Modular Information Hiding and Type-Safe Linking for C

Saurabh Srivastava

Michael Hicks

Jeffrey S. Foster

University of Maryland, College Park
{saurabhs,mwh,jfoster}@cs.umd.edu

Abstract

This paper presentsM®dD, a novel tool that provides a sound mod-
ule system for C. @oD works by enforcing a set of four rules that
are based on principles of modular reasoning and on current p
gramming practice. @oD’s rules flesh out the convention thai
header files are module interfaces ardsource files are module
implementations. Although this convention is well-knovaeyvel-
oping QuoD’s rules revealed there are many subtleties in applying
the basic pattern correctly. We have proven formally theio©’s
rules enforce both information hiding and type-safe ligkiVe
evaluated @ob on a humber of benchmarks, and found that most
programs obey @oD’s rules, or can be made to with minimal ef-
fort, while rule violations reveal brittle coding practgecluding
numerous information hiding violations and occasionaétgpors.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guage¥ Language Constructs and Features—Modules, packages

General Terms Design, Languages

Keywords C, Information Hiding, Module Systems, Type-Safety

1. Introduction

Module systems allow large programs to be constructed from
smaller, potentially reusable components. The hallmark gbod
module system is support fanformation hiding which allows
components to conceal internal structure, while still ecifg type

mers may be unaware of (or ignore) the subtleties of usingaite
tern correctly, and thus may make mistakes (or cut cornsirs}e
the compiler and linker provide no enforcement. The resuthe
potential for type errors and information hiding violat&mwhich
degrade programs’ modular structure, complicate maimiesaand
lead to defects.

As a remedy to these problems, this paper presentstf; a
novel tool that provides a sound module system for C by enforc
ing four rules that flesh out C’s basic modularity patternother
words, QoD aims to enable safe modular reasoning while match-
ing existing programming practice as much as possible. We ha
proven formally that @oD’s four rules ensure that C programs
obey information hiding policies implied by interfaces,dathat
programs are type safe at link timi@o our knowledge, ®oD is
the first system to enforce both properties for standard Graros.
Related approaches (Section 6) either require linguigtiensions
(e.g., Knit [26] and Koala [31]) or enforce type safety but me
formation hiding (e.g., CIL [22] and C++ “name mangling”).

To evaluate how well @0D matches existing practice while
still strengthening modular reasoning, we ram@ on a suite
of programs cumulatively totaling 440K lines of code split@ss
1263 files. We found that most programs generally comply with
CwmobD’s rules, and fixing the rule violations typically requirady
minor changes. Rule violations revealed many informatiolinig
errors, several typing errors, and many cases that, althoog
currently bugs, make programming mistakes more likely &s th
code evolves. These results suggest thabG can be applied to

safetyacross components. This combination allows modules to be current software at relatively low cost while enhancingsitdety

safely written and reasoned about in isolation, enhandiagelia-
bility of software [30].

While many modern languages define full-featured module sys
tems (such as ML, Haskell, Ada, and Modula-3), the C program-
ming language—still the most common language for operatjyisg
tems, network servers, and other critical infrastructutecks di-
rect support for modules. Instead, programmers typicéilykt of
.c source files as implementations and uséeader files (contain-
ing type and data declarations) as interfaces. Textuatipding a
.h file via the#include directive is akin to “importing” a module.

Many experts recommend using this basic pattern [9, 2, 13, 14
15, 17], but their recommendations are incomplete and, tasris
out, insufficient. To our knowledge, the basic pattern haseen
previously developed to the point that proper informatiadirty
and type safety are provable consequences. As a resultapreg

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

TLDI'07 January 16, 2007, Nice, France.
Copyright(© 2007 ACM 1-59593-393-X/07/0001. . . $5.00.

and maintainability.
In summary, the contributions of this paper are as follows:

e We present a set of four rules that makes it sound to treaehead
files as interfaces and source files as implementationsi¢Ret}.
To our knowledge, no other work fully documents a set of paoyr
ming practices that are sufficient for modular safety in C.ilé¢/h
this work focuses on C, our rules should also apply to langsiag
that make use of the same modularity convention, such as C++,
Objective C, and Cyclone [11].

e We give a precise, formal specification of our rules and prove
that they are sound, meaning that programs that obey the rule
follow the abstraction policies defined by interfaces aral type
safe at link time (Section 3).

e We present our implementation,MOD (Section 4), and de-
scribe the results of applying it to a set of benchmarks (Se&).
CwmobD found numerous information hiding violations and several
typing errors, among other brittle coding practices, aneis gen-
erally easy to bring code into compliance witvGD.

1Throughout this paper, when we sgipe safetywe mean that types of
shared symbols match across modules. C programmers chrictle
type safety in other ways, e.g., by using casts. This coulddagessed by
using CCured [21] or Cyclone [11], which should combine sleasly with
CmoD.

bitmap.h main.c
1 struct BM; 10 #include "bitmap.h"”
2 void init (struct BM x); 11
3 void set(struct BM x, int); 12 int main(void) {
13 struct BM xbitmap;
. 14 init (bitmap);
bitmap.c 15 set (bitmap, 1);
#include " bitmap.h” 1673)

struct BM { int data; };

void init (struct BM sxmap) { ... }

void set(struct BM xmap, int bit) { ... }
void private (void) { ... }

© 00 ~NOoO 0N

Figure 1. Basic C Modules

2. Motivation and Informal Development

In most module systems, a modulé consists of atnterface M
that declares exported values and types, arichatementation\/s
that defines everything in/; and may contain other, private defi-
nitions. Any component that wishes to use valuesfig relies only
on M7, and not onMs. The compiler ensures thafs implements
M, meaning that it exports any types and symbols in the interfa
These features ensuseparate compilatiowhen module imple-
mentations are synonymous with compilation units.

bitmap.h main.c
1 struct BM: 14 #include "bitmap.h”
2 void init (struct BM x); 15 .
3 void set(struct BM , int); 16 /* bad symbol import */
17 extern void private (void);
18
bitmap.c 19 /x violating type abstr. x/
20 struct BM { int xdata; };
4 /% bitmap.h not incl. x/ 21
5 22 int main(void) {
6 struct BM { int data; }; 23 struct BM bitmap;
7 24 init (&bitmap);
8 /x inconsistent decl. x/ 25 set (&bitmap);
9 void init (struct BM xmap, 26 private ();
int val) { ... } 27 bitmap.data = ...;
void set(struct BM xmap, 28
int bit) { ... } 29 }
void private (void) { ... }

Figure 2. Violations of Rules 1 and 2

2.2 Header Files as Interfaces

One of the key principles illustrated in Figure 1 is that syistare
always shared via interfaces. In the figure, heademap.h acts
as the interface tbitmap. c. Clients#include the header to refer
to bitmap.c's symbols, anditmap.c includes its own header to

There are two key properties that make such a module systemmake sure the types match in both places [15, 1%]o6 ensures

safe and effective. First, clients depend only on intesawgher
than particular implementations:

PROPERTY2.1 (Information Hiding).If Ms defines a symbaj,
then other modules may only accesH it appears inM;. If M;
declares an abstract typg no module other thar/s may use
values of type concretely.

This property makes modules easier to reason about and teuse
particular, if a client successfully compiles againstiifaee M7, it
can link against any module that implements that, andM s may
safely be changed as long as it still implemehfs.

Second, linking a client of interfade/; with an implementation
Ms of M; must be type-safe:

PROPERTY2.2 (Type-Safe Linking)lf module Mg implements
M and moduleNg is compiled to us@/;, then the result of link-
ing Ms and Ng is type-safe.

The goal of G10D is to ensure that C modules obey these two
properties. Our starting place is the well-known C conaniin
which . c source filesact as separately-compiled implementations,
and.h header filesact as interfaces [9, 2, 13, 14, 15, 17].

2.1 Basic Modulesin C

Figure 1 shows a simple C program that follows the modularity
convention. In this code, headettmap.h acts as the interface to
bitmap.c, whose functions are called byin.c. The header con-
tains an abstract declaration of typeruct BM and declarations of
the functionsinit andset. To usebitmap.h as an interface, the
file main.c “imports” it with #include "bitmap.h", which the
preprocessor textually replaces with the contentsiamap.h. At
the same timebitmap.c also invokestinclude "bitmap.h" to
ensure its definitions match the header file’s declarations.

This program is both type-safe and properly hides inforamati
Since bothmain.c andbitmap.c include the same header, the C
compiler ensures that the typesiafit andset match across the
files. Furthermorepain. c never refers to the symbptivate and
does not assume a definition fotruct BM (treating it abstractly),
since neither appears tritmap.h.

that linking is mediated by an interface with the followingde:

RULE 1 (Shared HeadersYVhenever one file links to a symbol de-
fined by another file, both files must include a header thatzost
the type of that symbol.

The C compiler and linker do not enforce this rule, so program
mers sometimes fail to use it in practice. Figure 2 illugtsatome
of the common ways the rule is violated, based on our expegien
(Section 5). One common violation is for a source file to faiiirt-
clude its own header, which can lead to type errors. In Fi@ure
bitmap.c does not includéitmap.h, and so the compiler does
not discover that the defined type ofit (line 9) is different than
the type declared in the header (line 2).

Another common violation is to import symbols directly in
files by usingextern, rather than by including a header. In the
figure, line 17 declares thatrivate is an external symbol, al-
lowing it to be called on line 26 even though it is not mentidne
in bitmap.h. This violates information hiding, preventing the au-
thor of bitmap.c from easily changing the type of, removing, or
renaming this function. It may also violate type safety.. cifga
local extern declaration assigns the wrong type to a symbol. We
have seen both problems in our experiments. One way thatthe a
thor ofbitmap. c could prevent such problems would be to declare
private asstatic, making it unavailable for linking. However,
programmers often fail to do so. In some cases this is anightrs
and in some cases this is because the symbol should be &vailab
for linking to some, but not all, files.

Rule 1 admits several useful coding practices. One common
practice is to use a single header as an interface for sea@uate
files (as opposed to one header per source file, as in the exfampl
For example, the standard library headedio.h often covers
several source files. To adhere to Rule 1, each source filedwoul
#include "stdio.h". Another common practice is to have sev-
eral headers for a single source file, to provide “public” &md-
vate” views of the module [17]. In this case the source file ldou
include both headers, while clients would include one oroiier.

The last error in Figure 2 is imain.c, which violates the
information hiding policy ofbitmap.h by definingstruct BM

bitmap.h

config.h

1 #ifdef COMPACT 18 #ifndef _CONFIG_H
2 struct BM { int map; }; 19 #define _CONFIG_H
3 #else 20 #ifdef __BSD__

4 struct BM { int xmap; }; 21 #undef COMPACT

5 #endif 22 #else

6 wvoid init (struct BM x); 23 #define COMPACT

7 void set(struct BM x, int); 24 #tendif

25 #endif
bitmap.c
main.c

8 #include "config.h” -

9 #include "bitmap.h” 26 #finclude " config.h”
10 27 #finclude " bitmap.h"”
11 #ifdef COMPACT 28
12/« defn’s of 29 int main(void) {

13 init (), set() x/ 30 struct BM xbmap;
14 #else 31 init (bmap);

15 /% alt. defn’s of 32 set (bmap, 1);

16 init (), set() %/ 33

17 #endif 34 }

Figure 3. Using the Preprocessor for Configuration

on line 20. In this case the violation results in a type erioces

the definitions on lines 6 and 20 do not match. Rule 1 does not
prevent this problem because it refers to symbols and nastyp
Our solution is to treat type definitions in a manner simitahow

the linker treats symbols. The linker requires in generat tmly

one file define a particular function or global variable nafieis
ensures there is no ambiguity about the definition of a giyerb®l
during linking. Likewise for types, we can require that thes
only one definition of a type that all modules “link againsty'the
following sense.

We say that a type definition iswnedby the file in which it
appears. If the type definition occurs in a header file (andtden
is owned by the header), then the typermnsparent and many
modules may know its definition. In this case, “linking” ocsu
by including the header. Alternately, if the type definitiappears
in a source file (and hence is owned by that file), then the tgpe i
abstract and only the module that implements the type’s functions
should know its definition. @oD requires that a type have only
one owner, thus forbidding the example in Figure 2:

RULE 2 (Type Ownership)Each type definition in the linked pro-
gram must be owned by exactly one source or header.

Notice that this rule is again somewhat flexible, allowingiddfte-
ground between abstract and transparent types. In pantichis
rule allows a “private” header to reveal a type’s definitiohile a
“public” header keeps it abstract. Files that implementtype and
its functions include both headers, and those that use fitzaibly
include only the public one.

This notion of ownership makes sense for a global namespace i
which type and variable names have a single meaning thraigho
program. For variables, thetatic qualifier offers some names-
pace control, but C provides no corresponding notion foretyp
names. While we could imagine supporting®atic notion for
types, we use our stronger rule because it is simple to imgiém
and we have found programmers generally follow this practic

2.3 Preprocessing and Header Files

Rules 1 and 2 form the core ofM®D’s enforcement of type safety
and information hiding. However, for these rules to workpaudy,
we must account for the actions of the preprocessor.

Consider the code shown in Figure 3, which modifies our ex-
ample from Figure 1 to represent bitmaps in one of two wayegli
1-5), depending on whether tl@®@MPACT macro has been previ-
ously defined (line 21 or 23). The value @MPACT itself depends
on whether__BSD__ is set, which is determined by the initial pre-
processor environment when the compiler is invoked (morthisn
below). In general, we say that a fife depends offile f> when f;
uses a macro set bfs. Here,bitmap.h depends oronfig.h.

Such preprocessor-based dependencies are very useftd, sin
they allow programs to be configured for different circumsts.
Unfortunately, they can unintentionally cause a headee forbpro-
cessed differently depending on where it is included. IruFeég3,
if we were to swap lines 8 and 9 but leave lines 26 and 27 alone,
thenbitmap.c andmain.c may have different, incompatible def-
initions of struct BM. Thus, the preprocessor can undermine type
safety and information hiding, even given Rules 1 and 2.

To solve this problem, we define two additional rules that aim
to enforce the following principle:

PrRINCIPLE 2.3 (Consistent Interpretationftach header in the
system must have @nsistent interpretatipnmeaning that when-
ever modules linked together include a common header, thétre
of preprocessing the header is the same in both modules.

Enforcing this principle allows us to keep Rules 1 and 2 semahd
it makes it easier for programmers to reason about headecg, s
their meaning is less context-dependent (though not éntas we
discuss below). The first new rule to enforce this principte i

RuLE 3 (Vertical Independence)ith the exception of a desig-
nated, initial config.h, header file inclusion must be vertically
independent.

We say two header files akeertically dependenif one depends
on the other and both artincluded by the same source. In the
examplepitmap.h is vertically dependent oconfig.h. Vertical
dependencies are encouraged by some coding style guidédsif2]
we forbid them because they add unnecessary complicatiquart
ticular, the programmer must remember to always includadael-

ers together, in some particular order. We believe a betsatipe

is to convert vertical dependencies irttorizontal dependencigs
which are more self-contained. We say that two header files ar
horizontally dependerif one of the headers is dependent amd
#includes the other. A horizontal dependency adheres to Princi-
ple 2.3 because a header always “carries along” the otheiehea
on which it depends, ensuring a consistent interpretation.

If we wanted to remove the vertical dependency in the example
we could convert it to a horizontal dependency by moving Bne
just prior to line 1. However, notice that theanfig.h would be
included twice inmain.c, once directly and once vigitmap.h.
The double inclusion is harmless because of #iéndef pat-
tern [4, 10] beginning on line 18, which causes any duplidéee
inclusions to be completely ignored. Our semantics assmmelsi-
plicate inclusion, and we check that it holds for our benctksia

Although we feel that vertical dependencies are bad peatic
general, the headers in many large programs are verticafigrd
dent on aconfig.h header. @oD allows these dependencies as
long asconfig.h is always includedirst. This ensures other in-
cluded headers are consistently interpreted with respettThis
is easy for the programmer to remember and fora® to check.

Preventing vertical dependencies solves one problem Wwéh t
preprocessor, but we also need to reason about the ini¢ipiqres-
sor environment. Recall that theBSD__ flag used in lines 20-24 is
not set within the file. Instead, it is either supplied by tiistem or
set by a-D command-line argument to the compilerblftmap.c
were compiled with this flag set amthin. c were compiled with-
out it, then the two inclusions afitmap.h (lines 9 and 27) would

program P | foP
fragment f s, f
statements s cld
preproc. commands ¢ include h | def m | undef m

ifdef m then f else f

definitions d letg:7=e|externg: T
let typet = 7 | type t
terms e n|Ay:7.eleelylyg
types T tlint|7— 7

m € macro names g € global var. names
h € file names t € type names

Figure 4. Source Language

produce different representations for tygeruct BM. We can pre-
vent this by enforcing the following rule:

RULE 4 (Environment Compatibility)All files linked together
must be compiled in a consistent preprocessor environment.

By consistentve mean that for any pair of linked files that depend
on a macra4, the macro must be defined or undefined identically
in the initial preprocessor environments for each file. Bssing
each module in a consistent environment ensures that atsof i
included headers (which by Rule 3 are not vertically depet)de
are interpreted the same way everywhere, following Prle@gs3.

ments are themselves made up of a list of statementhich may
be either preprocessor commands core language definitions

The commandnclude h inserts the fragment contained in fite
and then preprocesses it. In our semantics we assume wevare gi
a mapping from include file names to fragments. The commands
def m andundef m define and undefine, respectively, the prepro-
cessor macran from that point forward. In our semantics, macros
may only be used as boolean flags. The conditidfidaf m then f;
else fy processey; if m is defined, and otherwise processfas
Notice that since each branch is a fragment, it may contathdu
preprocessor commands.

The C preprocessor includes additional features not foand i
our language, including macro substitution and conditiéoans
such astif and#ifndef. The C language also allows preprocessor
commands to occur anywhere in the text of the program, wkerea
our language forbids preprocessor commands inside of tiefisi
In Section 3.4, we argue that these additional features taffext
soundness.

Turning to the core language, the definitieng : 7 = ¢ binds
the global name to terme, which has type-. Termse are simply-
typed lambda calculus expressions that may refer to locables
y or global variableg;. We use the lambda calculus instead of C
syntax because it illustrates all of the necessary issuge.0Gloes
not directly interpret the core language in more detail tt@a
formulation provides and hence this level of detail sufficEise
commancextern g : T declares the existence of glohabf type 7.
This form is used in header files to import a symbol. The comiman

Rules 3 and 4 allow a program as a whole to be parameterizedlet type ¢t = 7 defines a named typeto be an alias for-, while
by config.h and the initial preprocessor environment. In essence, type ¢ merely declares thatmay be used as a type name. We say

the program can be considered a very large functor [25]. WHnile

thatg andt aredefinedby let g : 7 = e andlet type t = 7 while

Cwmob allows individual headers to be parameterized, they must ¢ andt aredeclaredby extern ¢ : T andtype t. Within a program

be consistently interpreted throughout the program. We harely
found this to be a problem in practice. Sincefile acting as
an interface represents .a file that is typically compiled once,
there is usually little reason to interpret tha file differently
in different contexts. We have found two exceptions in pcact
The first is to support context-dependent information tgdby
including or not including certain prototypes based#dfdefs.

we allow many declarations of a global variable or type nante b
only one definition. Note that to keep the rules simpler, wendb
modelstatic definitions.

3.1 Preprocessor Semantics
Following C, our source language has a two-stage operatsaia

While Cmop disallows this practice, one can use separate header mantics. For each fragment, the preprocessor executes ieo

files instead [17]. The second case is#include a .h or .c
file containing parameterized code definitions (akin to acfon
application). These situations occur but are uncommonando
not handle them specially.

Note that while enforcing Principle 2.3 ensures headersare
sistently interpreted, this does not imply that a headeansthe

preprocessor commands, conceptually producing a fragommt
sisting only of core language definitions. These fragmerggten
compiled into object files, which are combined with linkiragyd
then the entire program is evaluated using a standard sesant
The four QuoD rules are based on the output of an instrumented
preprocessor, shown in Figure 5. Rather than perform gubietis

same thing wherever it is included. This is because a header i {0 generate a new fragment consisting only of definitionsigivh

likely to refer to type definitions that precede it, and, maaeely,
variable definitions if the header conta#satic (possibly in-line)
functions, or macro definitions that include code. Rule 2uezs
type definitions must always mean the same thing, but theme is
such rule for symbols, which can be multiply-defined if deeth

would be closer to the semantics of the actual C preprocgssor
our semantics constructs aocumulator.A that contains both the
core language definitions and other information needed flrem
CwmobD’s rules. In particular, the preprocessor is defined as éioala
amongstatesof the form (h; A; A; z), where h names the file

static. Though it may be desirable to forbid dependencies on Ccurrently being preprocessed,is the accumulator) is the set of

symbols, G10D allows them, for two reasons. First, such depen-
dencies do not impact type safety and information hiding.o8d,
extending oD to track such dependencies would add signifi-
cant implementation complexity when compared to our cirapn
proach (Section 4), and in our experience, dependenciesaatic
symbols are rare. We leave such an implementation to futark.w

3. Formal Development
In this section we formally presentM®D’s rules and prove that

currently-defined macros, ands either a fragment or a statement.
Each top-level fragment in the program is preprocessed-sepa

rately. Preprocessing fragmefitbegins with an initial (possibly
empty) set of defined macrdsy, which in practice is supplied on
the command line when the compiler is invoked; may differ
from one fragment to another. TlecumulatorA is a tuple that
tracks the preprocessor events that have occurred thihfacore
language program is encoded as three lists in the accumuléto
maps global variables to their typeH, maps global variables to
their defining expressions, affidmaps each type nameo its def-

they are sound. Our rules are defined in terms of the souree lan inition 7. In T', types are annotated with either the header/fila

guage in Figure 4, which models C and the C preprocessoridn th
language, a source prograf consists of a list of fragmentg,
each of which represents a separately-compiled source-fie-

which the type was defined, orif it was defined in a source file
rather than a header file. The remainder of the accumulatists
of the sets of global variables that have been expo§dy defin-

symbols N == .|g—71, N
heap H = -|g—e H
namedtypes T = -|t—7l T|t—7° T
exports E € 29
imports I € 29
symboldecls D € 29
macro changes ¢ € 2™
macrouses U € 2™
typedecls Zz € 2!
includes 7 € 2@
accumulator A = (C,I,T,Z,Z,E,N,D,U,H)
file system F : h—f
defines A € 2™

FE(hAA;s) — <h;A’;A’;f’>
Fr(hy A Ass, fy — (hs A A 1 f)

[SEQ]

Incu) hg AT f=F(),poph! A =AZ<"h
F = (h'; A; Asinclude h) — (hy A3 A; f)
E
B s s B pop by — (i A5 A)
[DEF A = AlC T m, U T m)] A= AU {m}
FE (h; A; Asdef m) — (h; A5 A5)
[UNDEF] A =AlC—Tm, U T m] A=A —{m}
F + (h; A; Asundef m) — (h; A3 A5)
[l FDEF+]

me A A = AU T m]
F b (h; A; Asifdef m then f else f_) — (h; A5 A fy)

[IFDEF-]
mg¢A A =AU~ m]
F b (h; A; A;ifdef m then f4 else f_) — <h;A/; A; f,>

A =AD <" g, N =" (g~ 7))
FE(h;A;Ajexterng : 1) — <h;.A'; A >

[EXTERN]

A =AH <" (g—e), N =T (g—7),
E—tg, D<—"g I—"1fg(e)
F(h; A; Aslet g : 7 =€) — (hy A3 A)

[LET] F

A= AlZ <1 4]
E (h; A; Astype t) — <h;.A'; A >

[TyPE-DECL]
]:

A = AT T (t — "))
E (h; A; Aslet typet = 7) — <h;A/; A >

[TYPE-DEF]
F

Figure 5. Instrumented Semantics for the Preprocessor

ing them withlet, imported () by using them in code, and declared
(D) by extern or let; the set of macro€ that have possibly been
changed (defined or undefined); the set of matfashose value
has been tested; the set of typéshat have been declared; and
finally the set of files that have been included.
Reduction rules are of the fornF + (h; A; A;x)
(h'; A'; A'; 2"y, Here F represents the file system, which maps
header file names to their corresponding fragments. Pregsow

—

fragmentf begins with an accumulator whose components are all

?, which we write Ay; anh component set to; and a givenF and
an initial set of definesa\ ;.

In the rules in Figure 5, we writed[X «* z] for the accu-
mulator that is the same a4 except that itsX component has:
added to it. We writed™ for the X component of4. All of the
rules increase the contents of the accumulator monotdyical

We discuss the preprocessor semantics brieflgQ]Seduces
the first statement in a fragment. We abuse notation and \rjtg
as the concatenation of fragmenf$ and f, where-, f' = #’
and (s, f'), f" = s,(f, f"). [INncL] looks up file nameh in
the file system and reduces to the corresponding fragmesisdt
inserts a special commangbp k', whereh' is the file currently
being processed. When the preprocessor finishes reducitite
[EoH] rule restores the current file #d. Notice that the semantics
become stuck if a header file is included twice, because then t
premiseh ¢ AT of [INCL] is not satisfied. While this does not
quite match the actual preprocessor semantics, it singpttiierule
specification. In practice, programmers mostly use #héndef
pattern (Section 2.3) to make duplicate file inclusion a pp-o
our implementation of @oD emits a warning if it discovers this
practice is not followed.

[DEF] and [UNDEF] add or removen from the set of currently-
defined macrosA, and markm as being changed and used.
[ITFDEF+] and [IFDEF] reduce to eitherf; or f_ depending on
whetherm has been defined or not. In either case, wernadd the
set of macros whose values have been used.

The remaining rules handle declarations and definitiong Th
C preprocessor ignores these, bua@'’s preprocessor extracts
information from them to enforce its rules. XEERN] records the
declaration ofy and notes its type itN. Here we append the typing
(g — 7) onto the listV, i.e., we do not replace any previous
bindings forg. The C compiler ensures that the same variable is
always given the same type within a fragment (Section 3L31]
addsg to the set of defined global variablés, addsg’s type toN,
and adds any global variables mentioned {written fg(e)) to the
imports. Finally, [TrPE-DECL] declares a type, which is noted in
Z, and [Type-DEF] defines a type, which is noted iA. Types in
T are annotated with the current filg which iso if the current file
is not a header.

3.2 CwmoD Rules

We now formally specify the rules presented in Section 2.tates
the rules more concisely, we introduce new notation to descr
the final accumulator after preprocessing beginning froeretinpty
accumulator:

DEerINITION 3.1 (Partial PreprocessingiVe write A; F = f ~
(A; f') as shorthand forF (o; Ap; A; f) —= (h; A; A f7),
where—=s is the reflexive, transitive closure of the rules in Figure 5.

DEFINITION 3.2 (Complete Preprocessing)le write A; F +
f ~ Aas shorthand for\; F = f ~ (A;-).

CmobD’s rules are shown in Figure 6. The first three rules as-
sume there is a common initial macro environméntnder which
all fragments are preprocessed; the fourth rule ensureshisaas-
sumption makes sense. Figure 6(a) defines the judgresft -
R1(f1, f2), which enforces Rule 1: for each pair of fragmeyiits
and f5 in the program, any global variable defined in one and used
in the other must be declared in a common header fileLER1]

decl

uses auxiliary judgmenf\; ¥ + g «—— Z, which holds ifg is
declared by some header in the getwhere we compute the de-
clared variable names by preprocessing each headér filaso-
lation. Then for any global variable nangein N, which contains
any global variable names imported by one fragment and dkfine
by the other, it must be the case tiatF - g <= A7 N A%, ie.,

g is declared in a header file that bothand f include.

[Sym-DEcCL]

heT AFrFh)~A geAP
AFRg&ET

[RULE 1]

A FE fi~ A A FE far~ Ao

N = (A{OAQE) U (A{E mAé)
VgEN.AFrg& ATnal
A FERi(f1, f2)

(a) Rule 1: Shared Headers

[NAMED-TYPES-OK]
V(t— 7°) €Ty .t ¢ dom(T5)

vt € dom(71) N dom(7T») .
h

[PARTIAL -INDEP]
A; FE f~ (Ar;include h,)
A; F = F(h) ~ Az

Ti(t) =71 A To(t) = 4% = hy1 = ho ATNA =0 AYnAS=0
Fr Ty, T AN FEF®R
[RULE 2] [RULE 3]
AFFfio Al AFE foro Ao A FEfo A
b AL AL ALAT R AR Vhe AT AFF®h
A F = Ra(fr, f2) A F - Rs(f)

(b) Rule 2: Type Ownership

(c) Rule 3: Vertical Independence

[RULE 4]
ApyFEf~ A

[ALL]
Vi1, fo € P.AF ERL(f1, f2)

Vi1, f2 € P.AF FERa(f1, f2)

(A-AHU@A; —A)NA =0

VieP.AFERs(S)

A FRa(f,Ay)

(d) Rule 4: Environment Compatibility

A FER(P)

(e) Rules 1-3 combined

Figure 6. CmoD Rules

Figure 6(b) defines the judgmetk; F = Ra(f1, f2), which

must have a single owner for each type definition, and must use

enforces Rule 2: each named type must have exactly one owneryvertically-independent header files.

either a source or a header. This rule examines two fragments

preprocessing each and usingMeD-TYPES-OK] to check that
the resulting type definition mafs and7: are compatible. There
are two cases. First, any typesn 77 with no marked owner is

3.3 Formal Properties
To prove that the rules in Figure 6 enforce Properties 2.12aPd

owned byf;, and thus should be abstract everywhere else, meaningWe need to define precisely the effect of compilation anditigk

t should not appear iffi.. Note that we are justified in treatirig

Normally, a C compiler produces an object file containingecadd

as a map because the C compiler forbids the same type name fronflata for globals, a list of exported symbols, and a list ofonted

being defined twice. Second, any typappearing in botl’; and

symbols. To show that type safety holds, we will also need to

T» is transparent and hence must be owned by the same headertrack type information about symbols. We use Glew and Mett's

Then by Rules 3 and 4, we know thatandr are the same.

Figure 6(c) defines the judgment; 7 + Rs(f), which en-
forces Rule 3: any two headehs andh» that are both included
in some fragment must be vertically-independent. For eaeluér
h included in f, [RULE 3] checksA; F + f ® h, defined by
[PARTIAL -INDEP]. The first two premises of &RTIAL-INDEF|
calculate the accumulatot; that results from preprocessirfgup
to the inclusion ofh. The remaining premises check that the pre-
processing of, within the initial environment can in no way be in-
fluenced byA;. No macros changed i, (described byA$) are
used byh (described bydY); likewise, no macros changed by(in
AS) are used by files that came earlier @f). Put together, these
conditions ensure thdt is vertically-independent of any files that
came earlier. Note thatonfig.h files are forbidden by this rule.
Our implementation requires all files to include the samefig.h
initially; the equivalent in our formal system is to starthvan ac-
cumulator and initialA from preprocessingonfig.h.

Figure 6(d) defines the judgmert; 7 - R4(f, Ay), which
enforces Rule 4: all fragments must be compiled in compatibl
environments. This rule holds if the initial environmeft—in
which f is assumed to have been compiled—agrees witlon
those macros used by (in .AY). This implies that preprocessing
underA produces the same result as preprocessing uhger

Finally, by [RULE 4], we can assume that there is a single
that all A f's are compatible with. Figure 6(e) defines the judgment
A; F F R(P), which holds if a progranP satisfies Rules 1, 2,
and 3 in this commom\. Thus if A; F + R(P) holds, then every
pair of fragments i must use shared headers for global variables,

MTAL , typed object file notation [8], in which object files have the
form [¥; = H : Ug], whereH is a mapping from global names
g to expressions, and¥; and V¥ i are both mappings from global
names to types. Here ¥ are the imported symbols anélz are
the exported symbols.

Due to lack of space, we omit a full definition of compilation
and linking; details can be found in our companion technieal
port [29]. Figure 7 shows three key formal rules. RuleoMPILE]
describes the object file produced by the C compiler from g-fra
ment f, given an initial set of macro definitionA and a file sys-
tem F. The rule requires that following preprocessing, the dloba
type environmenfV always assigns the same symbol the same type
(- N), and the code and data in the file are locally well-typed
(Z;T; N + H). Then the exported symbosg are those that are
defined (hereV|s is the mappingV with its domain restricted to
S), and the imported symboig; are those that are declared but not
defined.

Rule [LiNK] describes the process of linking two object files,
which resolves imports and exports as expected. BecausiekEs
is untyped, there is almost no checking in this rule. The onityg
required is that the two files not define the same symbols.

Finally, Rule [MTAL,-LINK] defines type-safe linking [8].
This rule says that linking is type safe if each object file sllw
formed € [V1; = H; : Vgs)); if the two object files are link-
compatible, meaning that the types of imported and expayet
bols match&f [\1/11 = H; : \I’E1] <I—C> [\1’12 = Hy: \I/EQ]); and if
the files export disjoint symbols. Note that MTAHoes not include
type abstraction or type names. The full MTAL system does, bu
for technical reasons is not quite strong enough to encodaiice

[COMPILE]
Ay FEf~ (C1,T,T,Z,E,N,D,U, H)
Z;T;NEH Wg=N|g ¥;=N|;_p

comp

AN FEf—[¥;=H:¥g]

N

[LINK]
dom(Hy) Ndom(Hsz) =0
NFE U = Hi:Upi]o[Wry = Hy: Upo] 20
[(Tr1 U¥r2)\ (Yp1UW¥ge) = H1UHsz: Vg UVgs]

[MTAL -LINK]
FVp = Hi:¥p1] F (W= He: Vg
= [\1111 = Hy: \I/Eﬂ <|—C> [\I/IQ = Ho : \I/Eg}
dom(H;) Nndom(Hz) =0
= [\1111 = H1 : \I/Eﬂ link [\1112 = H2 : \IIEQ} ~
[(Tr1 U¥r2)\ (Ye1U¥ge) = H1UHsz: Vg UVgs]

Figure 7. Key Compiler and Linker Rules

uses of abstract types inM®D [20]. However, notice that Rule 2
requires that a type name have the same definition everywhere
Thus we claim (without a formal proof) that uses of abstrgpes
cannot violate type safety at link time, and we assume bethaw t
all types are expressed directly, and not through absteanes.

We can now formally state the information hiding and linki
type safety properties of @oD. Proofs of the theorems in this
section can be found in our companion technical report [29].

Observe that although each fragmeghts preprocessed in its
own initial Ay, by Rule 4 we can assume there is a single, uniform
A under which each fragment produces the same resullt:

LEMMA 3.3. A; F = Ra(f, Ay) implies that ifAy; F = f ~ A,
thenA; F - f ~ A;and if Ap; F E f 2% [U; = H: g,
comp

thenA; F - f— [V = H : Vg

Thus below we assume a singlefor all fragments.

We begin with information hiding. First, observe that lingi
is commutative and associative, so that we are justifiechkinp
files together in any order. Also, to be a well-formed exeloletaa
program must completely link to have no free, unresolvedsyim
Thus we can define the compilation of an entire program:

comp
—

DEFINITION 3.4 (Program Compilation)\Ve writeA; F + P
[0 = H : ¥g] as shorthand for compiling each fragment/irsep-

arately and then linking the results together to fdin=- H : ¥ g].

First, we can prove that any symbol not in a header file is never
imported, and thus is private.

THEOREM3.5 (Global Variable Hiding)Suppose\; F + R (P),
supposeA; F - P 28 [= Hp : ¥xp], and suppose for all
fi € P we haveA; F & f; ~ Ay, and for allh; € |, A%, that

A; F += F(hy) ~ Ap;. Thenforallf; € P, g & U, Ay implies

g & U, whereA; F + f; Lomg [\I/[i = H;: \I’Ez]

This theorem says that % obeys the @obD rules and includes
headerd:;, then any symbog that is not inAfL; for anyj (i.e., is
not declared in any header file) is never imported.

cpplib and]
Dependency » Dependencies;
/ Generator
4 —
Compiler » Object File;
cwra
for all i,
| —¥| Accumulator
Source file; }/ /r Generator
Dependenciesi
/_—I Rules ;
Satisfied? — Warnings
Object Filel-
Yes
\) _| Executable/
Linker > Library
lwrap

Figure 8. CmoD Architecture

This theorem says that # obeys the ®oD rules and contains
fragment f;, then any typel owned by f; is not owned by any
other fragments; # f;. Together, Theorems 3.5 and 3.6 give us
Property 2.1.

To show that linking is type safe, we can prove that if the
program compiles and passes the@ checks, then any pair of
object files linked together satisfy [MTAJ=L INK].

THEOREM3.7 (Type-Safe Linking)Suppose\; 7 -+ R(P), and
suppose); F - P 2% [) = Hp : Upp]. Also suppose that for

any f;, f; € P that are distinct { # j), itis the case that

A FEfi 2 Wy = Hy U
(Ur; = Hj : gyl

A FE f; ==
A;]:F [\I’u = H;: \I/Ei]o[\l’jj :>Hj : \I/Ej]
Then

F V= H;: Vg link [U7; = Hj : Ugj]~ Oy

Since this theorem holds for any two fragments in the program
we see that all fragments can be linked type-safely. Thusave h
shown that Property 2.2 holds foMOD.

comp

3.4 Handling Full C

The full C language includes several features not preseheifor-
mal system, such as conditionatsf and#ifndef, token concate-
nation##, and macro substitution (e.¢¢define FOO(x) (x+1)).
Moreover, C allows preprocessor commands at arbitraryasynt
tic positions. Put together, these additional featuresldvbe ex-
tremely hard to add to our formal system. Nevertheless, aiencl
that they do not affect the soundness of@.

We can think of each header as a function whose input is a

For type names, we can prove a related property: Any type name list of macro definiti(_)ns and whose output _is the preproaksse
owned by a source fragment (a code file) has no concrete type inProgram text and a list of new macro definitions. Thus a header

any other fragment.

THEOREM3.6 (Type Definition Hiding).Supposeé\; F - R(P),
and for somef; € P we haveA; F + f; ~ A;. Further suppose
that (t — 7°) € A7. Then for any fragmenf; € P such that
fi # fi and A; F + f; ~ A;, we havet ¢ dom (A7).

file's output is only affected by the definitions of macros ses.

In our formalism, a macro is used when it is changed or tested
([DEF, [UNDEF], [I FDEF+], and [IFDEF]). We can extend this
idea to the full preprocessor by also counting as uses (1yanac
references in other conditionals and (2) macro substitatiand by
counting non-boolean macro definitions as both changes sesl u

Rule Violations Prop. Viol. Changes Requiréd Build Time
Program Tgts LoC .c .h Rule 1 Rule 2 Rule3 Rule 4| Inf. Typ. Rule 1 Rule 2 Rule3 Rule4|| Stock QvobD % ovr
Hid. + + - + -+ -

gzip-1.2.4 1 5k 15 6 2 - 1 - 2 - X X - - 2 2 - - 1.0s 2.1s 120%
m4-1.4.4 2 10k 19 7 2 1 - - 2 1 21 1f2 2 - - 3.3s 5.6s 54%
bc-1.06 3 10k 19 12 8 1(1) 6 4 41 - - 1f89 86 - 24s 4.5s 86%
rcs-5.7 9 12k 25 4 - 1 - - - 6 6 - - - 3.1s 13.2s 331%
vsftpd-2.0.3 1 12k 34 41 4 - 9 - 1 - - 3 13 2.7s 4.4s 67%
flex-2.5.4 2 16k 22 10 5 6 - - 3 - 4 - 1 15 1 - - 4.7s 9.8s 107%
xinetd-2.3.14 8 16k 60 68 10 3(20) - 3 - 51 1f,7 10 - 6.2s 17.7s 187%
mt-daapd-0.2.4 1 18k 23 26 16 1 - 5 - 13 2 - - - - 6.3s 9.8s 57%
retawq-0.2.6¢ 1 21k 5 8 - - 16 - - - - - - 8f,10 12 - - 5.6s 7.8s 39%
bison-2.3 3 21k 57 94 3 17 8 1 2 - 2 - 2f6140 16 10 3 3 9.9s 18.8s 89%
jgraph-8.3 1 30k 9 4 56 - - - 54 46 2 - - - - - - 1.0s 1.6s 79%
gawk-3.1.5 4 30k 21 20 41 22 38 29 5 6f,7 10 - 11.1s 18.3s 64%
openssh-4.2p1 13 52k 157 119 68 (38) 53 63 62 1 2f,133 127 28.3s 163.8s 479%
gnuplot-4.0.0 4 80k 49 100 X X 353 - - X X X X X X 28.9s 41.2s 42%
zebra-0.94 8 107k 111 118 139 53 - 64 5 64 10 - 27 6 32.9s 86.6s 163%)
Total 61 440k 626 637 354 (38) 30 (21) 168 1 240 6 || 23223 4f22173 17286266 3 (avg) 137%

*Hasconfig.h file. "Line or file (f) additions and deletionSgnuplot count not included in total

Figure 9. Experimental Results

Thus, despite the complexity of the full C preprocessor, are ¢
still track the “input” and “output” macros of a header. Mover,
it is also easy to extract the necessary type and declaritior
mation to check the rules, because the rules operate qrépeo-
cessedfiles (for example, [RLE 1] preprocesses each fragment
and the header file that contains the declaration). Thus ewen
der the full C preprocessor, [RE 3] and [RULE 4] ensure Prin-
ciple 2.3, and therefore [R.E 1] and [RULE 2] correctly enforce
information hiding and type safety.

4. Implementation

We have implemented @b for the full C languagé. The two
main parts of our implementation are tools callegrap and
lwrap, which are scripts that wrap the C compiler and linker as
shown in Figure 8cwrap uses preprocessor hooks (\Mgplib,
part of GCC) to capturé¢included file names, macro uses and
definitions, and the initial macro environment. Per-file bpim-
ports and exports are already stored in the generated Eld€tobj
files. cwrap generates a@ependency.D) file that lists all of the
non-system header files (recursively) included by the souPce-
processor definitions and search path information ¢®and-I
flags) are also logged. During linkingyrap usesctags [5] to ex-
tract declaration and type information from the preproedsource
headers, information about which was generated during damp
tion. This information, together with the object files (fgmsbol
information) and the dependency files generated during damp
tion, is sufficient forlwrap to check Rules 1-3.To check Rule 4,
CmMoD attempts to synthesize a single global environment from the
ones used to compile each file. It does this by unioning eaeks fil
local environment after restricting the local environngetd only
macros that are used.MOD emits a warning if the synthesized
global environment is not consistent with the local envinemts.
We expect oD to be integrated into the compile-debug cycle
and run occasionally or on check-in to flag violations asdeetly

as required.

Recall that our semantics assumes the same file is never in-
cluded twice. oD checks that headers follow tie fndef pat-
tern, which prevents duplicate header inclusions, andsesnitarn-
ing if the pattern is not followed. oD also assumes that system

2http://www.cs.umd.edu/~saurabhs/CMod

3We could check Rule 3 entirely at compile-time, rather thak-time, but
we have found it convenient to check all rules at once.

headers match their corresponding libraries, since thecesufor
these are not available when compiling the projects.

5. Experiments

We applied oD to a number of publicly available open source
projects, with the goal of measuring how well they conform to
CmoD's rules, and to determine whether rule violations are iddee
problematic. We chose projects of varying sizes (5—-107é&sliof
code), varying usage and stages of development (eigetd,
flex, gawk, andbison are mature and widely used, whitebra,
mtdaapd, andretawq are newer and less used), and varying reuse
of modules among targetsds, bc, gawk, andmé have low reuse,
while mt-daapd, bison andvsftpd have higher reuse). We ran
CmoD on a dual-processor 2.80GHz Xeon machine with 3GB
RAM running the Linux 2.4.21-40.ELsmp kernel. We usgct
3.2.3, GNU1d/ar 2.14.90.0.4, andtags 5.4.

To separate preprocessor from source language issuespwe ra
CmobD on each benchmark twice, using the following procedure.
For the first run, we tabulated Rule 3 and Rule 4 violationg, an
examined any @oD warnings about header files not using the
#ifndef pattern. We manually verified that every flagged header
was either harmless when included twice (e.g., it only doeth
prototypes), or that the header could never be includedetwith-
out a C compiler warning. We then fixed the Rule 3 and Rule 4
violations and reran @obD to gather the Rule 1 and 2 violations.

Figure 9 summarizes our results. The first group of columns
describes the benchmarks. For each program, we indicatdherhe
it has aconfig.h file and list the number obuild targets(exe-
cutables or libraries); non-comment, non-blank lines afe;and
.c and .h files. In the numerical totals, we count each file once,
even if it occurs in multiple targets. Next we discuss theaigrimg
columns, which count the number of rule violations, viaas of
Properties 2.1 (Information Hiding) and 2.2 (Type Safetyjanges
required to fix rule violations, and running time.

5.1 Rule Violations

Figure 9 lists the rule violation counts in the second grofip o
columns, with the additional false positives due to inaacies

in parentheses. We have not pruned duplicate violationghfer
same source in different targets. A Rule 1 violation coroesis

to a symbol name and pair of files such that the files import and
export the symbol without a mediating header. A Rule 2 viofat
occurs for each type name that has multiple definitions. AeRul
violation corresponds to a pair of files such that a changeuaed

of a macro causes a vertical dependency between the filetty,Las
a Rule 4 violation corresponds to a target whose linked o¢liijes
were compiled in incompatible preprocessor environments.

We believe most of the genuine rule violations constituté ba
practice. In particular, they can complicate reasoningualbe
code, make future maintenance more difficult, and lead tes.bug
We discuss each category of rule violation below.

Rule 1: Rule 1 violations are often dangerous, because they
can permit a provider and client to disagree on the type of a
symbol without generating an error at compile-time (asutised in
Section 2.2). We found 349 violations that seem problematie
most common case is when a source file locally declares amexte
symbol that does not appear in a header (240 times). As disdus
in Section 5.2, these are arguably information hiding iolss.
The next most common Rule 1 violations occur when a provider
.cfile fails to#include a header containing the symbols it exports
(81 times) or a client c file locally declares a prototype instead of
#includeing a header file, even though there is a header with the
symbol (28 times). Many of the first category of Rule 1 viclas
are due tdgraph, which heavily uses K&R-style implicit function
declarations rather than prototypes.

The five remaining Rule 1 violations appear safe. Three of
these are due to code files that arincluded in another file.
Since the other file textually incorporates the first, it doesneed
a mediating header to ensure symbols have matching typés, bu
Rule 1 requires this. The last two Rule 1 violations occugztip,
which includes assembler sources that define exported dgrobb
cannot#include their header.

Rule 2: Rule 2 violations are due to multiple definitions of the
same type name, which can lead to type mismatches and informa
tion hiding violations. We found 6 violations in which thensa
type definition was duplicated in several files. As with mastie
duplication, this is dangerous because the programmer reust
member to update all definitions when changing the type.

We also found 24 violations for practices that are safe. la on
case, a type name is reused at two different types in diffdiles.

In this particular case each definition is local to a singke b the
code is safe. Enforcing a kind etatic for types would eliminate
this violation. In the remaining 23 violations, there areplitate
identical type definitions created in auto-generated catés is
not a pattern ®oD can easily recognize.

Rule 3: Rule 3 violations make it harder to reason about headers
in isolation. There are a total of 33 Rule 3 violations that we
think are bad practice. We found 31 violations that are watti
dependencies in which header files depend on the order tieey ar
included, which we have argued is undesirable. Two addition
Rule 3 violations occur because the same macrdéfined in
two different header files. In these cases the macros arallgctu
defined to be the same—the code appeared to have been degblicat
between the files, which makes maintenance harder.

The remaining 135 violations are safe practices thab@ does
not recognize as such. 116 of the Rule 3 violations are duente |
tations in modelingonfig.h. In particular, several programs have
multiple global configuration files that are themsel#gacluded
in config.h. Since G1oD only treatsconfig.h specially, depen-
dencies on these other headers are flagged as rule violains
believe that Rule 3 could be relaxed to allow this case.

The other 19 violations occur when one file is included after
a #define of a macro it depends on, and the file contains code
definitions rather than an interface. This is a violation ofé=3, but
as mentioned in Section 2.3, this case could be handledadiyeci

One programgnuplot, has a very large number of vertical
dependenciesgnuplot uses special trm files as both headers
and sources, depending on CPP directives. Since thesealerti
dependencies are clearly intended, we did not attempt tchéx t

violations, and thus we do not measure Rule 1 or 2 violations f
gnuplot, nor do we include them in the total.

Rule 4: The one Rule 4 violation is caused by compiling a
library and a source file that links with it using macro enmireents
that differed for one macro name. We think this should bedra;
and in this case the violation was easily fixed.

False PositivesCMoD reported 38 Rule 1 violations that were
false positives, meaning thatMOD issues a warning but the code
does not actually violate the rule. The culprit wasags, which
sometimes fails to parse complex code, leavingd® with inac-
curate information about source filesmGD also reported 21 false
positives for Rule 2. Twenty of these reports are dugiteetd, in
which library headers are copied after a library is built &meh are
included by library clients. @oD does not know that the copied
header should be treated as identical to the original headdrso
complains about duplicate type definitions. The Rule 2 falss-
tive inbc is due to a code parsing error in our implementation.

5.2 Property Violations

Of those rule violations we consider bad practice, somecthjre
compromise Properties 2.1 (Information Hiding) and 2.2p@y
Safety). The middle columns in Figure 9 measure how oftes thi
occurs in our benchmarks.

Information hiding violations degrade a program’s modular
structure, complicating maintenance and leading to defdctde-
termine what constitutes an information hiding violatiare need
to know the programmer’s intended policy. Since this is not e
plicitly documented in the program, here we assume thatdread
files define the programmer’s intended policy. In particufiatow-
ing Property 2.1, we consider as public any symbol mentianed
a header file, and any type defined in a header file. Likewise, we
consider as private any symbol never mentioned in a headér, a
any type mentioned in a header file but defined in a source file.

By this measure, some Rule 1 and 2 violations are not infor-
mation hiding errors, e.g., when.a file fails to include its own
header(s), or when an identical type definition appearsveraé
headers. Information hiding violations by our metric cinge
roughly 68% (240 out of 354) of the Rule 1 violations. Thergave
no Rule 2 violations that showed information hiding probdem

There were a total of 6 type errors in our benchmarks. All of
the errors were due to Rule 1 violations in which a client liyca
declared a prototype and got its type wrong. The most intieges
type errors were found igebra. Clients incorrectly defined proto-
types for four functions, in two cases using the wrong retype
and in two cases listing too few arguments. No header is dbfme
include prototypes for these four functions, and henceethesre
also information hiding violations. Ironically, in the eswhere the
return type was wrong, the client code even included a corhdeen
scribing where the original definition is from—yet the typeshe
local declaration were still incorrect.

5.3 Required Changes and Performance

We designed @o0D to enforce modular properties while remaining
as backward compatible as possible. To evaluate the lateer,
measured the effort required to make a programoG-compliant.
The second-to-last group of columns list the number of &uitit
and deletions of files (f) and lines of code (no unit) requited
eliminate the @oD warnings. One file change corresponds to
inlining or deleting a whole file, usually because code wdg sp
across files to no apparent advantage.

We found it was generally straightforward to make a program
comply with QuoD’s rules, and most violations required changing
only a few lines of code. Violations of Rules 1 and 2 were easy t
fix by moving prototypes into headers, or creating heademsrevh
required. Violations of Rule 3 required various techniqteesix.

Vertical dependencies were easy to fix by converting themtint- Lastly, in Gvob and many module systems, linking occurs
izontal dependencies. In particular, if a pair of dependeatders implicitly by matching the names of imports and exports. $om
always occurs together in consecutive order, then it is Eagyove systems, however, express linking explicitly, for a greategree
the#include of the first header into the second header. Files that of abstraction and reuse. For example, Knit [26], Koala [&td
do not act as interfaces but aténcluded can be inlined, and du- Click [19] are C and C++ extensions/add-ons that suppaststyle

plicate macro definitions are easy to eliminate. We resobtedr of modular programming. Microsoft's Component Object Fech
vertical dependencies by moving the dependent filedntcfig. h, nologies (COM) model [3] provides similar facilities to airuct
where appropriate. Note that very rarely this suppressesla R dynamically linked libraries (DLLS). These systems assuhz
violation, because now that header is included in more files. the basic C module convention is used correctly and builebprof
There were four programs we did not bring into full compli- it, and so G10D may be viewed as complementary.
ance with G10D. As mentioned earliegzip includes assembler Parnas [23] was the first to use the term information hiding
sources that canndgtinclude header filesgnuplot relies on ver- and suggested organizing modules according to the sebesten-
tical dependencies that cannot be removed without fundeaihen capsulate rather than their control flow structuretdd and other
changing the design of the program. Lastly,andmt-daapd con- module systems provide linguistic support for this idedne®s later
tain auto-generated type definitions that cause three Ruiel@ suggested that programming languages should supgmdsenta-
tions, and which we did not attempt to fix. tion independencg27, 18]; that is, ensuring that client behavior
Finally, the last three columns in Figure 9 measure the time is consistent even as the provider varies its implememtatidor-
taken to build the program without and withM@D. The current mation hiding is a useful prerequisite for establishingrespnta-
prototype of G1oD adds noticeable but acceptable overhead to the tion independence. We leave to future work the exercisemfipg
compilation procedure. We believe that the performancédcbe representation independence underdd(e.g., following the ap-
improved with more engineering effort. proach of Banerjee and Naumann [1]).

Some systems aim to support type safety but not information

hiding. C++ compilers embed type information in symbol name
6. Related Work during compilation, a practice called “name mangling.”haltigh
designed to support overloading, name mangling can alsoanf
link-time type safety. Since names include type informatiwhen
aclientand provider agree on a name, they also agree on fipies
is not always reliable, however, since mangieduct types do not
include field information, which could therefore disagréd. [22]
is a parsing toolkit for C that can combine several C sounctsa
single file. In so doing, it complains if it finds that two fileisdgree
on the definition of a type or symbol. It would find all of the &p
errors that we discovered in our experiments.

Finally, a number of researchers have studied the C prepro-
cessor, but not as a means to enforce modularity. Favre §¢] pr
poses a denotational semantics for CPP. Several reseamer
ommend curtailing or even eliminating the C preprocessae, o
its complexity [6, 16]. Lastly, a number of tools check forcer
neous or questionable usesaphp directives, includinglint [12],
PC-lint [24], and Check [28]. The detected bug patterns airyf
localized and generally concern problematic macro expassi

As we stated in the introduction, although many experts meco
mend using.h files as interfaces andc files as implementa-
tions [9, 2, 13, 14, 15, 17], the details vary somewhat andhsrg-
ficient for full modular safety. King [15] and Hanson [9] pezd the
core idea that header files should include declarationsthetdboth
clients and implementations shoutdnclude the header. Hanson
is one of the few sources to explicitly recommend using alstr
types in headers, and also explicitly advocates usingtii@def
convention for suppressing duplicate includes so thatraragiers
need not remember dependencies among interfaces. McConnel
recommends always having public and private headers foulesd
[17], and mentions using a single public header for a groumef
plementations, neither of which are discussed in most ssuiiche
Indian Hill style guide rather confusingly recommends btitat
“header files should not be nested” (i.e., recommends atdie-
pendencies, something we think is bad practice), and re@mdm
using#ifndef to prevent multiple inclusions, which should never
happen if there are no nested headers. None of these pidiigat .
nor any other publication we could find, discuss the probléras 7. Conclusions
can arise due to preprocessor usage and none provide suffieie e have described oD, a module system for C that ensures
quirements to ensure information hiding and type safeéglifg us type-safe linking and information hiding while maintaigicom-
to believe that the subtleties are not widely known. _patibility with existing practice. @oD enforces a set of four rules.
There is a large design space of module systems [25], which At 3 high level, Rule 1 makes header files equivalent to regula
are part of many modern languages such as ML, Haskell, Ada, modular interfaces; Rule 2 checks for consistent use of itgpees
and Modula-3. In common with @oD, these languages support and type abstraction; and Rules 3 and 4 control preprocessos

information hiding via transparent and abstract types,rantiiple actions. We showed formally that these rules in combinatiith
interfaces per implementation. They ensure type-saféngiland the C compiler form a sound module system that supports-infor
most (but not all) support separate compilation. They afsvigde mation hiding and ensures type safety. Our experiments shatv
several useful mechanisms not supported b0, due toitsfocus iy practice, violations of our rules reveal dangerous cgdtiioms,

on backward compatibility. violations of information hiding, and type errors. Forttely, we

~ First, ML-like languages support functors, which can béans found that for most programs, rule violations are rare andlma
tiated several times in the same program. As discussed in Sec fixed fairly easily. Thus ®ob brings the benefits of modular pro-

tion 2.3, QuoD supports program-wide parameterization (e.g., via gramming to C while still being practical for legacy systems
config.h), but not per-module parameterization, since it is tricky

to do correctly in C and is relatively rare. f
Second, most module systems also support hierarchical-name References

space management. Since1i@D builds on existing C program- [1] A. Banerjee and D. A. Naumann. Representation indepesele
ming practice, it inherits C’s global namespace, with leditsup- confinement and access contrBIOPL '02, pages 166177, 2002.
port for symbol hiding viastatic, and no support for hiding type [2] L. Cannon, R. Elliott, L. Kirchoff, J. Miller, R. Mitze, ESchan,
names. C++ namespaces address this limitation to somet exien N. Whittington, H. Spencer, D. Keppel, and M. BradRecommended

we believe they could safely coexist withv©D. C Style and Coding Standardsixth edition, 1990.

[3] COM: Component object model technologiesittp://wuw.
microsoft.com/com/default.mspx.

[4] B. Cox and A. Novobilski. Object Oriented Programming: An
Evolutionary ApproachAddison-Wesley, 1991.

[5] Exhuberant ctagshttp://ctags.sourceforge.net/.

[6] M. D. Ernst, G. J. Badros, and D. Notkin. An empirical grsa of C
preprocessor uséEEE Trans. on Software Eng@8(12), 2002.

[7] J.-M. Favre. CPP Denotational Semantics SlBAM 2003.

[8] N. Glew and G. Morrisett. Type-safe linking and modulasembly
language. IPOPL, 1999.

[9] D. R. Hanson. C Interfaces and Implementations: Techniques for
Creating Reusable Softwardddison-Wesley, 1996.

[10] Once-only headers - the C preprocessor. gcc on-linerdeatation,
section 2.4http://gcc.gnu.org/onlinedocs/gcc-4.1.1/
cpp/0Once_002d0nly-Headers.html.

[11] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cegrand
Y. Wang. Cyclone: A safe dialect of C. IBSENIX Annual Technical
Conference2002.

[12] S. Johnson. Lint, a C program checker. Technical RepgrBell
Labs, Murray Hill, N.J., Sept. 1977.

[13] B. W. Kernighan and R. Pike.The Practice of Programming
Addison-Wesley Professional, 1999.

[14] B. W. Kernighan and D. M. RitchieThe C Programming Language
Prentice Hall, 2nd edition, 1988.

[15] K. N. King. C Programming: A Modern Approactw. W. Norton &
Company, Inc., 1996.

[16] B. McCloskey and E. Brewer. ASTEC: a new approach toatefing
C. InFSE 2005.

[17] S. McConnell.Code CompleteMicrosoft Press, 1993.

[18] J. C. Mitchell. Representation independence and dasé&action.
POPL '86, pages 263-276, 1986.

[19] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek.eTlick
modular router. IFSOSP 1999.

[20] G. Morrisett. Personal communication, July 2006.

[21] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Végim
CCured: Type-Safe Retrofitting of Legacy Softwaf®©PLAS27(3),
May 2005.

[22] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL:
Intermediate Language and Tools for Analysis and Transdtion of
C Programs. II€C, pages 213-228, 2002.

[23] D. L. Parnas. On the criteria to be used in decomposistesys into
modules.Communications of the ACM5(12), 1972.

[24] PC-lint/FlexeLint. http://www.gimpel.com/lintinfo.htm,
1999. Product of Gimpel Software.

[25] B. C. Pierce, editor.Advanced Topics in Types and Programming
LanguagesMIT Press, 2005.

[26] A.Reid, M. Flatt, L. Stoller, J. Lepreau, and E. Eide.iK@omponent
composition for systems software. @SDI, 2000.

[27] J. C. Reynolds. Types, abstractions and parametrignpaiphism.
Information Processing 8ages 513-523.

[28] D. Spuler and A. Sajeev. Static detection of prepramesscro errors
in C. Technical Report 92/7, James Cook University, Auistye92.

[29] S. Srivastava, M. Hicks, J. S. Foster, and B. Kanagalfiriey
and Enforcing C's Module System. Technical Report CS-TR&48
University of Maryland, College Park, 2006.

[30] W. P. Stevens, G. J. Myers, and L. L. Constantine. Stinact design.
IBM Systems Journall3(2):115-139, 1974.

[31] R. van Ommering, F. van der Linden, J. Kramer, and J. Magée
Koala component model for consumer electronics softwiEEE
Software 2000.

