
Modular Information Hiding and Type-Safe Linking for C

Saurabh Srivastava Michael Hicks Jeffrey S. Foster
University of Maryland, College Park
{saurabhs,mwh,jfoster}@cs.umd.edu

Abstract
This paper presents CMOD, a novel tool that provides a sound mod-
ule system for C. CMOD works by enforcing a set of four rules that
are based on principles of modular reasoning and on current pro-
gramming practice. CMOD’s rules flesh out the convention that.h
header files are module interfaces and.c source files are module
implementations. Although this convention is well-known,devel-
oping CMOD’s rules revealed there are many subtleties in applying
the basic pattern correctly. We have proven formally that CMOD’s
rules enforce both information hiding and type-safe linking. We
evaluated CMOD on a number of benchmarks, and found that most
programs obey CMOD’s rules, or can be made to with minimal ef-
fort, while rule violations reveal brittle coding practices including
numerous information hiding violations and occasional type errors.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Modules, packages

General Terms Design, Languages

Keywords C, Information Hiding, Module Systems, Type-Safety

1. Introduction
Module systems allow large programs to be constructed from
smaller, potentially reusable components. The hallmark ofa good
module system is support forinformation hiding, which allows
components to conceal internal structure, while still enforcing type
safetyacross components. This combination allows modules to be
safely written and reasoned about in isolation, enhancing the relia-
bility of software [30].

While many modern languages define full-featured module sys-
tems (such as ML, Haskell, Ada, and Modula-3), the C program-
ming language—still the most common language for operatingsys-
tems, network servers, and other critical infrastructure—lacks di-
rect support for modules. Instead, programmers typically think of
.c source files as implementations and use.h header files (contain-
ing type and data declarations) as interfaces. Textually including a
.h file via the#include directive is akin to “importing” a module.

Many experts recommend using this basic pattern [9, 2, 13, 14,
15, 17], but their recommendations are incomplete and, as itturns
out, insufficient. To our knowledge, the basic pattern has not been
previously developed to the point that proper information hiding
and type safety are provable consequences. As a result, program-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

TLDI’07 January 16, 2007, Nice, France.
Copyright c© 2007 ACM 1-59593-393-X/07/0001. . . $5.00.

mers may be unaware of (or ignore) the subtleties of using thepat-
tern correctly, and thus may make mistakes (or cut corners),since
the compiler and linker provide no enforcement. The result is the
potential for type errors and information hiding violations, which
degrade programs’ modular structure, complicate maintenance, and
lead to defects.

As a remedy to these problems, this paper presents CMOD, a
novel tool that provides a sound module system for C by enforc-
ing four rules that flesh out C’s basic modularity pattern. Inother
words, CMOD aims to enable safe modular reasoning while match-
ing existing programming practice as much as possible. We have
proven formally that CMOD’s four rules ensure that C programs
obey information hiding policies implied by interfaces, and that
programs are type safe at link time.1 To our knowledge, CMOD is
the first system to enforce both properties for standard C programs.
Related approaches (Section 6) either require linguistic extensions
(e.g., Knit [26] and Koala [31]) or enforce type safety but not in-
formation hiding (e.g., CIL [22] and C++ “name mangling”).

To evaluate how well CMOD matches existing practice while
still strengthening modular reasoning, we ran CMOD on a suite
of programs cumulatively totaling 440K lines of code split across
1263 files. We found that most programs generally comply with
CMOD’s rules, and fixing the rule violations typically requires only
minor changes. Rule violations revealed many information hiding
errors, several typing errors, and many cases that, although not
currently bugs, make programming mistakes more likely as the
code evolves. These results suggest that CMOD can be applied to
current software at relatively low cost while enhancing itssafety
and maintainability.

In summary, the contributions of this paper are as follows:
• We present a set of four rules that makes it sound to treat header

files as interfaces and source files as implementations (Section 2).
To our knowledge, no other work fully documents a set of program-
ming practices that are sufficient for modular safety in C. While
this work focuses on C, our rules should also apply to languages
that make use of the same modularity convention, such as C++,
Objective C, and Cyclone [11].

• We give a precise, formal specification of our rules and prove
that they are sound, meaning that programs that obey the rules
follow the abstraction policies defined by interfaces and are type
safe at link time (Section 3).

• We present our implementation, CMOD (Section 4), and de-
scribe the results of applying it to a set of benchmarks (Section 5).
CMOD found numerous information hiding violations and several
typing errors, among other brittle coding practices, and itwas gen-
erally easy to bring code into compliance with CMOD.

1 Throughout this paper, when we saytype safety, we mean that types of
shared symbols match across modules. C programmers can still violate
type safety in other ways, e.g., by using casts. This could beaddressed by
using CCured [21] or Cyclone [11], which should combine seamlessly with
CMOD.

bitmap.h

1 struct BM;
2 void init (struct BM ∗);
3 void set (struct BM ∗, int);

bitmap.c

4 #include ”bitmap.h”
5
6 struct BM { int data; };
7 void init (struct BM ∗map) { ... }
8 void set (struct BM ∗map, int bit) { ... }
9 void private (void) { ... }

main.c

10 #include ”bitmap.h”
11
12 int main(void) {
13 struct BM ∗bitmap;
14 init (bitmap);
15 set (bitmap, 1);
16 ...
17 }

Figure 1. Basic C Modules

2. Motivation and Informal Development
In most module systems, a moduleM consists of aninterfaceMI

that declares exported values and types, and animplementationMS

that defines everything inMI and may contain other, private defi-
nitions. Any component that wishes to use values inMS relies only
onMI , and not onMS . The compiler ensures thatMS implements
MI , meaning that it exports any types and symbols in the interface.
These features ensureseparate compilationwhen module imple-
mentations are synonymous with compilation units.

There are two key properties that make such a module system
safe and effective. First, clients depend only on interfaces rather
than particular implementations:

PROPERTY2.1 (Information Hiding).If MS defines a symbolg,
then other modules may only accessg if it appears inMI . If MI

declares an abstract typet, no module other thanMS may use
values of typet concretely.

This property makes modules easier to reason about and reuse. In
particular, if a client successfully compiles against interfaceMI , it
can link against any module that implements thatMI , andMS may
safely be changed as long as it still implementsMI .

Second, linking a client of interfaceMI with an implementation
MS of MI must be type-safe:

PROPERTY2.2 (Type-Safe Linking).If module MS implements
MI and moduleNS is compiled to useMI , then the result of link-
ing MS andNS is type-safe.

The goal of CMOD is to ensure that C modules obey these two
properties. Our starting place is the well-known C convention in
which .c source filesact as separately-compiled implementations,
and.h header filesact as interfaces [9, 2, 13, 14, 15, 17].

2.1 Basic Modules in C

Figure 1 shows a simple C program that follows the modularity
convention. In this code, headerbitmap.h acts as the interface to
bitmap.c, whose functions are called bymain.c. The header con-
tains an abstract declaration of typestruct BM and declarations of
the functionsinit andset. To usebitmap.h as an interface, the
file main.c “imports” it with #include "bitmap.h", which the
preprocessor textually replaces with the contents ofbitmap.h. At
the same time,bitmap.c also invokes#include "bitmap.h" to
ensure its definitions match the header file’s declarations.

This program is both type-safe and properly hides information.
Since bothmain.c andbitmap.c include the same header, the C
compiler ensures that the types ofinit andset match across the
files. Furthermore,main.c never refers to the symbolprivate and
does not assume a definition forstruct BM (treating it abstractly),
since neither appears inbitmap.h.

bitmap.h

1 struct BM;
2 void init (struct BM ∗);
3 void set (struct BM ∗, int);

bitmap.c

4 /∗ bitmap.h not incl . ∗/
5
6 struct BM { int data; };
7
8 /∗ inconsistent decl . ∗/
9 void init (struct BM ∗map,

10 int val) { ... }
11 void set (struct BM ∗map,
12 int bit) { ... }
13 void private (void) { ... }

main.c

14 #include ”bitmap.h”
15
16 /∗ bad symbol import ∗/
17 extern void private (void);
18
19 /∗ violating type abstr . ∗/
20 struct BM { int ∗data; };
21
22 int main(void) {
23 struct BM bitmap;
24 init (&bitmap);
25 set(&bitmap);
26 private ();
27 bitmap.data = ...;
28 ...
29 }

Figure 2. Violations of Rules 1 and 2

2.2 Header Files as Interfaces

One of the key principles illustrated in Figure 1 is that symbols are
always shared via interfaces. In the figure, headerbitmap.h acts
as the interface tobitmap.c. Clients#include the header to refer
to bitmap.c’s symbols, andbitmap.c includes its own header to
make sure the types match in both places [15, 17]. CMOD ensures
that linking is mediated by an interface with the following rule:

RULE 1 (Shared Headers).Whenever one file links to a symbol de-
fined by another file, both files must include a header that contains
the type of that symbol.

The C compiler and linker do not enforce this rule, so program-
mers sometimes fail to use it in practice. Figure 2 illustrates some
of the common ways the rule is violated, based on our experience
(Section 5). One common violation is for a source file to fail to in-
clude its own header, which can lead to type errors. In Figure2,
bitmap.c does not includebitmap.h, and so the compiler does
not discover that the defined type ofinit (line 9) is different than
the type declared in the header (line 2).

Another common violation is to import symbols directly in.c
files by usingextern, rather than by including a header. In the
figure, line 17 declares thatprivate is an external symbol, al-
lowing it to be called on line 26 even though it is not mentioned
in bitmap.h. This violates information hiding, preventing the au-
thor of bitmap.c from easily changing the type of, removing, or
renaming this function. It may also violate type safety, e.g., if a
local extern declaration assigns the wrong type to a symbol. We
have seen both problems in our experiments. One way that the au-
thor ofbitmap.c could prevent such problems would be to declare
private asstatic, making it unavailable for linking. However,
programmers often fail to do so. In some cases this is an oversight,
and in some cases this is because the symbol should be available
for linking to some, but not all, files.

Rule 1 admits several useful coding practices. One common
practice is to use a single header as an interface for severalsource
files (as opposed to one header per source file, as in the example).
For example, the standard library headerstdio.h often covers
several source files. To adhere to Rule 1, each source file would
#include "stdio.h". Another common practice is to have sev-
eral headers for a single source file, to provide “public” and“pri-
vate” views of the module [17]. In this case the source file would
include both headers, while clients would include one or theother.

The last error in Figure 2 is inmain.c, which violates the
information hiding policy ofbitmap.h by definingstruct BM

bitmap.h

1 #ifdef COMPACT
2 struct BM { int map; };
3 #else
4 struct BM { int ∗map; };
5 #endif

6 void init (struct BM ∗);
7 void set (struct BM ∗, int);

bitmap.c

8 #include ”config.h”
9 #include ”bitmap.h”

10
11 #ifdef COMPACT
12 /∗ defn’ s of
13 init (), set () ∗/
14 #else

15 /∗ alt . defn’ s of
16 init (), set () ∗/
17 #endif

config.h

18 #ifndef CONFIG H
19 #define CONFIG H
20 #ifdef BSD
21 #undef COMPACT
22 #else

23 #define COMPACT
24 #endif
25 #endif

main.c

26 #include ”config.h”
27 #include ”bitmap.h”
28
29 int main(void) {
30 struct BM ∗bmap;
31 init (bmap);
32 set (bmap, 1);
33 ...
34 }

Figure 3. Using the Preprocessor for Configuration

on line 20. In this case the violation results in a type error since
the definitions on lines 6 and 20 do not match. Rule 1 does not
prevent this problem because it refers to symbols and not types.
Our solution is to treat type definitions in a manner similar to how
the linker treats symbols. The linker requires in general that only
one file define a particular function or global variable name.This
ensures there is no ambiguity about the definition of a given symbol
during linking. Likewise for types, we can require that there is
only one definition of a type that all modules “link against,”in the
following sense.

We say that a type definition isownedby the file in which it
appears. If the type definition occurs in a header file (and hence
is owned by the header), then the type istransparent, and many
modules may know its definition. In this case, “linking” occurs
by including the header. Alternately, if the type definitionappears
in a source file (and hence is owned by that file), then the type is
abstract, and only the module that implements the type’s functions
should know its definition. CMOD requires that a type have only
one owner, thus forbidding the example in Figure 2:

RULE 2 (Type Ownership).Each type definition in the linked pro-
gram must be owned by exactly one source or header.

Notice that this rule is again somewhat flexible, allowing a middle-
ground between abstract and transparent types. In particular, this
rule allows a “private” header to reveal a type’s definition while a
“public” header keeps it abstract. Files that implement thetype and
its functions include both headers, and those that use it abstractly
include only the public one.

This notion of ownership makes sense for a global namespace in
which type and variable names have a single meaning throughout a
program. For variables, thestatic qualifier offers some names-
pace control, but C provides no corresponding notion for type
names. While we could imagine supporting astatic notion for
types, we use our stronger rule because it is simple to implement,
and we have found programmers generally follow this practice.

2.3 Preprocessing and Header Files

Rules 1 and 2 form the core of CMOD’s enforcement of type safety
and information hiding. However, for these rules to work properly,
we must account for the actions of the preprocessor.

Consider the code shown in Figure 3, which modifies our ex-
ample from Figure 1 to represent bitmaps in one of two ways (lines
1–5), depending on whether theCOMPACT macro has been previ-
ously defined (line 21 or 23). The value ofCOMPACT itself depends
on whether BSD is set, which is determined by the initial pre-
processor environment when the compiler is invoked (more onthis
below). In general, we say that a filef1 depends onfile f2 whenf1

uses a macro set byf2. Here,bitmap.h depends onconfig.h.
Such preprocessor-based dependencies are very useful, since

they allow programs to be configured for different circumstances.
Unfortunately, they can unintentionally cause a header to be prepro-
cessed differently depending on where it is included. In Figure 3,
if we were to swap lines 8 and 9 but leave lines 26 and 27 alone,
thenbitmap.c andmain.c may have different, incompatible def-
initions ofstruct BM. Thus, the preprocessor can undermine type
safety and information hiding, even given Rules 1 and 2.

To solve this problem, we define two additional rules that aim
to enforce the following principle:

PRINCIPLE 2.3 (Consistent Interpretation).Each header in the
system must have aconsistent interpretation, meaning that when-
ever modules linked together include a common header, the result
of preprocessing the header is the same in both modules.

Enforcing this principle allows us to keep Rules 1 and 2 simple, and
it makes it easier for programmers to reason about headers, since
their meaning is less context-dependent (though not entirely, as we
discuss below). The first new rule to enforce this principle is:

RULE 3 (Vertical Independence).With the exception of a desig-
nated, initial config.h, header file inclusion must be vertically
independent.

We say two header files arevertically dependentif one depends
on the other and both are#included by the same source. In the
example,bitmap.h is vertically dependent onconfig.h. Vertical
dependencies are encouraged by some coding style guides [2], but
we forbid them because they add unnecessary complication. In par-
ticular, the programmer must remember to always include thehead-
ers together, in some particular order. We believe a better practice
is to convert vertical dependencies intohorizontal dependencies,
which are more self-contained. We say that two header files are
horizontally dependentif one of the headers is dependent onand
#includes the other. A horizontal dependency adheres to Princi-
ple 2.3 because a header always “carries along” the other headers
on which it depends, ensuring a consistent interpretation.

If we wanted to remove the vertical dependency in the example,
we could convert it to a horizontal dependency by moving line8
just prior to line 1. However, notice that thenconfig.h would be
included twice inmain.c, once directly and once viabitmap.h.
The double inclusion is harmless because of the#ifndef pat-
tern [4, 10] beginning on line 18, which causes any duplicatefile
inclusions to be completely ignored. Our semantics assumesno du-
plicate inclusion, and we check that it holds for our benchmarks.

Although we feel that vertical dependencies are bad practice in
general, the headers in many large programs are vertically depen-
dent on aconfig.h header. CMOD allows these dependencies as
long asconfig.h is always includedfirst. This ensures other in-
cluded headers are consistently interpreted with respect to it. This
is easy for the programmer to remember and for CMOD to check.

Preventing vertical dependencies solves one problem with the
preprocessor, but we also need to reason about the initial preproces-
sor environment. Recall that theBSD flag used in lines 20–24 is
not set within the file. Instead, it is either supplied by the system or
set by a-D command-line argument to the compiler. Ifbitmap.c
were compiled with this flag set andmain.c were compiled with-
out it, then the two inclusions ofbitmap.h (lines 9 and 27) would

program P ::= · | f ◦ P
fragment f := · | s, f

statements s ::= c | d
preproc. commands c ::= include h | def m | undef m

| ifdef m then f else f
definitions d ::= let g : τ = e | extern g : τ

| let type t = τ | type t
terms e ::= n | λy : τ. e | e e | y | g
types τ ::= t | int | τ → τ

m ∈ macro names g ∈ global var. names
h ∈ file names t ∈ type names

Figure 4. Source Language

produce different representations for typestruct BM. We can pre-
vent this by enforcing the following rule:

RULE 4 (Environment Compatibility).All files linked together
must be compiled in a consistent preprocessor environment.

By consistentwe mean that for any pair of linked files that depend
on a macroM, the macro must be defined or undefined identically
in the initial preprocessor environments for each file. Processing
each module in a consistent environment ensures that all of its
included headers (which by Rule 3 are not vertically dependent)
are interpreted the same way everywhere, following Principle 2.3.

Rules 3 and 4 allow a program as a whole to be parameterized
by config.h and the initial preprocessor environment. In essence,
the program can be considered a very large functor [25]. Thuswhile
CMOD allows individual headers to be parameterized, they must
be consistently interpreted throughout the program. We have rarely
found this to be a problem in practice. Since a.h file acting as
an interface represents a.c file that is typically compiled once,
there is usually little reason to interpret the.h file differently
in different contexts. We have found two exceptions in practice.
The first is to support context-dependent information hiding by
including or not including certain prototypes based on#ifdefs.
While CMOD disallows this practice, one can use separate header
files instead [17]. The second case is to#include a .h or .c
file containing parameterized code definitions (akin to a functor
application). These situations occur but are uncommon, andwe do
not handle them specially.

Note that while enforcing Principle 2.3 ensures headers arecon-
sistently interpreted, this does not imply that a headermeansthe
same thing wherever it is included. This is because a header is
likely to refer to type definitions that precede it, and, morerarely,
variable definitions if the header containsstatic (possibly in-line)
functions, or macro definitions that include code. Rule 2 ensures
type definitions must always mean the same thing, but there isno
such rule for symbols, which can be multiply-defined if declared
static. Though it may be desirable to forbid dependencies on
symbols, CMOD allows them, for two reasons. First, such depen-
dencies do not impact type safety and information hiding. Second,
extending CMOD to track such dependencies would add signifi-
cant implementation complexity when compared to our current ap-
proach (Section 4), and in our experience, dependencies onstatic
symbols are rare. We leave such an implementation to future work.

3. Formal Development
In this section we formally present CMOD’s rules and prove that
they are sound. Our rules are defined in terms of the source lan-
guage in Figure 4, which models C and the C preprocessor. In this
language, a source programP consists of a list of fragmentsf ,
each of which represents a separately-compiled source file.Frag-

ments are themselves made up of a list of statementss, which may
be either preprocessor commandsc or core language definitionsd.

The commandinclude h inserts the fragment contained in fileh
and then preprocesses it. In our semantics we assume we are given
a mapping from include file names to fragments. The commands
def m andundef m define and undefine, respectively, the prepro-
cessor macrom from that point forward. In our semantics, macros
may only be used as boolean flags. The conditionalifdef m then f1

else f2 processesf1 if m is defined, and otherwise processesf2.
Notice that since each branch is a fragment, it may contain further
preprocessor commands.

The C preprocessor includes additional features not found in
our language, including macro substitution and conditional forms
such as#if and#ifndef. The C language also allows preprocessor
commands to occur anywhere in the text of the program, whereas
our language forbids preprocessor commands inside of definitions.
In Section 3.4, we argue that these additional features do not affect
soundness.

Turning to the core language, the definitionlet g : τ = e binds
the global nameg to terme, which has typeτ . Termse are simply-
typed lambda calculus expressions that may refer to local variables
y or global variablesg. We use the lambda calculus instead of C
syntax because it illustrates all of the necessary issues. CMOD does
not directly interpret the core language in more detail thanthis
formulation provides and hence this level of detail suffices. The
commandextern g : τ declares the existence of globalg of typeτ .
This form is used in header files to import a symbol. The command
let type t = τ defines a named typet to be an alias forτ , while
type t merely declares thatt may be used as a type name. We say
thatg andt aredefinedby let g : τ = e andlet type t = τ while
g andt aredeclaredby extern g : τ andtype t. Within a program
we allow many declarations of a global variable or type name but
only one definition. Note that to keep the rules simpler, we donot
modelstatic definitions.

3.1 Preprocessor Semantics

Following C, our source language has a two-stage operational se-
mantics. For each fragment, the preprocessor executes all of the
preprocessor commands, conceptually producing a fragmentcon-
sisting only of core language definitions. These fragments are then
compiled into object files, which are combined with linking,and
then the entire program is evaluated using a standard semantics.

The four CMOD rules are based on the output of an instrumented
preprocessor, shown in Figure 5. Rather than perform substitutions
to generate a new fragment consisting only of definitions (which
would be closer to the semantics of the actual C preprocessor),
our semantics constructs anaccumulatorA that contains both the
core language definitions and other information needed to enforce
CMOD’s rules. In particular, the preprocessor is defined as a relation
amongstatesof the form 〈h;A; ∆; x〉, whereh names the file
currently being preprocessed,A is the accumulator,∆ is the set of
currently-defined macros, andx is either a fragment or a statement.

Each top-level fragment in the program is preprocessed sepa-
rately. Preprocessing fragmentf begins with an initial (possibly
empty) set of defined macros∆f , which in practice is supplied on
the command line when the compiler is invoked.∆f may differ
from one fragment to another. TheaccumulatorA is a tuple that
tracks the preprocessor events that have occurred thus far.The core
language program is encoded as three lists in the accumulator: N
maps global variables to their types,H maps global variables to
their defining expressions, andT maps each type namet to its def-
inition τ . In T , types are annotated with either the header fileh in
which the type was defined, or◦ if it was defined in a source file
rather than a header file. The remainder of the accumulator consists
of the sets of global variables that have been exported (E) by defin-

symbols N ::= · | g → τ, N
heap H ::= · | g → e, H

named types T ::= · | t→ τh, T | t→ τ◦, T
exports E ∈ 2g

imports I ∈ 2g

symbol decls D ∈ 2g

macro changes C ∈ 2m

macro uses U ∈ 2m

type decls Z ∈ 2t

includes I ∈ 2h

accumulator A = (C, I, T,I, Z, E, N, D,U , H)
file system F : h→ f

defines ∆ ∈ 2m

[SEQ]
F ⊢ 〈h;A; ∆; s〉 −→

˙

h;A′;∆′; f ′
¸

F ⊢ 〈h;A; ∆; s, f〉 −→
˙

h;A′;∆′; f ′, f
¸

[I NCL]
h 6∈ AI f = F(h), pop h′ A′ = A[I ←+ h]

F ⊢
˙

h′;A; ∆; include h
¸

−→
˙

h;A′; ∆; f
¸

[EOH]
F ⊢

˙

h′;A; ∆; pop h
¸

−→ 〈h;A; ∆; ·〉

[DEF]
A′ = A[C ←+ m, U ←+ m] ∆′ = ∆ ∪ {m}

F ⊢ 〈h;A; ∆; def m〉 −→
˙

h;A′;∆′; ·
¸

[UNDEF]
A′ = A[C ←+ m, U ←+ m] ∆′ = ∆− {m}

F ⊢ 〈h;A; ∆; undef m〉 −→
˙

h;A′;∆′; ·
¸

[I FDEF+]
m ∈ ∆ A′ = A[U ←+ m]

F ⊢ 〈h;A;∆; ifdef m then f+ else f−〉 −→
˙

h;A′; ∆; f+
¸

[I FDEF-]
m /∈ ∆ A′ = A[U ←+ m]

F ⊢ 〈h;A; ∆; ifdef m then f+ else f−〉 −→
˙

h;A′;∆; f−
¸

[EXTERN]
A′ = A[D←+ g, N ←+ (g 7→ τ)]

F ⊢ 〈h;A; ∆; extern g : τ〉 −→
˙

h;A′; ∆; ·
¸

[L ET]

A′ = A[H ←+ (g 7→ e), N ←+ (g 7→ τ),
E ←+ g, D←+ g, I ←+ fg (e)]

F ⊢ 〈h;A; ∆; let g : τ = e〉 −→
˙

h;A′;∆; ·
¸

[TYPE-DECL]
A′ = A[Z ←+ t]

F ⊢ 〈h;A; ∆; type t〉 −→
˙

h;A′;∆; ·
¸

[TYPE-DEF]
A′ = A[T ←+ (t 7→ τh)]

F ⊢ 〈h;A; ∆; let type t = τ〉 −→
˙

h;A′;∆; ·
¸

Figure 5. Instrumented Semantics for the Preprocessor

ing them withlet, imported (I) by using them in code, and declared
(D) by extern or let; the set of macrosC that have possibly been
changed (defined or undefined); the set of macrosU whose value
has been tested; the set of typesZ that have been declared; and
finally the set of filesI that have been included.

Reduction rules are of the formF ⊢ 〈h;A; ∆; x〉 −→
〈h′;A′;∆′; x′〉. HereF represents the file system, which maps
header file names to their corresponding fragments. Preprocessing
fragmentf begins with an accumulator whose components are all
∅, which we writeA∅; anh component set to◦; and a givenF and
an initial set of defines∆f .

In the rules in Figure 5, we writeA[X ←+ x] for the accu-
mulator that is the same asA except that itsX component hasx
added to it. We writeAX for the X component ofA. All of the
rules increase the contents of the accumulator monotonically.

We discuss the preprocessor semantics briefly. [SEQ] reduces
the first statement in a fragment. We abuse notation and writef ′, f
as the concatenation of fragmentsf ′ and f , where ·, f ′ = f ′

and (s, f ′), f ′′ = s, (f ′, f ′′). [I NCL] looks up file nameh in
the file system and reduces to the corresponding fragment. Italso
inserts a special commandpop h′, whereh′ is the file currently
being processed. When the preprocessor finishes reducingh, the
[EOH] rule restores the current file toh′. Notice that the semantics
become stuck if a header file is included twice, because then the
premiseh 6∈ AI of [I NCL] is not satisfied. While this does not
quite match the actual preprocessor semantics, it simplifies the rule
specification. In practice, programmers mostly use the#ifndef
pattern (Section 2.3) to make duplicate file inclusion a no-op;
our implementation of CMOD emits a warning if it discovers this
practice is not followed.

[DEF] and [UNDEF] add or removem from the set of currently-
defined macros∆, and markm as being changed and used.
[I FDEF+] and [IFDEF-] reduce to eitherf+ or f− depending on
whetherm has been defined or not. In either case, we addm to the
set of macros whose values have been used.

The remaining rules handle declarations and definitions. The
C preprocessor ignores these, but CMOD’s preprocessor extracts
information from them to enforce its rules. [EXTERN] records the
declaration ofg and notes its type inN . Here we append the typing
(g 7→ τ) onto the listN , i.e., we do not replace any previous
bindings forg. The C compiler ensures that the same variable is
always given the same type within a fragment (Section 3.3). [LET]
addsg to the set of defined global variablesH , addsg’s type toN ,
and adds any global variables mentioned ine (written fg(e)) to the
imports. Finally, [TYPE-DECL] declares a type, which is noted in
Z, and [TYPE-DEF] defines a type, which is noted inT . Types in
T are annotated with the current fileh, which is◦ if the current file
is not a header.

3.2 CMOD Rules

We now formally specify the rules presented in Section 2. To state
the rules more concisely, we introduce new notation to describe
the final accumulator after preprocessing beginning from the empty
accumulator:

DEFINITION 3.1 (Partial Preprocessing).We write∆;F ⊢ f ;

〈A; f ′〉 as shorthand forF ⊢ 〈◦;A∅;∆; f〉
∗
−→ 〈h;A;∆′; f ′〉,

where
∗
−→ is the reflexive, transitive closure of the rules in Figure 5.

DEFINITION 3.2 (Complete Preprocessing).We write ∆;F ⊢
f ; A as shorthand for∆;F ⊢ f ; 〈A; ·〉.

CMOD’s rules are shown in Figure 6. The first three rules as-
sume there is a common initial macro environment∆ under which
all fragments are preprocessed; the fourth rule ensures that this as-
sumption makes sense. Figure 6(a) defines the judgment∆;F ⊢
R1(f1, f2), which enforces Rule 1: for each pair of fragmentsf1

andf2 in the program, any global variable defined in one and used
in the other must be declared in a common header file. [RULE 1]
uses auxiliary judgment∆;F ⊢ g

decl
←− I, which holds ifg is

declared by some header in the setI, where we compute the de-
clared variable names by preprocessing each header fileh in iso-
lation. Then for any global variable nameg in N , which contains
any global variable names imported by one fragment and defined
by the other, it must be the case that∆;F ⊢ g

decl
←− AI

1 ∩A
I
2 , i.e.,

g is declared in a header file that bothf1 andf2 include.

[SYM -DECL]
h ∈ I ∆;F ⊢ F(h) ; A g ∈ AD

∆;F ⊢ g
decl
←− I

[RULE 1]
∆;F ⊢ f1 ; A1 ∆;F ⊢ f2 ; A2

N =
“

AI
1 ∩ A

E
2

”

∪
“

AE
1 ∩ A

I
2

”

∀g ∈ N . ∆;F ⊢ g
decl
←− AI

1 ∩ A
I
2

∆;F ⊢ R1(f1, f2)

[NAMED-TYPES-OK]
∀(t 7→ τ◦) ∈ T1 . t /∈ dom(T2)

∀t ∈ dom(T1) ∩ dom(T2) .

T1(t) = τh1

1 ∧ T2(t) = τh2

2 ⇒ h1 = h2

⊢τ T1, T2

[RULE 2]
∆;F ⊢ f1 ; A1 ∆;F ⊢ f2 ; A2

⊢τ A
T
1 ,AT

2 ⊢τ A
T
2 ,AT

1 f1 6= f2

∆;F ⊢ R2(f1, f2)

[PARTIAL -INDEP]
∆;F ⊢ f ;

˙

A1; include h, f ′
¸

∆;F ⊢ F(h) ; A2

AC
1 ∩ A

U
2 = ∅ AU

1 ∩ A
C
2 = ∅

∆;F ⊢ f ⊗ h

[RULE 3]
∆;F ⊢ f ; A

∀h ∈ AI . ∆;F ⊢ f ⊗ h

∆;F ⊢ R3(f)

(a) Rule 1: Shared Headers (b) Rule 2: Type Ownership (c) Rule 3: Vertical Independence

[RULE 4]
∆f ;F ⊢ f ; A

`

(∆−∆f) ∪ (∆f −∆)
´

∩ AU = ∅

∆;F ⊢ R4

`

f, ∆f

´

[A LL]
∀f1, f2 ∈ P . ∆;F ⊢ R1(f1, f2) ∀f1, f2 ∈ P . ∆;F ⊢ R2(f1, f2)

∀f ∈ P . ∆;F ⊢ R3(f)

∆;F ⊢ R(P)

(d) Rule 4: Environment Compatibility (e) Rules 1–3 combined

Figure 6. CMOD Rules

Figure 6(b) defines the judgment∆;F ⊢ R2(f1, f2), which
enforces Rule 2: each named type must have exactly one owner,
either a source or a header. This rule examines two fragments,
preprocessing each and using [NAMED-TYPES-OK] to check that
the resulting type definition mapsT1 andT2 are compatible. There
are two cases. First, any typest in T1 with no marked owner is
owned byf1, and thus should be abstract everywhere else, meaning
t should not appear inT2. Note that we are justified in treatingTi

as a map because the C compiler forbids the same type name from
being defined twice. Second, any typet appearing in bothT1 and
T2 is transparent and hence must be owned by the same header.
Then by Rules 3 and 4, we know thatτ1 andτ2 are the same.

Figure 6(c) defines the judgment∆;F ⊢ R3(f), which en-
forces Rule 3: any two headersh1 andh2 that are both included
in some fragment must be vertically-independent. For each header
h included inf , [RULE 3] checks∆;F ⊢ f ⊗ h, defined by
[PARTIAL -INDEP]. The first two premises of [PARTIAL -INDEP]
calculate the accumulatorA1 that results from preprocessingf up
to the inclusion ofh. The remaining premises check that the pre-
processing ofh within the initial environment can in no way be in-
fluenced byA1. No macros changed inA1 (described byAC

1) are
used byh (described byAU

2); likewise, no macros changed byh (in
AC

2) are used by files that came earlier (inAU
1). Put together, these

conditions ensure thath is vertically-independent of any files that
came earlier. Note thatconfig.h files are forbidden by this rule.
Our implementation requires all files to include the sameconfig.h
initially; the equivalent in our formal system is to start with an ac-
cumulator and initial∆ from preprocessingconfig.h.

Figure 6(d) defines the judgment∆;F ⊢ R4(f, ∆f), which
enforces Rule 4: all fragments must be compiled in compatible
environments. This rule holds if the initial environment∆f —in
which f is assumed to have been compiled—agrees with∆ on
those macros used byf (in AU). This implies that preprocessing
under∆ produces the same result as preprocessing under∆f .

Finally, by [RULE 4], we can assume that there is a single∆
that all∆f ’s are compatible with. Figure 6(e) defines the judgment
∆;F ⊢ R(P), which holds if a programP satisfies Rules 1, 2,
and 3 in this common∆. Thus if∆;F ⊢ R(P) holds, then every
pair of fragments inP must use shared headers for global variables,

must have a single owner for each type definition, and must use
vertically-independent header files.

3.3 Formal Properties

To prove that the rules in Figure 6 enforce Properties 2.1 and2.2,
we need to define precisely the effect of compilation and linking.
Normally, a C compiler produces an object file containing code and
data for globals, a list of exported symbols, and a list of imported
symbols. To show that type safety holds, we will also need to
track type information about symbols. We use Glew and Morrisett’s
MTAL 0 typed object file notation [8], in which object files have the
form [ΨI ⇒ H : ΨE], whereH is a mapping from global names
g to expressionse, andΨI andΨE are both mappings from global
names to typesτ . HereΨI are the imported symbols andΨE are
the exported symbols.

Due to lack of space, we omit a full definition of compilation
and linking; details can be found in our companion technicalre-
port [29]. Figure 7 shows three key formal rules. Rule [COMPILE]
describes the object file produced by the C compiler from a frag-
mentf , given an initial set of macro definitions∆ and a file sys-
temF . The rule requires that following preprocessing, the global
type environmentN always assigns the same symbol the same type
(⊢ N), and the code and data in the file are locally well-typed
(Z; T ; N ⊢ H). Then the exported symbolsΨE are those that are
defined (hereN |S is the mappingN with its domain restricted to
S), and the imported symbolsΨI are those that are declared but not
defined.

Rule [LINK] describes the process of linking two object files,
which resolves imports and exports as expected. Because C’slinker
is untyped, there is almost no checking in this rule. The onlything
required is that the two files not define the same symbols.

Finally, Rule [MTAL0-L INK] defines type-safe linking [8].
This rule says that linking is type safe if each object file is well-
formed (⊢ [ΨIi ⇒ Hi : ΨEi]); if the two object files are link-
compatible, meaning that the types of imported and exportedsym-
bols match (⊢ [ΨI1 ⇒ H1 : ΨE1]

lc
↔ [ΨI2 ⇒ H2 : ΨE2]); and if

the files export disjoint symbols. Note that MTAL0 does not include
type abstraction or type names. The full MTAL system does, but
for technical reasons is not quite strong enough to encode certain

[COMPILE]
∆;F ⊢ f ; (C, I, T,I, Z, E, N, D,U , H)

⊢ N Z;T ;N ⊢ H ΨE = N |E ΨI = N |(I−E)

∆;F ⊢ f
comp
−→ [ΨI ⇒ H : ΨE]

[L INK]
dom(H1) ∩ dom(H2) = ∅

∆;F ⊢ [ΨI1 ⇒ H1 : ΨE1] ◦ [ΨI2 ⇒ H2 : ΨE2]
comp
−→

[(ΨI1 ∪ΨI2) \ (ΨE1 ∪ΨE2)⇒ H1 ∪H2 : ΨE1 ∪ΨE2]

[MTAL 0-L INK]
⊢ [ΨI1 ⇒ H1 : ΨE1] ⊢ [ΨI2 ⇒ H2 : ΨE2]

⊢ [ΨI1 ⇒ H1 : ΨE1]
lc
↔ [ΨI2 ⇒ H2 : ΨE2]

dom(H1) ∩ dom(H2) = ∅

⊢ [ΨI1 ⇒ H1 : ΨE1] link [ΨI2 ⇒ H2 : ΨE2] ;

[(ΨI1 ∪ΨI2) \ (ΨE1 ∪ΨE2)⇒ H1 ∪H2 : ΨE1 ∪ΨE2]

Figure 7. Key Compiler and Linker Rules

uses of abstract types in CMOD [20]. However, notice that Rule 2
requires that a type name have the same definition everywhere.
Thus we claim (without a formal proof) that uses of abstract types
cannot violate type safety at link time, and we assume below that
all types are expressed directly, and not through abstract names.

We can now formally state the information hiding and link-time
type safety properties of CMOD. Proofs of the theorems in this
section can be found in our companion technical report [29].

Observe that although each fragmentf is preprocessed in its
own initial ∆f , by Rule 4 we can assume there is a single, uniform
∆ under which each fragment produces the same result:

LEMMA 3.3. ∆;F ⊢ R4(f, ∆f) implies that if∆f ;F ⊢ f ; A,
then∆;F ⊢ f ; A; and if ∆f ;F ⊢ f

comp
−→ [ΨI ⇒ H : ΨE],

then∆;F ⊢ f
comp
−→ [ΨI ⇒ H : ΨE].

Thus below we assume a single∆ for all fragments.
We begin with information hiding. First, observe that linking

is commutative and associative, so that we are justified in linking
files together in any order. Also, to be a well-formed executable, a
program must completely link to have no free, unresolved symbols.
Thus we can define the compilation of an entire program:

DEFINITION 3.4 (Program Compilation).We write∆;F ⊢ P
comp
−→

[∅ ⇒ H : ΨE] as shorthand for compiling each fragment inP sep-
arately and then linking the results together to form[∅ ⇒ H : ΨE].

First, we can prove that any symbol not in a header file is never
imported, and thus is private.

THEOREM 3.5 (Global Variable Hiding).Suppose∆;F ⊢ R(P),
suppose∆;F ⊢ P

comp
−→ [∅ ⇒ HP : ΨEP], and suppose for all

fi ∈ P we have∆;F ⊢ fi ; Afi, and for allhj ∈
S

i
AI

fi that
∆;F ⊢ F(hj) ; Ahj . Then for allfi ∈ P , g 6∈

S

j
AD

hj implies

g 6∈ ΨIi where∆;F ⊢ fi
comp
−→ [ΨIi ⇒ Hi : ΨEi].

This theorem says that ifP obeys the CMOD rules and includes
headershj , then any symbolg that is not inAD

hj for anyj (i.e., is
not declared in any header file) is never imported.

For type names, we can prove a related property: Any type name
owned by a source fragment (a code file) has no concrete type in
any other fragment.

THEOREM 3.6 (Type Definition Hiding).Suppose∆;F ⊢ R(P),
and for somefi ∈ P we have∆;F ⊢ fi ; Ai. Further suppose
that (t 7→ τ◦) ∈ AT

i . Then for any fragmentfj ∈ P such that
fi 6= fj and∆;F ⊢ fj ; Aj , we havet 6∈ dom

`

AT
j

´

.

c w r a pS o u r c e fi l e i c p p l i b a n dD e p e n d e n c yG e n e r a t o rC o m p i l e r D e p e n d e n c i e s iO b j e c t F i l e i

l w r a p L i n k e rR u l e sS a t i s fi e d ?Y e s N o W a r n i n g sE x e c u t a b l e /L i b r a r yD e p e n d e n c i e s iS o u r c e fi l e iO b j e c t F i l e i
A c c u m u l a t o rG e n e r a t o rf o r a l l i ,

Figure 8. CMOD Architecture

This theorem says that ifP obeys the CMOD rules and contains
fragmentfi, then any typet owned byfi is not owned by any
other fragmentsfj 6= fi. Together, Theorems 3.5 and 3.6 give us
Property 2.1.

To show that linking is type safe, we can prove that if the
program compiles and passes the CMOD checks, then any pair of
object files linked together satisfy [MTAL0-L INK].

THEOREM3.7 (Type-Safe Linking).Suppose∆;F ⊢ R(P), and
suppose∆;F ⊢ P

comp
−→ [∅ ⇒ HP : ΨEP]. Also suppose that for

anyfi, fj ∈ P that are distinct (i 6= j), it is the case that

∆;F ⊢ fi
comp
−→ [ΨIi ⇒ Hi : ΨEi]

∆;F ⊢ fj
comp
−→ [ΨIj ⇒ Hj : ΨEj]

∆;F ⊢ [ΨIi ⇒ Hi : ΨEi] ◦ [ΨIj ⇒ Hj : ΨEj]
comp
−→ Oij

Then

⊢ [ΨIi ⇒ Hi : ΨEi] link [ΨIj ⇒ Hj : ΨEj] ; Oij

Since this theorem holds for any two fragments in the program,
we see that all fragments can be linked type-safely. Thus we have
shown that Property 2.2 holds for CMOD.

3.4 Handling Full C

The full C language includes several features not present inthe for-
mal system, such as conditionals#if and#ifndef, token concate-
nation##, and macro substitution (e.g.,#define FOO(x) (x+1)).
Moreover, C allows preprocessor commands at arbitrary syntac-
tic positions. Put together, these additional features would be ex-
tremely hard to add to our formal system. Nevertheless, we claim
that they do not affect the soundness of CMOD.

We can think of each header as a function whose input is a
list of macro definitions and whose output is the preprocessed
program text and a list of new macro definitions. Thus a header
file’s output is only affected by the definitions of macros it uses.
In our formalism, a macro is used when it is changed or tested
([DEF], [U NDEF], [I FDEF+], and [IFDEF-]). We can extend this
idea to the full preprocessor by also counting as uses (1) macro
references in other conditionals and (2) macro substitutions; and by
counting non-boolean macro definitions as both changes and uses.

Rule Violations Prop. Viol. Changes Required† Build Time

Program Tgts LoC .c .h Rule 1 Rule 2 Rule 3 Rule 4 Inf. Typ. Rule 1 Rule 2 Rule 3 Rule 4 Stock CMOD % ovr
Hid. + - + - + - + -

gzip-1.2.4 1 5k 15 6 2 - 1 - 2 - × × - - 2 2 - - 1.0s 2.1s 120%
m4-1.4.4∗ 2 10k 19 7 2 1 - - 2 1 2 1 1f,2 2 - - - - 3.3s 5.6s 54%
bc-1.06∗ 3 10k 19 12 8 1 (1) 6 - 4 - 4 1 - - 1f,89 86 - - 2.4s 4.5s 86%
rcs-5.7∗ 9 12k 25 4 - 1 - - - - - - 6 6 - - - - 3.1s 13.2s 331%
vsftpd-2.0.3 1 12k 34 41 4 - 9 - - - 1 - - - 3 13 - - 2.7s 4.4s 67%
flex-2.5.4 2 16k 22 10 5 6 - - 3 - 4 - 1 15 1 - - - 4.7s 9.8s 107%
xinetd-2.3.14∗ 8 16k 60 68 10 3 (20) - - 3 - 5 1 1f,7 10 - - - - 6.2s 17.7s 187%
mt-daapd-0.2.4 1 18k 23 26 16 1 - - 5 - 13 2 - - - - - - 6.3s 9.8s 57%
retawq-0.2.6c∗ 1 21k 5 8 - - 16 - - - - - - - 8f,10 12 - - 5.6s 7.8s 39%
bison-2.3∗ 3 21k 57 94 3 17 8 1 2 - 2 - 2f,6 140 16 10 3 3 9.9s 18.8s 89%
jgraph-8.3 1 30k 9 4 56 - - - 54 - 46 2 - - - - - - 1.0s 1.6s 79%
gawk-3.1.5∗ 4 30k 21 20 41 - 22 - 38 - 29 5 - - 6f,7 10 - - 11.1s 18.3s 64%
openssh-4.2p1∗ 13 52k 157 119 68 (38) - 53 - 63 - 62 1 - - 2f,133 127 - - 28.3s 163.8s 479%
gnuplot-4.0.0∗ 4 80k 49 100 × × 353‡ - - - × × × × × × - - 28.9s 41.2s 42%
zebra-0.94∗ 8 107k 111 118 139 - 53 - 64 5 64 10 - - 27 6 - - 32.9s 86.6s 163%
Total 61 440k 626 637 354 (38) 30 (21) 168 1 240 6 232 23 4f,22 173 17f,286 266 3 3 (avg) 137%
∗Hasconfig.h file. †Line or file (f) additions and deletions.‡gnuplot count not included in total

Figure 9. Experimental Results

Thus, despite the complexity of the full C preprocessor, we can
still track the “input” and “output” macros of a header. Moreover,
it is also easy to extract the necessary type and declarationinfor-
mation to check the rules, because the rules operate on theprepro-
cessedfiles (for example, [RULE 1] preprocesses each fragment
and the header file that contains the declaration). Thus evenun-
der the full C preprocessor, [RULE 3] and [RULE 4] ensure Prin-
ciple 2.3, and therefore [RULE 1] and [RULE 2] correctly enforce
information hiding and type safety.

4. Implementation
We have implemented CMOD for the full C language.2 The two
main parts of our implementation are tools calledcwrap and
lwrap, which are scripts that wrap the C compiler and linker as
shown in Figure 8.cwrap uses preprocessor hooks (viacpplib,
part of GCC) to capture#included file names, macro uses and
definitions, and the initial macro environment. Per-file symbol im-
ports and exports are already stored in the generated ELF object
files. cwrap generates adependency(.D) file that lists all of the
non-system header files (recursively) included by the source. Pre-
processor definitions and search path information (i.e.,-D and-I
flags) are also logged. During linking,lwrap usesctags [5] to ex-
tract declaration and type information from the preprocessed source
headers, information about which was generated during compila-
tion. This information, together with the object files (for symbol
information) and the dependency files generated during compila-
tion, is sufficient forlwrap to check Rules 1–3.3 To check Rule 4,
CMOD attempts to synthesize a single global environment from the
ones used to compile each file. It does this by unioning each file’s
local environment after restricting the local environments to only
macros that are used. CMOD emits a warning if the synthesized
global environment is not consistent with the local environments.
We expect CMOD to be integrated into the compile-debug cycle
and run occasionally or on check-in to flag violations as frequently
as required.

Recall that our semantics assumes the same file is never in-
cluded twice. CMOD checks that headers follow the#ifndef pat-
tern, which prevents duplicate header inclusions, and emits a warn-
ing if the pattern is not followed. CMOD also assumes that system

2http://www.cs.umd.edu/~saurabhs/CMod
3 We could check Rule 3 entirely at compile-time, rather than link-time, but
we have found it convenient to check all rules at once.

headers match their corresponding libraries, since the sources for
these are not available when compiling the projects.

5. Experiments
We applied CMOD to a number of publicly available open source
projects, with the goal of measuring how well they conform to
CMOD’s rules, and to determine whether rule violations are indeed
problematic. We chose projects of varying sizes (5–107k lines of
code), varying usage and stages of development (e.g.,xinetd,
flex, gawk, andbison are mature and widely used, whilezebra,
mtdaapd, andretawq are newer and less used), and varying reuse
of modules among targets (rcs, bc, gawk, andm4 have low reuse,
while mt-daapd, bison andvsftpd have higher reuse). We ran
CMOD on a dual-processor 2.80GHz Xeon machine with 3GB
RAM running the Linux 2.4.21-40.ELsmp kernel. We usedgcc
3.2.3, GNUld/ar 2.14.90.0.4, andctags 5.4.

To separate preprocessor from source language issues, we ran
CMOD on each benchmark twice, using the following procedure.
For the first run, we tabulated Rule 3 and Rule 4 violations, and
examined any CMOD warnings about header files not using the
#ifndef pattern. We manually verified that every flagged header
was either harmless when included twice (e.g., it only contained
prototypes), or that the header could never be included twice with-
out a C compiler warning. We then fixed the Rule 3 and Rule 4
violations and reran CMOD to gather the Rule 1 and 2 violations.

Figure 9 summarizes our results. The first group of columns
describes the benchmarks. For each program, we indicate whether
it has aconfig.h file and list the number ofbuild targets(exe-
cutables or libraries); non-comment, non-blank lines of code; and
.c and.h files. In the numerical totals, we count each file once,
even if it occurs in multiple targets. Next we discuss the remaining
columns, which count the number of rule violations, violations of
Properties 2.1 (Information Hiding) and 2.2 (Type Safety),changes
required to fix rule violations, and running time.

5.1 Rule Violations

Figure 9 lists the rule violation counts in the second group of
columns, with the additional false positives due to inaccuracies
in parentheses. We have not pruned duplicate violations forthe
same source in different targets. A Rule 1 violation corresponds
to a symbol name and pair of files such that the files import and
export the symbol without a mediating header. A Rule 2 violation
occurs for each type name that has multiple definitions. A Rule 3
violation corresponds to a pair of files such that a change anduse

of a macro causes a vertical dependency between the files. Lastly,
a Rule 4 violation corresponds to a target whose linked object files
were compiled in incompatible preprocessor environments.

We believe most of the genuine rule violations constitute bad
practice. In particular, they can complicate reasoning about the
code, make future maintenance more difficult, and lead to bugs.
We discuss each category of rule violation below.

Rule 1: Rule 1 violations are often dangerous, because they
can permit a provider and client to disagree on the type of a
symbol without generating an error at compile-time (as discussed in
Section 2.2). We found 349 violations that seem problematic. The
most common case is when a source file locally declares an extern
symbol that does not appear in a header (240 times). As discussed
in Section 5.2, these are arguably information hiding violations.
The next most common Rule 1 violations occur when a provider
.c file fails to#include a header containing the symbols it exports
(81 times) or a client.c file locally declares a prototype instead of
#includeing a header file, even though there is a header with the
symbol (28 times). Many of the first category of Rule 1 violations
are due tojgraph, which heavily uses K&R-style implicit function
declarations rather than prototypes.

The five remaining Rule 1 violations appear safe. Three of
these are due to code files that are#included in another file.
Since the other file textually incorporates the first, it doesnot need
a mediating header to ensure symbols have matching types, but
Rule 1 requires this. The last two Rule 1 violations occur ingzip,
which includes assembler sources that define exported symbols but
cannot#include their header.

Rule 2: Rule 2 violations are due to multiple definitions of the
same type name, which can lead to type mismatches and informa-
tion hiding violations. We found 6 violations in which the same
type definition was duplicated in several files. As with most code
duplication, this is dangerous because the programmer mustre-
member to update all definitions when changing the type.

We also found 24 violations for practices that are safe. In one
case, a type name is reused at two different types in different files.
In this particular case each definition is local to a single file, so the
code is safe. Enforcing a kind ofstatic for types would eliminate
this violation. In the remaining 23 violations, there are duplicate
identical type definitions created in auto-generated code.This is
not a pattern CMOD can easily recognize.

Rule 3: Rule 3 violations make it harder to reason about headers
in isolation. There are a total of 33 Rule 3 violations that we
think are bad practice. We found 31 violations that are vertical
dependencies in which header files depend on the order they are
included, which we have argued is undesirable. Two additional
Rule 3 violations occur because the same macro is#defined in
two different header files. In these cases the macros are actually
defined to be the same—the code appeared to have been duplicated
between the files, which makes maintenance harder.

The remaining 135 violations are safe practices that CMOD does
not recognize as such. 116 of the Rule 3 violations are due to limi-
tations in modelingconfig.h. In particular, several programs have
multiple global configuration files that are themselves#included
in config.h. Since CMOD only treatsconfig.h specially, depen-
dencies on these other headers are flagged as rule violations. We
believe that Rule 3 could be relaxed to allow this case.

The other 19 violations occur when one file is included after
a #define of a macro it depends on, and the file contains code
definitions rather than an interface. This is a violation of Rule 3, but
as mentioned in Section 2.3, this case could be handled specially.

One program,gnuplot, has a very large number of vertical
dependencies.gnuplot uses special.trm files as both headers
and sources, depending on CPP directives. Since these vertical
dependencies are clearly intended, we did not attempt to fix the

violations, and thus we do not measure Rule 1 or 2 violations for
gnuplot, nor do we include them in the total.

Rule 4: The one Rule 4 violation is caused by compiling a
library and a source file that links with it using macro environments
that differed for one macro name. We think this should be avoided,
and in this case the violation was easily fixed.

False Positives:CMOD reported 38 Rule 1 violations that were
false positives, meaning that CMOD issues a warning but the code
does not actually violate the rule. The culprit wasctags, which
sometimes fails to parse complex code, leaving CMOD with inac-
curate information about source files. CMOD also reported 21 false
positives for Rule 2. Twenty of these reports are due toxinetd, in
which library headers are copied after a library is built andthen are
included by library clients. CMOD does not know that the copied
header should be treated as identical to the original header, and so
complains about duplicate type definitions. The Rule 2 falseposi-
tive in bc is due to a code parsing error in our implementation.

5.2 Property Violations

Of those rule violations we consider bad practice, some directly
compromise Properties 2.1 (Information Hiding) and 2.2 (Type
Safety). The middle columns in Figure 9 measure how often this
occurs in our benchmarks.

Information hiding violations degrade a program’s modular
structure, complicating maintenance and leading to defects. To de-
termine what constitutes an information hiding violation,we need
to know the programmer’s intended policy. Since this is not ex-
plicitly documented in the program, here we assume that header
files define the programmer’s intended policy. In particular, follow-
ing Property 2.1, we consider as public any symbol mentionedin
a header file, and any type defined in a header file. Likewise, we
consider as private any symbol never mentioned in a header, and
any type mentioned in a header file but defined in a source file.

By this measure, some Rule 1 and 2 violations are not infor-
mation hiding errors, e.g., when a.c file fails to include its own
header(s), or when an identical type definition appears in several
headers. Information hiding violations by our metric constitute
roughly 68% (240 out of 354) of the Rule 1 violations. There were
no Rule 2 violations that showed information hiding problems.

There were a total of 6 type errors in our benchmarks. All of
the errors were due to Rule 1 violations in which a client locally
declared a prototype and got its type wrong. The most interesting
type errors were found inzebra. Clients incorrectly defined proto-
types for four functions, in two cases using the wrong returntype
and in two cases listing too few arguments. No header is defined to
include prototypes for these four functions, and hence these were
also information hiding violations. Ironically, in the cases where the
return type was wrong, the client code even included a comment de-
scribing where the original definition is from—yet the typesin the
local declaration were still incorrect.

5.3 Required Changes and Performance

We designed CMOD to enforce modular properties while remaining
as backward compatible as possible. To evaluate the latter,we
measured the effort required to make a program CMOD-compliant.
The second-to-last group of columns list the number of additions
and deletions of files (f) and lines of code (no unit) requiredto
eliminate the CMOD warnings. One file change corresponds to
inlining or deleting a whole file, usually because code was split
across files to no apparent advantage.

We found it was generally straightforward to make a program
comply with CMOD’s rules, and most violations required changing
only a few lines of code. Violations of Rules 1 and 2 were easy to
fix by moving prototypes into headers, or creating headers where
required. Violations of Rule 3 required various techniquesto fix.

Vertical dependencies were easy to fix by converting them into hor-
izontal dependencies. In particular, if a pair of dependentheaders
always occurs together in consecutive order, then it is easyto move
the#include of the first header into the second header. Files that
do not act as interfaces but are#included can be inlined, and du-
plicate macro definitions are easy to eliminate. We resolvedother
vertical dependencies by moving the dependent file intoconfig.h,
where appropriate. Note that very rarely this suppresses a Rule 1
violation, because now that header is included in more files.

There were four programs we did not bring into full compli-
ance with CMOD. As mentioned earlier,gzip includes assembler
sources that cannot#include header files.gnuplot relies on ver-
tical dependencies that cannot be removed without fundamentally
changing the design of the program. Lastly,bc andmt-daapd con-
tain auto-generated type definitions that cause three Rule 2viola-
tions, and which we did not attempt to fix.

Finally, the last three columns in Figure 9 measure the time
taken to build the program without and with CMOD. The current
prototype of CMOD adds noticeable but acceptable overhead to the
compilation procedure. We believe that the performance could be
improved with more engineering effort.

6. Related Work
As we stated in the introduction, although many experts recom-
mend using.h files as interfaces and.c files as implementa-
tions [9, 2, 13, 14, 15, 17], the details vary somewhat and areinsuf-
ficient for full modular safety. King [15] and Hanson [9] present the
core idea that header files should include declarations, andthat both
clients and implementations should#include the header. Hanson
is one of the few sources to explicitly recommend using abstract
types in headers, and also explicitly advocates using the#ifndef
convention for suppressing duplicate includes so that programmers
need not remember dependencies among interfaces. McConnell
recommends always having public and private headers for modules
[17], and mentions using a single public header for a group ofim-
plementations, neither of which are discussed in most sources. The
Indian Hill style guide rather confusingly recommends boththat
“header files should not be nested” (i.e., recommends vertical de-
pendencies, something we think is bad practice), and recommends
using#ifndef to prevent multiple inclusions, which should never
happen if there are no nested headers. None of these publications,
nor any other publication we could find, discuss the problemsthat
can arise due to preprocessor usage and none provide sufficient re-
quirements to ensure information hiding and type safety, leading us
to believe that the subtleties are not widely known.

There is a large design space of module systems [25], which
are part of many modern languages such as ML, Haskell, Ada,
and Modula-3. In common with CMOD, these languages support
information hiding via transparent and abstract types, andmultiple
interfaces per implementation. They ensure type-safe linking, and
most (but not all) support separate compilation. They also provide
several useful mechanisms not supported by CMOD, due to its focus
on backward compatibility.

First, ML-like languages support functors, which can be instan-
tiated several times in the same program. As discussed in Sec-
tion 2.3, CMOD supports program-wide parameterization (e.g., via
config.h), but not per-module parameterization, since it is tricky
to do correctly in C and is relatively rare.

Second, most module systems also support hierarchical name-
space management. Since CMOD builds on existing C program-
ming practice, it inherits C’s global namespace, with limited sup-
port for symbol hiding viastatic, and no support for hiding type
names. C++ namespaces address this limitation to some extent, and
we believe they could safely coexist with CMOD.

Lastly, in CMOD and many module systems, linking occurs
implicitly by matching the names of imports and exports. Some
systems, however, express linking explicitly, for a greater degree
of abstraction and reuse. For example, Knit [26], Koala [31], and
Click [19] are C and C++ extensions/add-ons that support this style
of modular programming. Microsoft’s Component Object Tech-
nologies (COM) model [3] provides similar facilities to construct
dynamically linked libraries (DLLs). These systems assumethat
the basic C module convention is used correctly and build on top of
it, and so CMOD may be viewed as complementary.

Parnas [23] was the first to use the term information hiding
and suggested organizing modules according to the secrets they en-
capsulate rather than their control flow structure. CMOD and other
module systems provide linguistic support for this idea. Others later
suggested that programming languages should supportrepresenta-
tion independence[27, 18]; that is, ensuring that client behavior
is consistent even as the provider varies its implementation. Infor-
mation hiding is a useful prerequisite for establishing representa-
tion independence. We leave to future work the exercise of proving
representation independence under CMOD(e.g., following the ap-
proach of Banerjee and Naumann [1]).

Some systems aim to support type safety but not information
hiding. C++ compilers embed type information in symbol names
during compilation, a practice called “name mangling.” Although
designed to support overloading, name mangling can also enforce
link-time type safety. Since names include type information, when
a client and provider agree on a name, they also agree on types. This
is not always reliable, however, since mangledstruct types do not
include field information, which could therefore disagree.CIL [22]
is a parsing toolkit for C that can combine several C sources into a
single file. In so doing, it complains if it finds that two files disagree
on the definition of a type or symbol. It would find all of the type
errors that we discovered in our experiments.

Finally, a number of researchers have studied the C prepro-
cessor, but not as a means to enforce modularity. Favre [7] pro-
poses a denotational semantics for CPP. Several researchers rec-
ommend curtailing or even eliminating the C preprocessor, due to
its complexity [6, 16]. Lastly, a number of tools check for erro-
neous or questionable uses ofcpp directives, includinglint [12],
PC-lint [24], and Check [28]. The detected bug patterns are fairly
localized and generally concern problematic macro expansions.

7. Conclusions
We have described CMOD, a module system for C that ensures
type-safe linking and information hiding while maintaining com-
patibility with existing practice. CMOD enforces a set of four rules.
At a high level, Rule 1 makes header files equivalent to regular
modular interfaces; Rule 2 checks for consistent use of typenames
and type abstraction; and Rules 3 and 4 control preprocessorinter-
actions. We showed formally that these rules in combinationwith
the C compiler form a sound module system that supports infor-
mation hiding and ensures type safety. Our experiments showthat
in practice, violations of our rules reveal dangerous coding idioms,
violations of information hiding, and type errors. Fortunately, we
found that for most programs, rule violations are rare and can be
fixed fairly easily. Thus CMOD brings the benefits of modular pro-
gramming to C while still being practical for legacy systems.

References
[1] A. Banerjee and D. A. Naumann. Representation independence,

confinement and access control.POPL ’02, pages 166–177, 2002.

[2] L. Cannon, R. Elliott, L. Kirchoff, J. Miller, R. Mitze, E. Schan,
N. Whittington, H. Spencer, D. Keppel, and M. Brader.Recommended
C Style and Coding Standards. sixth edition, 1990.

[3] COM: Component object model technologies.http://www.
microsoft.com/com/default.mspx.

[4] B. Cox and A. Novobilski. Object Oriented Programming: An
Evolutionary Approach. Addison-Wesley, 1991.

[5] Exhuberant ctags.http://ctags.sourceforge.net/.

[6] M. D. Ernst, G. J. Badros, and D. Notkin. An empirical analysis of C
preprocessor use.IEEE Trans. on Software Engg., 28(12), 2002.

[7] J.-M. Favre. CPP Denotational Semantics. InSCAM, 2003.

[8] N. Glew and G. Morrisett. Type-safe linking and modular assembly
language. InPOPL, 1999.

[9] D. R. Hanson. C Interfaces and Implementations: Techniques for
Creating Reusable Software. Addison-Wesley, 1996.

[10] Once-only headers - the C preprocessor. gcc on-line documentation,
section 2.4,http://gcc.gnu.org/onlinedocs/gcc-4.1.1/
cpp/Once_002dOnly-Headers.html.

[11] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and
Y. Wang. Cyclone: A safe dialect of C. InUSENIX Annual Technical
Conference, 2002.

[12] S. Johnson. Lint, a C program checker. Technical Report65, Bell
Labs, Murray Hill, N.J., Sept. 1977.

[13] B. W. Kernighan and R. Pike.The Practice of Programming.
Addison-Wesley Professional, 1999.

[14] B. W. Kernighan and D. M. Ritchie.The C Programming Language.
Prentice Hall, 2nd edition, 1988.

[15] K. N. King. C Programming: A Modern Approach. W. W. Norton &
Company, Inc., 1996.

[16] B. McCloskey and E. Brewer. ASTEC: a new approach to refactoring
C. In FSE, 2005.

[17] S. McConnell.Code Complete. Microsoft Press, 1993.

[18] J. C. Mitchell. Representation independence and data abstraction.
POPL ’86, pages 263–276, 1986.

[19] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek. The Click
modular router. InSOSP, 1999.

[20] G. Morrisett. Personal communication, July 2006.

[21] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer.
CCured: Type-Safe Retrofitting of Legacy Software.TOPLAS, 27(3),
May 2005.

[22] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL:
Intermediate Language and Tools for Analysis and Transformation of
C Programs. InCC, pages 213–228, 2002.

[23] D. L. Parnas. On the criteria to be used in decomposing systems into
modules.Communications of the ACM, 15(12), 1972.

[24] PC-lint/FlexeLint. http://www.gimpel.com/lintinfo.htm,
1999. Product of Gimpel Software.

[25] B. C. Pierce, editor.Advanced Topics in Types and Programming
Languages. MIT Press, 2005.

[26] A. Reid, M. Flatt, L. Stoller, J. Lepreau, and E. Eide. Knit: Component
composition for systems software. InOSDI, 2000.

[27] J. C. Reynolds. Types, abstractions and parametric polymorphism.
Information Processing 83, pages 513–523.

[28] D. Spuler and A. Sajeev. Static detection of preprocessor macro errors
in C. Technical Report 92/7, James Cook University, Australia, ’92.

[29] S. Srivastava, M. Hicks, J. S. Foster, and B. Kanagal. Defining
and Enforcing C’s Module System. Technical Report CS-TR-4816,
University of Maryland, College Park, 2006.

[30] W. P. Stevens, G. J. Myers, and L. L. Constantine. Structured design.
IBM Systems Journal, 13(2):115–139, 1974.

[31] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee. The
Koala component model for consumer electronics software.IEEE
Software, 2000.

