev1 = acts for (principal a2 class) Coalition in
6 let a1, Debt(debt), ev2 = get current state a1 in
7 let ev3 = leq debt 10 in
8 (∗ supplying evidence to policy API and releasing data ∗)
9 let a1’, a2, x a2 = Conf coalition a1 x a1 a2 ev1 debt ev2 ev3 in

10 send channel x a2

Figure 3. Programming with an AIR policy

automaton to be Debt(count), where count is variable with
type Int which tracks the current risk debt. The last condition
requires that count is not above the preallocated risk budget
of 10. With these conditions satisfied, Conf coalition logs the
fact that a release has been authorized and permits release
of the data after it has been downgraded using an encryption
function. In this case, the downgrading expression encrypts
x with the public key of the principal that owns the instance
d. Unlike releases to the US Army Secret class which do not
alter the risk debt of the automaton, Conf coalition increments
the risk debt by transitioning to the Debt(count + 1) state,
indicating that releases to the Coalition are more risky than
upgrading to a higher classification level of the same orga-
nization (via rule Conf secret).

AIR as presented here is particularly simple. We antici-
pate extending AIR with support for more expressive con-
dition ontologies and release rules. For instance, instead of
a fixed set of ontologies, we could embed a stateful autho-
rization logic (say, in the style of SMP [Becker and Nanz,
2007]) to allow custom ontologies and release rules to be
programmed within an AIR class.

3. A Programming Model for AIR

Given a particular AIR policy, we would like to do two
things. First, we must have a way of reflecting an AIR policy
in a program by protecting sensitive resources with instances
of an AIR class. Second, we must ensure that all uses of
protected data adhere to the prescriptions of the AIR policy.
Taken together, we can then claim that an AIR policy is
correctly enforced by a program. To achieve these goals, we
have defined a formal model for a language called λAIR in
which one writes programs that use AIR policies. λAIR’s type
system ensures that these policies are used correctly. The
rest of this section defines the programming model for this
language and the next two sections flesh out its syntax and
semantics. Section 5.4 proves that type-correct programs act
only in accordance with their AIR policies.

The programming model for using AIR policies has two
elements. First, programmers tie an AIR policy to data in
the program by constructing instances of AIR classes and
labeling one or more pieces of data with these instances. This
association defines (1) the set of principals that may view the

data (in particular, the principal P that owns the class, and
any principals that may act for P), and (2) the rules that allow
the data to be released. As in other security-typed languages,
the labeling specification (expressed using type annotations)
is part of the trusted computing base. One might adapt the
ideas of Hicks et al. [2007] to ensure the initial labeling of
data is consistent with the high-level system security goals.

Second, programmers manipulate data protected by an
AIR class instance through a class-specific API that is gen-
erated by compiling each AIR class definition to a series of
program-level definitions. For example, each AIR class’s re-
lease and transition rules are compiled to functions that can
be used to release protected data. The types given to these
functions ensure that a caller of the function must always
provide evidence that the necessary conditions to release
protected data have been met.

Figure 3 illustrates a program using the AIR policy of Fig-
ure 2, written using a ML-like notation. At a high level, this
program processes requests to release information from a se-
cret file. The files are stored on the file system together with
a policy label that represents a particular AIR class instance.
Before disclosing the information, the program must make
sure that the automaton that protects the data is in a state that
permits the release. The first two lines set up the scenario. At
line 1, we read the contents of a secret file into the variable
x a1 and the automaton that protects this file into the vari-
able a1. Initially, only the principals that act for the owner
of the class of a1 can view these secrets. At line 2, the pro-
gram blocks until a request is received. The request consists
of an output channel and another automaton instance a2 that
represents the policy under which the requested information
will be protected after the release. In effect, the information,
once released, will be under the protection of the principal
that owns the class of a2.

Prior to responding to the request, on lines 4-7 we must
establish that a1 is in a state that permits the release. At line
4, we extract the class of the instance a2. At line 5, we check
that the owner of a2’s class acts for the Coalition principal
and, if this check succeeds, we obtain a certificate ev1 as
evidence of this fact. At line 6, we extract the current state of
the automaton a1, use pattern matching to check that it is of
the form Debt(debt) (for some value of debt) and receive an
evidence object ev2 that attests to the fact that a1 is currently
in this state. At line 7, we check that the total debt associated
with the current state of the automaton is not greater than 10
and obtain ev3 as evidence if the check succeeds.

At line 9 we call Conf coalition, a function produced by
compiling the AIR policy. We pass in the automaton a1 and
the secret data x a1; the automaton a2 to which x a1 is to
be released; and the certificates that serve as evidence for
the release conditions. Conf coalition returns a1’ which rep-
resents the next state of the automaton (presumably in the
Debt(debt+1) state); a2 the unchanged destination automa-
ton; and finally, x a2, which contains the suitably down-

graded secret value. On the last line, we send the released
information on the channel received with the request.

For programs like our example, we would like to ver-
ify that all releases of information are mediated by calls to
the appropriate transition and release rules as defined by the
AIR policy (functions like Conf coalition). Additionally, we
would like to verify that a program satisfies the mandates of
an AIR policy rule by presenting evidence that justifies the
appropriate release conditions. This evidence-passing style
supports our goal of certifying the evaluation of all autho-
rization decisions, while being flexible about the mechanism
by which an obligation is fulfilled. To return to the DoD ex-
ample from the introduction, this design gives us the flexi-
bility to allow release authorizations to be obtained in one
part of the system and security assurances from the recipi-
ent to be handled in another; the cross-domain guard must
simply collect evidence from the other components rather
than performing these operations itself. λAIR’s type system
is designed so that type correctness ensures these goals are
satisfied, i.e., a type-correct program uses its AIR policy cor-
rectly. The type system has three key elements:

Singleton types. First, in order to ensure complete media-
tion, we must be able to correctly associate data with the
class instance that protects it. For example, Conf coalition ex-
pects its first argument to be an automaton and the second to
be data protected by that automaton. In an ML-like type sys-
tem, this function’s type might begin with ∀α.Instance→
α → . . . But such a type is not sufficiently precise since it
does not prescribe any relationship between the first and sec-
ond argument, allowing the programmer to erroneously pass
in a2 as the first argument, rather than a1, for example. To
remedy this problem, we can give Conf coalition a type like
the following (as a first approximation):

∀α,N,M.InstanceN → Protected α N→ . . .

Here, N is a unique type-level name for the class instance
provided in the first argument. The second argument’s type
Protected α N indicates it is an α value protected by the in-
stance N, making clear the association between policy and
data. We can ensure that values of type Protected α N may
only be accessed by principals P that act for the owner of the
class instantiated by the instance named N. This approach
is more flexible than implicitly pairing each protected object
with its own (hidden) automaton. For example, with our ap-
proach one can encode policies like secret sharing, in which
a set of related documents are all protected by the same
automaton instance. Each document’s type would refer to
the same automaton, e.g., Protected Doc N. Information re-
leased about one document updates the state of the automa-
ton named N and can limit releases of the other documents.

Dependent types. Arguments 4-7 of Conf coalition represent
evidence (proof certificates) that the owner of class instance
a2 acts for Coalition, and that a1 is in a state authorized to
release the given data. We give types to these arguments

that reflect the propositions that they are supposed to wit-
ness. For example, we give the seventh argument (ev3) to
Conf coalition the type LEQ debt 10 where LEQ is a depen-
dent type constructor applied to two expressions, debt and
10, where each has type Int. Data with type LEQ n m rep-
resents a certificate that proves n ≤ m. If we allow such
certificate values to only be constructed by trusted func-
tions that are known to correctly implement the semantics
of integer inequality, then we can be sure that functions
like Conf coalition are only called with valid certificates—
i.e., type correctness guarantees that all certificates are valid
proofs of the propositions represented by their types and
there is no need to inspect these certificates at run time. If
we interface with other programs, we can check the validity
of proof certificates at run time before allowing a call to pro-
ceed. Either way, the type system supports an architecture
that enables certified evaluation of an AIR policy.

Affine types. The final piece of our type system is designed
to cope with the stateful nature of an AIR policy. The main
problem caused by a state change is illustrated by the value
returned by the Conf coalition function. In our example, a1’
represents the state of the policy automaton that protects
x a1 after a release has been authorized. Thus, we need
a way to break the association between x a1 and the old,
stale automaton state a1. We achieve this in two steps. First,
even though our type system supports dependent types, as
shown earlier, we use singleton types to give x a1 the type
Protected α N, where N is a singleton type name for a1

(rather than giving x a1 a more-direct dependent type of
the form Protected α a1). The second step is to use affine
types (values with an affine type can never be used more
than once) to consume stale automaton values, so that at
any program point, there is only one usable automaton value
that has the type-name N. Thus, we give both a1 and a1’
the type !InstanceN , where !t denotes an affinely qualified
type t. Once a1 is passed as an argument to Conf coalition

(which constitutes a use) it can no longer be used in the
rest of the program; a1’ is the only automaton that can be
used in subsequent authorization checks for x a1. Thus, a
combination of singleton and affine types transparently takes
care of relabeling data with new automaton instances. (One
might also wonder how we deal with proof certificates that
can become stale because of the changing automaton state;
we discuss this issue in detail in Section 5.1.)

To illustrate how these singleton, dependent, and affine
types interact we show a part of the type of Conf coalition

below (the full type is discussed in Section 5.2).

∀α,N,M. !InstanceN → Protected α N→ !InstanceM →
. . .→ (debt : Int)→ . . .→ (LEQ debt 10)→
(!InstanceN× !InstanceM×Protected α M)

The first three arguments are the affine source automaton
(a1), the data it protects (x a1), and the affine destination au-
tomaton (a2). On the next line, we show the dependent type

Metavariables
B Base terms T Type constructors α,β ,γ Type vars

Core language
Terms e ::= x | λx:t.e | e e | Λα::k.e | e [t] | B

| e {e} | case e of
−→x:t.e : e else e | ⊥ | new e

Types t ::= (x:t) ε→ t | α | ∀α::k ε→ t | T
| t⇒ t | q t | t t | t e | tα

Affinity q ::= ! | ·
Simple kinds k ::= U | A | N
Kinds K ::= k | k→ K | t→ K
Effects ε ::= · | α | ε] ε | ε ∪ ε

Signatures and typing environments
Signatures S ::= (B:t) | (T::K) | S,S
Type env. Γ ::= x:t | α::k | Γ,Γ
Affine env. A ::= x | A,A

Figure 4. Syntax of λAIR

given to the evidence that the current debt of the automa-
ton is not greater than 10. Finally, consider the return type
of Conf coalition. The first component of this three-tuple is a
class instance with the same name N as the first argument.
This returned value is the new state of the automaton named
N—it protects all existing data of type Protected α N (such
as x a1). The second component of the three-tuple is the un-
changed target automaton. The third component contains the
data ready to be released—its type Protected α M indicates
that it is now protected by the target automaton instance M.

Adhering to the constraints of λAIR’s type system is
surely more burdensome and difficult than when using a
more typical programming language. Thus λAIR may be
most appropriate for the security-critical kernel of an ap-
plication, or even as the (certifiable) target language of a
program transformation for inline reference monitoring. We
leave to future work an exploration of support—e.g., type
inference—for improving λAIR’s usability.

4. Syntax and Semantics of λAIR

λAIR extends a core System Fω [Mitchell, 1996] with sup-
port for singleton, dependent, and affine types. λAIR is pa-
rameterized by a signature S that defines base terms B and
type constructors T —each AIR class declaration D is com-
piled to a signature SD that acts as the API for programs that
use D. All AIR classes share some elements in common, like
integers, which appear in a prelude signature S0. We explain
the core of λAIR using examples from the prelude. The next
section describes the remainder of the prelude and shows
how our example AIR policy is compiled.

4.1 Syntax

Figure 4 shows the syntax of λAIR. The core language
expressions e are mostly standard, including variables x,
lambda abstractions λx:t.e, application e e′, type abstraction
Λα::k.e and type application e [t]. Functions have depen-
dent type (x:t) ε→ t ′ where x names the argument and may be

bound in t ′. Function arrows are decorated with an effect ε

that records a set of type names given to automaton instances
that are created when the function is applied; we discuss
these later. Type variables are α and universally quantified
types ∀α::k ε→ t are standard; the latter stands for a type t
that is universally quantified over all types α of kind k. Like
functions, type abstractions can also have an effect when
they are applied; when the effect is empty we will write a
universally quantified type as ∀α::k.t.

The signature S defines the legal base terms B and type
constructors T , mapping them to their types t and kinds K,
respectively. The prelude S0 defines several standard terms
and types, such as support for integers and pairs, which we
use to illustrate λAIR’s other type and term constructs.

The prelude includes the constructor Int to represent the
type of integers, giving it kind U , written Int::U . Kind U is
one of three simple kinds k. Types with simple kind A are
affine in that the typing rules permit affinely-typed terms to
be used at most once. Affine types are written !t, which is
an instance of the form q t where q = !. Terms whose types
have kind U are unrestricted in their use. Kind N is given to
type names, which we explain shortly.

The prelude also defines two base terms for constructing
integers: Zero : Int represents the integer 0, while Succ :
Int⇒ Int is a unary data constructor that produces an Int
given an Int. Data constructor application is written e {e};
thus the integer 1 is represented Succ {Zero} (but we write
0,1,2 etc. for brevity). Programs can use the expression form
case e of

−→x:t.e : e else e to destruct data constructor values
using pattern matching. This is essentially standard; details
are in our technical report [Swamy and Hicks, 2008].

In addition to simple kinds k, kinds K more generally
can classify functional type constructors, using the forms
k → K and t → K. A type constructor t1 having the first
form can be applied to another type using t1 t2 to produce
a (standard) type, while one of the second form can be
applied to a term using t e to produce a dependent type.
As an example of the first case, the prelude defines a type
constructor ×::U →U →U to model pairs; × Int Int is the
type of a pair of integers (for clarity, from here on we will
use infix notation and write a pair type as t× t ′). The prelude
also defines a base term Pair which has a polymorphic type
∀α,β ::U.α ⇒ β ⇒ α×β for constructing pair values.

Evidence for condition expressions in an AIR policy are
typed using dependent types. For instance, the prelude pro-
vides means to test inequalities A1 ≤ A2 that appear in a pol-
icy and generate certificates that serve as evidence for suc-
cessful tests:

(LEQ::Int→ Int→U),
(leq:(x:Int)→ (y:Int)→ LEQ x y)

LEQ is a dependent type constructor that takes two expres-
sions of type Int as arguments and produces a type having
kind U . This type is used to classify certificates that wit-
ness the inequality between the term arguments. These cer-

tificates are generated by the leq function, which has a de-
pendent type: the labels x and y on the first two arguments
appear in the returned type. Thus the call leq 3 4 would return
a certificate of type LEQ 3 4 because 3 is indeed less than
4. An attempt to construct a certificate LEQ 4 3 by calling
leq 4 3 would fail at run time, returning ⊥ in our semantics,
which has the effect of terminating the program (we could
use option types or add support for for exceptions to handle
failures more gracefully). The signature does not include a
data constructor for the LEQ type, so its values cannot be
constructed directly by programs—the only way is by call-
ing the leq function.

We discuss the remaining constructs—including kinds N,
singleton types tα , affine type constructors new e, and effects
ε—in conjunction with the types rules next.

4.2 Static semantics

Figure 5 shows the main rules from the static semantics of
λAIR, which consists of two judgments. The full semantics
can be found in our technical report. Both judgments are pa-
rameterized by a signature S. The main judgment giving an
expression e a type t is written Γ;A `S e : t;ε where Γ is the
standard typing environment, A is a list of affine assump-
tions, and effect ε is the set of fresh type names generated
in e. The second judgment, Γ `S t :: K states that a type t
is well-formed at kind K in the environment Γ. Recall that
the type system must address three main concerns. First, in
order to ensure complete mediation, we must correctly pro-
duce singleton type names to associate data with automaton
instances. Next, for certified evaluation we must be able to
properly construct evidence using dependent types. Finally,
in order to cope with automaton state changes, we must
prevent stale automaton instances or evidence from being
reused via affine types. We consider each of these aspects of
the system in turn, starting with the type judgment and then
proceeding to the kinding judgment.

We construct new automaton instances using the new e
construct. We adapt an approach used by Pratikakis et al.
[2006] in order to give a unique type-level name to these
instances. Thus, (T-NEW) assigns the name α to the type in
the conslusion, ensuring (via α] ε) that α is distinct from
all other names ε that have already been used. Recall from
Section 3 that protected values will refer to this name α in
their types (e.g., Protected Int α). The resulting type, !tα is
also affinely qualified; we discuss this shortly.

Notice in (T-NEW) that α must be a type variable that
has been introduced into the context, which can either be
generalized by a type abstraction, or is part of the top-level
environment Γ. Extending λAIR with support for recursion
would necessitate using existential quantification to abstract
names in recursive data structures, as well as a means to for-
get names whose data goes out of scope (e.g., as in each
iteration of a loop); supporting such extensions is straight-
forward [Pratikakis et al., 2006]. (T-DROP) allows the name
associated with a type to be dropped. This is convenient for

writing functions that need to inspect the state of an automa-
ton without actually causing a transition. This rule is sound
because although the name α of a type !tα can be dropped,
α cannot be reused as the type-level name of any other au-
tomaton (i.e., ε is unaffected).

In order to ensure that type-level names are not reused,
we track the assignment of these names as effects through
all the other rules. Thus, in (T-ABS) we associate the effect
of the body of a function with that function’s type. Since
the body is itself suspended until the function is applied, the
conclusion of (T-ABS) shows that the effect of the function
itself is empty. However, when a function is applied, (T-
APP) ensures that the effects of both subexpressions and the
function’s body itself are disjoint.

The dependent-typing feature of λAIR is illustrated by
the types given to functions in (T-ABS) and the form of
the (T-APP) rule. In a function type, (x:t) ε→ t ′, x names
the formal parameter and is bound in t ′. In the conclusion
of (T-APP) we substitute the actual argument e′ for x in
the return type. Thus, given that a function f has the type
(debt : Int)→ (LEQ debt 10)→ t, the application (f 11) is
given the type (LEQ 11 10)→ t. That is, the type of the
second argument of f depends on the first argument. Note
that although λAIR permits arbitrary expressions to appear
in types, type checking in λAIR is decidable. This is because
when enforcing an AIR policy, we never need to reduce
expressions that appear in types.

Finally, we consider how the type system enforces the
“use at most once” property of affine types. First, (T-NEW)
introduces affine types by giving new automaton instances
the type !tα . Values of affine type can be destructed in the
same way as values of unrestricted type. For example, no-
tice that (T-APP) allows e to be applied to e′ as long as e
has function type, whether or not this type is affine (q is
unspecified). However, when a value with an affine type is
bound to a variable, we must make sure that that variable
is not used more than once. This is prevented by the type
rules through the use of affine assumptions A, which lists the
subset of variables with affine type in Γ which have not al-
ready been used. The use of an affine variable is expressed
in the rule (T-XA), which types a variable x in the context
of the single affine assumption x. To prevent variables from
being used more than once, other rules, such as (T-APP), are
forced to split the affine assumptions between their subex-
pressions. Affine assumptions are added to A by (T-ABS)
using the function a(x,k), where x is the argument to the
function and k is the kind of its type. If the argument x’s type
has kind A then it is added to the assumptions, otherwise it is
not. The function p(A) is used to determine the affinity qual-
ifier of the function’s type: if no affine assumptions from the
environment are used by the function (A is ·), then it is un-
restricted; otherwise it has captured an assumption from the
environment and should be called at most once. We include a
weakening rule (T-WKN) that allows affine variables to re-

Γ;A `S e : t;ε An expression e has type t in environment Γ with affine assumptions A and generates type names ε .

Γ `S Γ(x) :: U
Γ; · `S x : Γ(x); ·

(T-X)
Γ;x `S x : Γ(x); ·

(T-XA)
Γ;A `S e : t;ε Γ `S t :: U Γ(α) = N

Γ;A `S new e : !tα ;α] ε
(T-NEW)

Γ `S tx :: k Γ,x : tx;A,a(x,k) `S e : te;ε q = p(A)

Γ;A `S λx:tx.e : q((x:tx)
ε→ te); ·

(T-ABS) where
a(x,A) = x a(x,U) = ·
p(A) = ! p(·) = ·

Γ;A `S e : q((x:t ′) ε→ t);ε1 Γ;A′ `S e′ : t ′;ε2

Γ;A,A′ `S e e′ : [x 7→ e′]t;ε] ε1] ε2
(T-APP)

Γ;A `S e : t;ε ε ′ ⊆ dom(Γ)
Γ;A,A′ `S e : t;ε] ε ′

(T-WKN)
Γ;A `S e : tα ;ε

Γ;A `S e : t;ε
(T-DROP)

Γ `S t :: K A type t has kind K.

Γ(α) = k
Γ `S α :: k

(K-A)
Γ `S t :: A Γ `S α :: N

Γ `S tα :: A
(K-N)

Γ `S t :: U
Γ `S !t :: A

(K-AFN)

Γ `S t :: k Γ,x : t `S t ′ :: k′ k,k′ 6= N ∀α ∈ ε.Γ `S α :: N

Γ `S (x:t) ε→ t ′ :: U
(K-FUN)

Γ `S t :: t ′→ K Γ;Affine(Γ) `S e : t ′;ε

Γ `S t e :: K
(K-DEP)

Figure 5. Static semantics of λAIR (Selected rules)

main unused. This rule also allows additional effects to be
added so long as they are disjoint from all other effects.

In the kinding judgment, the rule (K-A) is standard. (K-
N) allows a name to be associated with any affine type t.
(K-AFN) checks an affinely-qualified type: types such as
!!t are not well-formed. (K-FUN) ensures that neither the
argument or the return type of a function has the kind of a
type name. Type names are not inhabited by any value. (K-
FUN) also ensures that no free names appear in the effect
annotation ε . Finally, (K-DEP) checks the application of a
dependent type constructor. Here, we have to ensure that the
type of the argument e matches the type of the formal. In the
second premise, Affine(Γ) stands for all affine assumptions
in Γ. Since e is a type-level expression which can be erased
at run time, it is permitted to use affine assumptions that may
have been used elsewhere.

4.3 Dynamic semantics

The dynamic semantics of λAIR defines a standard call-by-
value, small-step reduction relation for a purely functional
language, using a left-to-right evaluation order. The full def-
inition can be found in our technical report. The form of the
relation is : M ` e l−→e′. This judgment claims that a term
e reduces in a single step to e′ in the presence of a model
M that interprets the base terms in a signature. The security-
relevant reduction steps are annotated with a trace element
l, which is useful for stating our security theorem. In this
section, we briefly discuss the form of the model M and the
trace elements l and state our type soundness result.

Following a standard approach for interpreting constants
in a signature [Mitchell, 1996], we define a model M by ax-
iomatizing the reductions of base term applications. In prac-
tice, we would implement the model in a real programming
language. For example, we could do this in FABLE [Swamy

et al., 2008], a language we specifically designed for pro-
gramming policy functions that may coerce one protected
type to another (like Conf coalition) or may produce unforge-
able certificates (like acts for).

A model M contains equations B : D ; e, where D is a
sequence of types and values. We require the types of the
expressions in these equations to be consistent with the type
given to B in the signature. An example of an equation is
leq : 4, 3 ; ⊥ indicating that the expression (leq 4 3)
reduces to⊥. We also need a mechanism to construct a value
that represents a proof certificate for a valid inequality; i.e.,
a value that inhabits the type LEQ 3 4. In practice, one could
either chose a concrete representation for these objects if
proofs need to be checked at run time (for instance, when
interfacing with type-unsafe code); or, if we are in a purely
type-safe setting, we could chose an arbitrary value (like
unit) to represent a proof certificate. In our technical report,
we introduce a special value to stand for proof objects that
facilitates our soundness proof.

The security-relevant actions in a program execution
are the reduction steps that correspond to automaton state
changes. As indicated earlier, each transition and release
rule in a policy will be translated to a function-typed base
term like Conf coalition. Thus, every time we reduce an ex-
pression e using a base-term equation B : D ; e′, we record
l = B : D in the trace: i.e., M ` e B:D−→e′.

The statement of our type soundness theorem is shown
below; the proof is in our technical report.

Theorem (Type soundness). Given a set of name constants
Γ = α1::N, ...,αn::N such that Γ; · `S e : t;ε , and an interpre-
tation M such that M and S are type-consistent, then ∃e′.M `
e l−→e′ or ∃v.e = v, or e′ =⊥. Moreover, if M ` e l−→e′ then
Γ; · `S e′ : t;ε .

5. Translating AIR to λAIR

In this section, we show how we discuss how we translate
an AIR class to a λAIR API, describe how that API is to be
used, and state our main security theorem.

5.1 Representing AIR primitives

In order to enforce an AIR policy we must first provide a way
to tie the policy to the program by protecting data with AIR
automata. We must also provide a concrete representation
for automata instances and a means to generate certificates
that attest to the various release conditions that appear in the
policy. These constructs are common to all λAIR programs
and appear in the standard prelude, along with the integers
and pairs discussed in Section 4.1.

Protecting data. As indicated in Section 3, we include the
following type constructor to associate an automaton with
some data: (Protected::U → N → U). A term with type
Protected t α is governed by the policy defined by an au-
tomaton instance with type-level name α . We would like to
ensure that all operations on protected data are mediated by
functions that correspond to AIR policy rules. For this rea-
son, we do not provide an explicit data constructor for values
of this type (ensuring that they cannot be destructed directly,
say, via pattern matching). Values of this type are introduced
only by assigning the appropriate types to functions that re-
trieve sensitive data—for instance, library functions that read
secret files from the disk can be annotated so that they return
values with a protected type.

In addition to functions corresponding to AIR class rules,
we can provide functions that allow a program to perform se-
cure computations over protected values. We have explored
such functions in our work on FABLE and showed that com-
putations that respect a variety of policies (ranging from ac-
cess control to information flow) can be encoded [Swamy
et al., 2008]; we do not consider these further here.

Next, we discuss our representation of an AIR automaton—
these include representations of the class that the automaton
instantiates and the principal that owns the class.

Principals. The nullary constructor Prin is used to type prin-
cipal constants P; i.e., (Prin::U),(P:Prin). As with integers,
we need a way to test and generate evidence for acts-for rela-
tionships between principals. We include the dependent type
constructor and run-time check shown below.

(ActsFor::Prin→ Prin→U)
(acts for:(x:Prin)→ (y:Prin)→ ActsFor x y)

AIR classes. A class consists of a class identifier id and
a principal P that owns the class. The type constructors
(Id::U),(Class::U) are used to type identifiers and classes.
Classes are constructed using the data constructor (Class:Id⇒
Prin⇒ Class). The translation of an AIR class introduces
nullary data constructors like US Army Confidential:Id and
US Army:Prin, from which we can construct the class USAC =

Class {US Army Confidential} {US Army}. Finally, we use a
dependent type constructor and run-time check to generate
evidence that two classes are equal.

(IsClass::Class→ Class→U),
(is class:(x:Class)→ (y:Class)→ IsClass x y)

Class instances. Instances are typed using the Instance::U
type constructor. Each instance must identify the class it
instantiates and the current state of its automaton. For each
state in a class declaration, we generate a data constructor
in the signature that constructs an Instance from a Class and
any state-specific arguments. For example, we have:

Init:Class⇒ Instance,Debt:Class⇒ Int⇒ Instance

Thus the expression new Init {USAC} constructs a new in-
stance of a class. According to (T-NEW), this expression
has the affine type !Instanceα , where the unique type-level
name α allows us to protect some data with this automaton.
Since we wish to allow data to be protected by automata that
instantiate arbitrary AIR classes, we give all instances, re-
gardless of their class, a type like !Instanceα , for some α .
This has the benefit of flexibility—we can easily give types
to library functions that can return data (like file system ob-
jects) protected by automata of different classes. However,
we must rely on a run-time check to examine the class of an
instance since it is not evident from the type—the following
two elements of the prelude accomplish this.

ClassOf ::N→ Class→U
class of inst:∀α::N.(x:!Instanceα)→

(!Instanceα ∗ c:Class∗ClassOf α c)

The function class of inst extracts a Class value c from an
instance named α and produces evidence (of type ClassOf α c)
that α is an instance of c. The return type of this function is
interesting for two reasons. First, because the returned value
relates the class object in the second component of the tuple
to the evidence object in the third component, we give the
returned value the type of a dependently typed tuple, (desig-
nated by the symbol ∗). Although we do not directly support
these tuples, they can be easily encoded using dependently
typed functions [Swamy et al., 2008]. Second, notice that
even though class of inst does not cause a state transition,
the first component of the tuple it returns contains an au-
tomaton instance with the same type as the argument x. This
is a common idiom when programming with affine types;
since the automaton instance is affine and can only be used
once, functions like class of inst simply return the affine
argument x back to the caller for further use.

The prelude also provides the following constructs that
allow a program to inspect the current state of an automaton
instance.

InState::!Instance→ Instance→U
state of inst:∀α::N.(x:!Instanceα)→

(z:!Instanceα ∗ y:Instance∗ InState z y)

These constructs are similar to the forms shown for exam-
ining the class of an instance, but with one important dif-
ference. Since the state of an automaton is transient (it can
change as transition rules are applied), we must be careful
when producing evidence about the current state. This is in
contrast to the class of an automaton which never changes
despite changes to the current state. Thus, we must ensure
that stale evidence about an old state of the automaton can
never be presented as valid evidence about the current state.

The distinction between evidence about the class of an
automaton and evidence about its current state is highlighted
by the first argument to the type constructor InState. Unlike
the first argument of the ClassOf constructor (which can be
some type-level name α::N), the first argument of InState is
an expression with an affine type !Instance that stands for an
automaton instance. (Notice that using (T-DROP), we can
subsume the type !Instanceα of an automaton instance like
new e to !Instance.)

As outlined in Section 3, and described further in the next
subsection, functions that correspond to AIR rules take an
automaton instance a1 (say, in state Init) as an argument, and
produce a new instance a′1 as a result (say, in state Debt(0)).
Importantly, both a1 and a′1 are given the type !Instanceα —
that is, the association between the type-level name α and
the automaton instance is fixed; it is invariant with respect
to changes to the state of the automaton. Since class of
an automaton never changes (both a1 and a′1 are instances
of USAC) it is safe to give evidence about the class of an
instance the type ClassOf α USAC—i.e., evidence about the
class of an automaton can never become stale. On the other
hand, evidence about the current state of the automaton can
become stale. If we were to type this evidence using types
of the form InStateBad α Init, then this evidence may be true
of a1 but it is not true of a′1. Therefore, we make InState
a dependent type constructor that references the particular
state variable rather than indexing it with a singleton name.
This illustrates an important distinction between singleton
and dependent types in our system.

5.2 Translating rules in an AIR class

Our technical report defines a translation procedure from an
AIR class declaration to a λAIR signature. Space constraints
preclude a full presentation of the translation judgment here.
Instead, we discuss the signature that is generated for the
policy of Figure 2.

Release rules. Each release rule r in a class declaration is
translated to a function-typed constant fr in the signature. At
a high-level, the rules have the following form. In response
to a request to release data x, protected by instance a1,
to an instance a2, the programmer must provide evidence
for each of the conditions in the rule r. If such evidence
can be produced, then fr returns a new automaton state a′1,
downgrades x as specified in the policy and returns x under

the protection of a2. As an example, consider the full type of
the Conf coalition rule shown below.

Conf coalition :
1 ∀src::N.dst::N.∀α::U.

2 (a1:!Instancesrc)→ (x:Protected α src)→ (a2:!Instancedst)→
3 (e1:ClassOf src USAC)→ (cd:Class)→ (e2:ClassOf dst cd)→
4 (e3:ActsFor (principal cd) Coalition)→ (debt:Int)→
5 (e4:InState a1 (Debt {USAC} {debt}))→ (e5:LEQ debt 10)→
6 (!Instancesrc× !Instancedst ×Protected α dst)

The first two lines of this type were shown previously—
x is the data to be released from the protection of automa-
ton a1 (with type-level name src) to the automaton a2 (with
type-level name dst). At line 3, the argument e1 is evidence
that shows that the source automaton is an instance of the
USAC class; cd is another class object and e2 is evidence
that the class of destination automaton is indeed cd. At line
4, e3 stands for evidence of the first condition expression,
which requires that the owning principal of the destination
automaton acts for the Coalition principal. Line 5 contains
evidence e4 that a1 is in some state Debt(debt), where, from
e5, debt ≤ 10. The return type, as discussed before, con-
tains the new state of the source automaton, the destination
automaton a2 threaded through from the argument, and the
data value x, downgraded according to the policy and with a
type showing that it is protected by the dst automaton.

Transition rules. Each transition rule r in a class declaration
is also translated to a function-typed constant fr in the sig-
nature. However, instead of downgrading and coercing the
type of some datum x, a transition function only returns the
new state of the source automaton and an unchanged desti-
nation automaton. That is, instead of returning a three-tuple
like Conf coalition, a transition rule like Conf init returns a
pair (!Instancesrc× !Instancedst), where the first component
is the new state of the source automaton and the second
component is the unchanged destination automaton threaded
through from the argument.

5.3 Programming with the AIR API

The following example program, a revision of the program
in Figure 3, illustrates how a client program interacts with
the API generated for an AIR policy.

1 let a1:!Instancesrc, x a1 = get usac file and policy () in
2 let a2:!Instancedst , channel = get request () in
3 let a1,USAC,ca1 ev = class of inst [src] a1 in
4 let a2,ca2,ca2 ev = class of inst [dst] a2 in
5 let actsfor ev = acts for (principal ca2) Coalition in
6 let a1, Debt{USAC}{debt}, a1 state ev = state of inst [src] a1 in
7 let debt ev = leq debt 10 in
8 let a1’,a2,x a2 = Conf coalition [src][dst][Int] a1 x a1 a2
9 ca1 ev ca2 ca2 ev actsfor ev

10 debt a1 state ev debt ev in
11 send [Int] [dst] channel x a2

As previously, the first two lines represent boilerplate code,
where we read a file and its automaton policy and then block

waiting for a release request. At line 3, we generate evidence
a1 class ev that a1 is an instance of the USAC class and at
line 4 we retrieve a2’s class ca2 and evidence ca2 ev that
witnesses the relationship between ca2 and a2. At line 5, we
check that the destination automaton is owned by a principal
acting for the Coalition. At lines 6 and 7 we check that a1

is in the Debt{USAC}{debt}, for some value of debt ≤ 10.
If all the run-time checks succeed (i.e., calls to functions
like leq), then we call Conf coalition, instantiating the type
variables, passing in the automata, the data to be downgraded
and evidence for all the release conditions. We get back the
new state of the src automaton a1’, a2 is unchanged, and x a2

which has type Protected Int dst. We can give the channel a
type such as Channel Int dst, indicating that it can be used
to send integers to the principal that owns the automaton dst.
The send function can be given the type shown below:

send:∀α::U,β ::N.Channel α β → Protected α β → Unit

This ensures that x a1 cannot be sent on the channel. But, if
the call to Conf coalition succeeds, then the downgraded x a2

has type Protected Int dst, which allows it to be sent.

5.4 Correctness of policy enforcement

In this section, we present a condensed version of our main
security theorem and discuss its implications. The full state-
ment and proof can be found in our technical report.

Theorem (Security). Given all of the following: (1) an AIR
declaration D of a class with identifier C owned by princi-
pal P, and its translation to a signature SD; (2) a model MD
consistent with SD; (3) Γ = src::N,dst::N,s : !Instancesrc;
(4) Γ;s `SD e : t;ε where src 6∈ ε; and (5) M ` ((s 7→
v)e)

l1−→e1 . . .
ln−→en where v = new Init {Class {C} {P}}.

Then the string l1, . . . , ln is accepted by the automaton de-
fined by D.

The first condition relies on our translation judgment that
produces a signature SD from a class declaration D. The sec-
ond condition is necessary for type soundness. Conditions
(3) and (4) state that e is a well-typed expression in a context
with a single free automaton s : !Instancesrc and two type
name constants src and dst. By requiring that src 6∈ ε we en-
sure that e does not give the name src to any other automa-
ton instance. This theorem asserts that when e is reduced in
a context where s is bound to an instance of the C class in the
Init state, then the trace l1, . . . , ln of the reduction sequence
is a word in the language accepted by the automaton of D.

The trace acceptance judgment has the form A;D |=
l1, . . . , ln;A′, which informally states that an automaton de-
fined by the class D, in initial state A, accepts the trace
l1, . . . , ln and transitions to the state A′. Recall that the trace
elements li record base terms B that stand for security-
relevant actions and sets of values that certify that the ac-
tion is permissible. The trace acceptance judgment allows
a transition from A to A′ only if each transition is justified

by all the evidence required by the rules in the class. This
condition is similar to the one used by Walker [2000].

6. Related Work
The specification and enforcement of policies that con-
trol information release has received much recent atten-
tion. Sabelfeld and Sands [2005] survey many of these ef-
forts and provide a useful way of organizing the various
approaches. AIR policies address, to varying degrees, the
what, who, where and when of declassification, the four di-
mensions identified by Sabelfeld and Sands. Most of this
work approaches information release from the perspective
of information flow policies [Denning, 1976], and most of
the proposed security properties can be thought of as bisim-
ulations. By contrast, our security theorem states that the
program’s actions are in accord with a higher-level policy,
and not that these actions enforce an extensional security
property (like noninterference). We believe that the two
approaches are complementary. In combination, we could
show a noninterference-like security theorem (e.g., nonin-
terference until conditions [Chong and Myers, 2004], or ro-
bust declassification [Zdancewic and Myers, 2001]) while
being able to reason that a high-level protocol for releasing
information is correctly followed.

AIR policies are defined separately from programs that
use them, allowing them to be reasoned about in isolation.
Most related work embeds declassification policies within
programs that use them, obscuring high-level intent. One ex-
ception is work on trusted declassifiers [Hicks et al., 2006].
Here, all possible information flows are specified as part of
a graph in which nodes consist of either downgrading func-
tions or principals, and edges consists of trust relationships.
Paths through the graph indicate how data may be released.
AIR classes generalize this approach in restricting which
paths may occur in the graph, and in specifying release con-
ditions in addition to downgrading functions.

Chong and Myers [2004] propose declassification poli-
cies as labels consisting of sequences of atomic labels sepa-
rated by conditions c. Initially, labeled data may be viewed
with the privileges granted by the first atomic label, but when
a condition c is satisfied, the data may be relabeled to the
next label in the sequence, and viewed at its privileges. De-
classification labels are thus similar to AIR classes, with the
main difference that our approach is more geared toward
run-time checking: we support dynamically-checked condi-
tions (theirs must be provable statically) and run-time labels
(theirs are static annotations).

Security automata were first proposed by Schneider
[2000] as a means of specifying and enforcing safety proper-
ties. AIR policies are actually a more general form of security
automata called edit automata [Ligatti et al., 2003] because
they may modify data before releasing it. To our knowledge,
no prior work has used automata to specify the protection
level and release conditions of sensitive data. Walker [2000]

defines a type-based approach for enforcing security au-
tomata policies in which the definition of a single automaton
is embedded in the type-checking judgment. Our approach
allows multiple automata policies to be easily defined sepa-
rately. Automata policies have also been enforced using in-
lined reference monitors, as in SASI and PSLang/PoET [Er-
lingsson, 2004]. Our approach is in contrast with SASI in
that we support local policy state—Erlingsson identifies
SASI’s global policy restriction as a main obstacle towards
making it practical. PSLang/PoET does support local policy
state, but unlike λAIR, PSLang/PoET augments the run-time
representation of protected data to include the policy. Dy-
namic labels in λAIR are more expressive (as discussed in
Section 3, we can easily enforce secret sharing policies on
related data) and provide a way to verify that automata and
protected data are always correctly manipulated. As such,
one could imagine putting λAIR to use to certify that IRMs
correctly enforce their policies.

There has also been much work on tracking the state of
objects in types, dating back to Strom and Yemini [1986].
The calculus of capabilities [Crary et al., 1999] provides
a way of tracking typestate, using singleton and linear
types (a variant of affine types) to account for aliasing. The
Vault [DeLine and Fähndrich, 2001] and Cyclone [Jim et al.,
2002] programming languages implement typestate check-
ers in a practical setting to enforce proper API usage and
correct manual memory management, respectively. λAIR’s
use of singleton and affine types is quite close to these sys-
tems. However, in these systems the state of a resource is a
static type annotation, while in λAIR a policy automaton is
first-class, allowing its state to be unknown until run time.
Additionally, λAIR’s use of dependent types permits more
precise specifications, which is useful for certifying autho-
rization decisions.

Finally, our automata-based polices are related to state-
ful authorization policies used in trust management [Chapin
et al., 2008, Becker and Nanz, 2007]. Certified evaluation
of authorization logic has also been advocated for trust-
management systems [Jim, 2001]. While more investiga-
tion is required, we believe that the core constructs of
λAIR are general enough to verify the enforcement of trust-
management policies as well.

7. Conclusions
This paper has presented AIR, a simple policy language for
expressing stateful information release policies. We have de-
fined a core formalism for a programming language called
λAIR, in which stateful authorization policies like AIR can
be certifiably enforced. Our work takes an important step
towards the construction of software that can be verified
to correctly enforce high-level information-release policies.
In future work, we plan to add support for λAIR-style pol-
icy enforcement to our secure web-programming language,
SELINKS [Swamy et al., 2008].

References
M. Y. Becker and S. Nanz. A logic for state-modifying authorization

policies. In ESORICS ’07. Springer-Verlag, 2007.

P. Chapin, C. Skalka, and X. S. Wang. Authorization in trust management:
Features and foundations. ACM Computing Surveys, 2008. To appear.

P.-C. Cheng, P. Rohatgi, C. Keser, P. A. Karger, G. M. Wagner, and A. S.
Reninger. Fuzzy multi-level security: An experiment on quantified risk-
adaptive access control. In IEEE S & P, 2007.

S. Chong and A. C. Myers. Security policies for downgrading. In CCS.
ACM Press, 2004.

S. Chong, A. C. Myers, N. Nystrom, L. Zheng, and S. Zdancewic. Jif: Java
+ information flow. Software release, July 2006.

K. Crary, D. Walker, and G. Morrisett. Typed memory management in a
calculus of capabilities. In POPL, 1999.

R. DeLine and M. Fähndrich. Enforcing high-level protocols in low-level
software. SIGPLAN Not., 36(5), 2001.

D. E. Denning. A lattice model of secure information flow. Communications
of the ACM, 19(5):236–243, May 1976.

U. Erlingsson. The inlined reference monitor approach to security policy
enforcement. PhD thesis, 2004. Cornell University.

M. W. Focke, J. E. Knoke, P. A. Barbieri, R. D. Wherley, J. G. Ata, and D. B.
Engen. Trusted computing system. United States Patent No. 7,103,914,
2006. issued to BAE Systems Information Technology LLC.

B. Hicks, D. King, P. McDaniel, and M. Hicks. Trusted declassification::
high-level policy for a security-typed language. In PLAS ’06, 2006.

B. Hicks, T. Misiak, and P. McDaniel. Channels: Runtime system infras-
tructure for security-typed languages. In ACSAC, 2007.

T. Jim. SD3: A trust management system with certified evaluation. In IEEE
Symposium on Security and Privacy, 2001.

T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang.
Cyclone: A safe dialect of C. In USENIX Annual Tech. Conf., 2002.

J. Ligatti, L. Bauer, and D. Walker. Edit automata: Enforcement mecha-
nisms for run-time security policies. IJIS, 2003.

J. C. Mitchell. Foundations of Programming Languages. MIT Press, 1996.

P. Pratikakis, J. S. Foster, and M. Hicks. Context-sensitive correlation
analysis for detecting races. In PLDI, 2006.

A. Sabelfeld and D. Sands. Dimensions and principles of declassification.
In CSFW ’05, 2005.

F. B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst. Secur.,
3(1):30–50, 2000.

R. E. Strom and S. Yemini. Typestate: A programming language concept
for enhancing software reliability. IEEE Trans. Softw. Eng., 12(1), 1986.

N. Swamy and M. Hicks. Verified enforcement of automaton-based infor-
mation release policies, 2008. CS-TR-4906, CS Dept., U. Maryland.

N. Swamy, B. J. Corcoran, and M. Hicks. Fable: A language for enforcing
user-defined security policies. In IEEE S & P, 2008.

United States Department of Defense. Department of defense directive
number 5230.11, 1992.

D. Walker. A type system for expressive security policies. In POPL, 2000.

S. Zdancewic and A. C. Myers. Robust declassification. In CSFW, 2001.

L. Zheng and A. C. Myers. Dynamic security labels and noninterference.
In FAST, 2004.

