CMmoOD: Modular Information Hiding and Type-Safe Linking for C*

Saurabh Srivastava, Michael Hicks, Jeffrey S. Foster
{saurabhs,mwh,jfoster }@cs.umd.edu

Contents
1 Introduction 2
2 Motivation and Informal Development 3
2.1 Basic Modulesin C e 3
2.2 Header Files as Interfaces e 4
2.3 Preprocessing and Header Files 5
3 Formal Development 7
3.1 Preprocessor Semantics e e 8
3.2 CMOD Rules e e 10
3.3 Compilation and Linking L e 11
3.4 Formal Properties e 12
3.5 Handling Full C. e 14
4 Implementation 14
5 Experiments 15
5.1 Rule Violations e e e 16
5.2 Property Violations. L e 17
5.3 Examples of Suspect Coding Practices L Lo 18
5.4 Required Changes and Performance 18
6 Related Work 20
7 Conclusions 21
A Soundness 22

Abstract

This paper presents CMOD, a novel tool that provides a sound module system for C. CMOD works by
enforcing a set of four rules that are based on principles of modular reasoning and on current programming
practice. CMOD’s rules flesh out the convention that .h header files are module interfaces and .c source
files are module implementations. Although this convention is well-known, developing CMOD’s rules
revealed there are many subtleties in applying the basic pattern correctly. We have proven formally that
CMOD’s rules enforce both information hiding and type-safe linking. We evaluated CMOD on a number of
benchmarks, and found that most programs obey CMOD’s rules, or can be made to with minimal effort,
while rule violations reveal brittle coding practices including numerous information hiding violations and
occasional type errors.

*UMD, Tech Report CS-4816

1 Introduction

Module systems allow large programs to be constructed from smaller, potentially reusable components. The
hallmark of a good module system is support for information hiding, which allows components to conceal
internal structure, while still enforcing type safety across components. This combination allows modules to
be safely written and reasoned about in isolation, enhancing the reliability of software [29].

While many modern languages define full-featured module systems (such as ML [3, 20], Haskell [14],
Ada [1], and Modula-3 [10]), the C programming language—still the most common language for operat-
ing systems, network servers, and other critical infrastructure—lacks direct support for modules. Instead,
programmers typically think of .c source files as implementations and use .h header files (containing type
and data declarations) as interfaces. Textually including a .h file via the #include directive is akin to
“importing” a module.

Many experts recommend using this basic pattern [2, 15, 16, 17, 19], but their recommendations are
incomplete and, as it turns out, insufficient. To our knowledge, the basic pattern has not been previously
developed to the point that proper information hiding and type safety are provable consequences. As a
result, programmers may be unaware of (or ignore) the subtleties of using the pattern correctly, and thus
may make mistakes (or cut corners), since the compiler and linker provide no enforcement. The result is
the potential for type errors and information hiding violations, which degrade programs’ modular structure,
complicate maintenance, and lead to defects.

As a remedy to these problems, this paper presents CMOD, a novel tool that provides a sound module
system for C by enforcing four rules that flesh out C’s basic modularity pattern. In other words, CMOD
aims to enable safe modular reasoning while matching existing programming practice as much as possible.
We have proven formally that CMOD’s four rules ensure that C programs obey information hiding policies
implied by interfaces, and that programs are type safe at link time.! To our knowledge, CMOD is the first
system to enforce both properties for standard C programs. Related approaches (Section 6) either require
linguistic extensions (e.g., Knit [27] and Koala [30]) or enforce type safety but not information hiding (e.g.,
CIL [24] and C++ “name mangling”).

To evaluate how well CMOD matches existing practice while still strengthening modular reasoning, we
ran CMOD on a suite of programs cumulatively totaling 440K lines of code split across 1263 files. We found
that most programs generally comply with CMOD’s rules, and fixing the rule violations typically requires
only minor changes. Rule violations revealed many information hiding errors, several typing errors, and
many cases that, although not currently bugs, make programming mistakes more likely as the code evolves.
These results suggest that CMOD can be applied to current software at relatively low cost while enhancing
its safety and maintainability.

In summary, the contributions of this paper are as follows:

e We present a set of four rules that makes it sound to treat header files as interfaces and source files
as implementations (Section 2). To our knowledge, no other work fully documents a set of programming
practices that are sufficient for modular safety in C. While this work focuses on C, our rules should also apply
to languages that make use of the same modularity convention, such as C++, Objective C, and Cyclone [12].

e We give a precise, formal specification of our rules and prove that they are sound, meaning that programs
that obey the rules follow the abstraction policies defined by interfaces and are type safe at link time
(Section 3).

e We present our implementation, CMOD (Section 4), and describe the results of applying it to a set of
benchmarks (Section 5). CMOD found numerous information hiding violations and several typing errors,
among other brittle coding practices, and it was generally easy to bring code into compliance with CMOD.

IThroughout this paper, when we say type safety, we mean that types of shared symbols match across modules. C pro-
grammers can still violate type safety in other ways, e.g., by using casts. This could be addressed by using CCured [23] or
Cyclone [12], which should combine seamlessly with CMOD.

bitmap.h main.c

1 struct BM; 10 #include " bitmap.h”
2 void init (struct BM x); 11
3 void set(struct BM x, int); 12 int main(void) {
13 struct BM sxbitmap;
14 init (bitmap);
bitmap.c 15 set(bitmap, 1);
- 16
4 #tinclude " bitmap.h” 17}
5
6 struct BM { int data; };
7 void init (struct BM xmap) { ... }
8 void set(struct BM smap, int bit) { ... }
9 void private (void) { ... }

Figure 1: Basic C Modules

2 Motivation and Informal Development

In most module systems, a module M consists of an interface M that declares exported values and types,
and an tmplementation Mg that defines everything in M; and may contain other, private definitions. Any
component that wishes to use values in Mg relies only on M, and not on Mg. The compiler ensures that
Mg implements M, meaning that it exports any types and symbols in the interface. These features ensure
separate compilation when module implementations are synonymous with compilation units.

There are two key properties that make such a module system safe and effective. First, clients depend
only on interfaces rather than particular implementations:

Property 2.1 (Information Hiding) If Mg defines a symbol g, then other modules may only access g if
it appears in My. If My declares an abstract type t, no module other than Mg may use values of type t
concretely.

This property makes modules easier to reason about and reuse. In particular, if a client successfully compiles
against interface My, it can link against any module that implements that M, and Mg may safely be changed
as long as it still implements Mj.

Second, linking a client of interface M; with an implementation Mg of M must be type-safe:

Property 2.2 (Type-Safe Linking) If module Mg implements My and module Ng is compiled to use M,
then the result of linking Mg and Ng is type-safe.

The goal of CMOD is to ensure that C modules obey these two properties. Our starting place is the
well-known C convention in which . c source files act as separately-compiled implementations, and .h header
files act as interfaces [2, 15, 16, 17, 19].

2.1 Basic Modules in C

Figure 1 shows a simple C program that follows the modularity convention. In this code, header bitmap.h
acts as the interface to bitmap.c, whose functions are called by main.c. The header contains an abstract
declaration of type struct BM and declarations of the functions init and set. To use bitmap.h as an
interface, the file main.c “imports” it with #include "bitmap.h", which the preprocessor textually replaces
with the contents of bitmap.h. At the same time, bitmap.c also invokes #include "bitmap.h" to ensure
its definitions match the header file’s declarations.

This program is both type-safe and properly hides information. Since both main.c and bitmap.c include
the same header, the C compiler ensures that the types of init and set match across the files. Furthermore,
main.c never refers to the symbol private and does not assume a definition for struct BM (treating it
abstractly), since neither appears in bitmap.h.

bitmap.h main.c

1 struct BM; 14 #tinclude "bitmap.h”
2 void init (struct BM x); 15
3 void set(struct BM x, int); 16 /* bad symbol imports x/
17 extern void private (void);
18
bitmap.c 19/ violating type abstr. %/
—_— 20 struct BM { int xdata; };
4/ bitmap.h not incl. */ 21
5 22 int main(void) {
6 struct BM { int data; }; 23 struct BM bitmap;
7 24 init (&bitmap);
8 /+ inconsistent decl. x/ 25 set(&bitmap);
9 void init (struct BM xmap, 26 private ();
10 int val) { ... } 27 bitmap.data = ...;
11 void set(struct BM xmap, 28
12 int bit) { ... } 29 }

13 void private (void) { ... }

Figure 2: Violations of Rules 1 and 2

2.2 Header Files as Interfaces

One of the key principles illustrated in Figure 1 is that symbols are always shared via interfaces. In the
figure, header bitmap.h acts as the interface to bitmap.c. Clients #include the header to refer to bitmap.c’s
symbols, and bitmap.c includes its own header to make sure the types match in both places [17, 19]. CMOD
ensures that linking is mediated by an interface with the following rule:

Rule 1 (Shared Headers) Whenever one file links to a symbol defined by another file, both files must
include a header that contains the type of that symbol.

The C compiler and linker do not enforce this rule, so programmers sometimes fail to use it in practice.
Figure 2 illustrates some of the common ways the rule is violated, based on our experience (Section 5). One
common violation is for a source file to fail to include its own header, which can lead to type errors. In
Figure 2, bitmap.c does not include bitmap.h, and so the compiler does not discover that the defined type
of init (line 9) is different than the type declared in the header (line 2).

Another common violation is to import symbols directly in .c files by using extern, rather than by
including a header. In the figure, line 17 declares that private is an external symbol, allowing it to be
called on line 26 even though it is not mentioned in bitmap.h. This violates information hiding, preventing
the author of bitmap.c from easily changing the type of, removing, or renaming this function. It may also
violate type safety; i.e., when a local extern declaration assigns the wrong type to a symbol. We have seen
both problems in our experiments. One way that the author of bitmap.c could prevent such problems would
be to declare private as static, making it unavailable for linking. However, programmers often fail to do
so. In some cases this is an oversight, and in some cases this is because the symbol should be available for
linking to some, but not all, files.

Rule 1 admits several useful coding practices. One common practice is to use a single header as an
interface for several source files (as opposed to one header per source file, as in the example). For example,
the standard library header stdio.h often covers several source files. To adhere to Rule 1, each source file
would #include "stdio.h". Another common practice is to have several headers for a single source file,
to provide “public” and “private” views of the module [19]. In this case the source file would include both
headers, while clients would include one or the other.

The last error in Figure 2 is in main.c, which violates the information hiding policy of bitmap.h by
defining struct BM on line 20. In this case the violation results in a type error since the definitions on lines
6 and 20 do not match. Rule 1 does not prevent this problem because it refers to symbols and not types.
Our solution is to treat type definitions in a manner similar to how the linker treats symbols. The linker

bitmap.h config.h

1 #ifdef COMPACT 18 #ifndef _CONFIG_H
2 struct BM { int map; }; 19 #define _.CONFIG_H
3 Ffelse 20 #tifdef __BSD__

4 struct BM { int xmap; }; 21 #undef COMPACT

5 #endif 22 #telse

6 void init (struct BM x); 23 #define COMPACT

7 void set(struct BM x, int); 24 #endif

25 #endif
bitmap.c
main.c

8 #include " config.h” -

9 #include " bitmap.h” 26 #tinclude " config.h”
10 27 #include " bitmap.h”
11 #ifdef COMPACT 28
12 /x defn’s of 29 int main(void) {

13 init (), set() %/ 30 struct BM xbmap;
14 Htelse 31 init (bmap);

15 /x alt. defn’s of 32 set(bmap, 1);

16 init (), set() x/ 33

17 #endif 34 }

gcc -c¢ -D__BSD__ bitmap.c
gcc -¢ -D__BSD__ main.c

Figure 3: Using the Preprocessor for Configuration

requires in general that only one file define a particular function or global variable name. This ensures there
is no ambiguity about the definition of a given symbol during linking. Likewise for types, we can require
that there is only one definition of a type that all modules “link against,” in the following sense.

We say that a type definition is owned by the file in which it appears. If the type definition occurs
in a header file (and hence is owned by the header), then the type is transparent, and many modules may
know its definition. In this case, “linking” occurs by including the header. Alternately, if the type definition
appears in a source file (and hence is owned by that file), then the type is abstract, and only the module
that implements the type’s functions should know its definition. CMOD requires that a type have only one
owner, thus forbidding the example in Figure 2:

Rule 2 (Type Ownership) FEach type definition in the linked program must be owned by exactly one source
or header.

Notice that this rule is again somewhat flexible, allowing a middle-ground between abstract and transparent
types. In particular, this rule allows a “private” header to reveal a type’s definition while a “public” header
keeps it abstract. Files that implement the type and its functions include both headers, and those that use
it abstractly include only the public one.

This notion of ownership makes sense for a global namespace in which type and variable names have a
single meaning throughout a program. For variables, the static qualifier offers some namespace control, but
C provides no corresponding notion for type names. While we could imaging supporting a static notion for
types, we use our stronger rule because it is simple to implement, and we have found programmers generally
follow this practice.

2.3 Preprocessing and Header Files

Rules 1 and 2 form the core of CMOD’s enforcement of type safety and information hiding. However, for
these rules to work properly, we must account for the actions of the preprocessor.

Consider the code shown in Figure 3, which modifies our example from Figure 1 to represent bitmaps
in one of two ways (lines 1-5), depending on whether the COMPACT macro has been previously defined (line
21 or 23). The value of COMPACT itself depends on whether __BSD__ is set, which is determined by the initial
preprocessor environment when the compiler is invoked (more on this below). In general, we say that a file
f1 depends on file fo when f; uses a macro set by fo. Here, bitmap.h depends on config.h.

Such preprocessor-based dependencies are very useful, since they allow programs to be configured for
different circumstances. Unfortunately, they can unintentionally cause a header to be preprocessed differently
depending on where it is included. In Figure 3, if we were to swap lines 8 and 9 but leave lines 26 and 27
alone, then bitmap.c and main.c may have different, incompatible definitions of struct BM. Thus, the
preprocessor can undermine type safety and information hiding, even given Rules 1 and 2.

To solve this problem, we define two additional rules that aim to enforce the following principle:

Principle 2.3 (Consistent Interpretation) Fach header in the system must have a consistent interpre-
tation, meaning that whenever modules linked together include a common header, the result of preprocessing
the header is the same in both modules.

Enforcing this principle allows us to keep Rules 1 and 2 simple, and it makes it easier for programmers
to reason about headers, since their meaning is less context-dependent (though not entirely, as we discuss
below). The first new rule to enforce this principle is:

Rule 3 (Vertical Independence) With the exception of a designated, initial config.h, header file inclu-
ston must be vertically independent.

We say two header files are vertically dependent if one depends on the other and both are #included by
the same source. In the example, bitmap.h is vertically dependent on config.h. Vertical dependencies are
encouraged by some coding style guides [2], but we forbid them because they add unnecessary complication.
In particular, the programmer must remember to always include the headers together, in some particular
order. We believe a better practice is to convert vertical dependencies into horizontal dependencies, which
are more self-contained. We say that two header files are horizontally dependent if one of the headers is
dependent on and #includes the other. A horizontal dependency adheres to Principle 2.3 because a header
always “carries along” the other headers on which it depends, ensuring a consistent interpretation.

If we wanted to remove the vertical dependency in the example, we could convert it to a horizontal
dependency by moving line 8 just prior to line 1. However, notice that then config.h would be included
twice in main.c, once directly and once via bitmap.h. The double inclusion is harmless because of the
#ifndef pattern [11, 5] beginning on line 18, which causes any duplicate file inclusions to be completely
ignored. Our semantics assumes no duplicate inclusion, and we check that it holds for our benchmarks.

Although we feel that vertical dependencies are bad practice in general, the headers in many large
programs are vertically dependent on a config.h header. CMOD allows these dependencies as long as
config.h is always included first. This ensures other included headers are consistently interpreted with
respect to it. This is easy for the programmer to remember and for CMOD to check.

Preventing vertical dependencies solves one problem with the preprocessor, but we also need to reason
about the initial preprocessor environment. Recall that the __BSD__ flag used in lines 20-24 is not set within
the file. Instead, it is either supplied by the system or set by a -D command-line argument to the compiler.
If bitmap.c were compiled with this flag set and main.c were compiled without it, then the two inclusions
of bitmap.h (lines 9 and 27) would produce different representations for type struct BM. We can prevent
this by enforcing the following rule:

Rule 4 (Environment Compatibility) All files linked together must be compiled in a consistent prepro-
cessor environment.

By consistent we mean that for any pair of linked files that depend on a macro M, the macro must be defined
or undefined identically in the initial preprocessor environments for each file. Processing each module in a
consistent environment ensures that all of its included headers (which by Rule 3 are not vertically dependent)
are interpreted the same way everywhere, following Principle 2.3.

program P = | foP
fragment f = -|s,f
statements s u= c¢|d
preproc. commands ¢ = include h | def m | undef m
| ifdef m then f else f
definitions d == letg:7=¢€|externg:T
| let typet =7 | type ¢
terms e = n|Ay:T.eleel|lylyg
types T u= t|int|T—71

m € macro names ¢ € global var. names
h € file names t € type names

Figure 4: Source Language

Rules 3 and 4 allow a program as a whole to be parameterized by config.h and the initial preprocessor
environment. In essence, the program can be considered a very large functor [26]. Thus while CMOD allows
individual headers to be parameterized, they must be consistently interpreted throughout the program. We
have rarely found this to be a problem in practice. Since a .h file acting as an interface represents a .c file
that is typically compiled once, there is usually little reason to interpret the .h file differently in different
contexts. We have found two exceptions in practice. The first is to support context-dependent information
hiding by including or not including certain prototypes based on #ifdefs. While CMoOD disallows this
practice, one can use separate header files instead [19]. The second case is to #include a .h file containing
parameterized code definitions (akin to a functor application) instead of using the file as an interface. This
situation is rare, and so we do not handle it specially, though this may be an interesting future direction.

Note that while enforcing Principle 2.3 ensures headers are consistently interpreted, this does not imply
that a header means the same thing wherever it is included. This is because a header is likely to refer to type
definitions that precede it, and, more rarely, variable definitions if the header contains static (possibly in-
line) functions, or macro definitions that include code. Rule 2 ensures type definitions must always mean the
same thing, but there is no such rule for symbols, which can be multiply-defined if declared static. Though
it may be desirable to forbid dependencies on symbols, CMOD allows them, for two reasons. First, such
dependencies do not impact type safety and information hiding. Second, extending CMOD to track such
dependencies would add significant implementation complexity when compared to our current approach
(Section 4), and in our experience, dependencies on symbols are rare. We leave such an implementation to
future work.

3 Formal Development

In this section we formally present CMOD’s rules and prove that they are sound. Our rules are defined in
terms of the source language in Figure 4. In this language, a source program P consists of a list of fragments
f, each of which represents a separately-compiled source file. Fragments are themselves made up of a list of
statements s, which may be either preprocessor commands ¢ or core language definitions d.

Our preprocessor commands mimic the C preprocessor. The command include h inserts the fragment
contained in file h and then preprocesses it. In our semantics we assume we are given a mapping from
include file names to fragments. The commands def m and undef m define and undefine, respectively, the
preprocessor macro m from that point forward. In our semantics, macros may only be used as boolean flags.
The conditional ifdef m then f; else fo processes f; if m is defined, and otherwise processes fo. Notice that
since each branch is a fragment, it may contain further preprocessor commands.

The C preprocessor includes additional features not found in our language, including macro substitution
and conditional forms such as #if and #ifndef. The C language also allows preprocessor commands to

occur anywhere in the text of the program, whereas our language forbids preprocessor commands inside of
definitions. In Section 3.5, we argue that these additional features do not affect soundness.

Turning to the core language, the definition let g : 7 = e binds the global name g to term e, which
has type 7. Terms e are simply-typed lambda calculus expressions that may refer to local variables y or
global variables g. We use the lambda calculus instead of C as our base language because it is type safe and
illustrates all of the necessary issues. The command extern g : 7 declares the existence of global g of type 7.
This form is used in header files to import a symbol. The command let type ¢ = 7 defines a named type ¢ to
be an alias for 7, while type ¢ merely declares that ¢ may be used as a type name. We say that g and ¢ are
defined by let g and let type t = 7 while g and t are declared by extern g : 7 and type t. Within a program
we allow many declarations of a global variable or type name but only one definition. Note that to keep the
rules simpler, we do not model static definitions.

3.1 Preprocessor Semantics

Following C, our source language has a two-stage operational semantics. For each fragment, the preproces-
sor executes all of the preprocessor commands, conceptually producing a fragment consisting only of core
language definitions. These fragments are then compiled into object files, which are combined with linking,
and then the entire program is evaluated using a standard semantics.

The four CMOD rules are based on the output of an instrumented preprocessor, shown in Figure 5. Rather
than perform substitutions to generate a new fragment consisting only of definitions (which would be closer
to the semantics of the actual C preprocessor), our semantics constructs an accumulator A that contains
both the core language definitions and other information needed to enforce CMOD’s rules. In particular, the
preprocessor is defined as a relation among states of the form (h; A; A; x), where h names the file currently
being preprocessed, A is the accumulator, A is the set of currently-defined macros, and z is either a fragment
or a statement.

Each top-level fragment in the program is preprocessed separately. Preprocessing fragment f begins with
an initial (possibly empty) set of defined macros Ay, which in practice is supplied on the command line when
the compiler is invoked. Ay may differ from one fragment to another. The accumulator A is a tuple that
tracks the preprocessor events that have occurred thus far. The core language program is encoded as three
lists in the accumulator: N maps global variables to their types, H maps global variables to their defining
expressions, and 7" maps each type name ¢ to its definition 7. In T, types are annotated with either the
header file h in which the type was defined, or o if it was defined in a source file rather than a header file.
The remainder of the accumulator consists of the sets of global variables that have been exported (E) by
defining them with let, imported (I) by using them in code, and declared (D) by extern or let; the set of
macros C that have possibly been changed (defined or undefined); the set of macros U whose value has been
tested; the set of types Z that have been declared; and finally the set of files Z that have been included.

Reduction rules are of the form F F (h; A; A;z) — (b'; A'; A’;2’). Here F represents the file system,
which maps header file names to their corresponding fragments. Preprocessing fragment f begins with an
accumulator whose components are all () (which we write Ag); an h component set to o; and a given F and
an initial set of defines Ay.

In the rules in Figure 5, we write A[X <1 z] for the accumulator that is the same as A except that
its X component has x added to it. We write AX for the X component of A. All of the rules increase the
contents of the accumulator monotonically.

We discuss the preprocessor semantics briefly. [SEQ] reduces the first statement in a fragment. We
abuse notation and write f’, f as the concatenation of fragments f’ and f, where -, f' = f" and (s, f'), [’ =
s, (f',). [IncL] looks up file name h in the file system and reduces to the corresponding fragment. It
also inserts a special command pop h’ where h' is the file currently being processed. When the preprocessor
finishes reducing h, the [EOH] rule restores the current file to h'. Notice that the semantics become stuck if a
header file is included twice, because then the premise h & AZ of [INCL] is not satisfied. While nonstandard,
this semantics simplifies the rule specification. In practice, programmers mostly use the #ifndef pattern
(Section 2.3) to make duplicate file inclusion a no-op; our implementation of CMOD emits a warning if it
discovers this practice is not followed.

symbols N == -|g—7, N
heap H == -|g—e H
named types T == -|t—7" T|t—71°, T
exports E € 29
imports [€ 29
symbol decls D € 29
macro changes C € 2™
macro uses U € 2™
type decls Z ¢ 2°
includes 7 € 2"
accumulator A = (C,I,T,Z,Z,E,N,D,U,H)
file system F : h—f
defines A € 2™

F (b A Az s) — (b A A)
FE (b A Ass, f) — (R AN f F)

[SEQ]

h ¢ AT f=F(h),pop K A = A[Z <7 h]

I
[INet] F+ <h';A;A;inc|ude h> — <h; A';A;f>

E
[Eor] FF <h/;A;A;pop h> — (h; A A;)
A =AlC " m, U " m] A= Au{m}

D
[Der] F = (h; A; Asdef m) — (h; A'; A5 -)

A = AlC —Fm, U " m] A=A —{m}
F + (h; A; A;undef m) — <h;A/;A'; >

[UNDEF]

[IFDEF+]
me A A = AU —t m]
F I (h; A; A;ifdef m then fy else f_) — <h;A/;A;f+>

[IFDEF-|
m ¢ A A= AU — m]
F I (h; A; Asifdef m then fy else f-) — (h; A5 A f-)

A'=AD " g, N " (g—7)]
FF(h;A;Ajextern g: 1) — <h; A A, >

[EXTERN]

A =AH " (gre), NF (g71), E«tg De"g I"fg(e)
FrE{(hA;Ajletg:T7=¢€) — <h;A’;A;->

[LET]

A = AlZ 4]

[TyPE-DECL] ;
F + (h; A; A type t) — <h;A AW >

A = AT % (t—1")
F = (h; A; A let type t = 7) — <h; A A; >

[TYPE-DEF]

Figure 5: Operational Semantics for the Preprocessor

[DEF| and [UNDEF] add or remove m from the set of currently-defined macros A, and mark m as being
changed and used. [IFDEF+| and [IFDEF-] reduce to either fi or f_ depending on whether m has been
defined or not. In either case, we add m to the set of macros whose values have been used.

The remaining rules handle declarations and definitions. The C preprocessor ignores these, but CMOD’s
preprocessor extracts information from them to enforce its rules. [EXTERN] records the declaration of g
and notes its type in N. Here we append the typing (g +— 7) onto the list N, i.e., we do not replace any
previous bindings for g. The C compiler ensures that the same variable is always given the same type within
a fragment (Section 3.4). [LET] adds g to the set of defined global variables H, adds ¢’s type to N, and adds
any global variables mentioned in e (written fg (e)) to the imports. Finally, [TYPE-DECL] declares a type,
which is noted in Z, and [TYPE-DEF] defines a type, which is noted in 7. Types in T are annotated with
the current file h, which is o if the current file is not a header.

3.2 CwmoD Rules

We now formally specify the rules presented in Section 2. To state the rules more concisely, we introduce
new notation to describe the final accumulator after preprocessing beginning from the empty accumulator:

Definition 3.1 (Partial Preprocessing) We write A; F = f ~» (A; f') as shorthand for F = (o; Ag; A; f) —>
(h; A; A £7), where — is the reflexive, transitive closure of the rules in Figure 5.

Definition 3.2 (Complete Preprocessing) We write A; F F f ~ A as shorthand for A; F = f ~ (A;-).

CMmOD’s rules are shown in Figure 6. The first three rules assume there is a common initial macro
environment A under which all fragments are preprocessed; the fourth rule ensures that this assumption
makes sense. Figure 6(a) defines the judgment A;F F Ri(f1, f2), which enforces Rule 1: for each pair of
fragments f1 and f5 in the program, any global variable defined in one and used in the other must be declared
in a common header file. [RULE 1] uses auxiliary judgment A; F F g &< 7, which holds if ¢ is declared by
some header in the set Z, where we compute the declared variable names by preprocessing each header file h
in isolation. Then for any global variable name g in N, which contains any global variable names imported
by one fragment and defined by the other, it must be the case that A; F F g &= AN AL ie., gis declared
in a header file that both f; and fs include.

Figure 6(b) defines the judgment A; F F Ra(f1, f2), which enforces Rule 2: each named type must have
exactly one owner, either a source or a header. This rule examines two fragments, preprocessing each and
using [NAMED-TYPES-OK] to check that the resulting type definition maps T7 and T are compatible. There
are two cases. First, any types ¢t in 77 with no marked owner is owned by f;, and thus should be abstract
everywhere else, meaning ¢ should not appear in 7. Note that we are justified in treating 7; as a map
because the C compiler forbids the same type name from being defined twice. Second, any type t appearing
in both 77 and T5 is transparent and hence must be owned by the same header. Then by Rules 3 and 4, we
know that 71 and 75 are the same.

Figure 6(c) defines the judgment A; F + Rs(f), which enforces Rule 3: any two headers h; and hg
that are both included in some fragment must be vertically-independent. For each header h included in f,
[RULE 3] checks A;F F f ® h, defined by [PARTIAL-INDEP]. The first two premises of [PARTIAL-INDEP]
calculate the accumulator A4; that results from preprocessing f up to the inclusion of h. The remaining
premises check that the preprocessing of h within the initial environment can in no way be influenced by Aj;.
No macros changed in A; (described by A§) are used by h (described by A%); likewise, no macros changed
by h (in AS) are used by files that came earlier (in .AY). Put together, these conditions ensure that h is
vertically-independent of any files that came earlier. Note that config.h files are forbidden by this rule.
Our implementation requires all files to include the same config.h initially; the equivalent in our formal
system is to start with an accumulator and initial A from preprocessing config.h.

Figure 6(d) defines the judgment A;F F R4(f, As), which enforces Rule 4: all fragments must be
compiled in compatible environments. This rule holds if the initial environment Ay—in which f is assumed
to have been compiled—agrees with A on those macros used by f (in AY). This implies that preprocessing
under A produces the same result as preprocessing under Ay.

10

[RULE 1]
A FEfi~ A A FE fa~o Ag

[Sym-DECL] N = (A{ ﬂAf) U (Af ﬂAé)
hel AFRFh)~A geA” VgeN . A Frg&d AT nAd
A Frg&dT A; FERi(fi, fo)

(a) Rule 1: Shared Headers

[NAMED-TYPES-OK]|

V(t—1°) €Ty .t ¢ dom (1) [RULE 2]
Vtedom(Tl)ﬂdom(Tg) . A;}-}—fl’\»Al A;fl—fg/\/)Ag
Ti(t) =7 A Ta(t) =73° = hi = he Fr ATLAD R ALAT R AR
l_r T17T2 A,f F Rg(fl, fz)

(b) Rule 2: Type Ownership

[PARTIAL-INDEP]

A;F = f~ (Ayjinclude h,) [RULE 3]
A FEF(h)~ Az AN FEf~A
Afn A =0 ANnAS=0 Vhe AL AFHF®A
A FEf®RR A FERs(Sf)
c) Rule 3: Vertical Independence
(c)
[RULE 4] [ALL]
ApFh fo A Vfi, f2€P . Ay F ERu(fir, f2)

Vfi,f2 € P A F ERa(f1, f2)
VfeP.AFERs(f)
A FER(P)
(e) Rules 1-3 combined

(A=ApUA, = A)NAY =0
AN FERa(f, Ay)
(d) Rule 4: Environment Compatibility

Figure 6: CMOD Rules

Finally, by [RULE 4], we can assume that there is a single A that all A’s are compatible with. Figure 6(e)
defines the judgment A; F - R(P), which holds if a program P satisfies Rules 1, 2, and 3 in this common A.
Thus if A;F F R(P) holds, then every pair of fragments in P must use shared headers for global variables,
must have a single owner for each type definition, and must use vertically-independent header files.

3.3 Compilation and Linking

In order to prove that the rules in Figure 6 are sound, we need to precisely describe the compilation and
linking process. The output of the normal C compiler is an object file containing code and data for globals,
a list of global variables that are defined (exports), and a list of global variables that are used but not
defined (imports). Since one of our goals is to prove type safety at link time, our formal compiler output
uses Glew and Morrisett’s MTAL(typed object file notation [9]. In this system, object files have the form
[U; = H: Ug|, where H is a mapping from global names g to expressions e, and ¥; and ¥g are both
mappings from global names to types 7. Here ¥; are the imported symbols and W are the exported
symbols.

In Figure 7, [COMPILE] describes the object file produced by the C compiler from a fragment f, given
an initial set of macro definitions A and a file system F. The fragment is first preprocessed. In order to
be compiled, the global type environment N must be consistent according to [WF-MAP|, meaning that the
same symbol must always be assigned the same type. Moreover, the compiler ensures that all code and data
is well-typed given the global type environment N and the type definitions 7" and declarations Z, as defined
by [WF-HEAP|. The first premise of [WF-HEAP] requires that the same global symbol is not defined more

11

[WE-MAP]
9i=0; = Ti =T;

Fgi—T1,...,9p— Tp

[WEF-HEAP]
Vi,j€l.pl.gi=g;=i=] Vie[l.p] . Z;T; N Fe;: N(gi)
Z;T;NEgi—etl,...,gp — €p

[COMPILE]
A;Fv f~ (CI,T,T,Z,E,N,D,U,H) +N Z;T;NFH VUg=N|g U;=N|/ g
A;f"fmﬂf[\l/]iH:\I/E]

[LINK]

dom (H1) Ndom (Hz) =0
comp

A;]‘—F [\1111 = H; : \I’El] o [\1/12 = Hy: \I’Eg] —
(U1 UWr)\ (¥p1 UVg) = HiUHy: Up U Vg

Figure 7: Compiler and Linker Rules

than once, and the second premise ensures that each global symbol’s type matches its type in N. Note that
we omit the rules for typing expressions, as they are simply the standard lambda-calculus type checking
rules. Assuming these checks succeed, then [COMPILE] produces an object file [U; = H : Ug]. Here we
write N|g to mean the mapping that is the same as N, but its domain is restricted to S, and with only
one occurrence of each symbol (which is well-defined since we already checked that symbols are declared
consistently). Thus in the output object file, the H component is just as in the preprocessing accumulator
output, the exports W contains the types for any defined symbols, and the imports ¥; contains the types
for any symbols that were used (in I) but not defined (in E). Note that we are simplifying one issue, namely
that in C, declarations must come before uses, which is not enforced here since type checking is done after
all the information has been gathered. We could add this restriction by making the system slightly more
complicated, but we believe it adds no interesting issues.

Rule [LINK] describes the process of linking two object files. When object files are linked together, the
imports, code and data, and exports are computed as expected. Because C’s linker is untyped, there is
almost no checking in this rule. The only thing required is that the two files not define the same symbols.

3.4 Formal Properties

We can now formally state the information hiding and link-time type safety properties of CMOD. The proofs
for the theorems in this section are provided in the appendix. Observe that although each fragment f is
preprocessed in its own initial Ay, by Rule 4 we can assume there is a single, uniform A under which each
fragment produces the same result:

Lemma 3.3 A; F b Ru(f,Ay) implies that if Ap; F b f~ A, then A;F & f~ A; and if Ap; F - f =5
[\I’] :>HZ\I/E], then A,]:l_f Rl [\I/[jH\I/E]

Thus below we assume a single A for all fragments.

We begin with information hiding. First, observe that linking is commutative and associative, so that
we are justified in linking files together in any order. Also, to be a well-formed executable, a program
must completely link to have no free, unresolved symbols. Thus we can define the compilation of an entire
program:

Definition 3.4 (Program Compilation) We write A; F =P =5 [0 = H : Ug| as shorthand for compil-
ing each fragment in P separately and then linking the results together to form [0 = H : Wg].

12

i£ =9 F gy

[WF-INT]
Fgi—T1,...,9p— Tp
[INT-SUB]
p>q Fgr—=T1,..0,0p = Tp
Fogi—T1,...,0p—=Tp < g1 T1,...,0q — Tq

[NTTALO—WF—OBJ]
W, FWy< Up U, UWUaFH: Uy
dom (W) Ndom (¥4) =0
[[\I/[= H: \I/E]

[MTAL(-COMPAT]
Vg € dom (¥1) Ndom (W3) . U1(g) = ¥2(g)
FUy~ W,

[MTALo-LC]
FWUrn~Urs FUn~Ugs FUr~Up
dom (Vg1) Ndom (Uga) =0

FUn = Hi: g & [Wr2 = Hz : Ugo

[MTALo-LINK]
F¥r = Hi:Yg) F Y2 = Ha: Upol
FW = Hy U] &S W= Hy: Ugo] dom (Hy)Ndom (Hz) =0
= [\I/H = H : ‘IlEl] link [\1112 = Hs: \IJEQ] ~ [(\1111 @] \1112) \ (‘IJEI @] \IJEQ) = H UHs : Vg U \IIEQ}

Figure 8: MTALq [9]

First, we can prove that any symbol not in a header file is never imported, and thus is private.

Theorem 3.5 (Global Variable Hiding) Suppose A; F F R(P), suppose A; F =P 5[0 = Hp : Ugpl,
and suppose for all f; € P we have A;F = fi ~ Ay, and for all hy € |, A%i that A; F F F(hj) ~ Apj.
Then for all f; € P, g & U, Afj implies g & U; where Ay F & fi =5 [V = H; : Ugyl.

This theorem says that if P obeys the CMOD rules and includes headers h;, then any symbol g that is not
in A}?j for any j (i.e., is not declared in any header file) is never imported.

For type names, we can prove a related property: Any type name owned by a source fragment (a code
file) has no concrete type in any other fragment.

Theorem 3.6 (Type Definition Hiding) Suppose A;F = R(P), and for some f; € P we have A;F +
fi ~ A;. Further suppose that (t — 7°) € Al. Then for any fragment f; € P such that f; # f; and
A; F = fj~ Aj, we have t & dom (AT).

This theorem says that if P obeys the CMOD rules and contains fragment f;, then any type ¢t owned by f;
is not owned by any other fragments f; # f;. Together, Theorems 3.5 and 3.6 give us Property 2.1.
Finally, we show that CMOD enforces type safety at link time. Rather than show this directly, we reduce
our system to MTALg, for which link-time type safety has been shown [9]. Figure 8 gives the rules for
MTALg, which we discuss briefly from bottom to top. [MTAL(-LINK] says that the linking process is type
safe if each object file is well-formed, if the two object files are link-compatible, and if the definitions in
both files are disjoint. [MTAL-LC] defines link-compatibility, which simply requires that the exports and
imports of the object files assign the same types to shared symbols (using [MTALy-COMPAT]) and that the
same symbol is not exported twice. Finally, [MTALy-WF-OBJ] defines well-formedness of an object file.

13

This rule holds if there is some heap typing ¥ 4 (a mapping from global names to types) such that H can be
typed in Uy U W4 to yield ¥ 4. This is shorthand for requiring that for each g € dom (), it is the case that
U;UP4 - H(g): Pa(g). (As before, we omit the standard lambda calculus typing rules for expressions.) It
must also be the case that ¥4 < Up, meaning that the exports are a subset of the heap. Finally, nothing in
the heap can be part of the imports.

MTAL; does not include type abstraction or type names. The full MTAL system [9] does, but for
technical reasons is not quite strong enough to encode certain uses of abstract types in our system, though it
should be possible to change it to do so [22]. However, notice that Rule 2 requires that a type name has the
same definition everywhere. Thus we claim (without a formal proof) that the use of abstract types cannot
violate type safety at link time. In essence, given a program with type abstraction that obeys the CMOD
rules, there is only one way to concretize all abstract types in the program. In the following, we assume all
types are expressed directly, and not through a possibly-abstract name.

To show that linking is type safe, we can prove that if the program compiles and passes the CMOD checks,
then any pair of object files linked together satisfy [MTALg-LINK].

Theorem 3.7 (Type-Safe Linking) Suppose A; F + R(P), and suppose A; F =P =5 [0 = Hp : Uppl.
Also suppose that for any fi, f; € P that are distinct (i # j), it is the case that

A FE fi == [V = H; - Vg
AM?:Ff] i [lIle :>Hj : \I/Ej]
Av}-k [\Ijh :>Hz : \I/EJ o [\I/[j = Hj : \I/EJ] o Oij

Then
[[\Ijh = H;: \I’El] link [‘I’[] = H] : \I]Eg] ~ Oij

Since this theorem holds for any two fragments in the program, we see that all fragments can be linked
type-safely. Thus we have shown that Property 2.2 holds for CMOD.

3.5 Handling Full C

The full C language includes several features not present in the formal system, such as conditionals #if
and #ifndef, token concatenation ##, and macro substitution (e.g., #define F00(x) (x+1)). Moreover,
C allows preprocessor commands at arbitrary syntactic positions. Put together, these additional features
would be extremely hard to add to our formal system. Nevertheless, we claim that they do not affect the
soundness of CMOD.

We can think of each header as a function whose input is a list of macro definitions and whose output
is the preprocessed program text and a list of new macro definitions. Thus a header file’s output is only
affected by the definitions of macros it uses. In our formalism, a macro is used when it is changed or tested
([DEF], [UNDEF], [IFDEF+], and [IFDEF-]). We can extend this idea to the full preprocessor by also counting
as uses (1) macro references in other conditionals and (2) macro substitutions; and by counting non-boolean
macro definitions as both changes and uses.

Thus, despite the complexity of the full C preprocessor, we can still track the “input” and “output” macros
of a header. Moreover, it is also easy to extract the necessary type and declaration information to check the
rules, because the rules operate on the preprocessed files (for example, [RULE 1] preprocesses each fragment
and the header file that contains the declaration). Thus even under the full C preprocessor, [RULE 3] and
[RULE 4] ensure Principle 2.3, and therefore [RULE 1] and [RULE 2] correctly enforce information hiding
and type safety.

4 Implementation

We have implemented CMOD for the full C language.? The two main parts of our implementation are
tools called cwrap and lwrap, which are scripts that wrap the C compiler and linker, shown in Figure 9.

2http://wuw.cs.umd.edu/~saurabhs/CMod

14

for all i,

| —¥| Accumulator

Dependencies;

No

Rules

— Warnings

cpplib and o denci Satisfied?
Dependency » Depenaencies; Object File;
Generator !
4 = e
) . E: table/
Compiler » Object File; ™ Linker > Xfif;:aarye
cwra Uwrap |

Figure 9: CMOD Architecture

Program Targets LoC .C .h Description
gzip-1.2.4 1 5k 15 6 Compression utility
m4-1.4.4 2 10k 19 7 Macro language
bc-1.06 3 10k 19 12 | Text-based calc
rcs-5.7 9 12k 25 4 Version control
vsftpd-2.0.3 1 12k 34 41 “Very Secure” FTPD
flex-2.5.4 2 16k 22 10 Code generation tool
xinetd-2.3.14 8 16k 60 68 Net services daemon
mt-daapd-0.2.4 1 18k 23 26 | iTunes (DAAP) server
retawq-0.2.6¢ 1 21k 5 8 Text-based browser
bison-2.3 3 21k 57 94 Parser generator
jgraph-8.3 1 30k 9 4 Graphing Tool
gawk-3.1.5 4 30k 21 20 Pattern processor
openssh-4.2pl 13 52k 157 119 Secure Shell
gnuplot-4.0.0 4 80k 49 100 Plotting utility
zebra-0.94 8 107k 111 118 Routing daemon BE
Total 61 440k 626 637

Figure 10: Benchmark Programs

cwrap uses preprocessor hooks (via cpplib, part of GCC) to capture #included file names, macro uses
and definitions, and the initial macro environment. Per-file symbol imports and exports are already stored
in the generated ELF object files. During linking, lwrap uses ctags [6] to extract declaration and type
information from the preprocessed source code generated during compilation. Put together, all these sources
of information are sufficient for lwrap to check Rules 1-3.2 To check Rule 4, CMOD attempts to synthesize
a single global environment from the ones used to compile each file. It does this by unioning each file’s local
environment after restricting the local environments to only macros that are used. CMOD emits a warning
if the synthesized global environment is not consistent with the local environments.

Recall that our semantics assumes the same file is never included twice. CMOD checks that headers follow
the #ifndef pattern, which prevents duplicate header inclusions, and emits a warning if the pattern is not
followed. CMOD also assumes that system headers match their corresponding libraries, since the sources for
these are not available when compiling the projects.

5 Experiments

We applied CMOD to a number of publicly available open source projects (Figure 10), with the goal of
measuring how well they conform to CMOD’s rules, and to determine whether rule violations are indeed
problematic. We chose projects of varying sizes (5-107k lines of code), varying usage and stages of develop-
ment (e.g., xinetd, flex, gawk, and bison are mature and widely used, while zebra, mtdaapd, and retawq
are newer and less used), and varying reuse of modules among targets (rcs, bc, gawk, and m4 have low

3We could check Rule 3 entirely at compile-time, rather than link-time, but we have found it convenient to check all rules
at once.

15

Rule Violations Prop. Viol. Changes RequiredJr Build Time

Program Ru. 1 Ru. 2 Ru. 3 Ru. 4 Inf. Typ. Ru. 1 Ru. 2 Ru. 3 Ru. 4 Stock CmoD % ovr
Hid. + - + - + -+ - (s) (s)
2zip 2 . T . 2 . X X E— D — 1.0 2.1 120%
m4* 2 1 - - 2 1 21 1,2 2 - - - - 3.3 5.6 54%
bc* 8 1 (1) 6 - 4 - 4 1 - - 1£,89 86 - - 2.4 4.5 86%
res™ - 1 - - - - - - 6 6 - - - - 3.1 13.2 331%
vsftpd 4 - 9 - - - 1 - - - 3 13 - - 2.7 4.4 67%
flex 5 6 - - 3 - 4 - 1 15 1 - - - 4.7 9.8 107%
xinetd™ 10 3 (20) - - 3 - 5 1 1,7 10 - - - - 6.2 17.7 187%
mt-daapd 16 1 - - 5 - 13 2 - - - - - - 6.3 9.8 57%
retawq”™ - - 16 - - - - - - - 8f,10 12 - - 5.6 7.8 39%
bison™ 3 17 8 1 2 - 2 - 2,6 140 16 10 3 3 9.9 18.8 89%
jegraph 56 - - - 54 - 46 2 - - - - - - 1.0 1.6 79%
gawk™ 41 - 22 - 38 - 29 5 - - 6f,7 10 - - 11.1 18.3 64%
openssh™ 68 (38) - 53 - 63 - 62 1 - - 2£,133 127 - - 28.3 163.8 479%
gnuplot* x X 353% - - - X X X X X X - - 28.9 41.2 42%
zebra™ 139 - 53 - 64 5 64 10 - - 27 6 - - 32.9 86.6 163%
Total 354 (38) 30 (21) 168 1 240 6 232 23 41,22 173 17f,286 266 3 3 (avg) 137%
*Has config.h file. TLine or file (f) additions (+) and deletions (-). Fgnuplot count not included in total

Figure 11: Experimental Results

reuse, while mt-daapd, bison and vsftpd have higher reuse). We ran CMOD on a dual-processor 2.80GHz
Xeon machine with 3GB RAM running the Linux 2.4.21-40.ELsmp kernel. We used gcc 3.2.3, GNU 1d/ar
2.14.90.0.4, and ctags 5.4.

To separate preprocessor from source language issues, we ran CMOD on each benchmark twice, using the
following procedure. For the first run, we tabulated Rule 3 and Rule 4 violations, and examined any CMOD
warnings about header files not using the #ifndef pattern. We manually verified that every flagged header
was either harmless when included twice (e.g., it only contained prototypes), or that the header could never
be included twice without a C compiler warning. We then fixed the Rule 3 and Rule 4 violations and reran
CMOD to gather the Rule 1 and 2 violations.

Figure 11 summarizes our results. The first group of columns describes the benchmarks. For each
program, we indicate whether it has a config.h file and list the number of build targets (executables or
libraries); non-comment, non-blank lines of code; and .c and .h files. In the numerical totals, we count
each file once, even if it occurs in multiple targets. Next we discuss the remaining columns, which count the
number of rule violations, violations of Properties 2.1 (Information Hiding) and 2.2 (Type Safety), changes
required to fix rule violations, and running time.

5.1 Rule Violations

Figure 11 lists the rule violation counts in the second group of columns, with the additional false positives
due to inaccuracies in parentheses. We have not pruned duplicate violations for the same source in different
targets. A Rule 1 violation corresponds to a symbol name and pair of files such that the files import and
export the symbol without a mediating header. A Rule 2 violation occurs for each type name that has
multiple definitions. A Rule 3 violation corresponds to a pair of files such that a change and use of a macro
causes a vertical dependency between the files. Lastly, a Rule 4 violation corresponds to a target whose
linked object files were compiled in incompatible preprocessor environments.

We believe most of the genuine rule violations constitute bad practice. In particular, they can complicate
reasoning about the code, make future maintenance more difficult, and lead to bugs. We discuss each
category of rule violation below.

Rule 1: Rule 1 violations are often dangerous, because they can permit a provider and client to disagree
on the type of a symbol without generating an error at compile-time (as discussed in Section 2.2). We
found 349 violations that seem problematic. The most common case is when a source file locally declares an
extern symbol that does not appear in a header (240 times). As discussed in Section 5.2, these are arguably
information hiding violations. The next most common Rule 1 violations occur when a provider . c file fails to

16

#include a header containing the symbols it exports (81 times) or a client . c file locally declares a prototype
instead of #includeing a header file, even though there is a header with the symbol (28 times). Many of
the first category of Rule 1 violations are due to jgraph, which heavily uses K&R-style implicit function
declarations rather than prototypes.

The five remaining Rule 1 violations appear safe. Three of these are due to code files that are #included
in another file. Since the other file textually incorporates the first, it does not need a mediating header to
ensure symbols have matching types, but Rule 1 requires this. The last two Rule 1 violations occur in gzip,
which includes assembler sources that define exported symbols but cannot #include their header.

Rule 2: Rule 2 violations are due to multiple definitions of the same type name, which can lead to type
mismatches and information hiding violations. We found 6 violations in which the same type definition was
duplicated in several files. As with most code duplication, this is dangerous because the programmer must
remember to update all definitions when changing the type.

We also found 24 violations for practices that are safe. In one case, a type name is reused at two different
types in different files. In this particular case each definition is local to a single file, so the code is safe.
Enforcing a kind of static for types would eliminate this violation. In the remaining 23 violations, there
are duplicate identical type definitions created in auto-generated code. This is not a pattern CMOD can
easily recognize.

Rule 3: Rule 3 violations make it harder to reason about headers in isolation. There are a total of
33 Rule 3 violations that we think are bad practice. We found 31 violations that are vertical dependencies
in which header files depend on the order they are included, which we have argued is undesirable. Two
additional Rule 3 violations occur because the same macro is #defined in two different header files. In these
cases the macros are actually defined to be the same—the code appeared to have been duplicated between
the files, which makes maintenance harder.

The remaining 135 violations are safe practices that CMOD does not recognize as such. 116 of the Rule 3
violations are due to limitations in modeling config.h. In particular, several programs have multiple global
configuration files that are themselves #included in config.h. Since CMOD only treats config.h specially,
dependencies on these other headers are flagged as rule violations. We believe that Rule 3 could be relaxed
to allow this case.

The other 19 of the violations occur when one file is included after a #define of a macro it depends on,
and the file contains code definitions rather than an interface. This is a violation of Rule 3, but as mentioned
in Section 2.3, this case could be handled specially.

One program, gnuplot, has a very large number of vertical dependencies. gnuplot uses special .trm
files as both headers and sources, depending on CPP directives. Since these vertical dependencies are clearly
intended, we did not attempt to fix the violations, and thus we do not measure Rule 1 or 2 violations for
gnuplot, nor do we include them in the total.

Rule 4: The one Rule 4 violation is caused by compiling a library and a source file that links with it
using macro environments that differed for one macro name. We think this should be avoided, and in this
case the violation was easily fixed.

False Positives: CMOD reported 38 Rule 1 violations that were false positives, meaning that CMOD
issues a warning but the code does not actually violate the rule. The culprit was ctags, which sometimes
fails to parse complex code, leaving CMOD with inaccurate information about source files. An example of
where this happens is shown in Figure 12. CMOD also reported 21 false positives for Rule 2. Twenty of these
reports are due to xinetd, in which library headers are copied after a library is built and then are included
by library clients. CMOD does not know that the copied header should be treated as identical to the original
header, and so complains about duplicate type definitions. The Rule 2 false positive in bc is due to a code
parsing error in our implementation.

5.2 Property Violations

Of those rule violations we consider bad practice, some directly compromise Properties 2.1 (Information
Hiding) and 2.2 (Type Safety). The middle columns in Figure 11 measure how often this occurs in our
benchmarks.

17

56

65

void fatal(const CHAR *, ...) __dead
_-attribute__((format(printf, 1, 2)));
void cleanup_exit(int) __dead;

Figure 12: Example false positive in openssh. ctags fails to parse complicated C syntax, in this case the
__dead attribute.

Information hiding violations degrade a program’s modular structure, complicating maintenance and
leading to defects. To determine what constitutes an information hiding violation, we need to know the
programmer’s intended policy. Since this is not explicitly documented in the program, here we assume that
header files define the programmer’s intended policy. In particular, following Property 2.1, we consider as
public any symbol mentioned in a header file, and any type defined in a header file. Likewise, we consider
as private any symbol never mentioned in a header, and any type mentioned in a header file but defined in
a source file.

By this measure, some Rule 1 and 2 violations are not information hiding errors, e.g., when a . c file fails
to include its own header(s), or when an identical type definition appears in several headers. Information
hiding violations by our metric constitute roughly 68% (240 out of 354) of the Rule 1 violations. There were
no Rule 2 violations that showed information hiding problems.

There were a total of 6 type errors in our benchmarks. All of the errors were due to Rule 1 violations
in which a client locally declared a prototype and got its type wrong. The most interesting type errors
were found in zebra. Clients incorrectly defined prototypes for four functions, in two cases using the wrong
return type and in two cases listing too few arguments. No header is defined to include prototypes for these
four functions, and hence these were also information hiding violations. Ironically, in the cases where the
return type was wrong, the client code even included a comment describing where the original definition is
from—yet the types in the local declaration were still incorrect.

5.3 Examples of Suspect Coding Practices

Figure 13(a) shows two examples from zebra. In the first example (providers if netlink.c and rt_netlink.c
and the client rt_netlink.c), the client locally declares interface lookup netlink() and netlink route-
_read() with the wrong return type. (Note that this particular typo may or may not be problematic, de-
pending on whether it is important to check the return value of this function.) Ironically, in this case the
client code even includes a comment describing where the original definition is from—yet the types are still
wrong. In the second example (bgpd.c and bgp_zebra.c), the function bgp_zebra_init takes one argument
but is called with no arguments, which could lead to strange behavior at run time.

Examples of duplicate type definitions in multiple locations are shown in Figure 13(b,c). For the case of
m4, the type boolean is defined in two places to types that do not match but whose values never intermix.
In these cases we were able to alpha-rename the types; a notion of static for type definitions would also
have eliminated the warnings, since most such types are intended to be file-local. In flex, there are multiple
type definitions of various sizes of integers but duplicated in two locations. It illustrates bad coding practice,
which leads to brittle code and is a source of potential errors.

5.4 Required Changes and Performance

We designed CMOD to enforce modular properties while remaining as backward compatible as possible. To
evaluate the latter, we measured the effort required to make a program CMOD-compliant. The second-to-last
group of columns list the number of additions (+) and deletions (-) of files (f) and lines of code (no unit)
required to eliminate the CMOD warnings. One file change corresponds to inlining or deleting a whole file,
usually because code was split across files to no apparent advantage.

We found it was generally straightforward to make a program comply with CMOD’s rules, and most
violations required changing only a few lines of code. Violations of Rules 1 and 2 were easy to fix by

18

if_netlink.c:
25 /¥ Extern from rt_netlink.c */ «—— Programmer’s comment!
26 void interface_lookup_netlink ();

rtread_netlink.c:
25 /% Extern from rt_netlink.c */ «—— Programmer’s comment!
26 void netlink_route_read ();

rt_netlink.c:

860 int

861 interface_lookup_netlink () { ...

896 int

897 netlink_route_read () { ...
bgpd/bgpd.c:

4905 void

4906 bgp_init ()

4907{
4908 void bgp_zebra_init (); «— Local prototype declaration.

4919 bgp_zebra_init ();«— Local call site with no arguments
bgpd/bgp_zebra.c:

980 void
981 bgp_zebra_init (int enable) { ... <« Definition

(a) Rule 1: Symbol declarations with incorrect types in zebra
lib/regex.c:
257 typedef char boolean;

m4.h:
117 typedef enum { FALSE = 0, TRUE = 1 } boolean;

(b) Rule 2: Multiple, inconsistent type definitions in m4

scan.c:
34 ##if defined _STDC_VERSION__ && ...
35 #finclude <inttypes.h>

36 typedef int8_t flex_int8_t;

37 typedef uint8_t flex_uint8_t;

42 Felse

49 #endif /* | C99 */
flexint.h:

17 #include <inttypes.h>

18 typedef int8_t flex_int8_t;
19 typedef uint8_t flex_uint8_t;

(c) Rule 2: Duplicate, but consistent type definitions in flex

Figure 13: Example Suspicious Coding Practices

19

moving prototypes into headers, or creating headers where required. Violations of Rule 3 required various
techniques to fix. Vertical dependencies were easy to fix by converting them into horizontal dependencies.
In particular, if a pair of dependent headers always occurs together in consecutive order, then it is easy to
move the #include of the first header into the second header. Files that do not act as interfaces but are
#included can be inlined, and duplicate macro definitions are easy to eliminate. We resolved other vertical
dependencies by moving the dependent file into config.h, where appropriate. Note that very rarely this
suppresses a Rule 1 violation, because now that header is included in more files.

There were four programs we did not bring into full compliance with CMOD. As mentioned earlier, gzip
includes assembler sources that cannot #include header files. gnuplot relies on vertical dependencies that
cannot be removed without fundamentally changing the design of the program. Lastly, bc and mt-daapd
contain auto-generated type definitions that cause three Rule 2 violations, and which we did not attempt to
fix.

Finally, the last three columns in Figure 11 measure the time taken to build the program without and
with CMOD. The current prototype of CMOD adds noticeable but acceptable overhead to the compilation
procedure. We believe that the performance could be improved with more engineering effort.

6 Related Work

As we stated in the introduction, although many experts recommend using .h files as interfaces and .c
files as implementations [2, 15, 16, 17, 19], the details vary somewhat and are insufficient for full modular
safety. King presents the core idea that header files should include declarations, and that both clients and
implementations should #include the header [17]. McConnell recommends always having public and private
headers for modules [19], and mentions using a single public header for a group of implementations, neither
of which are discussed in most sources. The Indian Hill style guide rather confusingly recommends both
that “header files should not be nested” (i.e., recommends vertical dependencies, something we think is
bad practice), and recommends using #ifndef to prevent multiple inclusions, which should never happen if
there are no nested headers. None of these publications, nor any other publication we could find, discussed
sufficient requirements to ensure information hiding and type safety, leading us to believe that the subtleties
are not widely known.

There is a large design space of module systems [26], which are part of many modern languages such as
ML, Haskell, Ada, and Modula-3. In common with CMOD, these languages support information hiding via
transparent and abstract types, and multiple interfaces per implementation. They ensure type-safe linking,
and most (but not all) support separate compilation. They also provide several useful mechanisms not
supported by CMOD, due to its focus on backward compatibility.

First, ML-like languages support functors, which can be instantiated several times in the same program.
As discussed in Section 2.3, CMOD supports program-wide parameterization (e.g., via config.h), but not
per-module parameterization, since it is tricky to do correctly in C and is relatively rare.

Second, most module systems also support hierarchical namespace management. Since CMOD builds on
existing C programming practice, it inherits C’s global namespace, with limited support for symbol hiding
via static, and no support for hiding type names. C++ namespaces address this limitation to some extent,
and we believe they could safely coexist with CMOD.

Lastly, in CMOD and many module systems, linking occurs implicitly by matching the names of imports
and exports. Some systems, however, express linking explicitly, for a greater degree of abstraction and reuse.
For example, Knit [27], Koala [30], and Click [21] are C and C++ extensions/add-ons that support this style
of modular programming. Microsoft’s Component Object Technologies (COM) model [4] provides similar
facilities to construct dynamically linked libraries (DLLs). These systems assume that the basic C module
convention is used correctly and build on top of it, and so CMOD may be viewed as complementary.

Some systems aim to support type safety but not information hiding. C+4 compilers embed type
information in symbol names during compilation, a practice called “name mangling.” Although designed
to support overloading, name mangling can also enforce link-time type safety. Since names include type
information, when a client and provider agree on a name, they also agree on types. This is not always

20

reliable, however, since mangled struct types do not include field information, which could therefore disagree.
CIL [24] is a parsing toolkit for C that can combine several C sources into a single file. In so doing, it complains
if it finds that two files disagree on the definition of a type or symbol. It would find all of the type errors
that we discovered in our experiments.

Finally, a number of researchers have studied the C preprocessor, but not as a means to enforce modular-
ity. Favre [8] proposes a denotational semantics for CPP. Several researchers recommend curtailing or even
eliminating the C preprocessor, due to its complexity [7, 18]. Lastly, a number of tools check for erroneous
or questionable uses of cpp directives, including 1int [13], PC-lint [25], and Check [28]. The detected bug
patterns are fairly localized and generally concern problematic macro expansions.

7 Conclusions

We have described CMOD, a module system for C that ensures type-safe linking and information hiding while
maintaining compatibility with existing practice. CMOD enforces a set of four rules. At a high level, Rule 1
makes header files equivalent to regular modular interfaces; Rule 2 checks for consistent use of type names
and type abstraction; and Rules 3 and 4 control preprocessor interactions. We showed formally that these
rules in combination with the C compiler form a sound module system that supports information hiding and
ensures type safety. Our experiments show that in practice, violations of our rules reveal dangerous coding
idioms, violations of information hiding, and type errors. Fortunately, we found that for most programs, rule
violations are rare and can be fixed fairly easily. Thus CMOD brings the benefits of modular programming
to C while still being practical for legacy systems.

References

[1] J. Barnes. Ada 95 rationale: The language, the standard libraries. Lecture Notes in Computer Science,
1247, 1997.

[2] L. Cannon, R. Elliott, L. Kirchoff, J. Miller, R. Mitze, E. Schan, N. Whittington, H. Spencer, D. Keppel,
and M. Brader. Recommended C Style and Coding Standards. sixth edition, 1990.

[3] E. Chailloux, P. Manoury, and B. Pagano. Développement d’applications avec Objective Caml. O’Reilly,
France, 2000.

[4] COM: Component object model technologies. http://www.microsoft.com/com/default.mspx.

[5] B. Cox and A. Novobilski. Object Oriented Programming: An Evolutionary Approach. Addison-Wesley,
1991.

[6] Exhuberant ctags. http://ctags.sourceforge.net/.

[7] M. D. Ernst, G. J. Badros, and D. Notkin. An empirical analysis of C preprocessor use. IEEE Trans-
actiosn on Software Engineering, 28(12), 2002.

[8] J.-M. Favre. CPP Denotational Semantics. In SCAM, 2003.
[9] N. Glew and G. Morrisett. Type-safe linking and modular assembly language. In POPL, 1999.
[10] S. Harbison. Modula-3. Prentice-Hall, 1992.

[11] Once-only headers - the C preprocessor. gee on-line documentation, section 2.4, http://gcc.gnu.org/
onlinedocs/gcc-4.1.1/cpp/Once_002d0nly-Headers.html#0nce_002d0nly-Headers.

[12] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and Y. Wang. Cyclone: A safe dialect
of C. In USENIX Annual Technical Conference, 2002.

21

13] S. Johnson. Lint, a C program checker. Technical Report 65, Bell Labs, Murray Hill, N.J., Sept. 1977.
14] S. P. Jones and J. Hughes, editors. Haskell 98: A Non-strict, Purely Functional Language. 1999.
15] B. W. Kernighan and R. Pike. The Practice of Programming. Addison-Wesley Professional, 1999.

[13]
[14]
[15]
[16] B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice Hall, 2nd edition, 1988.
[17] K. N. King. C Programming: A Modern Approach. W. W. Norton & Company, Inc., 1996.

[18] B. McCloskey and E. Brewer. ASTEC: a new approach to refactoring C. In FSE, 2005.

[19] S. McConnell. Code Complete. Microsoft Press, 1993.

[20]

20] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML (Revised). MIT
Press, 1997.

1] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek. The Click modular router. In SOSP, 1999.
2] G. Morrisett. Personal communication, July 2006.

[23] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer. CCured: Type-Safe Retrofitting of
Legacy Software. TOPLAS, 27(3), May 2005.

[24] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate Language and Tools for
Analysis and Transformation of C Programs. In CC, pages 213228, 2002.

[25] PC-lint/FlexeLint. http://www.gimpel.com/lintinfo.htm, 1999. Product of Gimpel Software.
6] B. C. Pierce, editor. Advanced Topics in Types and Programming Languages. MIT Press, 2005.

[27] A. Reid, M. Flatt, L. Stoller, J. Lepreau, and E. Eide. Knit: Component composition for systems
software. In OSDI, 2000.

[28] D. Spuler and A. Sajeev. Static detection of preprocessor macro errors in C. Technical Report 92/7,
James Cook University, Townsville, Australia, 1992.

[29] W. P. Stevens, G. J. Myers, and L. L. Constantine. Structured design. IBM Systems Journal, 13(2):115-
139, 1974.

[30] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee. The Koala component model for
consumer electronics software. IEEE Software, 2000.

A Soundness

In this section we show that our rules from Figure 6 are sound for MTALg, assuming no type abstraction or
type naming is present.
We begin by stating some lemmas about MTAL, (Figure 8).

Lemma A.1 (Preservation) If+ O; link Oy ~ O then F O

Lemma A.2 (Associativity of link) IfF (O; link Os) link O3 ~ O then F Oy link (Oq link O3) ~ O.

Lemma A.3 (Commutativity of link) If+ O; link Oy ~ O then F Oz link Oy ~ O.

Lemma A.4 IfVi,j,1 <i,j<n,i#j. FO;link O; ~ O;; and if © is any permutation of {1...n} then
F On(1y link Oy o) link ... link Oy~ Oy

with = O1. .

22

We start by observing a property induced by Rule 4.
Lemma A.5 If A;F FRa(f,Ay) and Ap; F & f ~ A then A; F = f ~ A.

Proof By observation on the rules in Figure 5. The induction holds trivially for all operational sematics
rules except for [IFDEF+] and [IFDEF-]. For those rules and by the premise of Rule 4 in Figure 6, it follows
that the semantics rule are never applied with the value of macro being checked that is not common between
A and A;. Hence the hypothesis holds for [IFDEF+| and [IFDEF-] as well. O

Next we describe a basic property of [COMPILE] from Figure 7.

Lemma A.6 If two fragments have the same preprocessed output then their compiled objects are the same.
More formally, if A; F = fi~ A and A; F & fo~ A then A;FFfi D50 iff A F - fo 220

Proof By inspection of rule [COMPILE]. O

One key property the compiler gives us is that, by themselves, each compiled object file is well-formed
(in isolation) according to the rules in Figure 8.

Lemma A.7 (Well-formed compiled objects) If A; F+ f =5 Uy = H: Ug| thent [V = H: Ug]

Proof By assumption [COMPILE] holds, and so preprocessing f produces the result accumulator (C,I,T,Z,Z, E, N, D, U, H).
To show that [MTALg-WF-OBJ| holds, we need to identify a heap typing ¥4 that satisfies the rule. We

chose W4 = N|_qom(w,) from the result accumulator, where ~dom (¥;) is any symbol not in the domain of

W;. We now can show that each of the premises of [MTAL;-WF-OBJ] hold:

1. = ¥;. By [COMPILE] we have ¥ = N|(;_p), and by definition there are no duplicate elements in the
domain of ¥;.

2. - ¥y < Vg, By [ComPILE] we have ¥ = N|g and ¥; = N|;_pg). By construction we have
V4 = N|.dom(w,)- But then any symbol in dom (V) must be in dom (V,4). Furthermore, we have
F W 4 because by definition there are no duplicate elements in the domain of W 4.

3. U, UV, + H: U,y By [CoMmPILE| we have N F H, and then by [WF-HEAP] we have N F e :
N(g) where H(g) = e (here we safely assume the same g appears at most once, which also holds by
[WF-HEAP]). Further, since dom (¥;) U dom (¥4) = dom (NN) by construction, and since both are
projections of N onto smaller domains, we have ¥; U W4 = N. Thus for every g € dom (IV), we have
U;UT,4 b e: N(g). Then since dom (¥,4) C dom (N), we have Uy U W, F e : U4(g), which is the
same as Wy UW 4 - H : Uy

4. dom (¥7)Ndom (¥,4) = (). This holds trivially, because by [COMPILE] we have ¥; = N|;_p), and our
choice of ¥ 4 contains nothing in [in its domain.

a

Now we can prove type-safe linking. Our proof strategy will be to first prove that order-independent
fragments can be freely rearranged. We will then use this result to show that if one file imports a symbol
and one file exports a symbol, then the CMOD rules force the types to match. Finally, we will show that as
a consequence, CMOD enforces type-safe linking.

In this proof, we will use A; U Ay to denote the component-wise union of the two accumulators (which
translates to concatenation for any mappings). We also overload the sequencing operator to chain fragments
together, so that we may write fi, fo to mean the statements in f; followed by the statements in fs.

We begin by describing the behavior of preprocessing a sequence of fragments:

Lemma A.8 (Preprocessing chains) If F & (h; Ag; A; f1) — (hi; Ay Ags) then F = (hy; Ar Ags fo) —
(ha; Ag; Ags-) if and only if F & (h; Ag; A; (f1; f2)) — (ha; Az; Aos)

23

We also observe that preprocessing any fragment to completion leaves the name of the file currently being
preprocessed unchanged, because [INCLUDE] inserts any necessary pop statements.

Lemma A.9 If F+ (b A; A f) —5 (b; A A5 then B = h.

We use Lemmas A.8 and A.9 without comment in the remainder of the proof.
Next we state a trivial lemma, that preprocessing does not change any macro definitions that are not
marked in the accumulator as changed.

Lemma A.10 Suppose that F F (ho; Ao; Ao; fo) —> (h1; A A fi). Then Aj(m) = Ag(m) for all m ¢
AC.

The next lemma shows that the state of the accumulator “passes through” preprocessing of a fragment,
given certain conditions on the fragment. We use this lemma later on to reason about order independence.

Lemma A.11 (Passthrough Property) Suppose we have

F it (h; Ag; A; f) —F (his Aws Dis f)
FE(h AN f) —5 (hy A A)

where —* is k steps of reduction by the rules in Figure 5. Further suppose A'(m) = A(m) for all m € AY
and A° N AY =0 and Then
FF (s A A5 f) —F (i A AL)
where
h;gzhk‘f ;CZAUA/W f]éz.fk; and

/ ~f Ag(m) me (A4 UAD)
Ar(m) = { A’(m) otherwise

Proof The proof is by induction on k. The base case k = 0 is trivial, since Ay U A = A and AY = Ag = 0.
For the inductive case, assume the property holds for £ — 1, that is, assume

F (b Ag; A; f) —F 1 (hye—1s A1 A1 fr—1)
Fr (b AN f) — 1 (ho1; AU A1 A5 feet)

. Ak_l(m) m e (.Au_ U.AC_)
/ _ k-1 k—1
with Ay, (m) = { A'(m) otherwise
Then suppose we take one additional step of reduction:

FE (hp—1; Ap—1; Ak—1; fo—1) — (hies A Ags fo)
Fr (he1; AU A1 A5 froa) — (B A7 A7)

and consider the possible cases. If f is a sequence, then we apply [SEQ], which ultimately reduces to one of
the other cases. Since the output accumulator and defines are the same as from the underlying statement
reduction, there is nothing additional to show. We consider the other cases.

e ifdef. Suppose that f is an ifdef conditioned on m. In either case, we clearly have A” = (AU Ag_1)[U «—T
m] = AU (Ag_1[U <1 m]) = AU Ay. Since the set of defines does not change, our property on A}
holds. We also clearly have h' = h_1 = hy.

Then there are two cases. If m € A$_, then by induction we have A} | (m) = Ag_1(m), and therefore
we clearly have f” = fj.

Otherwise if m ¢ A% |, by Lemma A.10 we have Ag_1(m) = A(m). Then since m € AY, by
assumption we have A’(m) = A(m), and we also have m ¢ A¢. But then m ¢ (AU A;x_1)¢, and

24

thus by Lemma A.10 we have A} _;(m) = A’(m). Putting this together, we have Ay_1(m) = A(m) =
A'(m) = A}_;(m). Thus we clearly have f" = fj.

Finally, observe that AY = AY_,U{m}, and by induction A}, _,(m) = Ay_1(m) form € (AY_; UAT_,),
and Aj,_,(m) = A’(m) otherwise. But we have just argued above that Aj,_,(m) = Ag_1(m), and
m € AY by [IFDEF+] or [IFDEF-]. And since Ay = A1 and A} = A, |, we have A} (m) = Ag(m)
for m € (AY U AS), and Al (m) = A’(m) otherwise.

includes. By the assumption the reduction of f under A never gets stuck, so both reductions can take
a step, and trivially both produce the same accumulator since it is simply added to.

extern, let, type, and let type. Trivial, since the accumulator is simply added to and the defines are not
changed.

def. Clearly we have A” = AU A; by applying induction and observing that [DEF] only adds to the
macro uses and changes in the accumulator, and clearly f” = f,. We also clearly have h” = hy,
and we have AY U A{ = AY U A | U {m}. By induction we have A} ,(m) = Ap_1(m) for
m € (AY_, UAS_), and A}_;(m) = A'(m) otherwise. Further, Ay(m) = Aj_1(m) = true by [DEF].
Thus we have A} (m) = Ag(m) for m € (AY U AS), and Aj,(m) = A’(m) otherwise.

undef. Similar to previous case.

pop. Trivial, since clearly h” = hy, because they are set to the same value by [EOH].
O

Given this lemma, we can now show that, assuming order-independence, the placement of an include file

does not affect its behavior.

Lemma A.12 (Separate Reduction) Suppose preprocessing f evaluates the statement s = include h:

Fr (5 Ap As f) =5 (ha; Av; Ags (s, f2)) (A1)
Fr <h1;A1;A1; (S,f2)> — <h1;A2;A2;f2> (A~2)

Also assume that F(h) can be separately preprocessed:

F b (3 A A F(R)) —5 (3 A Ans) (A.3)

Then if Ay F = Rs(f), it is the case that AY C AY.

Proof Expanding out (A.2), we have

F F (h1; A1; Ag; (s, f2)) —

(h; AL[T —* h]; A; (F(h), pop hi, f2))

F (b A1[T <7 hl; Ay (F(h), pop hi, f2)) —
(h1; Ag; Ag; fo) (A4)

Then because A; F F R3(f) and h € A%, we have A; F - f ® h. Therefore by [PARTIAL-INDEP], we have

(AT T h])c NAY = 0. Then by Lemma A.10, we have A;(m) = A(m) for all m € AY. Moreover, by
(A.4), we know the reduction of F(h) did not get stuck using accumulator A;[Z < k], macro environment
A1, and current header file h. Now suppose we have

F b (b Ag; s F(R)) — (B A A) (A-5)

25

Notice that by (A.3), this reduction cannot get stuck. Then we can apply the Passthrough Property
(Lemma A.11) on (A.5) and (A.4):

*

Ft (hy [T T h); Ay; F(h)) —
(h; A1[Z T hJU Aps; A5)

But then by (A.4), we have Ay = A;[Z <+ h] U Ap.. But observe that AY = AN (changing the current
include file doesn’t change the symbol types, by the rules in Figure 5), and thus A} C A% . O

Given this lemma, we can now show that if two fragments satisfy the conditions of [RULE 1] and the
commonly-included header is order-independent, then any symbol exported by one and imported by the
other has the same type in both.

Lemma A.13 (Consistent Typing) Let fragment f. export g and let fragment f; import g, and let both
fe and f; include a common header fragment fr(= F[h]) that declares the variable:

NFlEforo Ao, g€ AP he AT
A;fFfiMAi, QEA{, hG.AZI
A FE i~ Ap, gEAhD

Then if
AFEfo =20, AFFRs(fe)
NFEfi =50, AFERs(f)

all hold, then AN (g) = AN (g) = AN(g), i.e., g maps to the same type in each fragment.

Proof By assumption, preprocessing f. and f; will eventually preprocess the statement s = include h. Thus
we have:

FE (5 Api As fo) = (Baes Ave; A (8, fae))

F <hle§ Aie; Aves (S, f2)> - <hle; Ase; Age; f2€>

A26 g Ae

Then by Lemma A.12, we have A}’ C A5 . But then since ALY, C AY, we have (g — AN (g)) € AY. The
by [CoMPILE], we have - A% and therefore AY (g) = AN (g). Similarly we can show that AN (g) = AN (g),

because f; included the same file. O

Theorem A.14 (Type-Safe Linking) Suppose A; F = R(P), and suppose A; F =P =5 [) = Hp : Ypp].
Also suppose that for any f;, f; € P that are distinct (i # j), it is the case that

A;]:I— fz LmR [\I/[i = Hi : \I’Ei}
N FEf; =5 Uy = Hj: Uyl
A;F Uy = Hi: Upilo[¥r; = H;: Up] = Oy

Then
= [\Ijh = Hz : \I’El] link [‘I’[] = H] : \IIEJ] ~ Oij

Proof By assumption [LINK] holds. Observe that the linked file form (O;;) in [LINK] is the same as in
[MTAL-OBJ], so we just need to show the hypotheses of this rule. To show [MTALy-OBJ], we first need
to show each object file is well-formed, which follows by Lemma A.7. The last premise of [MTALg-OBJ],
disjointness of the domains of H; and Hj, is the same as the premise of [LINK], so that also holds. Thus we
only need to show link compatibility, or - [¥;; = H; : Ugy] & [U;; = H; : ¥g;]. We show each premise of
[MTAL(-LC] in turn.

26

e dom (Vg;) Ndom (¥g;) = 0. Notice dom (¥g;) = E; by [COMPILE] and E; C dom (H;), which we
observe holds because the rules in Figure 5 only add symbols to F that are also added to dom (H)
(see rule [LET]). Similarly, dom (¥g,) = E; C dom (H;). Then since by [LINK] we have dom (H;) N
dom (H;) = (), we have dom (¥ ;) Ndom (¥ ;) = 0.

o - U;; ~ ¥g;. By assumption, we have A; F F R(P). Thus by [ALL], we have in particular

Ny FER(fi, f5)
AsFERa(fi) A FERs(fj)

Let A; and A; are the accumulators from the preprocessing of f; and f;, respectively. Now consider
some g in dom (¥7;) N dom (¥pg;). Then we have g € Al and g € AF. Further, by [RULE 1] we
have A;F + g &5 AT N A%. Then by [SyM-DECL] there exists some h € A} N A} such that
A;F + F(h) ~ Aand g € AP. Then we can apply Lemma A.13 to yield A} (g9) = AN (g). But
then we have ¥r;(g9) = Ug;(g) by [CoMPILE], and therefore - U; ~ Wg; holds.

o -V ~ ¥p;. Symmetric argument to the previous case.

e - WUy ~ Uy, Let us consider some g € dom (¥r;) Ndom (¥y;). Then we assume that 3f; € P s.t.
A FFf &8 [Urr = Hy : U] and g € Ey, i.e., we assume that some fragment exports the symbol
g, because we assumed the fully-compiled program had no unresolved symbols. Then by the same
argument as the previous two cases we can conclude = ¥, ~ Wgy and = ¥r; ~ Uy, since the CMOD
rules hold for the whole program. Then we have Vg (9) = ¥r;i(g) and Ygr(g9) = ¥r1;(g), and therefore
Vri(g) = ¥r;(g).

27

