SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2014; 00:1-23
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe

C-strider: Type-Aware Heap Traversal for C

Karla Saur, Michael Hicks, and Jeffrey S. Foster

Dept. of Computer Science, University of Maryland, A.V. Williams Building, College Park, MD 20742

SUMMARY

Researchers have proposed many tools and techniques that work by traversing the heap, including
checkpointing systems, heap profilers, heap assertion checkers, and dynamic software updating systems. Yet
building a heap traversal for C remains difficult, and to our knowledge extant services have used their own
application-specific traversals. This paper presents C-strider, a framework for writing C heap traversals and
transformations. Writing a basic C-strider service requires implementing only four callbacks; C-strider then
generates a program-specific traversal that invokes the callbacks as each heap location is visited. Critically,
C-strider is type aware—it tracks types as it walks the heap, so every callback is supplied with the exact type
of the associated location. We used C-strider to implement heap serialization, dynamic software updating,
heap checking, and profiling, and then applied the resulting traversals to several programs. We found C-
strider requires little programmer effort, and the resulting services are efficient and effective. Copyright ©
2014 John Wiley & Sons, Ltd.

Received ...

KEY WORDS: programming tools; dynamic analysis; run-time systems; heap traversal

1. INTRODUCTION

Researchers have developed many compelling application services that work by traversing the
heap pointer graph of a program, including checkpointing [1, 2], profiling [3], dynamic software
updating [4], OS kernel integrity monitoring [5], and data-structure assertion checking [6, 7, 8, 9, 10]
and repair [11]. When implemented for programs written in a language like Java, these services can
piggyback on a tracing garbage collector. But supporting programs in C, which lacks both a garbage
collector and the run-time type information, has to date required a heroic effort.

In this paper, we present C-strider, a general framework for writing services that traverse and/or
transform a C program’s heap. Figure 1 depicts C-strider’s architecture. Given an input C program
prog.c, C-strider generates a program-specific traversal (prog_stride.c) that walks the heap starting
from any location given its type. As heap locations are visited, the traversal invokes one of a small
set of callbacks that implement a program-independent service (in service.c), e.g., to implement
serialization or dynamic updating. The service code in turn invokes the C-strider run-time library,
libstride.a, for services such as bookkeeping to ensure locations are visited just once. C-strider’s
API has been designed to be easy to use: Section 2 illustrates how to use C-strider to build a portable
serialization and deserialization service (e.g., for checkpointing).

A key feature of C-strider is that it is type aware—C-strider knows the type t of each heap
location visited, and passes a representation of t to the callback functions, which can vary their
behavior depending on the type. C-strider’s type information is exact, which is critical for many

*Correspondence to: {ksaur,mwh,jfoster} @cs.umd.edu
Contract/grant sponsor: NSF; contract/grant number: CCF-0910530, CCF-1116740

Copyright © 2014 John Wiley & Sons, Ltd.
Prepared using speauth.cls [Version: 2010/05/13 v3.00]

2 K. SAUR ET. AL

. prog_ libstride
source prog.c service.c specific.c a
files
|
- p| Prog_ >
C-strider stride.c gcec/ld a.out

Figure 1. C-strider architecture.

services. For example, a serialization service must know the precise size of objects, and must
know precisely whether an object is a pointer and what it points to. As such, conservative garbage
collection [12] is not a suitable starting place because its identification of pointers is approximate,
and it does not know the types of non-pointer values. We observe that in practice, there is nearly
always a statically well-typed pointer/struct chain to any location. Accordingly, C-strider analyzes
the program and statically generates a traversal that follows well-typed paths to reach most memory,
invoking callbacks and passing them type information along the way. The traversal is (mostly)
breadth-first and employs a work queue serviced by one or more threads. (Section 3 describes C-
strider’s traversal.)

However, most C programs lack some type information needed to describe the whole heap. For
example, C-strider cannot traverse unions or void« pointers without knowing which arm of the union
is valid or what the actual pointed-to type is, respectively. The programmer can fill in such missing
type information in two ways. One way is programmer annotations, in the style of Deputy [13]
and Kitsune [4], which can provide array length information and precise types for void« pointers
in generic data structures. The other is by customizing the traversal to consider an object’s type
specifically in the service code callbacks. For example, a callback can observe when it has reached
a union embedded in a struct and use the values of other fields in that struct to determine how
to interpret the union value. This program-specific code (in prog_specific.c) is implemented by
proxying the callbacks and delegating to the service code to perform the underlying service. Thus,
C-strider provides a clean separation between two reusable pieces of code: the program-specific
traversal (the annotations, the generated traversal, and the code in prog_specific.c, all of which can
be used for many services in the same program) and the service-specific code (in service.c, and
which can be used by many different programs). In addition, the code can be arbitrarily customized
for particular program/service pairs, if needed. (Section 4 describes the annotations and other forms
of program-specific customization.)

We used C-strider to implement four traversal-based services (details in Section 6), and used them
with three different programs, memcached (a data caching service), redis (a key-value store), and
snort (an intrusion detection system).

Serialization and deserialization This service, suitable for checkpointing, is implemented in just
over 60 lines of code (LOC), and is carefully designed to be robust against changes to the program
at load time, e.g., symbol relocations due to address-space layout randomization. Checkpointing is
relatively fast; we could serialize and deserialize a memcached heap with 30,000 key-value pairs in
under 100ms.

Dynamic Software Updating We modified Kitsune, a dynamic software updating system for C,
to implement its state transformation component using C-strider, requiring only 24 LOC. Taking
advantage of C-strider’s ability to perform multi-threaded traversal, we could dynamically update
redis with a heap of 100,000 key-value pairs in 38% of the time required by Kitsune.

Heap profiling We developed a profiling service that counts the number and amount of memory
consumed by objects of different types. The service required 65 LOC and generates an itemized log,
which we used to better understand memory usage in our example programs.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOLI: 10.1002/spe

C-STRIDER 3

struct traversal {
/+ Processing primitive values. (int, float, etc.) +
void (»perfaction_prim)(void «in, typ t, void «out);

/+ Processing struct values. Return 1 to traverse fields in the struct, else return 0.+
int (« perfaction_struct)(void «in, typ t, void ~out);

/+ Pointer processing; first visit. Return 1 to follow the pointer, else return 0. %
int (perfaction_ptr)(void ««in, typ t, void =+out);

/+ Previously encountered pointer processing. »
void (»perfaction_ptr_mapped)(void =+in, typ t, void ««out);

Figure 2. Basic C-strider service APL

Heap assertion checking C-strider can be used to check heap assertions in the style of GC
assertions [6]. We implemented several simple assertions such as ensuring that linked lists are well
formed, timestamps are not in the future, and enum fields are valid.

Each application required some service-agnostic customization to provide missing type information,
and in some cases some service-specific handling, usually to optimize performance. In all cases,
traversal customizations required roughly 20 LOC, while type annotations depended on program
size. For example, for snort 143 annotations were required across its 215 KLOC, while for
memcached only 6 annotations were required across its 4 KLOC.

C-strider has been carefully designed to implement heap traversal as a library employing entirely
standard features of C. In particular, C-strider does not modify data structure representations (which
could break important assumptions about object size and layout) and does not require custom
compilation (which could inhibit compiler optimizations). C-strider also deliberately keeps its type
annotation language simple for the common cases, with the ability to drop back to C for reasoning
about more complex type invariants (e.g., tagged unions); in our experience, C programs always
have unusual, exceptional cases not captured by any sensible annotation system. Finally, C-strider’s
traversal itself is easy to understand—as we will see in Section 3, the entire traversal is simple,
written in a few tens of lines of code. Thus, we believe C-strider is accessible to a broad audience
and adaptable to many uses.

To our knowledge, C-strider is the first general-purpose, type-aware heap traversal framework for
C. We believe C-strider will prove useful for many applications in addition to the ones explored in
this paper, and we plan to release C-strider under an open source license.

2. DEVELOPING SERVICES WITH C-STRIDER

This section focuses on the design of C-strider from the developer’s perspective. The key
challenge in C-strider’s design is trading off simplicity—we want the API to be easy to use—and
expressivity—we need it to be useful in many situations. We will illustrate our design by showing
how to use C-strider to build a serialization and deserialization service.

2.1. C-strider API

C-strider traversals aim to visit and transform elements of a program’s heap. There are three kinds of
elements: primitives like integers, enumerated types, etc.; aggregates like structs, which are single
objects that contain multiple elements; and pointers to other elements. C-strider’s API asks a service
developer to write three main callback functions, corresponding to the three kinds of heap elements."

T Arrays are another kind of aggregate element; these are handled automatically by the traversal, as discussed in Section 3.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOLI: 10.1002/spe

K. SAUR ET. AL

1 void serial_prim (void =in, typ t, void =out){ 41 void deserial_prim(void «in, typ t, void =out){
2 fwrite (in, get.size(t), 1, serfp); 42 fread(out, getsize(t), 1, serfp);

3 43

4 int serial_struct (void «in, typ t, void =out){ 44 int deserial_struct (void =in, typ t, void ~out){
5 return 1; 45 return 1;

6 } 46

7 int serial_ptr (void *=in, typ t, void =xout){ 47 int deserial_ptr (void ++in, typ t, void *+out){
s if (xin ==0) 48 void «ptr, =tgt;

9 uintptr_t zero = 0; 49 fread(&ptr, sizeof(void+), 1, serfp);

10 fwrite (&zero, sizeof(uintptr_t), 1, serfp); so if (ptr == (void«)2) { / pointer to symbol
11 else { 51 char » symbol;

12 char «symbol; 52 deserial_string (&symbol);

13 if ((symbol = lookup_addr(xin))) { 53 =out = lookup_key(symbol);

14 uintptr_t two = 2; 54 free (symbol);

15 fwrite (&two, sizeof(uintptr_t), 1, serfp); 55 }

16 serial_string (symbol); 56 else if (ptr == NULL) // null pointer

17 } else { 57 ~out = 0;

18 serial_prim ((void +)in, t); 58 else if ((tgt = find_mapping(ptr))) /# revisit
19 if (t == TYPE_LPTR_CHAR) 59 ~out = tgt;

20 serial_string ((char «)«in); 60 else // haven't seen it; read the data

21 else return 1; 61 if (typ == TYPE_.PTR_.CHAR) { // a string
2 }} 62 deserial_string ((char =+)&tgt);

23 return O; 63 =out = tgt;

24} 64 add_mapping(ptr, tgt);

25 65 } else {

26 66 int sz_new = get_size(get_ptrtype(t));

27 67 tgt = malloc(sz_new);

28 68 *out = tgt;

29 69 add_mapping(ptr, tgt);

30 70 visit (tgt, get_ptrtype(typ), tgt);

31 71 }

32 72 return 0;

33 73

34 // helper function, not part of API callbacks 74 // helper function, not part of API callbacks
35 void serial_string (char =str){ 75 void deserial_string (char =«str) {

36 /+ assumes str /= NULL +/ 76 int len;

37 int len = strlen(str)+1; 77 fread(&len, sizeof(int), 1, serfp);

38 fwrite (&len, sizeof(int), 1, ser_fp); 78 «str = (char x)malloc(len);

39 fwrite (str, len, 1, serfp); 79 fread(=str, len, 1, serfp);

40 } 80 }

(a) Serialization

(b) Deserialization

Figure 3. An example service: serialization and deserialization.

The names and type signatures these three callbacks are listed in Figure 2; we will discuss the
last callback below. Pointers to the callbacks reside inside struct traversal, which is passed as a
parameter to initialize C-strider.

Each callback has the same three arguments. The first argument, in, points to the program data
being visited, which has a type represented by t, the second argument. The last argument’s use
depends on whether the programmer is developing a transformation service that modifies memory
locations of heap objects, or a traversal service that does not. A traversal service like serialization
only has one set of traversal roots, and simply ignores out. For a transformation service, like
deserialization, out points to replacement memory such that writing out specifies how in’s data
should be transformed.

Copyright © 2014 John Wiley & Sons, Ltd.
Prepared using speauth.cls

Softw. Pract. Exper. (2014)
DOI: 10.1002/spe

C-STRIDER 5

2.2. Implementing serialization

To explain these three callbacks in more depth, we refer to the code in Figure 3a, which implements
a serialization service. This service is a traversal service, so out is unused. The functions are passed
as callbacks to C-strider in an instance of struct traversal from Figure 2.

The first callback, serial_prim (assigned as a callback for perfaction_prim), handles data of
primitive type (e.g., int, double). The traversal calls this function with the address of each global
variable and each struct/union field that is a primitive type, indicating the specific type of primitive
with typ t. The code for serializing primitives using this function is given at the top of Figure 3a.
It does the obvious thing: it uses API function get_size to compute the number of bytes for type t,
and writes the data via the serialization file handle, ser_fp.

The second callback, serial_struct (assigned as a callback for perfaction_struct), is called with
the address of every struct reached during the traversal. The particular struct can be determined
by examining t. Oftentimes, as is the case here, this function does nothing other than return 1,
indicating the traversal should continue by visiting each of the struct’s fields. Alternatively, the
callback can return O to indicate traversal should not continue automatically, in which case the
function can call the visit library function (explained in Section 2.5) to selectively visit fields.

The third callback, serial_ptr (assigned as a callback for perfaction_ptr), is invoked for each
pointer when it is first reached. Here the type of in is void =+, rather than void «, because it is the
address of a pointer. For serialization, the callback checks whether the pointer is null; if so, it writes
null to the file. Otherwise, it calls C-strider’s lookup_addr function to check whether the pointer is
to a global variable, i.e., one that has a symbol name. If a symbol name is returned, the code first
writes 2, which we assume is not a legal pointer, followed by the symbol name. Otherwise there is
no symbol, so the code writes the pointer value itself. If the pointer is to a string, as determined by
its type, the code writes the contents of the string; note that if we were to dereference the pointer and
continue as usual, we would only write the first character of the string. Finally, if traversal should
continue to the pointer contents, then we return 1; else we return O to prevent further traversal though
this pointer.

As presented so far, the API has one limitation: If there are cycles among pointerful data structures
in the heap, traversal may loop forever. Rather than force the programmer to add ad hoc logic to
avoid this case, C-strider instead includes support for tracking previously visited pointers. Thus, the
C-strider API includes a fourth callback, perfaction_ptr_mapped, which is called for each pointer
that is reached but has been visited previously during the traversal. C-strider maintains a map
from each visited in pointer to its +out counterpart; this mapping is set when we return from
perfaction_ptr, mapping the (original) value of «in to the final value of rout. When the traversal
code considers a pointer to visit, it checks whether that pointer appears in the mapping table. If
so, it calls perfaction_ptr_mapped; otherwise it calls perfaction_ptr . In the case of serialization, the
corresponding serial_ptr_mapped callback function is not shown because it is quite similar to the
serial_ptr function; the difference is that it knows the pointer cannot be null, so only the else case
of the above code is needed, and the code for writing strings is elided, since the string has already
been written. No further traversal is needed for a mapped pointer, so nothing is (ever) returned.

2.3. Implementing deserialization

While serialization is a traversal service that only reads the heap, deserialization is a transformation
service that modifies the heap during traversal. It begins by writing global variables and then
continues to initialize the heap as it processes the serialization file. Deserialization is unusual
because the input heap comes from prior program run, as captured in the serialization file. Thus, we
will see that deserialization must call API functions that add mappings, read from this file, and direct
the traversal. A more typical transformation service, like dynamic software updating (Section 6.3)
or hot swapping [14], would simply traverse the existing heap while transforming it, requiring no
extra programmer assistance.

Figure 3b shows the deserialization callbacks, which are passed to C-strider in an instance of
struct traversal. The first callback, deserial_prim, is just like serialization, but reads data instead of

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOLI: 10.1002/spe

6 K. SAUR ET. AL

95 int do_deserialize(int argc, char =+argv){
96 if ((char)argv[1][0] == 'D’){

81 t1 «global; 97 ser = fopen(”ser.txt”, "rb”);
82 t2 «other_global; 98 init (&deserial_funs, 0);
83 99 visit (&global, TYPE_t1, &global);
84 int main(int argc, char =+argv){ 100 finish ();
85 if (!do_deserialize(argc,argv)){ 101 fclose (ser);
86 /+ do standard initialization +/ 102 return 1;
87} 103}
88 /= long—running loop for 104 return O;
89 rest of the program... +/ 105 }
90 while(1){ 106 void checkpoint(void){
91 if (...) checkpoint(); 107 ser = fopen("ser.txt”, "wb”);
92 108 init (&serial_funs, 0);
93 } 109 visit (&global, TYPE_t1, &global);
94 } 110 finish ();
111 fclose(ser);
12}

Figure 4. Example program employing checkpointing.

writes it. deserial_struct returns 1, which means struct fields are traversed as usual, i.e., in the same
order they were serialized.

The callback deserial_ptr inverts the logic from the serialization case, allocating new memory
as needed and updating the mapping. It starts by reading the pointer itself from the file. Notice
this is the address from the checkpointed program. Since the address space of the current run of
the program may be different, the traversal uses the mapping table to map the checkpointed run’s
addresses to the equivalent ones in the current run’s address space. There are several cases. The code
first checks whether the pointer is 2. If so, it points to a symbol, whose name is then read and looked
up to find its current address, which is assigned to «out. Otherwise, if the pointer is null, then null is
written to «out. If this particular pointer was seen before—i.e., it was previously read from the file
and therefore is in the mapping table—then =out is assigned to the value from the map, which is the
corresponding address in the current run of the program.

Otherwise, the code starting on line 60 handles a non-symbol, non-null pointer that has not been
seen before. If it is a string, the code reads in that string, and then adds a mapping to between ptr
(the address in the file) and tgt (the address of the same memory in the program). For non-strings,
the code extracts the target type of the pointer and computes its size (if the pointer is to an array
then the size of the target type will cover the entire array). Then it allocates memory for the target
object, assigns the allocated pointer to out, and sets up the mapping. Finally, the code calls visit to
manually direct to the traversal to the newly allocated memory. Thus, the next read from the file will
write into that memory. In all cases the deserial_ptr function returns 0, since either no subsequent
traversal is needed, or the traversal was manually triggered by calling visit .

The deserial_ptr_-mapped function (not shown) will never be called, because translation of
pointers from the serialization file always happens through manual lookups of the table on line 58.
If a pointer from the serialization file is seen again in deserialization, then there is no attempt to
traverse it (deserial_ptr returns 0).

2.4. Using serialization for checkpointing

Given the callback definitions, C-strider provides, or generates, the code that actually traverses the
various elements of the heap, invoking the callbacks as it goes. To use a C-strider service, therefore,
the programmer then needs to invoke the traversal at the appropriate place in their program.

Using the (de)serialization service is simple. Consider Figure 4, which uses this service for
checkpoint and restart. Assume the data to be (de)serialized is stored in some variable global of
type t1. When the program begins, it calls do_deserialize on line 85 to check whether the user
has requested to restart at a checkpoint. If not, do_deserialize simply returns 0, and initialization

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOLI: 10.1002/spe

C-STRIDER 7

// Functions for manipulating type information
// Directing the traversal int is_prim(typ t);
void init (struct traversal = funs, int parallel); int is_ptr (typ t);
void visit (void =in, typ t, void ~out); int is_funptr (typ t);
void visit_all (void); int is_array (typ t);
void register_root (void = in, typ t); int get_size(typ t);
void deregister_root (void = in); int get_-num_array_elems(typ t);
void finish (void); int get_ptrtype (typ t);
/" Functions for querying the symbol table // Constructors
char «lookup_addr(void «addr); typ mktyp_ptr(typ t);
void <lookup_key(const char key); typ mktyp_arr(int arrlen, typ t);
// Functions for manipulating the pointer // Generics
// mapping table int get_maintype(typ t);
void add_mapping(void «in, void =out); typ =get_generic_args(typ t);
void «find_mapping(void «in); int get_.num_gen_args(typ t);
typ mktyp_instantiate(typ t, int nargs, typ =args);

Figure 5. C-strider API.

continues as usual. Otherwise, the do_deserialize function invokes the deserialization traversal to
initialize memory. First, C-strider must be initialized by calling init (line 98), which takes two
parameters: a struct specifying which traversal functions to be used (having type struct traversal
from Figure 2), and a flag specifying whether the traversal should be run in single-threaded mode,
guaranteeing an in-order traversal (0), or parallel mode with multiple threads (1). In this example,
for deserialization, the first init parameter is a struct traversal with the function pointers set to
the C-strider API functions from Figure 3b, and the second parameter is O to signify a single
threaded traversal, as (de)serialization relies on an in-order traversal to preserve the order of the
heap data. The init call also initializes some auxiliary data structures that C-strider uses to perform
the traversal.

Next, the programmer selects which objects of the heap to traverse. One option is to call visit_all ,
a function generated by C-strider that traverses all objects reachable from global variables.
Alternatively, as we do here (line 99), the programmer can call visit to traverse starting from a
specific root. This is useful when a full heap traversal is not appropriate, e.g., here where we do not
want to traverse other_global. Deserialization is a transformation service, but as mentioned earlier,
it is an unusual one: the source heap is read from the serialization file, while the target heap is that
of the current program. As such, we must specify out as &global. For in, we also use &global but
this ends up not being important—as we can see from Figure 3b, the in argument is actually ignored
by the deserialization code. (A more typical transformation service is discussed in Section 6.3.)

Lastly, the programmer calls finish, which tells C-strider to clean up the auxiliary data structures
it uses for the traversal. At this point, all data has been deserialized, so the program closes the file,
and do_deserialize returns 1 on line 102, thereby skipping from-scratch initialization.

The main program now proceeds, entering a long-running loop. Intermittently it calls checkpoint
to serialize the current state. The function checkpoint (line 91) is similar to do_deserialize, except
now the programmer uses the serialization functions, which write to the serialization file rather than
read from it. Because serialization is a traversal service, we specify the in argument to visit as
&global; the third argument is unimportant since serialization will ignore it, but we specify it as
&global to be compatible with the expectations of automatically generated code (cf. Figure 7 in the
next Section). For traversal services such as serialization, a call to visit_all will automatically set
out equal to in for all elements of the traversal.

2.5. Full C-strider API

We now wrap up our discussion of C-strider’s basic design by discussing the remainder of the API,
given in full in Figure 5. Section 4 will discuss in more detail how these functions can be used to
customize the generated traversal.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOLI: 10.1002/spe

8 K. SAUR ET. AL

Starting in the upper-left, the first set of functions controls the initialization (init), starting points
(visit or visit_all), and conclusion of the traversal (finish), as briefly explained in Section 2.4.
Figure 4 showed how the visit function can be called on any location to start traversal from that
point onward. Certain applications, however, need to traverse the entire heap. For example, full heap
traversal is needed for dynamic software updating and for heap profiling. To support these cases, C-
strider provides a function visit_all , which traverses the entire heap automatically by calling a list
of generated custom traversal functions for each global variable in the program. Additionally, the
programmer can use register_root and deregister_root to add and remove, respectively, additional
locations for visit-all to visit. For example, we use this to traverse certain local variables in
dynamic software updating, discussed in Section 6.

The next two functions, lookup_addr and lookup_key, perform lookups in the C-strider symbol
table, mapping from symbol names to addresses or vice-versa. The last two functions on the left,
both of which we saw above, manipulate the mapping table used in transformation services. While
we could have left it up to the user to implement these features on an ad hoc basis, we incorporated
them into C-strider because we found them useful for a range of services.

Finally, as we saw in the serialization and deserialization code, one of the major features of C-
strider is that it is type aware, which not only allows the traversal to be precise, but also allows
service code to adjust its behavior by type. For example, strings of TYPE_PTR_CHAR are serialized
differently than other pointer types. In general, C-strider generates a set of type names for those
types that are statically present in the code, e.g., TYPE_INT, TYPE_PTR.INT. User-defined types
also available at run time, e.g., TYPE_STRUCT_DLIST for a program that includes struct dlist .

The functions on the right of the figure manipulate types. The first group of functions
manipulate standard types, e.g., determining whether they are primitives (is_prim) or pointers
(is_ptr), calculating their size (get_size, get_num_array_elems), and returning the pointed-to type
(get_ptrtype). The particular set of queries shown here was derived from our experience building
several services (Section 6); other applications could potentially require other accessors, which are
easy to add.

The next two functions, mktyp_ptr and mktyp_array, create new pointer or array types,
respectively, at run time. We use these to maintain type information for arrays and other pointed-to
blocks whose length is only determined at run time. We will see an example in Section 4. The last set
of functions lets us create and query generic types, e.g., parametrically typed linked lists. Section 4
discusses generics in detail.

Notice that, since types are available at run-time and can be fully queried, it is not strictly
necessary to have four perfaction callbacks. In theory, perfaction_prim, _struct, and _ptr could be
combined into a single callback that would just test the type and behave appropriately. However, we
have found this particular grouping to be useful, because we often want to treat each of those groups
independently (e.g., as in serialization and deserialization).

3. TYPE-AWARE TRAVERSAL

Section 2 showed C-strider from the service developer’s perspective. This section provides details
on the inner workings of the traversal, in two parts. First, we discuss the main components of the
traversal, which are the visit function, which is called for each element of the heap, and the fask
queue, which organizes the work of the traversal. Second, we explain how the visit function relies
on several bits of C-strider-generated code, in particular a table of type representations, a set of
struct-specific visit functions, and finally a visit_all function, which can be used to initiate a heap
traversal from the program’s roots.

3.1. Main components of the traversal

To perform the traversal, C-strider must determine which perfaction_ function to call with which
addresses, and it must keep track of those addresses it has visited and the addresses to visit next. The
overall traversal is orchestrated by two pieces of code: the visit function, shown in Figure 6, which

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOLI: 10.1002/spe

C-STRIDER 9

113 void visit (void =in, typ t, void ~out){
114 if (is_prim(t)){

~

115 perfaction_prim(in, t, out);

116} else if (is_ptr (1)){

117 if (lin) return;

118 void *lookup;

119 if ((lookup = find_mapping(*(void=+)in))) {
120 perfaction_ptr_mapped(in, t, &lookup);
121 =(void«+)out = lookup;

122

123 else{

124 int retc = perfaction_ptr (in, t, out);
125 add_mapping(x(void=+)in, *(void«+)out);
126 if ('retc || is_funptr(t)) return;

127 typ tp = getptrtype(t);

128 visit (x(void «+)in, t_p, =(void =+)out);

129
130} else if (is_struct (t)){

131 if (perfaction_struct (in, t, out))

132 enqueue(in, t, out);

133} else if (is_array (1)){

134 /+ enqueue task that calls visit on each array element +
135} }

Figure 6. Traversing using type information.

calls the appropriate perfaction_ function based on an object’s type; and a task queue that contains
pointers to structs or arrays whose elements need to be visited.

Traversal visit function. The visit function is the workhorse of the traversal. It is invoked
for each visited heap object, starting with the roots. As arguments, visit is given a pointer to
the heap object to consider, a representation of that object’s type (expressed as an object of type
typ), and a pointer to the corresponding object in the transformed heap. We defer discussion of the
implementation of type representations to the end of this section.

The body of visit is straightforward. For primitive types (ints, chars, etc) and other non-standard
terminal primitive types (mutex_t, time_t, size_t), the traversal calls perfaction_prim on line 115,
which in turn calls the user-provided callback from struct traversal, passing it a pointer to the
primitive being traversed.

If typ is a pointer type, the traversal returns immediately if the pointer is null (line 117). Otherwise,
there are two cases, depending whether the pointer has been visited before (line 119).

If the pointer has been visited, the code calls perfaction_ptr_mapped, passing the address from the
mapping as its last (out) parameter. The code passes &lookup because perfaction_ptr_-mapped takes
a void =+, i.e., a pointer to a location containing the pointer of interest. The code then writes the
mapped-to value from lookup to +out.

If the pointer has not been visited, then the code calls perfaction_ptr and updates the mapping to
record that the pointer has been visited. Then either traversal stops (if perfaction_ptr so indicated,
or if t is a function pointer), or it continues at the pointed-to type (lines 127-128).

If the type is a struct, the traversal calls perfaction_struct . If that function indicates the traversal
should continue, the code calls enqueue, which creates a task that will visit t’s fields and adds it to
the queue.

Finally, if typ is an array type, the traversal likewise enqueues a task to recursively visit each of
the array’s elements. When performing a multi-threaded traversal, this code will divide this task into
sub-tasks covering sub-ranges of the array; the number of tasks depends on the size of the array and
the number of processors on the machine.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOL: 10.1002/spe

10 K. SAUR ET. AL

struct dlist { struct dlist = next, «prev; int x; }
struct dlist «head = ..;
struct dlist =phead = &head;

139 void _visit_struct_dlist (void =in, typ t, void =out) {
140 struct dlist.i *inJ =in;

141 struct dlist.o =outl = out;

142

143 visit (&in_l— next, TYPE_dIist.PTR, &out_|— next));
144 visit (&in_| — prev, TYPE_dlist_PTR, &out_l— prev));
145 visit (& in_l — x, TYPE_INT, &out_l— x);

146}

Figure 7. Generated traversal code for struct dlist .

Note that the visit function skips unions. We made this choice because C has no standardized
mechanism for determining which arm of a union is active. Thus, for these cases the developer has
to customize the traversal with program-specific code (Section 4).

The task queue. The task queue consists of traversal work that remains to be done. It contains
two types of tasks: structs whose fields need to be visited, and arrays whose elements need to be
visited. The traversal in the former case is defined by a custom visit function that C-strider generates
for each struct in the program (as described in Section 3.2). The traversal in the latter case is simply
a loop over the specified range of the array. Either way, the traversal function simply calls visit on
each of the elements of in and out and then returns.

Single and multi-threaded traversal modes. The handling of enqueued tasks depends on the
mode C-strider is used in. In single-threaded mode, the main thread repeatedly pulls tasks off the
queue and calls visit, until the queue is empty, forming a breadth-first search of the enqueued
tasks. Using a queue enables C-strider to traverse cyclic data structures (which in C must always go
through a struct) without requiring a deep stack.

To speed up the traversal process, C-strider supports multi-threaded traversal. In this mode, C-
strider launches n — 1 worker threads in addition to the main thread, where n is the number of
processors. The threads consume tasks that are generated by enqueue, which are initially produced
by C-strider’s main thread.

C-strider uses a work-stealing scheduler: Each thread has a local queue (created initially at the
call to init), and when it runs out of tasks it attempts to steal one from another queue [15]. Each
queue is implemented as a large pre-allocated array and a single lock used for enqueue and dequeue
operations. Each queue also maintains an exact number (using the lock) of in-flight tasks currently
being processed. This is because even if all queues appear to be empty, if a thread is currently
processing a task, it may enqueue new tasks. Therefore, we are not done traversing until all queues
are empty and no tasks are in-flight.

In a multi-threaded traversal, the map of visited locations needs to be thread-safe. Using a single
lock to protect it would introduce significant contention, so we use a hash table implementation with
bucket-by-bucket locking.

A traversal completes once the service calls finish. At this point, the main thread and helper
threads (if multi-threaded) process all remaining items in the task queues until they are empty. Once
complete, temporary data structures are freed and the helper threads exit.

In C-strider we have made a specific design choice to only create tasks for structs and arrays. As
an alternative design, we could have enqueued tasks for every element in the heap, including pointers
and primitives. However, the cost of making a task, queuing it, dequeuing it, and executing it, would
dwarf the cost of just executing the task directly, despite the lost opportunity for parallelism. We
find that our current design generally balances overhead with opportunities for parallelism.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOLI: 10.1002/spe

C-STRIDER 11

3.2. Generated code

In addition to the visit function and queues, C-strider relies on per-program generated code to
perform the traversal, including type representations, a set of traversal functions for each struct in
a program, and code to register globals to be visited by visit_all .

Type representations and the type table C-strider traversals use fype representations that
describe each type in a program. Such type representations cover both built-in types (like int and
char) and user-defined types. Type representations have type typ, and are used by both C-strider
library functions like visit and the perfaction callback functions provided by the service developer
with struct traversal.

A typ t is represented as an integer that indexes a generated type table. This table maps types
to relevant information about them like their size in bytes, the number of elements (for arrays),
the pointed-to type (for pointers and arrays), and, for a generic type, the base type and the type
arguments this type was instantiated with (if applicable); Section 4 says more about generics.

C-strider creates a unique typ for each type appearing (statically) in the program text and gives it a
predictable variable name, e.g., TYPE_PTR_CHAR from Figure 3a. A service developer can refer to
such names in the perfaction functions. Types are extracted from the source program by an analysis
implemented in CIL [16]. CIL takes as input preprocessed C source code and outputs information
about the types of all variables and functions of the program.

C-strider also assigns a distinct typ to each type alias, e.g., typedef int size_t in the source would
yield a new type TYPE_size_t with the same associated information as TYPE_INT. Distinguishing
type aliases like this is useful for certain applications. For example, we found that Redis includes a
string type that is aliased to char =, but is actually a pointer to the middle of a data structure. Thus,
we can write the traversal so that when it visits this particular named type, it visits the structure as a
whole and not just the string.

A traversal can generate type representations on the fly, using the mktyp_ functions (cf. Table 5). If
the run-time generated type matches one already in the type table generated statically, then mktyp_X
will return the associated index. However, if the type did not appear in the program text then it will
not be in the table already. In this case, a new entry is added to the table dynamically, and the index
to that element is returned.

Traversing structs. As seen in the previous section, the visit function directs the traversal by
handling the pointers and calling the appropriate perfaction_ functions. To traverse inside a struct,
C-strider must call visit for each field of the struct. To assist with this, in addition to generating
the type table, C-strider generates a traversal function for each struct and each field within the
struct. For example, Figure 7 shows the traversal code for a doubly linked list struct dlist, defined
at the top of the figure. (Code slightly simplified for clarity.) Each generated traversal function is
named by prepending _visit to the name of the struct. The parameters void =in and void = out are
the addresses of the struct being traversed, and parameter typ t is used in the case of generics, as
described in Section 4.1. C-strider generates code to assign the parameter addresses to the type of
struct being traversed (shown on lines 140 and 141) to allow the memory to be accessed properly as
struct fields. Finally, C-strider generates code to traverse each field of the struct (shown on lines 143
- 145) by getting the type information for each field from CIL. C-strider inserts the corresponding
type name generated according to the pattern used when generating type representations (e.g.,
TYPE_dlist_PTR for struct dlist =) and generates a call to visit for each field of the struct.

visit_all. During compilation, C-strider gathers a list of all non-static global variables of a program
using CIL. When init is called, C-strider uses the list of non-static globals to populate hash tables
mapping symbol name to address (for lookup_key from Figure 5), and address to symbol name
(for lookup_addr). After initialization, if the user then calls visit-all , C-strider iterates through all
entries in the lookup_key table, combines each entry with some auxiliary type information, and
uses that information to call visit on each global. After visit_all calls visit on all globals in the

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOLI: 10.1002/spe

12 K. SAUR ET. AL

typedef struct _dlist_arr {

int arrlen;

struct dlist »» T_PTRARRAY(self.arrlen) arr_head;
} dlist.arr ;

151 void _visit_struct_dlist_arr (void =in, type t, void =out) {

152 struct dlist.arr +in_.a =in;

153 struct dlist.arr =out_a = out;

154 visit (&in_a— arrlen, TYPE_INT, &out_a— arrlen);

155 visit (&in-a— arr_head,

156 mktyp_ptr(mktyp_arr(in_.a— arrlen, TYPE_STRUCT _dlist_.PTR)),
157 out_a— arr_head);

158 }

Figure 8. Length annotation and generated traversal code.

hash table, it then calls visit on all roots the programmer has manually added with register_root .
C-strider does not process static global variables, as discussed in Section 5.

4. CUSTOMIZING THE TRAVERSAL

For many C programs, the standard C types do not provide quite enough information to support type-
accurate traversal. To support such programs, C-strider lets the programmer customize the traversal
in two ways: adding type annotations to the program (Section 4.1), and writing program-specific
code in perfaction functions (Section 4.2).

4.1. Type annotations

C’s type system is not sufficiently expressive to describe many common programming idioms.
For example, the type int= could describe a pointer to a single integer, or a pointer to an array
of integers. C-strider permits programmers to express additional information as type annotations
to remove some of the ambiguity. These annotations are borrowed from Kitsune [4] and inspired
by Deputy [13]. Currently, C-strider supports two kinds of type annotations that encode the most
common missing type information: lengths of arrays, and types of void «’s used in generic data
structures. These annotations can decorate types of either struct fields or global variables, in which
case they modify the generated traversal function for that struct or global, respectively. We illustrate
the annotations by example.

Type annotations for arrays. Depending on how an array is declared, C-strider may or may not
be able to statically determine its length. If an array is declared with static length information such
as struct dlist array_x[6], C-strider can determine that it needs to process 6 elements for array_x.
However, when a user declares an array with dynamic length, such as struct dlist «« arr_head,
C-strider cannot statically determine the length of the array and needs additional information
to determine how to process arr_head. C-strider includes annotations T_-PTRARRAY(S) and
T_ARRAY(S) to decorate a pointer or array, respectively, with a length S, which may be a constant
integer or an expression of the form self . f, where f is a field at the same level of the current struct.
For example, Figure 8 shows an annotated struct type declaration and its corresponding traversal
code. The annotation states that arr_head is a pointer to an array whose length is contained in the
field arrlen of the same structure (self). Notice that line 156 of the generated traversal code calls
mktyp_arr to generate an array type of the appropriate length, and then wraps it in a pointer type.

If the user does not annotate an array, C-strider will presume it is a singleton. From the example
in Figure 8, the code struct dlist =+ arr_head; would be treated by C-strider as a single instance

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOLI: 10.1002/spe

C-STRIDER 13

struct list { // class List<T> {
void T_VAR(@t) «val; // Tval;
struct list T_IINST(@t) next; / List<T> next; }
} T_FORALL(@1);

163 void _visit_struct_list (void «in, type t, void =out) {
164 struct list =in. =in;

165 struct list «out| = out;

166 typ =args = get_generic_args(t);

167 int num_args = get_num_gen_args(t);

168 assert(num_args == 1);

169 typ t0 = args|[0];

170

171 visit (& in_|— val, 10, &out.l— val);

172 visit (& in_| — next,

173 mktyp_instantiate (TYPE_STRUCT list.PTR,num_args, args),
174 &out_l— next);

175 }

Figure 9. Generic annotation and generated traversal code.

of a “pointer to a struct dlist pointer,” rather than a “pointer to array of struct dlist pointer” with
the annotation.

Type annotations for generics. Because C-strider uses static type information to generate the
heap traversal code, void +’s in a program present a roadblock to the traversal generation process
as void +’s provide no type information. C-strider includes several annotations to type void »’s in
generic data structures. Figure 9 shows a generic linked-list data structure and its corresponding
traversal code. Here, the struct list type is parameterized by type variable @t, introduced with
T_FORALL. The type variable is used with T_VAR to provide the actual type of val. Then the code
uses T_INST to instantiate the type of next. For comparison, the Java generic linked list equivalent
is shown in comments in the example. In the traversal code, the argument t is an instantiation of
the generic type. The calls on lines 166 and 167 get an array with the instantiated arguments and
the length of that array, respectively. The code then binds t0 to the first element of the array, i.e.,
whatever @t is instantiated as. That type is used to visit val, and then next is visited at the type of
struct list instantiated with the same arguments (line 173).

If the user does not add an annotation to a void =, C-strider prints out a warning during the type
generation process, reminding the programmer to add an annotation if necessary. If no annotations
are added to a void =, C-strider does not traverse the pointer as no type information is available.

4.2. Customization in perfaction functions

In some cases, type annotations are insufficient to guide the traversal. For example, consider the
type at the top of Figure 10, which defines a struct whose u field is either int or char, depending
the tag field being either 1 or 0, respectively. To select the correct field of u to visit, C-strider needs
to know how to interpret tag.

To solve this and other problems, the programmer can write program-specific perfaction
functions. Such functions (contained in file prog_specific.c in Figure 1) can assist C-strider in
performing the traversal in a service-agnostic manner, per our example. Customizations can also
adjust a service’s functioning based on the particular program. For example, we might know that
our program has an array of structs that all reference each other. Rather than traverse the entire
array, we could customize serialization to write the whole array at once, and thereby avoid further
traversing of the structs. When no customization is needed, the programmer can just delegate to the
relevant service code.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOLI: 10.1002/spe

14 K. SAUR ET. AL

struct tagged_union {
int tag; /» 1 selects u.x; 0 selects u.c »
union{ int x; charc; } u; /+ selected by tag +

b
201 int s_d_prog_struct(void «in, typ t, void =out){

180 int current_service; 202 /» Service—agnostic, Program—specific
181 #define DESERIALIZE 0 203 if (type == TYPE_STRUCT -tagged_union) {
182 #define SERIALIZE 1 204 struct tagged_union «in_u = in;
183 205 struct tagged_union =out_u = out;
184 struct traversal deser_prog-funs = { 206 visit (&in_u— tag, TYPE_INT, &out_u— tag);
185 .perfaction_prim = &deserial_prim, 207 if (in.u—tag)
186 . perfaction_struct = &s_d_prog_struct, 208 visit (&in_u— u.x, TYPE_INT, &out_u— u.x);
187 . perfaction_ptr = &deserial_ptr, 209 else
188 .perfaction_ptr_-mapped = 210 visit (&in_u— u.c, TYPE_CHAR, &out_.u— u.c);
189 &deserial_ptr_mapped 211 return 0;
19 }; 212
191 213 /+ Service—specific +/
192 int do_deserialize(int argc, char «=argv){ 214 } else if (current_service == DESERIALIZE){
193 if ((char)argv[1][0] == 'D’){ 215 /+ Program—specific +/
194 current_service = DESERIALIZE; 216 if (t ==TYPE_..) {..}
195 ser = fopen(’ser.txt”, "rb”); 217 /+ Program—agnostic +/
196 init (&deser_prog_funs, 0); 218 else return deserial_struct (in, t,out);
197 219} else if (current_service == SERIALIZE) {
98} 220
199 return O; 221 return serial_struct (in, type, out);
200 } 22}

223 return 1;

(a) Custom deserialization initialization 224 }
code
(b) Custom (de)serialization struct callback

Figure 10. Customizing traversal in perfaction functions.

Figure 10 provides a modified example of deserialization customized to handle our example
tagged union. On line 180, int current_service keeps track of the current service, either
SERIALIZE (1) or DESERIALIZE (0); we define this flag because both services will share code
(though we focus on the code for deserialization, since serialization is similar). On line 184,
struct traversal deser_prog_funs sets up the callback functions for the new set of program-
specific deserialization functions. For perfaction_struct we specify a program-specific function,
s_d_prog_struct (defined on the right side of the figure), while for the rest we use the standard
functions from Figure 3b. The function do_deserialize (line 192) is similar to the previous
version (Figure 4, line 95), with the addition of setting current_service on line 194 and passing
deser_prog_funs to init on line 196. The checkpoint function (not shown) is similar to the version
on line 106, with the addition of setting current_service = SERIALIZE and passing ser_prog_funs
to init (which are initialized analogously).

The right side of Figure 10 shows the program-specific implementation of s_d_prog_struct, which
acts as a wrapper around serial_struct and deserial_struct . The first part of the function is program-
specific, but service-agnostic: If s_d_prog_struct is called on struct tagged_union, then we visit the
tag on line 206, and then switch on the tag and call visit on the appropriate sub-field, returning 0
on line 211 to indicate the default traversal (visit all fields) should not happen. Otherwise, for any
other struct type, we check which service we are running and perform either a customized action
or the default service action. For example, on line 214, if current_service is DESERIALIZE, we first
perform service-specific, program-specific actions, e.g., we check for a particular type (line 216)
to optimize serialization for it (not shown). Otherwise, on line 218 we call the default action,
deserial_struct, which is a wrapper for the reusable service-specific code from Figure 3b, line 44.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOLI: 10.1002/spe

C-STRIDER 15

Similar to deserialization, the code for serialization (or any other service) performs service-specific
checks, and then the default action.

Section 6.1 includes more details and examples of customizing the traversal for service specific
customization.

5. LIMITATIONS

While C-strider is general and flexible, it does have some limitations, which we discuss here.

A general problem is that by being a generic framework, C-strider’s performance might
suffer compared to a purpose-built service for a particular application. For example, C-strider’s
serialization/deserialization service will, by default, serialize an array by serializing each of its
elements individually. But if those elements contain no pointers, then it would be faster to simply
write the entire array directly (similarly to how C-strider serializes strings). C-strider also uses
generated type representations which might not otherwise be needed for a purpose-built service.
That said, C-strider does allow programmers can customize a service to their program, to improve
performance.

C-strider is intended traverse the heap, but it may come across pointers that refer to other parts
of memory, such as stack-allocated variables. C-strider does not reliably provide information to
a service developer about whether a pointer is to the heap or not, but in many cases this can be
determined simply by looking at the pointer’s address; e.g., on Linux, the heap is in “low” memory
and the stack is in “high” memory. If necessary, the programmer could write a perfaction_ rule based
on the memory address of the item being traversed, instructing C-strider to perform some custom
action (such as printing an alert) if the traversed location is an unexpected memory location.

In principle, C-strider could be used to produce a type-aware garbage collector for C programs.
Doing so would be challenging in practice, however. For one thing, C-strider would need assistance
in finding all of the roots of the heap, which includes pointers on the stack, thread-local storage,
etc. At the moment, this would require the programmer to explicitly register and deregister these
roots (using register_root and deregister_root) when they come into and go out of scope. There is
also an issue with roots that are static variables, discussed below, and with any roots that might be
stored by external libraries. Some of these problems could be overcome through a source-to-source
transformation that registers and deregisters roots automatically, similar to the one proposed for
Kitsune [4].

Another limitation of C-strider is that it cannot properly traverse variables declared as bit fields,
because C does not allow taking the address of bit fields. For example, C-strider does not generate
traversal code for a structure with a element field of unsigned int valid : 1; or else the generated
code visit (&in— valid ..., would not compile. In our experiments, we modified the program code
to not have bit fields.

C-strider generates the visit_all function by analyzing all of the source files in a program, and
generating a single function that registers its global roots. This function will not have access to
static variables in other files. The programmer either will need to make variables non-static, or
only initiate traversals (using visit) on variables that are in-scope.

6. APPLICATIONS AND EXPERIMENTS

We used C-strider to develop four services: serialization; state transformation for dynamic software
updating; heap profiling; and heap assertion checking. We implemented each service for a subset of
three programs, listed on the left of Table I along with their version numbers and sizes. Memcached
is a widely used, high-performance data caching system employed by sites such as Flickr and
YouTube. Redis is a key-value database used by several high-traffic services, including Instagram
and stackoverflow. Snort is a network intrusion detection system claiming millions of downloads
and nearly 400,000 registered users.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOLI: 10.1002/spe

16 K. SAUR ET. AL

Traversal [DSU s/d prof asrt

Prog. LOC|T_* Cust.| 24) (78) (65) (0)

memcd 1.2.3 ~4K| 6 o] 17 44 9 20

redis 2.0.2 ~13K| 45 26 19 46 11 36

snort 2.9.2 ~215K| 143 21| n/a n/a 4 67
Table I. Programmer Effort (measured in LOC)

This section describes the implementation of our services, characterizes the programmer effort
required to write them, and provides some performance measurements. Measurements were
conducted on a 32-bit, Intel Core i5-3320M at 2.60GHz, with 4 cores and 7.5GB mem, running
Ubuntu 12.04. Medians were taken over 11 trials. Since C-strider adds no overhead to normal
program execution (e.g., because it does not compile the program any differently), we consider
the time from when the traversal-based service is requested until it completes and normal execution
resumes.

6.1. Programmer effort

Table I tabulates three kinds activities involved in using C-strider: writing service code, customizing
a particular program’s traversal, and customizing the traversal in a service-specific manner. All three
cases involve relatively little code, much of which is a one-time effort that can be shared across
different services and/or different programs.

Writing a service. Writing a C-strider service takes relatively little effort, in terms of lines of
code. The parenthesized number at the top of the last four columns of Table I count the lines of
service-specific (but program-independent) code, tabulated by service (dynamic software updating,
serialization, profiling, and heap assertions). Details of the implementation of each service is given
in the following subsections.

Customizing a program’s traversal. While some programs can use a service out of the box,
nontrivial programs will require some customization. The first step is customizing the traversal
for that program, in a service-independent manner, as described in Section 4. The third column of
Table I counts the type annotations we added, and the fourth column counts the lines of program-
specific perfaction_ code we wrote. Nearly all of code we wrote was for handling unions or
union-like data structures. For example, of the 26 LOC for the custom traversal for redis, 17 LOC
customizes the traversal of its main database item structure which contains a flag that determines
the type of a void « field in the structure. The other 9 LOC handles a structure containing a mask
that determines whether other fields in the structure are valid.

Customizing the services. The lower right portion of the table counts the lines of code that are
program- and service-specific. For example, we wrote 17 lines of code specific to memcached for
dynamic software updating. We write “n/a” where we did not implement a service for that program.

We implemented the program- and service-specific code using the pattern shown in Figure 11,
which excerpts part of the perfaction_struct function for memcached. This code switches based on
the current service (lines 226 and 237). For each service, it then either performs type-specific actions
(lines 227 and 238) or calls the service-specific action (lines 235 and 242). The current_service flag
is set through the entry point to the service, e.g., the call to do_serialize in Figure 4 sets the service
to deserialization, and the call to checkpoint sets the service to serialization (both calls initiate a full
traversal after setting the flag).

6.2. Heap serialization
We now turn to the different services we implemented, starting with heap serialization and
deserialization suitable for implementing checkpointing. The implementation of this service was

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOLI: 10.1002/spe

C-STRIDER 17

225 int perfaction_struct (void «in, typ t, void =out){
226 if (current_service == DYNUPDATE){

227 if (t == TYPE_STRUCT _stats){

228 if (lookup_addr(out) |= NULL){

229 int in_sz = get_size(t);

230 int out_sz = get_out_size(t);

231 assert(in_sz == out_sz);

232 memcpy(out, in, in_sz);

233

234 return 0;

235 } else return update_struct(in, t, out);

236 }
237 if (current_service == SERIALIZE){

238 if (t == TYPE_item){

239 struct _stritem_cpy = it =in;

240 int len_total = ITEM_ntotal(it);

241 // write len_total and other struct fields to disk
242 } else return serial_struct (in, t, out);

243 }}

Figure 11. perfaction code for memcached.

presented in Section 2 (Figures 3a and 3b). In addition to those 69 lines of code, we have an
additional 16 lines of code that deal with file manipulation (opening, closing, and some wrapper
functions around fread and fwrite for simplicity). We must use a single-threaded traversal for this
application to ensure data is written to the serialization file in a deterministic order.

While implementing serialization for memcached, we developed one interesting performance
optimization, shown in Figure 11. Here on line 240 we use a macro from memcached to get the
size of a flexible array member (void = end[]) contained in struct item; the length of this member
is the sum of several of the item’s fields. By tailoring the traversal here, we can write the entire
item to disk at once rather than traversing each byte of the flexible array separately. We also wrote
a similar function for deserialization. In total, we wrote 44 additional lines of perfaction_+ code to
optimize the traversal of memcached’s key-value database structures, as shown in the sixth column
of Table I. We performed very similar changes to optimize the redis object structure for serialization,
totaling 46 additional lines.

Time required for serialization. We measured the time it takes to serialize and deserialize the
key/value database items of redis and memcached. (We did not serialize the rest of the program,
such as statistics or connected user information, as this information would be stale between
program restarts.) Figure 12 shows how performance varies with the size of the heap, in terms
of number of key-value pairs. The keys and values are approximately 10B in length each. (We say
“approximately” because they consist of a string appended with an incrementing integer.) The parts
of the heap that we traverse for serializing 30K key-value pairs contains 5,592KB of allocated data
structures in redis and 1,477KB for memcached. We see that serialization and deserialization take
nearly the same amount of time for a given program. Overall, memcached traversal is faster; the
reason is the performance optimization mentioned above, which lets C-strider write the key and
value to disk as a single block. In contrast, redis stores its key and value in separate structures that
must be traversed separately.

Redis itself provides a serialization tool, allowing the user to load/store entries from/to a file. The
Redis serialization process uses a custom iterator to skip to only populated elements of the array,
serializing 20K (~10B-key,~10B-value) pairs to disk in ~13ms. This is in contrast with C-strider,
which must visit every entry of the database array (2'° slots for 20K database entries) and maintain
the mapping table, taking ~123 ms to serialize the same 20K entries. We suspect we could customize
our traversal to apply similar optimizations but have not investigated further.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOLI: 10.1002/spe

18 K. SAUR ET. AL

300

T T
redis ser —@—
redis deser —&—
250 - memcd ser —m—

memcd deser —&—

200

150

100

(de)serialization time (ms)

50

0 5,000 10,000 15,000 20,000 25,000 30,000
key-value pairs

Figure 12. Serialization times (color plot).

6.3. State transformation

C-strider grew out of our experience with Kitsune [4], a source-to-source compiler and run-time
library that lets a running C program be updated with code fixes and feature additions without
shutting it down. Such dynamic software updating (DSU) services are implemented by loading the
new code (compiled to a shared object) into the C program, and then transforming the existing state
(i.e., heap memory) to meet the expectations of the new code. For example, in the old version
of the program a struct foo might have two fields, while in the new version it has three. The
state transformation code must find all pointers to struct foo objects in the program, allocate new
memory for those objects, initialize retained fields to the existing values and the new field to a new
value, and then redirect the pointer to the new object after freeing the old one.

State transformation in C-strider. Kitsune state transformation can be implemented as a C-
strider transformation service in 24 LOC. This service traverses and modifies the program heap
(thus using both the in and out parameters of the perfaction_ functions with the old version of the
program as the in set of roots and the new version of the program as the out set of roots). Additional
code (outside of C-strider) was required to implement other elements of DSU, e.g., for loading in
the new code and managing updating timing. We made one generalization to the C-strider API to
support updating: we defined two variants of lookup_addr and lookup_key (cf. Figure 5), one for the
old version’s symbol table, and one for the new version. We also needed to track the size information
for the new type’s size, so we added a function get_out_size to get the corresponding size of the new
version of a type for the DSU case. (Notice this is a DSU-specific function because it needs to
understand types from a different program version.)
The DSU perfaction_ functions do one of several things:

* When reaching a location in the new program that must be initialized from the old program
(such as a global variable in the new program’s data segment), the code simply memcpys the
appropriate bytes over.

* When first reaching a pointer to a block of a type that has changed size, the code allocates
a new block to hold the new, differently sized data, and adds a mapping from the old block
to the new block to C-strider’s hash map of visited locations. The program-specific action is
then called to initialize the new block appropriately.

* When re-visiting a pointer to a malloc’d block for a type that has changed size, the code looks
up the corresponding new block address and overwrites the old pointer with it (similarly to
Figure 3b, line 58).

* When visiting a pointer corresponding to a known symbol, the code updates it with a pointer
to the matching symbol from the new program version (similarly to Figure 3b, line 53).

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOLI: 10.1002/spe

C-STRIDER 19

450 T T
redis Kitsune —w»—

400 - redis 1 Thread —@—

350 L redis 4 Thread —4&—
- memcd 1 Thread ——
g 300 |- memcd 4 Thread —&—
g 250 - B
£ e
@ 200 - ,
3

150 g
% .‘ A A

100 |- S D e

50 [ke

0 20,000 40,000 60,000 80,000 100,000
key-value pairs

Figure 13. DSU state transformation times (color plot).

The program-specific actions perform the actual state changes. Referring back to our example of
struct foo at the top of this section, we would customize perfaction_struct to look at type t, and if
itis TYPE_STRUCT _foo we allocate new memory, initialize it with the retained values and the new
one, and then write the result to =out.

For the programs we considered, the data representations did not change between versions, so
the only program-specific DSU code we wrote simply optimized the traversal. For example, for
memcached, Figure 11 (line 227) shows how we cut off the traversal of struct stats since it contains
only primitives that need not be traversed individually (when it is stored in a global variable, it must
still be copied to the new code’s address space).

As mentioned briefly in Section 2.5, C-strider allows local variables to be added as roots of the
traversal. We used this feature to support updates to memcached—in particular, we inserted code to
register local variables of the main function. These variables store information that the user supplies
as command line options. Registering these local variables ensures that the command line option
state is propagated to the next version when we call visit_all at the end of the main function. In
total, we registered 7 local variables for memcached.

Time required for a dynamic update. We measured the time it takes to deploy a dynamic update
with single-threaded and multi-threaded traversal (4 threads). We also compare against the time for
the same update with Kitsune.

Figure 13 shows how update times vary with heap size measured in terms of (~10B-key,~10B-
value) pairs in the database for both redis (version 2.0.1 to 2.0.2) and also for memcached (version
1.2.2 to 1.2.3), using either one or four threads. For redis we see that the benefit of parallelism
increases with heap size, whereas with memcached performance is flat. Investigating further, we
found that memcached has a very limited traversal because the majority of its heap can be left
unmodified and thus not traversed at all.

Updating redis with 4 threads took an average of 68% of the time taken with a single thread,
with the speedup improving as the number of key-value pairs increases. For redis we do not achieve
perfect speedup as the majority of redis’ state is in linked lists, effectively serializing a large amount
of the traversal.

C-strider’s implementation of dynamic updating performs better than Kitsune on redis. Kitsune’s
traversal is more heavyweight, allocating several data structures with type information for each item
traversed, and several additional data structures for each instance of generic types. Redis makes
heavy use of generics, which results in the allocation of a total of 17.16MB worth of data structures
when updating redis with 100,000 key-value pairs with Kitsune. Rather than create and allocate
generic type information for each generic instance like Kitsune, C-strider stores type information
and reuses it for each entry by looking it up in the type table, so it does not incur additional overhead.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOLI: 10.1002/spe

20 K. SAUR ET. AL

Total calls| Trav. siqr | Uniq| Alloc’ed

Program to perf (ms) (ms) | types (KB)
memcd 1.2.3% 81,844 49.36 (7.14) 65 360
redis 2.0.2* 494389 | 203.21 (16.71) 92 2,189

snort 2.9.27 10,299,744 |4412.51 (194.71) | 1,019| 138,417
*For 4,000 entries tFor traffic at 30 pkts/s
Table II. C-strider Profiling Heap Data

Memcached updated with a parallel traversal is slower than when using a single-threaded one,
running at an average of 2.3ms slower than the original time across all trials, due to the overhead of
using multiple threads. However, the update time for memcached is quite small to begin with.

6.4. Heap profiling

It is often useful to profile a program’s behavior when optimizing its performance. With C-strider,
we implemented a type-aware heap profiler that is able to give accurate counts (numbers, and total
bytes) of objects present in the heap. This information can be useful for, say, finding the leading
sources of bloat. The implementation of our profiler is straightforward: the perfaction_ code simply
keeps a hash table that maps the type t of a visited item to a pair tracking the total count and size
in bytes. We are aware of only one prior C-heap profiler that provides such fine-grained per-type
information [17].

We used our profiler to improve dynamic update times (Figure 13). The profiler showed what
structs had the most instances, which we then manually inspected. If the high-count structs did
not have any fields that needed to be updated or traversed (such as a structure with only primitive
values), we then wrote perfaction rules directing the traversal for the DSU service to return 0 when
we reached them. For example, the high counts of uint64_t directed us to write a rule for struct stats
in Figure 11, line 227.

Time required for profiling. Generating a full profile requires visiting every object in the heap,
whereas for other services we can sometimes halt traversal early. Table II shows a summary of
the results of profiling. The first column shows the program name and a footnote explaining the
amount of state present at the time of traversal. The second column shows the total number of calls
to perfaction_ptr, perfaction_struct, and perfaction_prim. The third column shows the amount of
time it took to profile the heap using 4 threads, and the fourth column shows the semi-interquartile
range (SIQR) for the measured times. The fifth column shows the number of unique types that were
discovered in the traversal, and the final time is the sum in KB of all unique allocated structures
traversed. The time for traversing all of a memcached heap with 4,000 key-value pairs is only slightly
slower than serializing a memcached heap with 4,000 key-value pairs. The time for traversing all of
the redis heap for 4,000 key-value pairs is significantly slower than serializing the redis heap with
the same number of entries because we did not employ any optimizations for the key-value items
and traversed all fields individually. Snort is by far the largest heap to traverse with 10,299,744 calls
to the perfaction_ functions and 138,417KB of allocated structures. While Snort has a high traversal
time overall, the ratio of traversal time to calls to perfaction_» is similar for all three applications:
0.43 ps/call for Snort, 0.41us/call for redis, and 0.60us/call for memcached, which is higher because
the smaller heap does not amortize the startup and teardown costs.

6.5. Heap assertion checking

Finally, we also used C-strider to implement a simple heap assertion checking system, inspired by
Aftandilian and Guyer’s GC assertions [6], which employ the Java garbage collector as a traversal
mechanism. Heap assertions are tightly tied to particular data structures, and with C-strider we can
write an assertion specific to each type. For example, we could assert that a doubly linked list is
well-formed by adding a check during traversal like:

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe

C-STRIDER 21

if (type == TYPE linked_list_PTR)
assert(&in— next— prev == &in);

This application has no service-specific code.

Time required for heap assertions. The amount of time required for heap assertions varies
greatly on the size of the portion of the heap being traversed. For example, in memcached, the
primary hash table contains a series of doubly linked lists. Asserting the property above for these
lists required essentially the same time as for serialization (Figure 12) as the traversal covers the
same portion of the heap. For redis, we created a set of assertions checking that timestamps were
not in the future, file descriptors were valid (using fcntl), database item enum fields were valid, and
that linked list pointers were as expected. We traversed the entire redis heap, and the traversal times
were similar to the update time shown in Figure 13.

For Snort, we implemented a checker that asserts that installed function pointers are only drawn
from a whitelist, and have not been hijacked to perform malicious functionality [5]. Additionally,
we asserted that structures in the custom memory pool had valid pointers, that all of the rule list
nodes were set to the appropriate mode, and that the rule lists were correctly formed. In total, we
asserted the correctness of 1,749 function pointers and 446 other heap objects in 279.98m:s.

7. RELATED WORK

There are several threads of related work.

Kitsune. The most closely related work is Kitsune [4], a dynamic software updating (DSU) system
for C that directly inspired C-strider. There are several major advances that C-strider makes over
Kitsune. First, C-strider is much more general than Kitsune, as it can implement a variety of services
beyond updating. Second, in addition to type annotations, Kitsune uses a domain-specific language,
Xfgen, to customize the traversal, rather than customization via perfaction functions in C-strider. The
reason for this difference is that Kitsune does not have a run-time representation of types. We find
C-strider’s approach much simpler and adaptable: xfgen is both over-specific to DSU and hard to
extend to new applications. Third, C-strider’s use of run-time types improves performance, because
arrays and generics can be implemented by simply making a new type (with mktyp_) and using the
standard visit function. In contrast, Kitsune uses a very complex closure system to traverse arrays
and generics, and the extra levels of indirection cause the slowdown we saw in Figure 13. Finally,
C-strider supports parallel traversal, while Kitsune is single-threaded.

Type-directed programming and annotations. In this paper, we used annotations to convey the
actual type of heap objects to make type-safe traversal possible. These type annotations are inspired
by Deputy [18, 13] and Cyclone [19]. Cyclone is a type-safe variant of C that also uses programmer-
supplied annotations (in addition to an advanced type system, a flow analysis, and run-time checks).
Deputy uses dependent type annotations, e.g., to specify the tag field for a union or to identify
existing pointer bounds information.

Hinze and Loh [20] compare various approaches to datatype-generic programming and generate
code based on type definitions. C-strider also generates code over all of the datatypes in the C
program’s heap, but the exact code generated differs depending which types the program defines.

Garbage collection. Conservative garbage collectors [12] also traverse the entire heap, treating
everything that looks like a pointer as a pointer. In contrast, C-strider’s heap traversals must be
exact rather than conservative. For example, if we “conservatively” treat an int as a function pointer
that happens to have the same value, we would serialize and deserialize it incorrectly (because the
function pointer could be at a different address when deserialized in another process).

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOLI: 10.1002/spe

22 K. SAUR ET. AL

Applications. As mentioned in the introduction, there are several systems that implement the
particular traversals we explored, but in an ad hoc way.

Dynamic Software Updating. Dynamic software updating (DSU) systems must traverse the heap
to transfer state from one version of a program to another. We already compared to Kitsune
above. Many other DSU systems [21, 22] also implement state transformation. Similar to state
transformation, hot-swapping object instances [23] allows objects to be switched to another
implementation while the system is running, seamless to the user. C-strider could be extended to
perform a similar function during traversal.

Serialization. In this paper, we implemented serialization and deserialization for the heap. This
could be extended to a general checkpoint-and-restart system [1, 2, 24] by keeping some additional
information about registers, thread-local data, and the stack. One benefit of the C-strider approach,
compared to full program checkpoint-and-restart, is that C-strider serialization and deserialization
is under program control and can be used piecemeal on portions of the heap. For example, it could
be used to serialize a particular data structure in lieu of coming up with a new file format for that
data structure.

Heap Profiling. Heap profilers can be used to determine how much memory a program uses,
locate memory leaks, and find functions that do large amounts of allocation. Many popular heap
profilers focus on function allocation granularity [25, 26, 3] based on calls to malloc rather than
providing type-level granularity like Mihalicza et. al [17] and C-strider.

Heap assertions. Several researchers have developed systems for checking heap assertions. GC
assertions [6] piggyback on top of the Java garbage collector to check a wide range of heap
properties. DEAL [7] implements a language for heap assertions that can express combinations
of reachability conditions. QVM [8] also checks heap properties, but using heap probes to keep
overhead low by controlling the frequency of the checking and by sampling. PHALANX [9]
extends QVM by adding checks for reachability; PHALANX also parallelizes the queries. Dynamic
shape analysis [10] summarizes the pointer relationships of data structures and reports errors when
invariants are violated. These systems all run on top of a garbage collector and virtual machine. In
contrast, C-strider’s heap assertion checking works on C, which has no garbage collector or VM.

8. CONCLUSION

We have presented C-strider, which is, to our knowledge, the first general-purpose, type-aware heap
traversal framework for C. C-strider analyzes a target program and generates traversal code for it,
which can be run serially or in parallel. The traversal invokes programmer-supplied callbacks as it
visits different locations, passing along appropriate type information. These callbacks implement,
or customize, a service. We have experimented with several services, including (de)serialization,
dynamic software updating, heap profiling, and heap assertion checking. Where needed, the
programmer can augment the standard C types with additional information about array sizes
and container types using special annotations. For other cases, like tagged unions, programmers
can write arbitrary C code to customize the traversal itself. We found that writing services
and customizing traversals with C-strider generally requires a small amount of code, and that
performance is reasonable and scales appropriately with heap size.

REFERENCES

1. Roman E. A survey of checkpoint/restart implementations. Technical Report, Lawrence Berkeley National
Laboratory, Tech 2002.

2. Litzkow M, Tannenbaum T, Basney J, Livny M. Checkpoint and migration of UNIX processes in the Condor
distributed processing system. Technical Report UW-CS-TR-1346, University of Wisconsin - Madison Computer
Sciences Department April 1997.

3. Google Developer Tools. Heap profiler. http://google-perftools.googlecode.com/svn/trunk/doc/
heapprofile.html.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOLI: 10.1002/spe

http://google-perftools.googlecode.com/svn/trunk/doc/heapprofile.html
http://google-perftools.googlecode.com/svn/trunk/doc/heapprofile.html

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

C-STRIDER 23

. Hayden CM, Saur K, Smith EK, Hicks M, Foster JS. Kitsune: Efficient, general-purpose dynamic software

updating for c. ACM Trans. Program. Lang. Syst. Oct 2014; 36(4):13:1-13:38, doi:10.1145/2629460. URL http:
//doi.acm.org/10.1145/2629460.

. Petroni NL Jr, Hicks M. Automated detection of persistent kernel control-flow attacks. Proceedings of the 14th ACM

Conference on Computer and Communications Security, CCS 07, ACM: New York, NY, USA, 2007; 103-115,
doi:10.1145/1315245.1315260. URL http://doi.acm.org/10.1145/1315245.1315260.

. Aftandilian EE, Guyer SZ. Gc assertions: Using the garbage collector to check heap properties. Proceedings of the

2009 ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI *09, ACM: New
York, NY, USA, 2009; 235-244, doi:10.1145/1542476.1542503. URL http://doi.acm.org/10.1145/1542476.
1542503.

. Reichenbach C, Immerman N, Smaragdakis Y, Aftandilian EE, Guyer SZ. What can the gc compute efficiently?:

A language for heap assertions at gc time. Proceedings of the ACM International Conference on Object Oriented
Programming Systems Languages and Applications, OOPSLA *10, ACM: New York, NY, USA, 2010; 256-269,
doi:10.1145/1869459.1869482. URL http://doi.acm.org/10.1145/1869459.1869482.

. Arnold M, Vechev M, Yahav E. Qvm: An efficient runtime for detecting defects in deployed systems 2008; :143—

162d0i:10.1145/1449764.1449776. URL http://doi.acm.org/10.1145/1449764.1449776.

. Vechev M, Yahav E, Yorsh G. Phalanx: Parallel checking of expressive heap assertions. Proceedings of the 2010

International Symposium on Memory Management, ISMM ’10, ACM: New York, NY, USA, 2010; 41-50, doi:
10.1145/1806651.1806658. URL http://doi.acm.org/10.1145/1806651.1806658.

Jump M, McKinley KS. Dynamic shape analysis via degree metrics. Proceedings of the 2009 International
Symposium on Memory Management, ISMM 09, ACM: New York, NY, USA, 2009; 119-128, doi:10.1145/
1542431.1542449. URL http://doi.acm.org/10.1145/1542431.1542449.

Demsky B, Rinard M. Data structure repair using goal-directed reasoning. Proceedings of the 27th International
Conference on Software Engineering, ICSE 05, ACM: New York, NY, USA, 2005; 176-185, doi:10.1145/1062455.
1062499. URL http://doi.acm.org/10.1145/1062455.1062499.

Boehm HJ, Weiser M. Garbage collection in an uncooperative environment. Softw. Pract. Exper. Sep 1988;
18(9):807-820, doi:10.1002/spe.4380180902. URL http://dx.doi.org/10.1002/spe.4380180902.

Condit J, Harren M, Anderson Z, Gay D, Necula GC. Dependent types for low-level programming. Proceedings of
the 16th European Conference on Programming, ESOP’07, Springer-Verlag: Berlin, Heidelberg, 2007; 520-535.
URL http://dl.acm.org/citation.cfm?id=1762174.1762221.

Soules C, Appavoo J, Hui K, Silva DD, Ganger G, Krieger O, Stumm M, Wisniewski R, Auslander M, Ostrowski
M, et al.. System support for online reconfiguration. 2003.

Blumofe RD, Leiserson CE. Scheduling multithreaded computations by work stealing. J. ACM Sep 1999;
46(5):720-748, doi:10.1145/324133.324234. URL http://doi.acm.org/10.1145/324133.324234.

Necula GC, McPeak S, Rahul SP, Weimer W. Cil: Intermediate language and tools for analysis and transformation
of ¢ programs. Proceedings of the 11th International Conference on Compiler Construction, CC *02, Springer-
Verlag: London, UK, UK, 2002; 213-228.

Mihalicza J, Porkoldb Z, Gabor A. Type-preserving heap profiler for C++. Proceedings of the 2011 27th IEEE
International Conference on Software Maintenance, ICSM ’11, IEEE Computer Society: Washington, DC, USA,
2011; 457-466, doi:10.1109/ICSM.2011.6080813. URL http://dx.doi.org/10.1109/ICSM.2011.6080813.
Zhou F, Condit J, Anderson Z, Bagrak I, Ennals R, Harren M, Necula G, Brewer E. Safedrive: Safe and
recoverable extensions using language-based techniques. Proceedings of the 7th Symposium on Operating Systems
Design and Implementation, OSDI *06, USENIX Association: Berkeley, CA, USA, 2006; 45-60. URL http:
//dl.acm.org/citation.cfm?id=1298455.1298461.

Jim T, Morrisett JG, Grossman D, Hicks MW, Cheney J, Wang Y. Cyclone: A safe dialect of C 2002; :275-288URL
http://dl.acm.org/citation.cfm?id=647057.713871.

Hinze R, Loh A. Generic programming, now! Proceedings of the 2006 International Conference on Datatype-
generic Programming. SSDGP’06, Springer-Verlag: Berlin, Heidelberg, 2007; 150-208. URL http://dl.acm.
org/citation.cfm?id=1782894.1782897.

Neamtiu I, Hicks M, Stoyle G, Oriol M. Practical dynamic software updating for C. Proceedings of the 2006 ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI 06, ACM: New York, NY,
USA, 2006; 72-83, doi:10.1145/1133981.1133991. URL http://doi.acm.org/10.1145/1133981.1133991.
Makris K, Bazzi RA. Immediate multi-threaded dynamic software updates using stack reconstruction. Proceedings
of the 2009 Conference on USENIX Annual Technical Conference, USENIX’09, USENIX Association: Berkeley,
CA, USA, 2009; 31-31. URL http://dl.acm.org/citation.cfm?id=1855807.1855838.

Baumann A, Heiser G, Appavoo J, Da Silva D, Krieger O, Wisniewski RW, Kerr J. Providing dynamic update in
an operating system. Proceedings of the Annual Conference on USENIX Annual Technical Conference, ATEC
’05, USENIX Association: Berkeley, CA, USA, 2005; 32-32. URL http://dl.acm.org/citation.cfm?id=
1247360.1247392.

Ferrari A, Chapin SJ, Grimshaw A. Heterogeneous process state capture and recovery through process
introspection. Cluster Computing Apr 2000; 3(2):63-73, doi:10.1023/A:1019067801346. URL http://dx.doi.
org/10.1023/A:1019067801346.

massif. http://valgrind.org/info/tools.html.

Freyther H. memprof. http://wuw.secretlabs.de/projects/memprof/.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOLI: 10.1002/spe

http://doi.acm.org/10.1145/2629460
http://doi.acm.org/10.1145/2629460
http://doi.acm.org/10.1145/1315245.1315260
http://doi.acm.org/10.1145/1542476.1542503
http://doi.acm.org/10.1145/1542476.1542503
http://doi.acm.org/10.1145/1869459.1869482
http://doi.acm.org/10.1145/1449764.1449776
http://doi.acm.org/10.1145/1806651.1806658
http://doi.acm.org/10.1145/1542431.1542449
http://doi.acm.org/10.1145/1062455.1062499
http://dx.doi.org/10.1002/spe.4380180902
http://dl.acm.org/citation.cfm?id=1762174.1762221
http://doi.acm.org/10.1145/324133.324234
http://dx.doi.org/10.1109/ICSM.2011.6080813
http://dl.acm.org/citation.cfm?id=1298455.1298461
http://dl.acm.org/citation.cfm?id=1298455.1298461
http://dl.acm.org/citation.cfm?id=647057.713871
http://dl.acm.org/citation.cfm?id=1782894.1782897
http://dl.acm.org/citation.cfm?id=1782894.1782897
http://doi.acm.org/10.1145/1133981.1133991
http://dl.acm.org/citation.cfm?id=1855807.1855838
http://dl.acm.org/citation.cfm?id=1247360.1247392
http://dl.acm.org/citation.cfm?id=1247360.1247392
http://dx.doi.org/10.1023/A:1019067801346
http://dx.doi.org/10.1023/A:1019067801346
http://valgrind.org/info/tools.html
http://www.secretlabs.de/projects/memprof/

	1 Introduction
	2 Developing Services with C-strider
	2.1 C-strider API
	2.2 Implementing serialization
	2.3 Implementing deserialization
	2.4 Using serialization for checkpointing
	2.5 Full C-strider API

	3 Type-aware Traversal
	3.1 Main components of the traversal
	3.2 Generated code

	4 Customizing the Traversal
	4.1 Type annotations
	4.2 Customization in perfaction functions

	5 Limitations
	6 Applications and Experiments
	6.1 Programmer effort
	6.2 Heap serialization
	6.3 State transformation
	6.4 Heap profiling
	6.5 Heap assertion checking

	7 Related Work
	8 Conclusion

