
Appendix to

Cmod: Modular Information Hiding and Type-Safe Linking for C

Saurabh Srivastava, Michael Hicks, Jeffrey S. Foster
{saurabhs,mwh,jfoster}@cs.umd.edu

1 Introduction

This brief note is an appendix to CMod: Modular Information Hiding and Type-Safe Linking for C [2]. It
consists of the proof of soundness for the formal language presented in that paper.

2 Soundness

In this section we show that our rules from Figure 2 are sound for MTAL0, assuming no type abstraction or
type naming is present.

We begin by stating some lemmas about MTAL0 (Figure 4).

Lemma 2.1 (Preservation) If ` O1 link O2 ; O then ` O

Lemma 2.2 (Associativity of link) If ` (O1 link O2) link O3 ; O then ` O1 link (O2 link O3) ; O.

Lemma 2.3 (Commutativity of link) If ` O1 link O2 ; O then ` O2 link O1 ; O.

Lemma 2.4 If ∀i, j, 1 ≤ i, j ≤ n, i 6= j . ` Oi link Oj ; Oij and if π is any permutation of {1 . . . n} then

` Oπ(1) link Oπ(2) link . . . link Oπ(n) ; O1...n

with ` O1...n.

We start by observing a property induced by Rule 4.

Lemma 2.5 If ∆0;F ` R4(f,∆f) and ∆f ;F ` f ; A; I then ∆;F ` f ; A; I.

Proof By observation of the rules in Figures 7 and 9. The induction holds trivially for all operational
sematics rules except for [Ifdef+] and [Ifdef-]. However, any macros used in those rules are included in
AU , and thus must be either defined in both ∆ and ∆f , or undefined in both, by ∆0;F ` R4(f,∆f). .
Hence the hypothesis holds for [Ifdef+] and [Ifdef-] as well. 2

Next we describe a basic property of [Compile] from Figure 3.

Lemma 2.6 If two fragments have the same preprocessed output then their compiled objects are the same.
More formally, if ∆;F ` f1 ; A; I and ∆;F ` f2 ; A; I then ∆0;F ` f1

comp−→ O iff ∆0;F ` f2
comp−→ O

Proof By inspection of rule [Compile]. 2

One key property the compiler gives us is that, by themselves, each compiled object file is well-formed
(in isolation) according to the rules in Figure 4.

1

program P ::= · | f ◦ P
fragment f := · | s, f

trace f̃ := · | s̃, f̃
statements s ::= c | d

preproc. commands c ::= import h | inline h | end h | def m | undef m
| ifdef m then f else f

definitions d ::= let g : τ = e | extern g : τ
| lettype t = τ | type t

trace statements s̃ ::= c̃ | d
preproc. commands c̃ ::= import h | end h | def m | undef m | ifdef m+ | ifdef m−

terms e ::= n | λy : τ. e | e e | y | g
types τ ::= t | int | τ → τ

m ∈ macro names g ∈ global var. names y ∈ local var. names
h ∈ file names t ∈ type names

Figure 1: Source Language

Lemma 2.7 (Well-formed compiled objects) If ∆0;F ` f
comp−→ [ΨI ⇒ H : ΨE] then ` [ΨI ⇒ H : ΨE]

Proof Because [Compile] holds preprocessing f produces an accumulator (C,H, I,N, T, Z, D,U , E). To
show that [MTAL0-WF-Obj] holds, we need to identify a heap typing ΨA that satisfies the rule. We chose
ΨA = N |¬dom(ΨI) from the result accumulator, where ¬dom (ΨI) is any symbol not in the domain of ΨI .
We now can show that each of the premises of [MTAL0-WF-Obj] hold:

1. ` ΨI . By [Compile] we have ΨI = N |(I−E), and by definition there are no duplicate elements in the
domain of ΨI .

2. ` ΨA ≤ ΨE . By [Compile] we have ΨE = N |E and ΨI = N |(I−E). By construction we have
ΨA = N |¬dom(ΨI). But then any symbol in dom (ΨE) must be in dom (ΨA). Furthermore, we have
` ΨA because by definition there are no duplicate elements in the domain of ΨA.

3. ΨI ∪ ΨA ` H : ΨA. By [Compile] we have N ` H, and then by [WF-Heap] we have N ` e :
N(g) where H(g) = e (here we safely assume the same g appears at most once, which also holds by
[WF-Heap]). Further, since dom (ΨI) ∪ dom (ΨA) = dom (N) by construction, and since both are
projections of N onto smaller domains, we have ΨI ∪ΨA = N . Thus for every g ∈ dom (N), we have
ΨI ∪ ΨA ` e : N(g). Then since dom (ΨA) ⊆ dom (N), we have ΨI ∪ ΨA ` e : ΨA(g), which is the
same as ΨI ∪ΨA ` H : ΨA.

4. dom (ΨI)∩ dom (ΨA) = ∅. This holds trivially, because by [Compile] we have ΨI = N |(I−E), and our
choice of ΨA contains nothing in I in its domain.

2

Now we can prove type-safe linking. Our proof strategy is to show that order-independent fragments
have an interpretation consistent with their preprocessing in isolation. We will then use this result to show
that if one file imports a symbol and one file exports a symbol, then the Cmod rules force the types to
match. Finally, we will show that as a consequence, Cmod enforces type-safe linking.

In this proof, we will use A1 ∪ A2 to denote the component-wise union of the two accumulators (which
translates to concatenation for any mappings). We also overload the sequencing operator to chain fragments
together, so that we may write f1, f2 to mean the statements in f1 followed by the statements in f2.

We begin by describing the behavior of preprocessing a sequence of fragments:

2

[Sym-Decl]

h ∈ I ∆;F `h F(h) ; A; I g ∈ AD

∆0;F ` g
decl←− I

[Rule 1]

∆;F ` f1 ; A1; I1 ∆;F ` f2 ; A2; I2
N =

“
AI

1 ∩ AE
2

”
∪

“
AE

1 ∩ AI
2

”
∀g ∈ N . ∆0;F ` g

decl←− I1 ∩ I2
∆0;F ` R1(f1, f2)

(a) Rule 1: Shared Headers

[Named-Types-Ok]

∀(t 7→ τ◦) ∈ T1 . t /∈ dom (T2)
∀t ∈ dom (T1) ∩ dom (T2) .

T1(t) = τh1
1 ∧ T2(t) = τh2

2 ⇒ h1 = h2

`τ T1, T2

[Rule 2]

∆;F ` f1 ; A1; I1 ∆;F ` f2 ; A2; I2
`τ AT

1 ,AT
2 `τ AT

2 ,AT
1 f1 6= f2

∆0;F ` R2(f1, f2)

(b) Rule 2: Type Ownership

[Trace-Indep]D
A∅; f̃1

E
−→∗ 〈A1; ·〉

D
A∅; f̃2

E
−→∗ 〈A2; ·〉

(m, h′) ∈ AC1 ∧ (m, h′′) ∈ AU2 ⇒ h′ = h′′

(m, h′) ∈ AU1 ∧ (m, h′′) ∈ AC2 ⇒ h′ = h′′

f̃1 ⊗ f̃2

[Partial-Indep]

F ` 〈·; ·;∆; f〉 −→∗
D
f̃1, import h; I1;∆1; f1

E
F ` 〈·; ·;∆; f〉 −→∗

D
f̃1, f̃2, end h; I2;∆2; f1

E
f̃1 ⊗ f̃2

∆0;F ` f ⊗ h

[Rule 3]

∆;F ` f ; A; I
∀h ∈ I . ∆0;F ` f ⊗ h

∆0;F ` R3(f)

(c) Rule 3: Vertical Independence

[Rule 4]

∆f ;F ` f ; A; I
((∆−∆f) ∪ (∆f −∆)) ∩ AU = ∅

∆0;F ` R4(f, ∆f)

(d) Rule 4: Environment Compatibility

[All]

∀f1, f2 ∈ P . ∆0;F ` R1(f1, f2)
∀f1, f2 ∈ P . ∆0;F ` R2(f1, f2)
∀f ∈ P . ∆0;F ` R3(f)

∆0;F ` R(P)

(e) Rules 1–3 combined

Figure 2: Cmod Rules

3

[WF-Map]

gi = gj ⇒ τi = τj

` g1 7→ τ1, . . . , gp 7→ τp

[WF-Heap]

∀i, j ∈ [1..p] . gi = gj ⇒ i = j ∀i ∈ [1..p] . Z; T ; N ` ei : N(gi)

Z; T ; N ` g1 7→ e1, . . . , gp 7→ ep

[Compile]

∆;F ` f ; (C, H, I, N, T, Z, D,U , E); I ` N Z; T ; N ` H ΨE = N |E ΨI = N |(I−E)

∆0;F ` f
comp−→ [ΨI ⇒ H : ΨE]

[Link]

dom (H1) ∩ dom (H2) = ∅
∆0;F ` [ΨI1 ⇒ H1 : ΨE1] ◦ [ΨI2 ⇒ H2 : ΨE2]

comp−→ [(ΨI1 ∪ΨI2) \ (ΨE1 ∪ΨE2)⇒ H1 ∪H2 : ΨE1 ∪ΨE2]

Figure 3: Compiler and Linker Rules

Lemma 2.8 (Preprocessing chains) If F ` 〈A∅;∆; f1〉 −→∗ 〈A1;∆1; ·〉 then F ` 〈A1;∆1; f2〉 −→∗

〈A2;∆2; ·〉 if and only if F ` 〈A∅;∆; (f1, f2)〉 −→∗ 〈A2;∆2; ·〉

We use Lemma 2.8 without comment in the remainder of the proof.
Next we state a trivial lemma, that preprocessing does not change any macro definitions that are not

marked in the accumulator as changed.

Lemma 2.9 Suppose that F ` 〈A0;∆0; f0〉 −→∗ 〈A1;∆1; f1〉. Then ∆1(m) = ∆0(m) for all m 6∈ AC1 .

3 Consistent Interpretation

3.1 Proof Strategy

We first discuss our proof strategy by means of an example. The detailed proofs are presented in section 3.2.

Example: Figures 5 and 6 show how the expansion of a header (h3 in this case) differs when expanded
within a fragment and when expanded outside of it.

Once we have proved auxillary lemmas, we can come back to the examples in the figures and notice
that the transitive closure under application of the transfer function to the fragment expansions the left
(and right) yield fragment expansions in which h3 is expanded in exactly the way it would be outside of a
fragment. We will use the closure of the transfer function to relate two fragments and because the transfer
function is accumulator preserving, the accumulator generated by the preprocessing of the header in isolation
will be contained in the accumulator generated by preprocessing the fragment in which the header appears.

3.2 Consistent Interpretation using the transfer function

The modified operational semantics for the processor keep track of statements as they are encountered in
preprocessing which will be required for defining the transfer function later. The operation of the preprocessor
is split into (a) that of producing a trace from the given CPP code (Figure 7) and (b) that of producing
the preprocessed output from the trace (Figure 9). The preprocessing semantics make use of the function
first-end(·) defined in Figure 8. Intuitively, first-end(·), locates the header name which textually contains
the statement on whose evaluation the function is called. We do not use this intuition in the formal setting
but it justifies our use of the term owner for the header name returned by the function.

4

[WF-Int]
i 6= j ⇒ gi 6= gj

` g1 7→ τ1, . . . , gp 7→ τp

[Int-Sub]

p ≥ q ` g1 7→ τ1, . . . , gp 7→ τp

` g1 7→ τ1, . . . , gp 7→ τp ≤ g1 7→ τ1, . . . , gq 7→ τq

[MTAL0-WF-Obj]

` ΨI ` ΨA ≤ ΨE ΨI ∪ΨA ` H : ΨA

dom (ΨI) ∩ dom (ΨA) = ∅
` [ΨI ⇒ H : ΨE]

[MTAL0-Compat]

∀g ∈ dom (Ψ1) ∩ dom (Ψ2) . Ψ1(g) = Ψ2(g)

` Ψ1 ∼ Ψ2

[MTAL0-LC]

` ΨI1 ∼ ΨI2 ` ΨI1 ∼ ΨE2 ` ΨI2 ∼ ΨE1

dom (ΨE1) ∩ dom (ΨE2) = ∅

` [ΨI1 ⇒ H1 : ΨE1]
lc↔ [ΨI2 ⇒ H2 : ΨE2]

[MTAL0-Link]

` [ΨI1 ⇒ H1 : ΨE1] ` [ΨI2 ⇒ H2 : ΨE2]

` [ΨI1 ⇒ H1 : ΨE1]
lc↔ [ΨI2 ⇒ H2 : ΨE2] dom (H1) ∩ dom (H2) = ∅

` [ΨI1 ⇒ H1 : ΨE1] link [ΨI2 ⇒ H2 : ΨE2] ; [(ΨI1 ∪ΨI2) \ (ΨE1 ∪ΨE2)⇒ H1 ∪H2 : ΨE1 ∪ΨE2]

Figure 4: MTAL0 [1]

Definition 3.1 (Well-formed traces) If ∀hi.import hi ∈ f̃

1. Expansion: There is a unique occurrence each of import hi and end hi both of which come in order.

2. Nesting: ∀hj 6= hi, if f̃ = (f̃s, import hi, f̃i, end hi, f̃e), then import hj ∈ f̃i ⇐⇒ end hj ∈ f̃i

3. Sequencing: The (possibly multiple) occurrences of nullimport hi are strictly after the unique end hi.

We call a trace, f̃ , well formed if it satisfies the first two properties and strictly well formed if it satisfies all
three.

Lemma 3.2 If F ` 〈·; ·;∆; f〉 −→∗
〈
f̃ ; I ′;∆′; ·

〉
then f̃ is strictly well-formed.

Proof Trivial by examination of Figure 7. 2

We use the notation
[
f̃
]
h

to represent import h, f̃ , end h and by the previous observation on the structure

(specifically, the nesting property) of traces generated from fragments this notation would be unambiguous.
The transfer function �h with respect to h is defined in Figure 10. Intuitively, f̃1 �h f̃2 relates two traces

such that the pair
([

f̃h′

]
h′

, nullimport h′
)

in f̃1 is replaced with
(
nullimport h′,

[
f̃h′

]
h′

)
in f̃2. Because we are

reducing with respect to h, nullimport h′ is constrained to lie in
[
f̃h

]
h
∈ f̃1 and obviously, other statements

irrelevant to the current reduction are allowed to appear in between the expansion and the nullimport. But we
need to constrain the order in which such “pair swaps” occur in order to actually end up with a subtrace that
corresponds to the expansion of h that we desire. The precondition that constrains the order of replacement

5

F1 :

h1 h3

h2

h2

nullimport

import

h2

h2

f̃2

h2

h3
h1

h2 h1

h2

h3
h1

h1
h2

h2

f̃1

h6

h1 h2 h3 h6

h2
h1

h2

h3

Figure 5: Expanding a header within fragments (f̃1 and f̃2 in the figure) might follow different steps than that
used to expand the header in isolation (in the middle). Repeated application of �h3 reduces the expansion
of either f̃1 or f̃2 to one in which h3 is expanded in exactly the same way as in isolation.

h1

nullimport

import

h2

h2

h3

h2

h1

h3

h1
h2

h2

f̃3

h6

h1 h2 h3 h6

h2 h3

F2 :

h1

h2

Figure 6: Illustrating the reduction for another filesystem F2.

6

symbols N ::= · | g → τ, N
heap H ::= · | g → e, H

named types T ::= · | t→ τh, T | t→ τ◦, T
exports E ∈ 2g imports I ∈ 2g

symbol decls D ∈ 2g macro changes C ∈ 2m × 2h

macro uses U ∈ 2m × 2h type decls Z ∈ 2t

includes I ∈ 2h defines ∆ ∈ 2m

accumulator A = (C, H, I, N, T, Z, D,U , E)
file system F : h→ f

[Import]

h 6∈ I I′ = I ←+ h end h 6∈ f f̃ ′ = f̃ , import h

F `
D
f̃ ; I;∆; import h, f

E
−→

D
f̃ ′; I′;∆;F(h), end h, f

E
[Import-Empty]

h ∈ I end h 6∈ f f̃ ′ = f̃ , nullimport h

F `
D
f̃ ; I;∆; import h, f

E
−→

D
f̃ ′; I;∆; f

E
[Eoh]

f̃ ′ = f̃ , end h

F `
D
f̃ ; I;∆; end h, f

E
−→

D
f̃ ′; I;∆; f

E [Inline]

F `
D
f̃ ; I;∆; inline h, f

E
−→

D
f̃ ; I;∆;F(h), f

E
[Def]

∆′ = ∆ ∪ {m} f̃ ′ = f̃ , def m

F `
D
f̃ ; I;∆; def m, f

E
−→

D
f̃ ′; I;∆′; f

E
[Undef]

∆′ = ∆− {m} f̃ ′ = f̃ , undef m

F `
D
f̃ ; I;∆; undef m, f

E
−→

D
f̃ ′; I;∆′; f

E
[Ifdef+]

m ∈ ∆ f̃ ′ = f̃ , ifdef m+

F `
D
f̃ ; I;∆; (ifdef m then f+ else f−), f

E
−→

D
f̃ ′; I;∆; f+, f

E
[Ifdef-]

m /∈ ∆ f̃ ′ = f̃ , ifdef m−

F `
D
f̃ ; I;∆; (ifdef m then f+ else f−), f

E
−→

D
f̃ ′; I;∆; f−, f

E
[Extern]

f̃ ′ = f̃ , extern g : τ

F `
D
f̃ ; I;∆; extern g : τ, f

E
−→

D
f̃ ′; I;∆; f

E
[Let]

f̃ ′ = f̃ , let g : τ = e

F `
D
f̃ ; I;∆; let g : τ = e, f

E
−→

D
f̃ ′; I;∆; f

E
[Type-Decl]

f̃ ′ = f̃ , type t

F `
D
f̃ ; I;∆; type t, f

E
−→

D
f̃ ′; I;∆; f

E
[Type-Def]

f̃ ′ = f̃ , lettype t = τ

F `
D
f̃ ; I;∆; lettype t = τ, f

E
−→

D
f̃ ′; I;∆; f

E

Figure 7: Operational Semantics for the Preprocessor.

[first-end]

f̃ = f̃ ′, end h, f̃ ′′ import h /∈ f̃ ′ end h′′ ∈ f̃ ′ =⇒ import h′′ ∈ f̃ ′

h = first-end(f̃)

[first-end]

end h ∈ f̃ =⇒ import h ∈ f̃

· = first-end(f̃)

Figure 8: The function first-end(f̃)

7

[Import]D
A; import h, f̃

E
−→

D
A; f̃

E [Import-Empty]D
A; nullimport h, f̃

E
−→

D
A; f̃

E [Eoh]D
A; end h, f̃

E
−→

D
A; f̃

E
[Def]

h = first-end(f̃) A′ = A[C ←+ (m, h), U ←+ (m, h)]D
A; def m, f̃

E
−→

D
A′; f̃

E
[Undef]

h = first-end(f̃) A′ = A[C ←+ (m, h), U ←+ (m, h)]D
A; undef m, f̃

E
−→

D
A′; f̃

E
[Ifdef±]

h = first-end(f̃) A′ = A[U ←+ (m, h)]D
A; ifdef m±, f̃

E
−→

D
A′; f̃

E

[Extern]

A′ = A[D ←+ g, N ←+ (g 7→ τ)]D
A; extern g : τ, f̃

E
−→

D
A′; f̃

E
[Let]

A′ = A[H ←+ (g 7→ e), N ←+ (g 7→ τ),

E ←+ g, D ←+ g, I ←+ fg (e)]D
A; let g : τ = e, f̃

E
−→

D
A′; f̃

E
[Type-Decl]

A′ = A[Z ←+ t]D
A; type t, f̃

E
−→

D
A′; f̃

E
[Type-Def]

h = first-end(f̃) A′ = A[T ←+ (t 7→ τh)]D
A; lettype t = τ, f̃

E
−→

D
A′; f̃

E

Figure 9: Semantics of construction the accumulator, A, from a trace, f̃ :
〈
A∅; f̃

〉
−→∗ 〈A; ·〉

[Transfer Function]

nullimport h′′ ∈ f̃3 =⇒ import h′′ ∈ f̃3

f̃1

h
f̃ ′

i
h′

f̃2

h
f̃3, nullimport h′, f̃4

i
h

f̃5 �h f̃1, nullimport h′, f̃2

h
f̃3

h
f̃ ′

i
h′

f̃4

i
h

f̃5

Figure 10: The �h transfer function on traces.

is that in the subtrace ahead of nullimport h′ there should be no other unmatched header. Trivially, �h

maintains well-formedness (but not strict well-formedness). From this point onwards we use this observation
without comment.

As no statement is added or deleted by the transfer function in f̃1 �h f̃2, we can therefore talk about the
owner of a statement s under both f̃1 and f̃2. We can now show the following lemma:

Lemma 3.3 (�h is ownership preserving) Let hs,1 be the owner of s returned by first-end(·) in f̃1 and
let hs,2 be the owner in f̃2. Then f̃1 �h f̃2 =⇒ hs,1 = hs,2.

Proof In [Transfer Function] we need to consider cases for statements, s, in each of f̃1, f̃
′, f̃2, f̃3, f̃4 and

f̃5. But what makes the task trivial is the observation that if the structure is of the form f̃a

[
f̃x

]
x

f̃b and s

is in f̃a, then first-end(·) can never return an h for which the end h lies in f̃x without violating nesting. And
therefore a trivial examination of the cases reveals that ownership is maintained in all subtraces. 2

Lemma 3.4 (�h is A preserving) If

• the transfer function relates two preprocessings: f̃1 �h f̃2

• the traces yield accumulators as:
〈
A∅; f̃1

〉
−→∗ 〈A1; ·〉 and

〈
A∅; f̃2

〉
−→∗ 〈A2; ·〉

8

then A1 = A2.

Proof Notice that since the transfer function does not add or delete any statements, both accumulators
are constructed over exactly the same set of statements, albeit in differing order. Then, the only way the
accumulators corresponding to the two traces can be different is if first-end(·) differs for some statement in
the evaluation, and this cannot happen due to Lemma 3.3. 2

Corollary 3.5 If
〈
A∅; f̃1

〉
−→∗ 〈A1; ·〉 and

〈
A∅; f̃2

〉
−→∗ 〈A2; ·〉 then f̃1 �∗h f̃2 =⇒ A1 = A2.

Proof Trivial proof by induction on the number of steps in �∗h and repeated application of Lemma 3.4. 2

Lemma 3.6 If

• f̃h occurs in f̃ (i.e. f̃ = f̃a

[
f̃h

]
h

f̃b)

•
〈
A∅; f̃

〉
−→∗ 〈A; ·〉 and

〈
A∅; f̃h, end h

〉
−→∗ 〈Ah; ·〉

then Ah ⊆ A.

To help prove the next lemma we would need the notion of the canonical expansion trace of a header,
h, the consistency of two traces and the notion of a distance of a trace with respect to a header. We define
these below:

Definition 3.7 (Canonical trace for a header, Ch) If F ` 〈·; ·;∆;F(h), end h〉 −→∗
〈
f̃h; Ih;∆h; end h

〉
then we call f̃h the the canonical trace, denoted by Ch, for a header h.

Definition 3.8 (Consistency of traces) We call a trace, f̃1, as being consistent with f̃2, iff

• f̃1 = f̃2, or

• f̃1 = (f̃1a, nullimport h, f̃1b) and f̃2 = (f̃2a, import h, f̃h, end h, f̃2b), where f̃1a is consistent with f̃2a

and f̃1b is consistent with f̃2b.

Note that the definition of consistency is asymmetric. Also consistency is a transitive relation. In other
words, if f̃x is consistent with f̃y and f̃y is consistent with f̃z then f̃x is consistent with f̃z. The following is
a trivial consequence of the above definition:

Corollary 3.9 If f̃1 is consistent with f̃2 for a strictly well formed f̃2 and
[
f̃h,2

]
h
∈ f̃2 and ∃f̃h,1 consistent

with f̃h,2 then f̃1

[
nullimport h 7→

[
f̃h,1

]
h

]
is consistent with f̃2, where the substitution is done for the first

occurrence.

[Rule 3] allows us to relate the consistency of two preprocessings as follows:

Lemma 3.10 If

• F ` 〈·; ·;∆0; f1〉 −→∗
〈
f̃x, import h; Ix;∆x; fx

〉
−→∗

〈
f̃x, f̃y, end h; Iy;∆y; fy

〉
• F ` 〈·; ·;∆0; f2〉 −→∗

〈
f̃a, import h; Ia;∆a; fa

〉
−→∗

〈
f̃a, f̃b, end h; Ib;∆b; fb

〉
• Ia ⊆ Ix

• ∆0;F ` R3(f1) (which implies f̃x ⊗ f̃y)

• (m,h′) ∈ AUy =⇒ (m,h′′) 6∈ ACa

9

then f̃y is consistent with f̃b.

Proof Our proof strategy is as follows: We imagine different filesystems, {F1,F2 . . .}, from the one that we
have at hand. This set of filesystems is not arbitrarily different but match up with the given filesystem, F ,
as specified later. Ft is such that it takes exactly t steps to reduce h in the fragment f1 and these are exactly
the first t steps taken under F . It might be the case that the first t steps under F might leave some headers
hanging with just imports having been seen without their corresponding ends. For these we simply add as
many ends, in the right order, as required, without counting them in t. Also, ∀i . ∀h ∈ Ix . F(h) = Fi(h).

(3.10) By induction on the number of steps in the expansion of h. The base case, n = 1, corresponds to the
header being empty and the expansion of h going to end h in one step. Then the lemma holds trivially.

We first make a simple observation which we use in the induction step:

Observation 3.11 If f̃1 is consistent with f̃ ′1 and f̃2 is consistent with f̃ ′2, then f̃1, f̃2 is consistent
with f̃ ′1, f̃

′
2.

For the inductive case, assume that the filesystem is such that the header, h, expands in exactly n = k
steps. i.e. the filesystem is Fk. We assume that the lemma holds in that case and show that it
also holds for another filesystem, Fk+1, in which the header expands identically except for one more
statement, s in the end. Formally, we have the following induction hypothesis:

Fk ` 〈·; ·;∆0; f1〉 −→∗
〈
f̃x, import h; Ix;∆x; fx

〉
−→k

〈
f̃x, f̃y, end h; Iy;∆y; fy

〉
Fk ` 〈·; ·;∆0; f2〉 −→∗

〈
f̃a, import h; Ia;∆a; fa

〉
−→∗

〈
f̃a, f̃b, end h; Ib;∆b; fb

〉
And the induction step is:

Fk+1 ` 〈·; ·;∆0; f1〉 −→∗
〈
f̃x, import h; Ix;∆x; fx

〉
−→k+1

〈
f̃x, f̃y, s, end h; I ′y;∆′

y; fy

〉
Fk+1 ` 〈·; ·;∆0; f2〉 −→∗

〈
f̃a, import h; Ia;∆a; fa

〉
−→∗

〈
f̃a, f̃b, f̃s, end h; I ′b;∆′

b; fb

〉
The invariants that we maintain during the induction step are the following:

(a) f̃y is consistent with f̃b

(b) Ib ⊆ Iy

(c) first-end(·) is identical in both traces

Notice that we are inducting on the the number of steps taken in the reduction for f1. Also, the steps
in the initial part of the reduction need to be identical. We now consider cases the extra s and show
that the lemma holds in each case:

– s ∈ {extern, let, type, lettype, end}: n = k + 1 trivial from n = k.

– s ∈ {def, undef}: We argue for the case of s = def m. The argument for undef m is identical.
From the induction hypothesis we know that f̃y is consistent with f̃b and therefore it is still the
case that f̃y, def m is consistent with f̃b, def m for reduction under Fk+1. In this case f̃s = s,
I ′b = Ib and I ′y = Iy and therefore the lemma holds for n = k + 1.

– s = ifdef m±: We again assume that the lemma holds for k reduction steps and we append a
ifdef m± to the end. We have to ensure that the sign on the statement is the same in both
reductions. From the last assumption in the lemma we know that m 6∈ ACa . Also by the fact
that f̃x ⊗ f̃y we know that either m 6∈ ACx. m might have been changed in f̃y, but we know that
each statement in s ∈ f̃x =⇒ s ∈ f̃b and therefore the sign on the macro is the same in both
reductions. Therefore, f̃s = s for this case and I ′b = Ib and I ′y = Iy and therefore the lemma
holds for n = k + 1.

10

– s = nullimport h′: This can happen only if h′ ∈ Iy. Then there are two cases:

∗ h′ ∈ Ib: Then in both reductions [Import-Empty] is applied and f̃s = s. Also, I ′b = Ib and
I ′y = Iy and therefore the lemma holds for n = k + 1.

∗ h′ 6∈ Ib: In this case nullimport h′ goes to f̃y while the header is expanded in f̃b. f̃s =[
f̃h′

]
h′

which implies that s is consistent with f̃s. And therefore by Observation 3.11, f̃y, s

is consistent with f̃b, f̃s. Let H = {h′} ∪
{

h′′
∣∣∣[f̃h′′

]
h′′
∈ f̃h′

}
, then I ′b = Ib ∪ H. By the

assumptions f̃x ⊗ f̃y and the last assumption in the lemma we know that ∀h′′ ∈ H . h′′ ∈ Ix

and therefore Ib ⊆ Iy =⇒ I ′b ⊆ I ′y.
– s = import h′: This happens when h′ 6∈ Iy (and consequently, Ib ⊆ Iy =⇒ h′ 6∈ Ib) then in

both cases [Import] is applied. And therefore f̃s = s and I ′b = Ib ∪ {h′} and I ′y = Iy ∪ {h′} and
therefore the lemma holds for n = k + 1. Notice that h′ 6∈ Iy =⇒ h′ 6∈ Ix and therefore this is
the first time h′ is being expanded and therefore by inducting inside of it we are not making it
any more difficult to find subsequent Fj ’s (j > k + 1) for which the initial reductions would be
identical. 2

We define the notation
〈
h

∣∣∣nullimport h ∈ f̃
〉

to mean the ordered set of header names where the ordering

is defined based on left to right appearance of the nullimport statements in f̃ . Let f̃ be a well formed trace
and let

[
f̃hi

]
hi

be the unique expansion of hi in f̃ . Let us construct a nullorder tree from a starting set of

ordered header names, H, under a given trace, f̃ , as follows. We give two definitions, both of which work:

• Make a root and make the elements in H the ordered children of the root. Then apply the following
operation repeatedly. For occurrences of hi that do not already have children, add the ordered set〈

h′
∣∣∣∣nullimport h′ ∈

[
f̃hi

]
hi

〉
as the ordered children of that node.

• Make a root and make the elements in H the ordered children of the root. Then apply the following
operation repeatedly until you reach a fixpoint tree. In the preorder traversal of the current tree, find
the occurrence of hi, which appears before any other hi in the order traversal and if the node does not

already have children, then add the ordered set
〈

h′
∣∣∣∣nullimport h′ ∈

[
f̃hi

]
hi

〉
as the ordered children

of that node.

The first definition creates an infinite tree over a finite set of node names and is easy to understand. The
second creates a finite tree but is more complicated to evaluate. We now define two functions:

closef̃ (H) =
preorder traversal, ignoring duplicates and
the root, of nullorder tree for H under f̃

(3.1)

collapseH

(
f̃
)

= ∀h∈H , [f̃h]
h
∈f̃ . f̃

[[
f̃h

]
h
7→ nullimport h

]
(3.2)

The above definition allows us to state the following corollaries. Notice that in Corollary 3.13 below, we are
stating that even though it might be the case that Ia 6⊆ Ix, but if Ia ⊆ Ix∪H, for some H, then a statement
can be made about consistency.

Observation 3.12 If f̃ , f̃ ′ are traces and Hx is a set such that ∀h ∈ Hx .
[
f̃h

]
h
6∈ f̃ then

collapseH∪Hx

(
f̃
)

is consistent with f̃ ′ =⇒ collapseH

(
f̃
)

is consistent with f̃ ′

Corollary 3.13 If there exist fragments f1 and f2 which expand as in Lemma 3.10 and Ia ⊆ Ix ∪ H for
some H and ∆0;F ` R3(f1) and for each h ∈ H the expansion of h in f̃1,

[
f̃h

]
h
, satisfies f̃h ⊗ f̃y then

collapseH

(
f̃y

)
is consistent with f̃b.

11

Proof The proof is almost identical to that of Lemma 3.10. The induction step now becomes:

collapseH

(
f̃y

)
is consistent with f̃b

Ib ⊆ Iy ∪H
should imply

collapseH

(
f̃y, s

)
is consistent with f̃b, f̃s

I ′b ⊆ I ′y ∪H

The only cases of significance are of s = {nullimport h′, import h′}:

• s = nullimport h′: This can happen only if h′ ∈ Iy. Then there are two cases:

– h′ ∈ Ib: Then in both reductions [Import-Empty] is applied and f̃s = s. Also, I ′b = Ib and
I ′y = Iy and therefore the lemma holds for n = k + 1.

– h′ 6∈ Ib: In this case nullimport h′ goes to f̃y while the header is expanded in f̃b. f̃s =
[
f̃h′

]
h′

which

implies that s is consistent with f̃s. And therefore by Observation 3.11, f̃y, s is consistent with
f̃b, f̃s. I ′b = Ib ∪ {h′} but in this case we know that h′ ∈ Iy and therefore Ib ⊆ Iy =⇒ I ′b ⊆ I ′y.

• s = import h′: This happens when h′ 6∈ Iy

– h′ 6∈ H: Ib ⊆ Iy ∪H =⇒ h′ 6∈ Ib. Then in both reductions [Import] is applied. And therefore
f̃s = s and I ′b = Ib ∪ {h′} and I ′y = Iy ∪ {h′} and therefore the lemma holds for n = k + 1.

– h′ ∈ H: The two cases here are h′ ∈ Ib and h′ 6∈ Ib. In the case of h′ ∈ Ib, [Import-Empty] is ap-
plied and nullimport h′ is appended to trace f̃b. But because h ∈ H, it is the case that the expansion
appearing in f̃y is compressed to a nullimport h′ by collapse. And therefore collapseH

(
f̃y,

[
f̃ ′′

]
h′

)
is consistent with f̃b, nullimport h′. On the other hand if h′ 6∈ Ib, then [Import] is applied in both
preprocessings and the argument reduces as for the case of h′ 6∈ H.

Notice that h′ 6∈ Iy =⇒ h′ 6∈ Ix and therefore this is the first time h′ is being expanded and therefore
by inducting inside of it we are not making it any more difficult to find subsequent Fj ’s (j > k + 1)
for which the initial reductions would be identical. 2

In the following, for an ordered set H and a header name h we define the restriction, H|<h, to be another
ordered set constructed from the elements of H that appear strictly before h in H, with their order preserved.

Definition 3.14 (f̃ is h–nice) Let
[
f̃h

]
h
∈ f̃ be the expansion of h in f̃ . Then we call f̃ , h–nice if:

3.14a f̃h is consistent with Ch and

3.14b Let

H =
〈
h′

∣∣∣nullimport h′ ∈ f̃h

〉
(3.3)

U∗ = closef̃ (H) \
{

h′
∣∣∣import h′ ∈ f̃h

}
(3.4)

∀h′ ∈ U∗ H∗
h′ = U∗|<h′ ;

[
f̃h′,1

]
h′
∈ f̃ ;

[
f̃h′,2

]
h′
∈ Ch (3.5)

then ∀h′ ∈ U∗ . collapseH∗
h′

(
f̃h′,1

)
is consistent with f̃h′,2

Statement 3.14b can be understood better by rephrasing as follows: For all unmatched hk ∈ f̃h it is the
case that the collapse of its expansion under H∗

k (which is the closure of the set of unmatched headers before
hk in f̃h) yields a trace consistent with hk’s expansion in Ch. We start our investigation of the relation of
�h with that of traces being h–nice by making a simple observation:

12

Observation 3.15 If we discount the headers inside the expansion of h then an application of �h is order
preserving with respect to the nullorder tree.

Proof If f̃1 �h f̃2 and let
[
f̃h,1

]
h
∈ f̃1 and

[
f̃h,2

]
h
∈ f̃2 and by Eq. 3.3 let us defined H1 and H2 using

f̃h,1 and f̃h,2, respectively. Also let Xh,1 and Xh,2 be the header names as defined by the second term in
Eq. 3.4 using f̃h,1 and f̃h,2, respectively. Then the observation is saying that discounting headers in Xh,1

(respectively, Xh,2) the nullorder trees constructed using H1 and H2 have the same preorder traversals.
To see this let us look at the effect of an application of �h on the nullorder tree. There are two operations:

(a) A nullimport h′ is replaced with expansion outside of h. This operation can easily be seen to be
equivalent to replacing a child of the root with its children. And the replaced node is in Xh,2 and so
this operation does not have any effect on the preorder traversal.

(b) A nullimport h′ is moved to a location outside of h. This case is a little trickier to visualize, but is

much easier said with an example: Consider
[
. . .

[
. . .

[
f̃h′

]
h′

. . .
]
h′′

. . .

]
h′′′

. . .
[
. . . nullimport h′ . . .

]
h

and

suppose that h′′ and h′′′ are in the nullorder tree. In this case, notice that any nullimports that are
inside f̃h′ are children of both h′′ and h′′′. Replacing

[
f̃h′

]
h′

with nullimport h′ causes those children

to not be there anymore. But (!) notice that because nullimport h′ is now a child of h′′ and h′′′, those
children are now their grandchildren. And again, since h′ is in Xh,2 and hence discounted, we again
have that the preorder traversal is preserved.

Notice that these two are the only operations affecting the tree. The specific definition of the tree causes
other considerations to be abstracted out. For instance, it might be the case that ∃x .

[
f̃x

]
x
∈ f̃h′ . The fact

that it is moved along with
[
f̃h′

]
h′

does not affect the subtrees rooted at x, because f̃x and the nullimport x’s
are unchanged. 2

Lemma 3.16 If f̃1 �h f̃2 then f̃1 is h–nice =⇒ f̃2 is h–nice.

Proof We have to prove that both 3.14a and 3.14b from Definition 3.14 hold after the application of �h.

3.14a From [Transfer Function] we know that f̃1 has to be such that
[
f̃h

]
h
∈ f̃1 where f̃h =

f̃3, nullimport h′, f̃4 with the condition that nullimport h′′ ∈ f̃3 =⇒ import h′′ ∈ f̃3. For h′, Eq. (3.5)
in Definition 3.14b defines H∗

h′ and our intention is to show that H∗
h′ = ∅. Suppose ∃h′′′ ∈ H∗

h′ . Then from
the subtraction of imports in Eq. (3.4) we know that import h′′′ 6∈ f̃3, f̃4. Since nullimport h′ ∈ f̃h it implies
that h′ ∈ H in Eq. (3.3). Then from the construction of the nullorder tree and the definition of restriction
we know that if h′ is a child of the root and there is an h′′′ before it in U∗ then ∃h′′′′.nullimport h′′′′ ∈ f̃3 such
that h′′′′ is an ancestor of h′′′ and a left sibling of h′. But by the precondition in [Transfer Function] this
implies that import h′′′′ ∈ f̃3. If import h′′′′ ∈ f̃3 then all its children in the nullorder tree have to be such
that nullimports are in f̃h. And then we identically argue to say that its children have to have their imports
in f̃h and so on till we arrive at h′′′ and at a contradiction. Therefore H∗

h′ = ∅. This argument proves that
h′ is the first element in U∗ for which nullimport h′ ∈ f̃h 6=⇒ import h′ ∈ f̃h.

Let
[
f̃h′

]
h′
∈ f̃1 be the expansion of h′ in f̃1 and

[
f̃ ′h′

]
h′

be the expansion of h′ in Ch. Then a simple

observation of Eq. (3.2) with H∗
h′ = ∅ indicates that collapseH∗

h′

(
f̃h′

)
≡ f̃h′ (i.e. identity). f̃1 is h–nice

requires that collapseH∗
h′

(
f̃h′

)
be consistent with f̃ ′h′ and therefore f̃h′ is consistent f̃ ′h′ . Therefore, by

[Transfer Function] and Corollary 3.9 we know that f̃3

[
f̃h′

]
h′

f̃4 is consistent with Ch.

13

3.14b Let h′ be the header being manipulated as in the proof of 3.14a, i.e., let
[
f̃h′

]
h′
∈ f̃1 be the expansion

of h′ in f̃1 which is swapped with nullimport h′. Let U∗
f̃1

and U∗
f̃2

be the computation of Eq. (3.4) for f̃1

and f̃2, respectively. An immediate consequence of Observation 3.15 is that U∗
f̃1
⊇ U∗

f̃2
. This implies that in

Eq. (3.5) the universal quantification if over the same set of header names. Therefore we only need to show
that ∀h′′ ∈ U∗

f̃1
, the statement of 3.14b holds after the application of �h. The transfer function makes two

changes to the trace, one of moving the nullimport h′ outside and another of moving
[
f̃h′

]
h′

inside of
[
f̃h

]
h
.

We have to reason about each in turn.
There are two cases to consider with regard to the nullimport h′ that is moved outside:

(a) ∃h′′ . h′′ ∈ U∗
f̃1
∧

[
f̃h′

]
h′
∈

[
f̃h′′

]
h′′

: The occurrence of the
[
f̃h′

]
h′

in f̃h′′ is replaced with a nullimport h′

and condition 3.14b on f̃1, specifically that collapseH∗
h′′

(
f̃h′′

)
is consistent with h′′s expansion in Ch,

ensures that after the substitution f̃h′′ remains consistent with the corresponding expansion in Ch.
This observation along with U∗

f̃1
⊇ U∗

f̃2
guarantees that the substitution with nullimport h′ cannot

violate consistency.

(b) otherwise: The nullimport h′ is placed at the toplevel in f̃1 or in some
[
f̃h′′

]
h′′

, where h′′ 6∈ U∗
f̃1

, and
therefore no header expansion of concern is affected.

We now reason about the effects of moving
[
f̃h′

]
h′

inside of
[
f̃h

]
h
. Because of the just observed effect

of the moving the nullimport h′ outside, we reason that ∀h′′ ∈ U∗
f̃1

(⊇ U∗
f̃2

) unless the corresponding H∗
h′′

diminishes, collapseH∗
h′′

([
f̃h′′

]
h′′

)
will remain consistent with the application of �h. Therefore the only case

to consider is if for some h′′ the corresponding H∗
h′′ diminishes. Let H∗

h′′,1,H
∗
h′′,2 be the values of the sets

before and after the application of the transfer function. We show later that H∗
h′′,1 \H∗

h′′,2 ⊆ Hnew where

Hnew =
{

hx

∣∣∣∣[f̃hx

]
hx

∈
[
f̃h′

]
h′

}
∪ {h′}, where we recall that

[
f̃h′

]
h′

is the subtrace being swapped in the

application of rule [Transfer Function]. We now show that H∗
h′′,1 \H∗

h′′,2 ⊆ Hnew completes the proof
of consistency for each h′′. Each h′′ can fall into one of two categories (depending on the structure of its
expansion

[
f̃ ′′

]
h′′

):

(a)
[
f̃h′

]
h′
∈

[
f̃ ′′

]
h′′
∈ f̃1: (This h′′ is the unique ‘container’ of h′ in f̃1) The application of �h replaces[

f̃h′

]
h′

with nullimport h′ and we know by f̃1 being h–nice that collapseH∗
h′′,1

([
f̃ ′′

]
h′′

)
is consistent with

the expansion of h′′ in Ch. We are concerned about showing that collapseH∗
h′′,2

([
f̃ ′′′

]
h′′

)
is consistent

with the expansion of h′′ in Ch as well. Here f̃ ′′′ = f̃ ′′
[[

f̃h′

]
h′
7→ nullimport h′

]
. Let Hextr be the

set of header names whose expansions were extracted from the f̃ ′′ by the application of �h. Suppose
it were the case that the difference, H∗

h′′,1 \ H∗
h′′,2, was such that it was entirely contained in Hextr.

Then we would know that the collapse under H∗
h′′,1 of f̃ ′′ would be the same as collapsing under H∗

h′′,2

of f̃ ′′′, because the additional headers that were collapsed under H∗
h′′,1 are all part of Hextr and thus

their expansion is not in f̃ ′′′. But Hnew, by definition, is the set of headers whose expansion has been
moved out of f̃h′′ , and thus equal to Hextr. Also, we know that H∗

h′′,1 \H∗
h′′,2 ⊆ Hnew.

(b) otherwise i.e.
[
f̃h′

]
h′
6∈

[
f̃ ′′

]
h′′

: (nullimport h′ ∈ f̃ ′′ is possible) Such a h′′ cannot contain the expansion

of any h′′′ ∈ Hnew because the unique expansion of h′′′ is in f̃h′ . And since H∗
h′′,1 \H∗

h′′,2 ⊆ Hnew it is

trivially the case that if collapseH∗
h′′,1

(
f̃ ′′

)
was consistent then collapseH∗

h′′,2

(
f̃ ′′

)
is consistent.

14

Subproof for H∗
h′′,1 \H∗

h′′,2 ⊆ Hnew We forget the restriction for the time being and from Eq. (3.4) and

(3.5) observe that U∗
f̃1
\ U∗

f̃2
is of the form (C1 \ I1) \ (C2 \ I2), where Ci and Ii are the terms closef̃i

(
Hf̃i

)
and

{
h′

∣∣∣import h′ ∈ f̃h,i;
[
f̃h,i

]
h
∈ f̃i

}
, respectively. With de-morgans law and distributing the intersection

we can see it as ((C1 \C2) \ I1)∪ ((I2 \ I1)∩C1)). Therefore U∗
f̃1
\U∗

f̃2
⊆ (C1 \C2)∪ (I2 \ I1) and if we show

subsumption by Hnew and argue about the restriction then we will be done. We examine the two differences
in turn.

We start by examining the term corresponding to I2 \ I1 and show that I2 \ I1 ∈ Hnew. I2 \ I1 is the
number of import statements added to

[
f̃h

]
h
. Then it is trivially true that all the added imports are due to

the ones in
[
f̃h′

]
h′

. But this is exactly the set Hnew.

Now we examine the term corresponding to C1 \C2 and show that C1 \C2 ∈ Hnew. But the difference is
at most the header, h′, being swapped, i.e. closef̃1

(
Hf̃1

)
\ closef̃2

(
Hf̃2

)
⊆ {h′}. This can easily be inferred

from the observations on what an application of �h means in terms of the nullorder tree in the proof of the
previous lemma. Therefore again, C1 \ C2 is contained in Hnew.

Lastly, observe that if we discount consideration of headers that were deleted, �h is order preserving. In
other words, if h1 and h2 appear in both U∗

f̃1
and U∗

f̃2
then they appear in the same order in both. This is

formally proved in Observation 3.15. This is easy to see using the argument above about what an application
of �h means in terms of the nullorder tree. It is then trivial to observe that for any h′′ that appears in both
U∗

f̃1
and U∗

f̃2
, if U∗

f̃1
\ U∗

f̃2
⊆ Hnew then U∗

f̃1
|<h′′ \ U∗

f̃2
|<h′′ ⊆ Hnew. 2

In the proof of the following we will use the notion of a statement s̃ ∈ f̃ corresponding to another statement
s ∈ F(h) for some particular h which is expanded in f̃ . Since each h has a unique expansion, s ∈ F(h) is
either preprocessed in a unique location or is not preprocessed at all. In case it is preprocessed then the
unique location where that happens, s̃, is the place that corresponds to s. Thus, a set of statements that are
preprocessed are in one to one correspondence with statements in the trace.

Another notion that we will employ is that of a statement being reachable from a particular portion of a
trace by which we mean the following: Suppose there is a trace f̃ = f̃a, f̃b then statement s ∈ f̃ is reachable
from f̃b if s ∈ f̃b or if there exists nullimport h ∈ f̃b such that if we go to

[
f̃h

]
h
∈ f̃ and then examine f̃h and

keep doing this iteratively then we will reach s. Notice that
[
f̃h

]
h

necessarily occurs before nullimport h in
the trace and therefore we always traverse towards the front of the trace.

Lemma 3.17 If ∆0;F ` R3(f) and there are fragment reductions as follows:

F ` 〈·; ·;∆0; f〉 −→∗
〈
f̃x

[
f̃h

]
h

f̃y; If̃ ;∆; ·
〉

(3.6)

F ` 〈·; ·;∆0; f〉 −→∗
〈
f̃ ′, import h′; If̃ ,h′ ;∆′; f ′

〉
−→∗

〈
f̃ ′

[
f̃h′

]
h′

; I ′
f̃ ,h′ ;∆

′
2; f

′
2

〉
(3.7)

F ` 〈·; ·;∆0;F(h), end h〉 −→∗
〈
f̃Ch

, import h′; ICh,h′ ;∆′′; f ′′
〉

(3.8)

Let f̃ = f̃x

[
f̃h

]
h

f̃y and let H∗
h′ be as defined by Eq. 3.5 in Definition 3.14b, i.e.:

H =
〈
h′

∣∣∣nullimport h′ ∈ f̃h

〉
U∗ = closef̃ (H) \

{
h′

∣∣∣import h′ ∈ f̃h

}
H∗

h′ = U∗|<h′

then ICh,h′ ⊆ H∗
h′ ∪ If̃ ,h′ ∪Hx, for some Hx such that ∀x ∈ Hx .

[
f̃x

]
x
6∈

[
f̃h′

]
h′

.

15

Proof By the arguments made in previous lemma we know that under ∆0;F ` R3(f) and h ∈ If̃ it is the
case that each statement preprocessed in Ch is also preprocessed in f̃ . Then let us start by examining the
cases for the relative positioning of import h′ (Eq. (3.7)) with respect to f̃x, f̃h and f̃y (Eq. (3.6)), which
we can do because they both occur in the same preprocessing: (a) import h′ ∈ f̃x: possible but to avoid
recursion (import h′ is seen inside of f̃h since it is seen inside of Ch), we need it to close before h starts. (b)
import h′ ∈ f̃h: certainly possible, but means that it would have to close inside as well. (c) import h′ ∈ f̃y:
Not possible because the import h′ inside of f̃h is seen and therefore this situation would violate strict well
formedness. Therefore the possible structures for f̃ are:

(a)

f̃x︷ ︸︸ ︷
f̃p

[
f̃h′

]
h′

f̃q

[f̃h]
h︷ ︸︸ ︷[

f̃r, nullimport h′ . . .
]
h

f̃y: In this case we need to argue that if h′′ ∈ ICh,h′ then h′′ ∈

If̃ ,h′∪H∗
h′∪Hx. h′′ ∈ ICh,h′ implies that import h′′ ∈ f̃Ch

which means that the corresponding import h′′

is reached before import h′ is preprocessed. The import h′ statement reduces to the nullimport h′ as
shown and therefore import h′′ is reduced in the production of the trace before nullimport h′, i.e. in(
f̃pf̃h′ f̃q f̃r

)
. Also, import h′′ has to be reachable from f̃r because import h′′ ∈ f̃Ch

.

Since h′′ is preprocessed before nullimport h′, we now worry about which particular trace it appears
in. If it appears in f̃p then h′′ ∈ If̃ ,h′ (and also Hx), and we are done. If it appears in f̃q or f̃r

then h′′ ∈ Hx and we are done. The last case is of it appearing in f̃h′ . As seen at the end of
the last paragraph, import h′′ is reachable from f̃r because import h′′ ∈ f̃Ch

. But for h′′ to appear
strictly before nullimport h′′ it has to be the case that a nullimport h′′ is reachable from f̃r. There-
fore, h′′ ∈ H∗

h′ . To better see the last argument, it can be easily seen that a structure of the form[
. . .

[
. . .

]
h′′

. . .
]
h′

f̃ ′q

[
f̃ ′r, nullimport h′ . . .

]
h
, where f̃ ′q and f̃ ′r do not contain a reference to h′′ cannot

lead to h′′ being reachable from f̃ ′r.

(b) f̃x

[f̃h]
h︷ ︸︸ ︷[

. . .
[
f̃h′

]
h′

. . .
]
h

f̃y: Since all import h′ statements seen in Ch are also seen in f̃h. Therefore if[
f̃h′

]
h′
∈ f̃h then it has to be the case that it is the expansion of the first import h′, which was expactly

the one that expanded in Ch. So the expansion of h′ is at exactly the location as it was in Ch and
therefore it will follow that ICh,h′ ⊆ If̃ ,h′ . We have inclusion instead of equality because the set of
includes seen might not be empty at the end of preprocessing for f̃x.

2

Lemma 3.18 If F ` 〈·; ·;∆0; f〉 −→∗
〈
f̃; I;∆; ·

〉
and ∆0;F ` R3(f) then ∀h ∈ I . f̃ is h–nice.

Proof There are two conditions for f̃ to be h–nice. We prove each in turn:

3.14a Let f1 = f and f2 = F(h), end h. Refering back to Lemma 3.10, Ia = ∅, f̃a = · and by h ∈ I we
have that Ix is well defined and hence vacuously, Ia ⊆ Ix. Also, ∆0;F ` R3(f1) holds by assumption and
the last assumption is trivially satisfied by the fact that f̃a = ·. Therefore the consequence, f̃h is consistent
with Ch, in Eq. (3.10), holds.

3.14b For a given h ∈ I, we consider an arbitrary h′ ∈ U∗ as defined in Eq. (3.5). Let us use ICh
and If̃

to indicate the includes that were seen upto the point of encountering the first import h′ in the respective
preprocessings. And let

[
f̃1

]
h′
∈ f̃ and

[
f̃2

]
h′
∈ Ch be the expansions of h′ is the traces as indicated.

16

Formally,

F ` 〈·; ·;∆0; f〉 −→∗
〈
f̃a, import h′; If̃ ;∆a; fa

〉
−→∗

〈
f̃a,

[
f̃1

]
h′

; Ib;∆b; fb

〉
F ` 〈·; ·;∆0;F(h), end h〉 −→∗

〈
f̃x, import h′; ICh

;∆x; fx

〉
−→∗

〈
f̃x,

[
f̃2

]
h′

; Iy;∆y; fy

〉
We cannot directly ensure that ICh

⊆ If̃ (which is the Ia ⊆ Ix condition that we need for Eq.(3.10)). But if
we let H∗

h′ be the include names ahead of h′ and let Hx be an arbitrary set of headers names whose expansion
does not appear in f̃1, both as defined in Eq. (3.5) and exactly as in Lemma 3.17, then the lemma states
that ICh

⊆ H∗
h′ ∪ If̃ ∪Hx. Also, ∆0;F ` R3(f1) holds by assumption. By the fact that h′ ∈ U∗, we know

that the expansion of h′ appears before the expansion of h in f̃ and ∆0;F ` R3

(
f̃
)

ensure that all changes
in the expansion of h are disjoint from the uses in the expansion of h′. And therefore the last assumption
holds. Therefore, by Corollary 3.13, collapseH∗

h′∪Hx

(
f̃1

)
is consistent with f̃2. And by the definition of Hx

and Corollary 3.12 we get that collapseH∗
h′

(
f̃1

)
is consistent with f̃2. 2

Definition 3.19 (Distance of f̃ from h) Let U∗ be as defined by Eq. (3.4) in Definition 3.14. Then the
import distance, δh

(
f̃
)

of a trace f̃ from a header h is

δh

(
f̃
)

=

{
|U∗| import h ∈ f̃ ,

0 otherwise
(3.9)

Lemma 3.20 If f̃1 �h f̃2 and δh

(
f̃1

)
= d then δh

(
f̃2

)
≤ d− 1.

Proof Trivial by observation on the definitions of the distance function (Eq. (3.9)) and that of U∗ (Eq. (3.4))
and the operation performed by �h. 2

Lemma 3.21 If δh

(
f̃
)
6= 0 then �h can take a step.

Proof Since δh

(
f̃
)
6= 0 implies by definition that there is at least one element in U∗. Suppose h′ be one of

those elements. From the definition of U∗ (Eq. (3.4)) we know that this implies that
[
f̃h′

]
h′
6∈

[
f̃h

]
h
, while

there is some h′′ for which nullimport h′′ ∈ f̃h and which makes nullimport h′ reachable (because that is the
only way h′ can be in closef̃ (H)). If

[
f̃h′′

]
h′′
6∈ U∗ then by the fact that nullimport h′′ ∈ f̃h we know that[

f̃h′′

]
h′′
∈ f̃h. This implies that the nullimport statement for all its children is in f̃h. We can keep repeating

this argument (and coming down the nullorder tree) until we hit h′ or an ancestor, ha, of h′ for which the
nullimport ha is in f̃h and

[
f̃ha

]
ha

is outside. It has to be the case that the expansion for ha is ahead of

f̃h. Therefore we know that there is at least one, if not more, header names which satisfies the structure
requirements in [Transfer Function]. If there are more then there has to be a first for which the rule can
be applied. 2

Lemma 3.22 If import h ∈ f̃ and δh

(
f̃
)

= 0 and f̃ is h–nice then f̃ = f̃a [Ch]h f̃b.

Proof From f̃ is h–nice we know that f̃ = f̃a

[
f̃h

]
h

f̃b where f̃h is consistent with Ch. Then from the

condition for consistency, we know that either f̃h = Ch or ∃h′ such that f̃h = f̃1a, nullimport h′, f̃1b and
Ch = f̃2a, import h′, f̃ ′h, end h′, f̃2b, where f̃1a, f̃1b are consistent with f̃2a, f̃2b respectively. We show by
contradiction that the latter cannot happen.

17

Since import h ∈ f̃ , the first case in Eq. (3.9) applies. From δh

(
f̃
)

= 0 and nullimport h′ ∈ f̃h we

infer, from Eq. (3.3) and (3.4), that h′ ∈ H which implies h′ ∈ closef̃ (H) and therefore import h′ ∈ f̃h.
import h′ ∈ f̃h means that one of f̃1a or f̃1b contains import h′. Because of well formedness we know that
there is a unique expansion of h′ and therefore a single occurrence of import h′ in Ch. Therefore f̃2a and f̃2b,
cannot contain an import h; which implies that consistency of the enclosing subtraces is not possible and
hence the contradiction.

2

Lemma 3.23 (Consistent Interpretation) If

• the fragment reduces: F ` 〈·; ·;∆0; f〉 −→∗
〈
f̃; I;∆; ·

〉
and

〈
A∅; f̃

〉
−→∗ 〈A; ·〉

• there is order independence: ∆0;F ` R3(f)

• there exists an import of h in the reduction: import h ∈ f̃

• If fh = F(h), end h and F ` 〈·; ·;∆0; fh〉 −→∗
〈
f̃h; Ih;∆h; ·

〉
and

〈
A∅; f̃h

〉
−→∗ 〈Ah; ·〉

then Ah ⊆ A.

Proof From Lemma 3.18 we know that ∆0;F ` R3(f) then ∀h . import h ∈ f̃ . f̃ is h–nice. Then
by Lemma 3.16 we know that the traces obtained by repeated applications of �h remain h–nice. Suppose
δh

(
f̃
)

= d then by Lemma 3.20 we know that at most d applications suffice to obtain f̃ ′ such that δh

(
f̃ ′

)
=

0. By Lemma 3.22 we know that f̃ ′ = f̃a [Ch]h f̃b. Let
〈
A∅; f̃ ′

〉
−→∗

〈
Af̃ ′ ; ·

〉
, then from Corollary 3.5 we

know that A = Af̃ ′ . Also from Lemma 3.6 we know that Ah ⊆ Af̃ ′(= A) 2

4 Consistent Typing and Type Safe Linking

Given the lemma of consistent interpreation from the previous section, we can now show that if two fragments
satisfy the conditions of [Rule 1] and the commonly-included header is order-independent, then any symbol
exported by one and imported by the other has the same type in both.

Lemma 4.1 (Consistent Typing) Let fragment fe export g and let fragment fi import g, and let both fe

and fi include a common header fragment fh(= F [h]) that declares the variable:

∆;F ` fe ; Ae; Ie, g ∈ AE
e , h ∈ Ie

∆;F ` fi ; Ai; Ii, g ∈ AI
i , h ∈ Ii

∆;F ` fh ; Ah; Ih, g ∈ AD
h

Then if
∆0;F ` fe

comp−→ Oe ∆0;F ` R3(fe)
∆0;F ` fi

comp−→ Oi ∆0;F ` R3(fi)

all hold, then AN
h (g) = AN

e (g) = AN
i (g), i.e., g maps to the same type in each fragment.

Proof By assumption, preprocessing fe and fi will eventually preprocess the statement s = include h. Thus
we have:

F ` 〈◦;A∅;∆; fe〉 −→∗ 〈h1e;A1e;∆1e; (s, f2e)〉
F ` 〈h1e;A1e;∆1e; (s, f2)〉 −→∗ 〈h1e;A2e;∆2e; f2e〉
A2e ⊆ Ae

Then by Lemma 3.23, we have AN
h ⊆ AN

2e. But then since AN
2e ⊆ AN

e , we have
(
g 7→ AN

h (g)
)
∈ AN

e . The
by [Compile], we have ` AN

e , and therefore AN
e (g) = AN

h (g). Similarly we can show that AN
i (g) = AN

h (g),
because fi included the same file. 2

18

Theorem 4.2 (Type-Safe Linking) Suppose ∆0;F ` R(P), and suppose ∆0;F ` P
comp−→ [∅ ⇒ HP : ΨEP].

Also suppose that for any fi, fj ∈ P that are distinct (i 6= j), it is the case that

∆0;F ` fi
comp−→ [ΨIi ⇒ Hi : ΨEi]

∆0;F ` fj
comp−→ [ΨIj ⇒ Hj : ΨEj]

∆0;F ` [ΨIi ⇒ Hi : ΨEi] ◦ [ΨIj ⇒ Hj : ΨEj]
comp−→ Oij

Then
` [ΨIi ⇒ Hi : ΨEi] link [ΨIj ⇒ Hj : ΨEj] ; Oij

Proof By assumption [Link] holds. Observe that the linked file form (Oij) in [Link] is the same as in
[MTAL0-Obj], so we just need to show the hypotheses of this rule. To show [MTAL0-Obj], we first need
to show each object file is well-formed, which follows by Lemma 2.7. The last premise of [MTAL0-Obj],
disjointness of the domains of Hi and Hj , is the same as the premise of [Link], so that also holds. Thus we
only need to show link compatibility, or ` [ΨIi ⇒ Hi : ΨEi]

lc↔ [ΨIj ⇒ Hj : ΨEj]. We show each premise of
[MTAL0-LC] in turn.

• dom (ΨEi) ∩ dom (ΨEj) = ∅. Notice dom (ΨEi) = Ei by [Compile] and Ei ⊆ dom (Hi), which we
observe holds because the rules in Figure 7 and Figure 9 only add symbols to E that are also added
to dom (H) (see rule [Let]). Similarly, dom (ΨEj) = Ej ⊆ dom (Hj). Then since by [Link] we have
dom (Hi) ∩ dom (Hj) = ∅, we have dom (ΨEi) ∩ dom (ΨEj) = ∅.

• ` ΨIi ∼ ΨEj . By assumption, we have ∆0;F ` R(P). Thus by [All], we have in particular

∆0;F ` R1(fi, fj)
∆0;F ` R3(fi) ∆0;F ` R3(fj)

Let Ai and Aj are the accumulators from the preprocessing of fi and fj , respectively. Now consider
some g in dom (ΨIi) ∩ dom (ΨEj). Then we have g ∈ AI

i and g ∈ AE
j . Further, by [Rule 1] we

have ∆0;F ` g
decl←− Ii ∩ Ij . Then by [Sym-Decl] there exists some h ∈ Ii ∩ Ij such that ∆;F `

F(h) ; A; Ih and g ∈ AD. Then we can apply Lemma 4.1 to yield AN
i (g) = AN

j (g). But then we
have ΨIi(g) = ΨEj(g) by [Compile], and therefore ` ΨIi ∼ ΨEj holds.

• ` ΨIj ∼ ΨEi. Symmetric argument to the previous case.

• ` ΨIi ∼ ΨIj . Let us consider some g ∈ dom (ΨIi) ∩ dom (ΨIj). Then we assume that ∃fk ∈ P s.t.
∆0;F ` fk

comp−→ [ΨIk ⇒ Hk : ΨEk] and g ∈ Ek, i.e., we assume that some fragment exports the symbol
g, because we assumed the fully-compiled program had no unresolved symbols. Then by the same
argument as the previous two cases we can conclude ` ΨIi ∼ ΨEk and ` ΨIj ∼ ΨEk, since the Cmod
rules hold for the whole program. Then we have ΨEk(g) = ΨIi(g) and ΨEk(g) = ΨIj(g), and therefore
ΨIi(g) = ΨIj(g).

2

5 Information Hiding

First, we can prove that any symbol not in a header file is never imported, and thus is private.

Theorem 5.1 (Global Variable Hiding) Suppose ∆0;F ` R(P), suppose ∆0;F ` P
comp−→ [∅ ⇒ HP : ΨEP],

and suppose for all fi ∈ P we have ∆;F ` fi ; Afi; Ii, and for all hj ∈
⋃

i Ii that ∆;F ` F(hj) ; Ahj.
Then for all fi ∈ P, g 6∈

⋃
j AD

hj implies g 6∈ ΨIi where ∆0;F ` fi
comp−→ [ΨIi ⇒ Hi : ΨEi].

This theorem says that if P obeys the Cmod rules and includes headers hj , then any symbol g that is not
in AD

hj for any j (i.e., is not declared in any header file) is never imported.
For type names, we can prove a related property: any type name owned by a source fragment (a code

file) has no concrete type in any other fragment.

19

Theorem 5.2 (Type Definition Hiding) Suppose ∆0;F ` R(P), and for some fi ∈ P we have ∆;F `
fi ; Ai; Ii. Further suppose that (t 7→ τ◦) ∈ AT

i . Then for any fragment fj ∈ P such that fi 6= fj and
∆;F ` fj ; Aj, we have t 6∈ dom

(
AT

j

)
. Additionally, if (t 7→ τh) ∈ AT

i , then h ∈ Ii.

This theorem says that if P obeys the Cmod rules and contains fragment fi, then any type t owned by fi

is not owned by any other fragments fj 6= fi. Additionally, if a type is defined in a header then a fragment
only sees the definition if it includes the header. Together, Theorems 5.1 and 5.2 give us information hiding.

References

[1] N. Glew and G. Morrisett. Type-safe linking and modular assembly language. In POPL, 1999.

[2] S. Srivastava, M. Hicks, J. S. Foster, and P. Jenkins. Modular information hiding and type safety for C,
June 2007. Submitted to IEEE Transactions on Software Engineering. Full version of TLDI 07 paper.
Available at http://www.cs.umd.edu/~mwh/papers/cmod-journal.pdf.

20

