
A demo of Coco: a compiler for monadic coercions in ML

Nataliya Guts† Michael Hicks† Nikhil Swamy∗ Daan Leijen∗
†University of Maryland, College Park ∗Microsoft Research, Redmond

Abstract
Combining monadic computations may induce a significant syn-
tactic overhead. To allow monadic programming in direct style, we
have developed Coco, a type-based tool that automatically rewrites
ML code inserting necessary binds, unit, and morphisms between
monads. This tool demonstration will show how to take advantage
of Coco to facilitate using monadic libraries in practice, and will
discuss possible future development of Coco to fit the actual needs
of programmers.

1. The goal
Many functional programming computations may be expressed us-
ing monads [11]. Examples include probabilistic computations [7],
parsers [6], functional reactivity [1], and cooperative threads [9].
ML provides some features that can be expressed monadically, like
state and I/O, at no cost to the programmer, in a direct style. How-
ever, monadic computations such as those listed above are not di-
rectly supported. Instead, their implementation and composition
must be tediously orchestrated by the programmer.

For example, suppose we are interested in programming behav-
iors, which are computations whose value varies with time, as in
functional reactive programs [1, 2]. Behaviors can be implemented
as a monad: expressions of type Beh α represent values of type α
that change over time, and bindp and unitp are its monadic opera-
tions. As a primitive, function seconds has type unit → Beh int ,
its result representing the current time in seconds since the epoch.
We would like to be able to write programs using behaviors in di-
rect style, for example:

let y = is_even (seconds()) in
if y then 1 else 2

The type of this entire expression should be Beh int : it is time-
varying, oscillating between values 1 and 2 every second. However,
in ML the above code is not type correct. For example, the function
is even expects an argument of type int , and it is applied to a
computation of type Beh int . To make this example well-typed,
we would need to insert explicit bind and unit operations, as in:

bindb (seconds ()) (fun s ->
unitb (let y = is_even s in if y then 1 else 2))

which makes the program much harder to read and write.
There is some existing support for programming monads in a di-

rect style. Haskell do-notation, or the pa monad in OCaml provide
special syntax for programming with monadic computations. In
Haskell for example, we would need to bind the result of seconds
() in order to apply the is even function:

do s <- seconds()
let y = is_even s in
return (if y then 1 else 2)

and similarly in the pa monad:

perform
s <-- seconds();
let y = is_even s in
return (if is_even s then 1 else 2)

Nonetheless, there is still some syntactic overhead in writing
monadic expressions. Moreover, when multiple monads are in-
volved where the programmer needs to explicitly lift one monad
into another.

And despite the effort we needed to put into rewriting the ex-
ample in a monadic style, there is actually little payoff! Since ML
already has a built-in evaluation order, the original example can
be naturally understood given its monadic type, and the translation
to the monadic style can be done mechanically. This is how our
tool, Coco, can automatically rewrite the example into the follow-
ing code which has type Beh int (modulo some simplifications
mentioned in the next section):

bindb
(bindb (seconds()) (fun s-> unitb (is_even s)))
(fun y-> unitb (if y then 1 else 2))

Filinski [3, 4] gives monadic semantics to direct-style ML pro-
grams, relying on an implementation mechanism called monadic
reflection. However, monadic reflection has not been integrated
with ML polymorphic type inference, and requires monads to be
implemented in a particular style.

2. Our approach: Type-directed rewriting
We adopt a different approach: program rewriting into monadic
style based on an expressive type inference algorithm. We have de-
veloped Coco, a compiler for monadic coercions that converts ML
programs into monadic style. Accordingly, given an ML program,
Coco infers its type and inserts binds, units and morphisms where
necessary, putting forward the monadic structure of the program.
Our solution might be more adequate for several reasons. First,
our approach is more expressive, in particular we support polymor-
phism. Second, we make no assumptions on how the monadic li-
braries are constructed, using them as typed black boxes. Finally,
the programmer can actually access the rewritten program and its
type. Coco may be particularly useful for retrofitting existing code
into monadic style; for example if only a few dependencies’ types
have changed, Coco will propagate the changes through all the
code.

The type-inference algorithm underlying Coco has been de-
scribed in a separate paper [8]. Our demonstration will focus on
the practical use of Coco and highlight some points of interest that
came up in the process of its implementation. We will describe how
Coco rewrites a small but non-trivial program that uses two distinct
monads.

Figure 1 shows the architecture of Coco, its inputs and outputs.
At present, Coco inputs a single file (program.coco) that includes

the program to convert, and the type interface of the (monadic) val-



program.coco
ML source +
monadic ops

monadic
signatures

��

monads.ml
monadic

definitions

��

Coco
Type inference

+ Rewriting

��
program.ml // ML compiler

Figure 1: The Coco compiler

ues the program depends on, along with the monad declarations
and available morphisms. The syntax of the source language and
of the types is very close to that of OCaml. The monad declara-
tions must contain a triple (monad constructor, bind, unit) for each
monad, as well as possible morphisms between different monads.
Coco outputs the rewritten well-typed source code, including nec-
essary monadic operators and morphisms. Coco supports the option
of outputting OCaml, which we will use for the demonstration. The
generated code (program.ml) can run against an implementation of
the monadic signatures (monads.ml).

Our type inference algorithm [8] introduces a fresh monad vari-
able at applications and non-value let-bindings, and at values that
are used as computations. The former are then sequenced using the
monadic bind, and the latter are lifted using the monadic unit of the
resulting monad. Monad variables are related by constraints which
correspond to morphism application in the expressions. Solving
these variables yields a well-typed program rewriting along with
its type. Coco runs in linear time.

The procedure described in above is comparable to what the
Haskell type-class mechanism does. However, on its own, this pro-
cedure is inadequate for many common programs that use our infer-
ence procedure. The problem is that the constraints we infer may
admit many possible solutions, each yielding different semantics.
As described in [8], Coco implements a custom constraint solving
algorithm that exploits the monadic and morphism laws to resolve
this ambiguity problem. Whenever a monad variable is the result
of conversion of several distinct monads, and can be converted into
another monad, our algorithm picks the least upper bound of its
dependencies. This corresponds to applying conversions as late as
possible, but is equivalent to applying the conversions in any possi-
ble order, thanks to the morphism laws. Using this algorithm, Coco
can infer unambiguous types for all 12 programs in our benchmark
suite. In contrast, a naı̈ve implementation based on type classes
would have rejected 19 types.

Coco supports two solving modes: in the strict mode, all top-
level expressions must be annotated, and in the permissive mode,
we admit the least upper bound of the dependencies as solution for
monad variables which are not further constrained, which greatly
simplifies the output types. Alternatively, we have implemented the
“let should not be generalized” strategy for inner lets [10], which
in practice simplified all of our examples.

The regular ML computations are encapsulated within a monad
Bot, whose unit is simply the identity, and bind is the reverse
apply function. In the implementation we simplify away most of
the operators related to the Bot introduced by the algorithm.

To implement the OCaml generation feature, we had to encode
higher-kinded resulting programs in OCaml. Indeed, a value let-

binding yields a higher-kinded function parameterized with mon-
ads and monadic operators. We have encoded this using first-class
modules in OCaml 3.12. Every monad is represented as a module
with the standard monad signature. A let-bound value is encoded
as a functor depending on some monad module variables. As a free
benefit, we get to use first-class polymorphism for function argu-
ments, which represent monadic operators.

3. Future directions
Coco is still at the development stage, and several directions for fur-
ther implementation are possible. We will appreciate all feedback
from the audience to get insights into what the community needs
might be . In particular, for now we only support a subset of OCaml
as input language. Depending on the demand among the program-
mers, we might to leave it at the stage of prototype, or carry on the
implementation to support rewriting a full-fledged programming
language. In the latter case, we consider several target languages:
OCaml, or a language with native support of higher kinds. Lastly,
we consider extending our technique for a dependently-typed lan-
guage.

To sum up, this demonstration will aim to show that type-based
rewriting is a convenient and programmer-friendly technique for
making the use of monadic libraries painless. Our tool, Coco is an
open-source prototype available for download [5], which we hope
the audience will be willing to test.

Acknowledgements The authors would like to thank Gavin Bier-
man and Matt McCutcheon for their early contributions to this
work. Hicks and Guts were both supported by NSF grant CNS-
0905419.

References
[1] Greg Cooper and Shriram Krishnamurthi. Embedding dynamic

dataflow in a call-by-value language. In ESOP, 2006.

[2] Conal Elliott and Paul Hudak. Functional reactive animation. In
ICFP, pages 263–273, 1997.

[3] A. Filinski. Monads in action. In POPL, pages 483–494, 2010.

[4] Andrzej Filinski. Representing monads. In POPL, 1994.

[5] Nataliya Guts, Michael Hicks, Nikhil Swamy, and Daan Leijen. Coco.
http://research.microsoft.com/en-us/projects/coco/.

[6] Graham Hutton and Erik Meijer. Monadic Parsing in Haskell. JFP,
8(4), 1998.

[7] Norman Ramsey and Avi Pfeffer. Stochastic lambda calculus and
monads of probability distributions. In POPL, pages 154–165, 2002.

[8] Nikhil Swamy, Nataliya Guts, Daan Leijen, and Michael Hicks.
Lightweight monadic programming in ML. In ICFP, 2011.

[9] J. Vouillon. Lwt: a cooperative thread library. In Proceedings of the
2008 ACM SIGPLAN workshop on ML, pages 3–12. ACM, 2008.

[10] D. Vytiniotis, S. Peyton Jones, and T. Schrijvers. Let should not be
generalized. In Proceedings of the 5th ACM SIGPLAN workshop on
Types in language design and implementation, pages 39–50. ACM,
2010.

[11] Philip Wadler. The essence of functional programming. In POPL,
1992.


