
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

Evaluating Dynamic Software Update Safety
using Systematic Testing

Christopher M. Hayden, Edward K. Smith, Eric A. Hardisty,
Michael Hicks, and Jeffrey S. Foster

Abstract—Dynamic software updating (DSU) systems
patch programs on the fly without incurring downtime.
To avoid failures due to the updating process itself, many
DSU systems employ timing restrictions. However, timing
restrictions are theoretically imperfect, and their practical
effectiveness is an open question.

This paper presents the first significant empirical evalu-
ation of three popular timing restrictions: activeness safety
(AS), which prevents updates to active functions; con-
freeness safety (CFS), which only allows modifications to
active functions when doing so is provably type-safe; and
manual identification of the event-handling loops during
which an update may occur.

We evaluated these timing restrictions using a series
of DSU patches to three programs: OpenSSH, vsftpd, and
ngIRCd. We systematically applied updates at each distinct
update point reached during execution of a suite of system
tests for these programs to determine which updates pass
and which fail. We found that all three timing restrictions
prevented most failures, but only manual identification
allowed none. Further, although CFS and AS allowed many
more update points, manual identification still supported
updates with minimal delay. Finally, we found that manual
identification required the least developer effort. Overall,
we conclude that manual identification is most effective.

Index Terms—Dynamic software updating, DSU, hot-
swapping, software reliability, testing, program tracing

I. INTRODUCTION

Over the last 30+ years, researchers and practi-
tioners have been exploring means to dynamically
update the software of a running system with new
code and data. Dynamic updates make it possible
to fix bugs or to add features conveniently, with-
out incurring downtime. Support for dynamic soft-
ware updating (DSU) takes many forms. “Fix-and-
continue” development, in which one incrementally
develops and tests an application as it runs, has
long been common for Smalltalk and CLOS, and
Sun’s HotSwap VM [20], [9] and Microsoft’s .NET
Visual Studio for C# and C++ [11] both include

All authors are with the University of Maryland, College Park.

special support for it. The Erlang programming
language [3], designed by Ericsson for building
phone switches and other event-driven software,
provides DSU primitives that are regularly used to
hot-patch fielded systems. Research DSU systems
for other languages such as C, C++, and Java [28],
[7], [21], [32] have been able to dynamically update
legacy server systems with patches corresponding
to dozens of releases collected over several years.
DSU adoption is also beginning to impact the end-
user. Ksplice [4] can hot-patch the Linux kernel,
and, as lucidly suggested by Bracha [6], network
applications in the style of Google Documents nat-
urally benefit from DSU. Even iPhone and Android
applications support dynamic updates: When a user
navigates away from a running app its state may be
checkpointed; if the user navigates back to the app
after upgrading it, the new version may restore and
transform the checkpointed state so as to pick up
where the old version left off.

A. Controlling update timing effectively

While DSU can significantly improve application
availability, it is not without risk. Even if the new
version of an application runs correctly when started
from scratch, the application could behave incor-
rectly when patched on the fly, depending on when
the update takes effect. To see why, consider the
example in Figure 1, which shows two versions of
a simplified HTTP server. There are two semantics-
preserving changes in the new version. First, the
escape function used to take a single argument, but
now has been changed to take two arguments (and
the call to it from parse is updated accordingly).
Second, the global cnt, which counts the number
commands processed, is now updated in get file
prior to logging, rather than in parse.

Suppose the old program is running and a dy-
namic patch (a patch to be applied at runtime) based

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

main() { ...
while (1) { /∗∗2∗∗/

byte∗ packet = network read();
struct event ∗e = parse(packet); /∗∗3∗∗/
switch (e→ kind) {
case GET: get file(e→ gete.fname); break;
case PUT: put file(e→ pute.data); break;
}
}
struct event∗ parse(byte∗ pkt) { /∗∗1∗∗/

pkt = escape(pkt);
... cnt++;

}
void get file (char∗ name) {

log (..., cnt ,...); ...
}
char∗ escape(char∗ buf) { ... }

main() { ...
/∗

as before

∗/
}
struct event ∗parse(byte∗ pkt) {

pkt = escape(pkt,METHOD 1);
...

}
void get file (char∗ name) {

cnt++; log (..., cnt ,...); ...
}
char∗ escape(char∗ buf, int mode) { ... }

(a) Old version (b) New version
Fig. 1. Two versions of a program

on the new program is ready to take effect as control
enters parse, at the point marked /∗∗1∗∗/. In many
DSU systems, functions running at the time of an
update continue executing the old code, while sub-
sequent function calls invoke the new version [3],
[28], [7], [32], [19]. Thus, we would have a type
error: the old parse would call the new escape with
a single parameter, instead of two parameters as
expected, which could lead to surprising behavior.

To avoid these and other problems, most DSU
systems support mechanisms that constrain when
a dynamic patch may be applied. The goal of
this paper is to evaluate the effectiveness of the
most well-studied approaches to controlling update
timing. The question of effectiveness is gaining
in importance as DSU technology makes its way
inexorably toward the mainstream. We characterize
effectiveness as having three facets. The primary cri-
terion is safety: an effective approach to controlling
DSU timing should rule out incorrect behavior, such
as the type error described above. The flip side is
availability: timing cannot be restricted so much as
to preclude a dynamic update for an extended pe-
riod. Finally, there is usability: an effective approach
will not require a developer to perform significantly
more or difficult work to add DSU support to her
program.

For our evaluation, we considered three ap-
proaches from among the most common and/or
mature systems in the literature, and we evaluated
their effectiveness on real programs undergoing

dynamic updates that correspond to actual releases.
The approaches are:

Activeness safety (AS): In this approach, an
update may be performed only if those functions
changed by the update are not active, i.e., if changed
functions are not on the activation stack of a running
thread. AS prevents the update at location /∗∗1∗∗/
in our example by forbidding the update from
taking effect in parse since it has changed. AS is
probably the most popular approach, used by the
commercial DSU system Ksplice [4]; the research
systems Dynamic ML [33], K42 [21], OPUS [1],
and Jvolve [32]; and advocated by Bracha [6] for
web-based end-user apps.

Con-freeness safety (CFS): Stoyle et al. [31]
observed that AS may be overly restrictive, and
proposed a condition called con-freeness that allows
updates to active code if the old code that executes
after the update will never access data or call a
function whose type signature has changed. As such,
it would rule also out the problematic update point
/∗∗1∗∗/ in the example, since escape’s type signature
has changed and escape would be called after the
update takes place in parse. Unlike AS, however,
CFS would allow an update after the call to escape
since subsequent actions in parse do not involve
code or data whose type has changed, e.g., cnt is
still a variable of type int. In general, it has been
proved that AS and CFS both guarantee that no up-
dating execution will exhibit a type error [31]. CFS
is used by Ginseng, a research system developed by

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

the authors that has successfully supported dozens
of dynamic updates to realistic programs [28].

Manually identified update points: Several
DSU systems, including Erlang [3], UpStare [24],
POLUS [7], DLpop [19], DYMOS [22], and Eki-
den [18] impose no automatic timing restrictions.
Instead, these systems rely on the programmer to
identify legal update points, and thus put her firmly
in the driver’s seat to balance safety and availability.
A common approach, e.g., advocated by Armstrong
for Erlang [3], which we call manual identification,
is to permit updates only at the start or end of
event processing loops (e.g., at position /∗∗2∗∗/ in
the example). In fact, doing so would help avoid a
problem that both AS and CFS allow. Consider if
the example update were performed at /∗∗3∗∗/, which
is permitted by AS and CFS because main is the
only active function, and is unchanged. By this point
the program has called the old version of parse,
which runs the statement cnt++. After the update,
the program will call the new version of get file,
which contains the statement cnt++ where the old
version did not. Thus the execution has increased
cnt one too many times, resulting in the call to log
being incorrect. The manually chosen point at /∗∗2∗∗/
avoids this problem by ensuring calls to functions
will always go to the same code version when
processing a single command. Identification of the
event-processing loops for adding update points is
a straightforward, almost mechanical process. The
developer just finds the event loops that correspond
to places where updates should be supported and
adds an update point.

B. Empirical assessment of timing effectiveness

Our evaluation of timing controls is empirical:
we studied how these approaches would fare for
real systems with real updates applied to them,
derived from the systems’ actual evolution. Our re-
sults are important because they provide quantitative
evidence for assessing arguments that, to this point,
have been essentially qualitative.

To perform our study, we considered dynamic
updates to three mature, open-source applications:
vsftpd, a popular FTP server, OpenSSH daemon,
a secure shell server, and ngIRCd, an IRC server.
The first two applications have already been studied
by several DSU systems [28], [7], [24], while the
third is new to this study. Each of these programs

is single-threaded, although both OpenSSH and
vsftpd use multiple processes. For each application
we selected a streak of releases, and for each release
(after the first) we constructed a dynamic patch
using Ginseng, adjusting it as needed for the timing
approach under study. For OpenSSH we chose
eleven straight releases over a three year period;
for vsftpd we chose nine releases over three years;
and for ngIRCd we chose eight releases over eight
months. Though we use Ginseng for this study, we
argue (in Section II-D) that our results generalize to
many other DSU systems, since most adopt similar
models and mechanisms.

For each release and patch we executed a suite of
system tests (either provided with the application or
written by us) and observed whether a test passed
when a dynamic update was applied during the
test’s execution. Each system test induces many
update tests, with one update test for each distinct
moment during the test’s execution at which the
update could be applied. By exhaustively running
all update tests we can directly assess effectiveness.
In particular, we can assess whether an approach to
controlling timing would permit a particular update
test (availability), and if so, whether that test passes
(safety). We can also look holistically at the allowed
update points to assess whether they occur often
enough at execution time to provide availability. We
observe that even a few syntactic update points may
be sufficient in practice as long as they are executed
suitably often.

Running a test for every possible update point
would be prohibitively expensive. Fortunately, many
update tests are provably redundant: Suppose a
dynamic patch does not change the code of function
f. Then a test with an update point just before
a call to f will behave identically to the same
test with an update point just after that call to f.
Therefore, we only need to run one of these two
possible update tests, rather than both possible tests.
In the implementation of our systematic testing
framework, which extends Ginseng, we built on this
intuition to produce a test minimization algorithm
that dramatically reduces the number of tests we
have to run while retaining the same coverage [15].
For our experiments in particular, we found that
95% of the update tests from OpenSSH, 96%
of points from vsftpd, and 87% of points from
ngIRCd could be eliminated.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

C. Results

The results of our study convince us that the
approach of manual update point identification is
the most effective. In particular, this approach elimi-
nates all failures, provides sufficient availability, and
is relatively easy to use. The two automatic mech-
anisms we considered do not preclude all failures
and required substantial manual effort.

Assessing usability, all three methods required
some manual effort to extract certain blocks of
code into separate functions. In particular, each
server program contained a potentially infinite main
loop that processed client requests. Since updates
to functions do not take effect until the next time
the function is called, any updates to the loop-
containing function would never be realized. To
remedy this problem, we extract the body of the
loop into a separate function, so that changes to the
loop itself effectively take effect on the next loop
iteration [28].

AS required several additional extractions to be
effective. In particular, because it precludes updates
to active functions, dynamic patches that contain
an update to main (or any other function on the
stack when the infinite loop is executing) will never
be applied. As it turns out, without further change
to the program, every update to every program we
considered would be disallowed by AS. To avoid
this problem, we extracted the bodies of functions
up to the one containing the main loop so that the
extracted parts are not on-stack at update time. This
transformation does not affect semantics because
extracted code portions are never executed again by
the server.

CFS required additional work of a different sort.
Because it relies on a static analysis, conservatism
in the analysis may preclude updates to certain data
structures or prohibit updates at certain program
points even when they are safe. It sometimes took
considerable effort to identify the root of such
problems and work around them by refactoring the
code in various ways.

The manual approach required the least addi-
tional work. Following the direction of Armstrong
mentioned above [3], we simply prescribed that an
update may take place at the beginning of each
event processing loop (prior to calling the extracted
body). Indeed, we needed to identify such positions
to extract loop bodies, so adding the manual update

point required no additional work.
As for safety, we find that both AS and CFS are

highly effective at avoiding failures, though AS does
this better than CFS, and neither is perfect. With no
safety checking, many updates fail: in total, 1.87M
of the total 14.2M tested executions failed (13%).
Using either AS or CFS dramatically reduces the
number of failures to about 495 for AS (0.003%)
and 49K for CFS (.34%). For the manual approach,
we observed no failures whatsoever.

As for availability, we found that both AS and
CFS are fairly permissive, though CFS is more
permissive than AS. In total, CFS permitted 68% of
the passing update points, while AS permitted 59%
of them, a difference of about 2.1M update tests;
roughly 55% of passing update points are allowed
by both. Thus, AS’s lower failure rates come at
the cost of higher restrictiveness, compared to CFS.
The manual approach admitted the least number of
update points: about 17.7K, or 0.14% of the passing
update points.

While the more allowed update points the better,
in general we only need updates to occur reasonably
often. We measured the potential delay to updating
that would be introduced by updating only at manual
points using our test suite and benchmark programs.
We found that while AS or CFS may allow an
update to occur more quickly than manual points
(since they permit more potential update points),
this delay is typically quite short, usually less than
1ms for our tests (although the delay can be longer
for certain requests, e.g., large file downloads). In
cases where a developer decides that manual update
points are reached too infrequently, she can allow
faster updates by adding a manual point to the
loops that cause the delay. We also categorized the
update points in each program by the program phase
they occur in—startup, connection loop, transition,
command loop, or shutdown—and found that a sig-
nificant number of the failures occur in the startup
and transition phases, providing further support that
update points in loops seem the most reliable.

In summary, this paper presents the first sub-
stantial study of several proposed DSU timing re-
strictions. While others have argued for [31], [28],
[26], [4], [33], [21], [1], [32], [6] and against [24],
[3], [7], [19], [22], [18] these approaches, these
arguments have previously been qualitative. This
paper is the first to empirically consider the safety,
availability, and usability of these approaches when

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

applied realistic applications. Our in-depth anal-
ysis of the data—including a characterization of
the failures allowed and disallowed by the checks
and where those failures tend to occur—provides a
valuable source of information for judging and mo-
tivating future developments and research in DSU
systems.

II. DYNAMIC SOFTWARE UPDATING
BACKGROUND

We used Ginseng for our empirical study, so this
section describes it in detail. We chose Ginseng
because it has proven to be quite effective; e.g.,
published work describes how Ginseng has been
used to update six open-source server programs,
where updates correspond to actual releases taken
from several years’ worth of development [28], [26],
upwards of 60 dynamic updates in all. Moreover,
Ginseng’s updating semantics are quite similar to
the semantics of many other DSU systems. As
such, we believe that results for Ginseng have broad
applicability.

The next three subsections describe how Gin-
seng works, first considering its basic mechanisms,
then discussing how it handles updates to active
code via extraction, and finally considering how it
implements timing controls. We close this section
by considering how results for Ginseng could be
interpreted with respect to other DSU systems.

A. Ginseng implementation basics
In Ginseng, an update’s effects are observed at

function calls—following the application of a patch,
subsequent function calls reach the function’s most
recent version. To implement this semantics, Gin-
seng compiles programs to use an extra level of
indirection. In particular, all direct function calls
are made indirect via an introduced global function
pointer. When the Ginseng run-time system loads a
dynamic patch—which among other things contains
new and changed function definitions—it redirects
these global pointers to the updated versions.

A dynamic patch also contains user-defined trans-
formation functions used to update affected data.
Global state is initialized or updated by a state
transformation function that is executed after the
new code is loaded and installed. For example, if
a simple event counter is replaced with a more
full-featured logging feature, the state transformer

will contain code to initialize the log. Type-level
conversions are effected by type transformation
functions. For example, if the old program con-
tained definition struct entry { int key; void ∗value } and
the new version modified this definition to be
struct entry { int key; int priority ; void ∗value }, the user
provides a function that can initialize a value of
the new version’s type given a value of the old
version’s type, e.g., by copying the values from
unchanged fields key and value, and initializing the
new field priority. The program is compiled so that
type transformers are invoked on demand: each
access to data is prefaced by a check of whether
the data is up-to-date, and if not, the representation
is converted. The Ginseng compiler inserts padding
in updateable values so that their representation
can grow over time. See Neamtiu et al. for more
details [28].

B. Updating active code in Ginseng

Functions that are active during an update will
complete execution at the same version at which
they were initially invoked. However, in some cases
we might like to update an active function so that
it transitions to its new version immediately. To
see why, consider the processing loop in main in
Figure 1. Suppose a subsequent version changes the
loop body, e.g., to add additional operations to the
switch statement. Once the patch is applied, these
changes will take effect the next time main is called.
But, because main will never be called again, the
effects of updates to code in this long-running loop
are delayed indefinitely.

To avoid this problem, Ginseng provides anno-
tations that can be used to refactor a long-running
function into several shorter-running ones. For ex-
ample, to ensure that an update during the event
processing loop will transition to the new version on
the next loop iteration, the developer can add an an-
notation to the program that causes the compiler to
extract the loop body into a separate function whose
arguments include all the local variables mentioned
in the loop body (passed by reference). Now that it
is in a separate function, each subsequent call to the
loop body will reach the new version. Likewise, any
code that follows the loop could be made into a new
function, allowing the new version to be reached
once the refactored loop exits. The developer may
similarly want to extract the “continuations” (i.e.,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

code that would be executed at the old version
upon return) of functions that could be on the stack
when a desirable update point (such as this loop) is
reached.

A drawback of using code extraction is that
developers must anticipate which code to extract
before deploying the program. In ours and others’
experience, it is sufficient to extract each long-
running event loop and the teardown code that
immediately follows [28], [26], [7].

C. Controlling timing in Ginseng
Ginseng supports all three timing control mech-

anisms described in the introduction: activeness,
con-freeness, and manual. In Ginseng, a program
calls the function DSU update() to ask the run-time
system whether a dynamic update is available. We
refer to such calls as update points. If an update is
available and is compatible with the safety check
in use (AS, CFS, or neither), it is applied at this
point; otherwise, it is delayed until the next update
point is reached. Thus, to implement the manual
approach for our evaluation we simply inserted calls
to DSU update() at the desired program points and
disabled additional safety checks.

To implement AS in Ginseng, the developer can
specify activeness as the additional safety check;
activeness is implemented by walking the stack to
find the current active functions and ensuring they
are not changed by the available update (note that
Ginseng only supports single-threaded programs).
To simulate asynchronous updates (i.e., those that
could take effect at any time), the Ginseng compiler
accepts an option that will insert update points au-
tomatically according to some policy, e.g., one prior
to each non-system function call in the program.

Ginseng implements CFS as a static analysis.
The Ginseng compiler analyzes the program source
code to determine, for each update point,1 those
definitions that could be used concretely beyond
that point (function calls, dereferences of global
variables, field accesses of structured types, etc.) by
the current function or any function that could be
on the stack. Then it stores the set of names of
those definitions in a data structure at that point.
At run-time when control reaches that point and
an update is available, the patch will be compared
against the set: if definitions changed by the update

1Update points could be inserted manually or automatically

appear in the set but have not changed their type
signature then the update is permitted, and otherwise
it is delayed. In effect, this check allows updates
to active functions, but only if Ginseng can prove
those functions will not subsequently call functions
or access any data whose type signatures have
changed.

D. Other DSU systems

Because we evaluate the effectiveness of various
timing mechanisms using Ginseng, an important
question is whether our results generalize. Here
we argue that they do, and explain exactly how
behavior similar to what we observe for Ginseng
would manifest in the other systems, based on how
they differ semantically from Ginseng.

It is easy to argue that our results generalize to
the approaches used by Ksplice [4], Jvolve [32],
K42 [21], DLpop [19], Dynamic ML [33] and
Bracha [6]. In terms of updating semantics, the
main difference between these systems and Ginseng
is that Ginseng applies type transformations lazily
rather than all at update-time, and so timing-related
errors could manifest in Ginseng that would not
manifest in the other systems. However, for our
experiments all type transformers are pure functions,
so the effects of type transformation would be the
same if they were applied at update-time.

POLUS [7] and Erlang [3] employ a slightly
different updating model than Ginseng: after an up-
date in these systems, the programmer can partially
control whether a function call should reach the
newest version or the contemporaneous one. If the
programmer were to specify that all calls are to the
most recent version, the results would be the same
as those for Ginseng given here. We note that the use
of versioned function calls can encode the manual
approach. For example, the programmer could avoid
the problems that occur due to updates at /∗∗1∗∗/ and
/∗∗3∗∗/ in Figure 1 by specifying all calls but those
to the extracted loop body to be contemporaneous
calls; this is essentially the approach recommended
by Erlang. Our results confirm the effectiveness of
this approach.

UpStare [24] is strictly more expressive than Gin-
seng in that it permits a dynamic patch to transform
the execution state (i.e., the PC and stack) of the
program. An UpStare patch developer provides a
mapping between PC locations in each changed

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

function’s old and new versions and writes a func-
tion to initialize the stack of the new version based
on the stack of the running version. At update time,
if a changed function is active at a PC specified
in the mapping, the transformation function is used
to initialize the stack, and then execution proceeds
at the new version’s corresponding PC. UpStare’s
execution state transformations are akin to code ex-
tractions for Ginseng and similar systems: they are
used to ensure that the correct new code is reached
following an update. Thus the failures due to timing
that we observe in our Ginseng-based experiments
would correspond to failures using UpStare assum-
ing the developer wrote the stack mapping in a
way that corresponded with our loop extraction.
Although UpStare supports changes that Ginseng
cannot (e.g., changing the ordering of functions on
the stack), the patches in our experiments did not re-
quire its extra expressiveness and so we believe that
UpStare mappings would aim to achieve the same
results for these programs as our code extractions.
As a result, developers using UpStare could use the
manual identification strategy we evaluate here by
limiting the mapped points to those at event loops.
Any additional points allowed by the developer’s
mappings may or may not correspond to the AS,
CFS, or unrestricted approaches that we evaluate,
depending on the developer’s choices. Many of the
failures we observed, particularly those allowed by
AS, could also occur under UpStare, and reflect the
hazards of constructing mappings for it.

UpStare also provides some support for AS-like
timing restrictions [23]. Patch developers can spec-
ify update constraints that preclude updates when
particular changed functions are active. The UpStare
manual indicates that these constraints are useful to
reduce the effort in mapping program states between
versions. We believe that our findings apply directly
to the use of these constraints.

III. TESTING DYNAMIC UPDATES

To evaluate the effectiveness of DSU timing
controls, we need to establish which program ex-
ecutions in which an update takes place can be
deemed correct, and which cause misbehavior. For
the purposes of our experiments, we do so using
testing. While testing is an incomplete measure of
correctness, tests typically cover the most important
program behaviors, and provide an easy-to-measure,

practical assessment of whether an updated execu-
tion is valid.

We begin by outlining the basic testing procedure.
Next we present the intuition behind our minimiza-
tion algorithm, which eliminates tests of update
timings whose outcome is provably equal to the
outcome of other tests. Finally, we present details
of our testing framework’s implementation. 2

A. Testing procedure
Our approach to update testing is as follows. Let

P0 and P1 be two program versions, and let π
be a patch that updates P0 to P1. To dynamically
test π, we must run P0, apply π at the allowable
update points, and then decide whether the ensuing
behavior is acceptable. We do this by deriving
update tests, one per allowable update point, from
selected tests t in the system test suites of P0 and
P1. Here, we use the term update point in a dynamic
sense: each time the same call to DSU update() is
reached during execution we consider it a separate
update point. Assuming we have a deterministic,
single-threaded program, the update points for an
execution can be numbered unambiguously. Thus,
we define tiπ to be the update test that executes
P0 on t and applies π at the ith update point; if
the test passes, then we deem π to be correct for
point i. Since t should terminate, there will be a
finite number of induced update tests tiπ for a fixed
π. To run update tests, we modify the Ginseng
runtime to delay patch application to the ith update
point reached. Our implementation handles some
forms of non-determinism and multi-process (but
not multi-threaded) programs, which we describe in
Section III-C.

We select the system tests t from which to derive
update tests from the test suites of the old and new
program version. Let Ti be a suite of system tests
for Pi, for i ∈ {0, 1}. We use all t ∈ (T0∩T1): since
they should pass for both P0 and P1, we expect all
tiπ for all i should pass no matter when the update
happens during the test execution.

On the other hand, we cannot generally use tests
t ∈ (T1−T0), which consider functionality relevant
only to the new version, or tests in t ∈ (T0 − T1),
which likely consider deprecated functionality. For
these tests, not all update points will necessarily

2This testing procedure was described in a workshop paper [15];
our presentation here is for completeness, and for archival purposes.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

make sense. For example, suppose P0 is an FTP
server, P1 adds support for a new command qux,
and t tests the proper functioning of qux, by logging
into the server and then performing the command.
For update tests tiπ where update point i occurs
prior to the login procedure finishing, then we can
imagine the test will pass. This is because the
login procedure has not changed between the two
versions and should work identically in both. On the
other hand, for update points j that occur after that
point, applying the update will be too late: the old
version, which does not support qux, will by that
point have rejected the command and terminated
the test. In general, tests in (T1 − T0) may have
some preamble during which a dynamic update is
legitimate. Likewise, tests in (T0 − T1) may have
some legitimate post-amble during which an update
could occur. Either way, we cannot identify this
preamble automatically, so for simplicity we simply
do not consider these tests. In future work, we plan
to explore more powerful ways of adapting existing
single-version tests to check DSU correctness.

B. Update test suite minimization

The procedure just described lets us systemati-
cally derive update tests from existing system tests.
Unfortunately, we have found this procedure vastly
multiplies the number of tests to run. For exam-
ple, our experiments with roughly 100 system tests
applied for 10 patches of OpenSSH yielded more
than 8 million update tests. We mitigate this increase
in test suite size by developing an algorithm that
eliminates all provably redundant tests, sometimes
yielding a dramatic reduction in test suite size.

To illustrate our algorithm, consider the follow-
ing code, assuming that f, g, and h call no other
functions:

1 void main() { DSU update();
2 f ();
3 DSU update();
4 g ();
5 DSU update();
6 h (); }

Suppose a dynamic patch π1 to this program
contains only a modification to function h. Then
whether the update is applied at line 1, 3, or 5, the
behavior of the program is the same: the calls to f
and g will be to the old version, which is the same as
the new version, and the call to h will be to the new

version. Thus, for patch π1, update points {1, 2, 3}
form an equivalence class, and we need only test
one of the three to cover the whole class.

However, suppose dynamic patch π2 modifies f,
g, and h. In this case, none of the update points are
equivalent. If we update at line 1, we will call the
new versions of all three functions. If we update at
line 3, we will call the old version of f and the new
versions of g and h. If the update happens at line 5,
we will call the old f and g and the new h. All of
these executions may produce reasonable behavior,
but we have to test them to find out.

We take the following approach to find equiv-
alence classes of update points with respect to a
given patch π . We instrument the program so
that when it runs it produces an update trace ν
of relevant events; among other things, the trace
contains functions called, global variables read or
written, and update points reached (but not taken).
We run the instrumented program as part of some
test t, but do not update it. The resulting trace νt
contains some number n of update-point events,
which in turn induce a set of update tests t1π . . . t

n
π.

Our goal is to determine which of these update tests
produce equivalent traces for a given patch π. By
equivalent, we mean that although they vary in the
update point taken, they read and write the same
values to and from the same variables, call the same
functions with the same parameters, etc.—in other
words, their behavior is identical except for update
timing. Then we can run a single representative
test from each equivalence class while retaining full
update coverage.

For each event in the trace, we determine whether
it conflicts with patch π. In particular, if the event
is a call, read, or write to F (where F is a function,
global variable, or a value of named type) then
the event conflicts with π if and only if F is
changed by the patch. If F is a function, any
change to its text constitutes a change to F . (Note
that a change to a function called by F does not
render F itself changed, by this definition). If F
is a global variable, then either a change to its
nominal type or a modification of its contents during
state transformation constitutes a change. Finally,
if F is a named type, then a modification of F ’s
definition (e.g., changing a struct’s set of fields or
their nominal types, or changing the nominal type
that underlies a typedef) constitutes a change. If
there is no conflict, then the update π could be

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

applied before or after the event and the semantics
of the overall program trace would be the same.
This makes intuitive sense: if we call a function G,
but the patch does not change G, then whether we
apply the update before or after calling G makes no
difference; we will execute the same code for G. 3

On the other hand, if we did update G, then applying
the update before the call will result in calling the
new G, whereas applying the update after the call
will result in calling the old G.

We compute the set S of update points to consider
as follows. We start with the empty set S and
analyze the trace. In addition, we maintain the index
i of the most recently reached update point. When
analyzing the trace, if we reach a conflicting event e
we add i to our set of update points to test, since the
semantics of e could change if the update happens
before it. On the other hand, if we reach another
update point i+1 without having found a conflicting
event for update point i, then we merely update the
index to i+1; thus we have determined that i need
not be tested. The reason should be clear: none of
the events between update points i and i+1 conflict
with the patch, so applying the update at i would
be equivalent to applying it at i+ 1.

Let us reconsider the example at the start of this
subsection. Running the program will produce the
following trace:

ν = update1; call(f); update2; call(g); update3; call(h)

Consider patch π1 in which only f is changed. Then
the outcome of our minimization algorithm will be
the set S = {1}: only the first update point needs to
be tested. On the other hand, patch π2 changed all
three functions, so all three calls conflict, and thus
each update point would be added to S, resulting in
S = {1, 2, 3}.

We have formalized this minimization algorithm
and proven it correct [15], [16]. In practice, the
reductions for the three benchmark programs we
assess in Section V were substantial: 95% of up-
date points from OpenSSH, 96% of points from
vsftpd, and 87% of points from ngIRCd could be
eliminated as redundant. The absolute reduction in
update tests was also significant: the initial number
of update tests was very large, with over 8M for

3Note that if G itself called some function that would be affected
by the update, then this event will also appear in the trace subsequent
to the call for G, and it would serve as the source of a conflict.

Program
Source

Instrumenting/
updating
compiler

Tracing/
updateable
executable

Test 1

Trace 1

Test n

Trace n

...

...

Update point
minimization

Update
set 1

Update
set n...

(a) Instrumentation and trace gathering

Tracing/
updateable
executable

Test i

Patch j

Update
point k

Pass/
fail

Trace and
update set i

(b) Running a test case
Fig. 2. DSU testing framework architecture

OpenSSH, 3.9M for vsftpd, and 2.2M for ngIRCd.
Running the reduced test suite was time consuming,
and would have been prohibitive without reduction.
For example, testing OpenSSH with the minimized
test suite still required approximately 600 CPU
hours to complete. Extensive experimental results
assessing the effectiveness of the technique for
our benchmark programs are given in a technical
report [16].

C. Implementation
We extended Ginseng to implement our testing

framework. Our extended implementation, called
DSUTest, works in two phases, illustrated in Fig-
ure 2(a) and (b), respectively. In the first phase, the
DSUTest compiler instruments the program to log
relevant events to a trace file, and then processes
each file to find the minimal set of update points to
test. In the second phase, the instrumented program

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

replays a given test once per update point identified
during the test’s minimization, and tabulates the
results.

The implementation was largely straightforward,
except for two wrinkles: handling programs that
fork child processes that themselves must be up-
dated, and coping with non-determinism that arises
during tracing.

Handling multiple processes: So far, we have
assumed we could identify an update point by
its position in the trace. However, this approach
does not accommodate server programs that fork
independent subprocesses that could themselves be
updated. Even when forked processes do not com-
municate with each other in an interesting way, their
logging output will be interleaved in the shared log
file, and the particular interleaving can vary from
run to run.

To compensate, we include the current process
number when logging events, and count update
points relative to a particular process. Since OS-
supplied process identifiers vary between runs, we
use our own process numbering scheme, being
careful to deterministically choose numbers that are
unique among related processes. We log the parent
and child at each fork, and when we minimize
a child process’s trace, we may equate some of
its initial update points with the parent’s update
point before the fork in the absence of intervening
conflicting events in the child.

Non-determinism: Our basic methodology pre-
sumes that tests are deterministic. However, most
programs, including our benchmark servers, exhibit
some non-determinism, and thus different runs of
the same test may produce slightly different traces.
We have encountered non-determinism arising from
three main causes. The first is I/O handling by the
OS. The main connection loops of our servers block
until they receive a command on a socket, carry out
the appropriate behavior, and then continue with the
loop. Sometimes the server can wake unpredictably
though no I/O is available. In this case, the server
“stutter steps” back to the top of the loop, but in
doing so may call functions or access data, affecting
the trace. Second, the exact timing of any signal
handlers can vary between runs. Thus, trace events
that occur within a signal handler could be spliced
into a trace at different positions in different runs.
Finally, some common functionality depends on
the environment, such as the current system time,

random numbers, and (for vsftpd) process IDs and
memory addresses used as hash keys.

To keep update tests consistent with the initial
trace, we check that each update test trace matches
the original trace up to the chosen update point,
and replay it if not. However, this approach fails to
converge in the presence of highly non-deterministic
events, e.g., the timing of signal handling and, in
some cases, the occurrence of loop stutter steps. To
compensate, we designate ignore regions of code in
which the test trace need not match the original and
within which updates are not tested. We still note
accesses to changed code and data within ignore
regions to ensure that update points separated by a
region are not erroneously equated.

For the programs in our experiments, we found
that it was usually straightforward to designate the
code to include in ignore regions. The process
entailed comparing several traces produced by ex-
ecutions of a system test. We found that the traces
would largely match, except in a few places, as
mentioned above. We would then look at the source
code that produced the non-determinism and decide
whether enclosing the code in an ignore region
might mask interesting update behavior. In some
cases we would add an ignore region; in others,
we elected to leave in the non-determinism and
rely on match-checking/replay to produce consis-
tent executions. In some cases, several rounds of
experimentation were required to get the ignore
regions right. To be sure that our experiments are
meaningful, we took pains to minimize the size and
use of these regions.

Note that we currently limit our focus to single-
threaded programs, making no attempt to account
for non-determinism that would arise from thread
scheduling. In future work, we may explore inte-
grating our framework with techniques for system-
atically testing under different thread schedules [25],
[29] to handle multi-threading.

IV. EXPERIMENTAL SETUP

Using our testing framework, we set out to em-
pirically evaluate the effectiveness of DSU timing
restrictions. Our chief goal in designing these ex-
periments was to extensively test a large variety of
patches and program functionality to ensure that our
results will apply generally. This section describes
our experimental setup: which applications we con-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

sidered, which test suites we used, and how we ran
the tests and gathered the data.

A. Test applications
We tested updates to three long-running server

applications: OpenSSH, a widely used SSH server;
vsftpd, a popular FTP server; and ngIRCd, an IRC
server. Figure 3 summarizes the versions of each
application that we consider. We largely re-use the
OpenSSH and vsftpd dynamic patches used by
Neamtiu et al. in their Ginseng work [28], with
some changes that we describe in the next section.
The OpenSSH releases range from Oct. 2002 to
Sept. 2005, and the vsftpd releases range from July
2004 to Feb. 2008. We also developed patches for
seven ngIRCd releases that range from Sept. 2002
to May 2003.

The patches to OpenSSH vary considerably in
scope, from bug-fix–only releases (3.6.1p2, 3.8.1p1,
4.0p1) to ones that add significant functionality.
Examples of added features include: new ciphers
(3.7.1p1, 4.2p1), limits to the number of failed
authentication attempts (3.9p1), and advance warn-
ing of account/password expiration (4.0p1). Many
bugs were fixed over this stretch including memory
leaks (3.7.1p1, 3.8p1) and buffer management errors
(3.7.1p1). The Ginseng OpenSSH patches include
state and type transformation code (see below) to
add data for new features to tables of configuration
options, ciphers, and command dispatch. Transfor-
mation code is also used to account for changes to
implementation details, e.g., copying over the values
of global integers that were moved into a global
struct (2.6.1p2).

The patches to vsftpd also introduce many new
features, which include: terminating a session after
too many failed logins (2.0.5), locking of files being
uploaded (2.0.4), and receiving connection options
(OPTS) prior to login (2.0.6). These patches also
contained a variety of bug-fixes, such as: corrected
handling of * (match anything) in commands (2.0.4)
and not sending duplicate responses to the “store
unique” (STOU) command (2.0.6). State transfor-
mation for the vsftpd Ginseng patches required
initializing fields added to the structure representing
a session with a connected user and, as with Open-
SSH, initialization of global tables of configuration
operations.

Likewise, the patches to ngIRCd added new
features, such as support for IRC commands, TIME

to display the server time (0.6.0) and HELP to
list available commands (0.7.0), as well as new
configuration options, e.g., a configurable limit to
the number of active connections (0.6.0). These
patches also fixed bugs, including buffer overflows
(0.5.2), format string errors (0.5.2), and attempts
to write on a closed socket (0.5.1). The dynamic
patches that we constructed performed transforma-
tions like adjusting the lengths of buffers (0.5.2)
and modifying the C representation used to hold
information about active connections (0.6.0).

To make it easy to refer to the versions in the
subsequent discussion, we number them starting
from 0. For each version, Figure 3 lists the total
lines of code (measured with SLOCCount [34]),
the number of update tests (described below), and
the number of function signature changes, function
body changes, and named type changes (structs,
unions and typedefs), that are required to update
to the next version. We provide the latter data as
it is useful to help explain some of the failures we
found, described in the next section.

B. Test suites

To perform our testing experiments, we required
test suites for each program’s core functionality in
order to generate update tests. We wrote test suites
for vsftpd and ngIRCd that cover all supported
client operations, and reused the set of system tests
distributed with OpenSSH. Each of the test suites
exercise core program features and were developed
independently of our evaluation.

We constructed update tests for OpenSSH from
the suite of system tests that are distributed with
OpenSSH’s source code. Tests launch a server
and communicate with it via an ssh client, exercis-
ing various connection parameters and/or executing
remote commands, and judging success/failure on
return codes and command output. We found that
all supplied tests for version n also pass for version
n+1. Thus, we used the full suite of version n’s
server tests to develop update tests for the patch to
version n+1.

We made two minor changes to OpenSSH’s test
suite for efficiency. First, we reduced the timeout
period of the login-timeout test, which tests that a
server terminates its connection if a client takes too
long to log in. Second, we split large tests with
orthogonal components (e.g., the try-ciphers test)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

Tests ∆ to next ver
Line Func.

Version LoC Ct. Cov. % Cov. % Sig Fun Type

O
pe

nS
SH

0 3.5p1 46,735 75 46.1 61.4 3 98 5
1 3.6.1p1 48,459 75 46.6 62.0 0 6 0
2 3.6.1p2 48,473 76 46.4 61.4 5 238 11
3 3.7.1p1 50,448 91 46.2 61.8 0 18 0
4 3.7.1p2 50,460 91 46.3 61.8 13 172 10
5 3.8p1 51,822 104 44.4 59.3 0 24 1
6 3.8.1p1 51,838 104 44.4 59.4 6 257 10
7 3.9p1 53,260 104 44.8 59.3 4 179 12
8 4.0p1 56,068 105 44.5 59.9 0 72 3
9 4.1p1 56,104 104 44.4 60.1 10 157 7

10 4.2p1 57,294 (Not patched)

vs
ft

pd

0 2.0.0 13,048 27 61.1 75.5 0 6 0
1 2.0.1 13,059 27 60.8 74.8 1 12 0
2 2.0.2pre2 13,114 27 60.7 74.7 0 21 0
3 2.0.2pre3 14,293 27 59.4 74.3 0 76 0
4 2.0.2 16,970 27 60.8 74.7 0 10 1
5 2.0.3 12,977 27 60.9 74.6 0 25 1
6 2.0.4 14,427 27 60.5 74.5 0 100 2
7 2.0.5 14,482 27 60.7 74.5 0 93 2
8 2.0.6 14,785 (Not patched)

ng
ir

cd

0 0.5.0 8,157 34 60.5 82.2 0 6 0
1 0.5.1 8,160 34 60.5 82.2 0 23 1
2 0.5.2 8,161 34 60.4 82.2 12 28 2
3 0.5.3 8,178 34 60.6 82.2 1 17 2
4 0.5.4 8,211 34 56.4 75.6 4 104 8
5 0.6.0 9,302 34 56.0 75.6 0 24 0
6 0.6.1 9,333 34 53.3 72.3 2 79 4
7 0.7.0 10,043 (Not patched)

Fig. 3. Version, patch, and test information

into many smaller tests, to reduce total testing time
and permit parallel testing.

As vsftpd is not distributed with any system tests,
we constructed 27 tests for core FTP operations,
including connecting, uploading, and downloading
files in binary and ASCII formats, and navigating
remote FTP directories. These tests apply to all
versions of the server, and exercise all of the FTP
operations supported by version 2.0.0 of vsftpd.

We also developed a suite of 34 ngIRCd tests,
exercising functionality including connecting, send-
ing and receiving chat messages, joining and com-
municating through IRC channels, and querying the
server for information such as the set of connected
users and available channels. These tests exercise all
operations that a client can perform when connected
to version 0.5.0 of ngIRCd. All tests in this suite
apply to all tested versions of ngIRCd.

Figure 3 shows the single-version line and func-
tion coverage information for each tested patch.
Line coverage was in the mid-40% range for Open-

SSH, and at around 60% for most versions of
vsftpd and ngIRCd. Function coverage was in the
low-60% range for OpenSSH, in the mid-70%
range for vsftpd, and varied from the low-70%
range to the low-80% range for ngIRCd. While
these figures indicate that some functionality was
not tested (e.g., the SSL capabilities of vsftpd,
server-to-server connections in ngIRCd, and error
handling code generally), our test suites exercise a
large number of distinct operations. Even if our test
suite does not exhibit every possible DSU timing
error for these patches, each set of update tests
induced by a system test provides a large set of
common update points with which we compare the
three timing restrictions. In total, across a variety of
real-world patches and tests, we believe our results
provide an extensive and realistic corpus of update
points for comparison (over 14M in all). Since our
goal is to uncover any errors that occur, the test
scripts are written to check the correctness of as
much of the external behavior as possible, including

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

return codes, response messages, and other effects
like downloaded files. Of course, more “blunt” cri-
teria were also used, like ensuring that the program
did not crash.

C. Running tests and tabulating results

As mentioned earlier, updates can take effect at
calls to DSU update(), where these calls can be
inserted manually or automatically. For our tests,
we directed DSUTest to automatically insert a call
to DSU update() prior to each function call, and
systematically tested the outcome of performing an
update at each of these points, with all safety checks
disabled. We refer to this set of dynamic update
points as All Pts. We used our test minimization
algorithm (Section III-B) to determine which update
tests should actually be performed and then scaled
the results back up to the full set of points. For
each test execution, we recorded whether the test
passed or failed. We marked a run as failing if either
the system test itself reports a failure, if the server
unexpectedly terminates during the test, or if the
test times out. We set the timeout for each run as
the time required to gather the initial trace plus 10
seconds.

Having determined the effects of updating at all
possible points, we can assess the availability and
safety of the three timing control mechanisms by
considering which update tests would have been
permitted by each restriction.

V. EXPERIMENTAL RESULTS

This section presents the results of our empirical
evaluation of the AS and CFS safety checks and
manual update point identification. Our experiments
seek to evaluate the effectiveness of these timing
restrictions in terms of their usability (by con-
sidering the manual effort required to use them),
safety (by judging their ability to prevent incorrect
behavior), and availability (by ensuring that updates
are allowed sufficiently often).

A. Usability

All three methods for controlling timing required
some manual changes to the applications. These fall
into two categories: update point selection, and code
refactoring to ensure desired update semantics and
availability.

For both AS and CFS, no programmer effort is re-
quired to select update points; these are inserted au-
tomatically. For the manual approach, we followed
the recommended pattern of placing them at the
outset of long-running event processing loops [3],
[28], [19]. Note that, while we have referred to such
update-point placement as “manually identified,” it
may be possible to automate parts of this rela-
tively systematic procedure. Nevertheless, human
judgment is probably necessary to distinguish event
handling loops from other loops and to account
for the program’s update availability requirements.
When preparing vsftpd and OpenSSH to support
updating, Neamtiu et al. chose to place a single
DSU update() at the beginning of the loop that
accepts new connections [28]. We placed an addi-
tional update point in each per-session command
loop of the applications—some patches we consider
add new command handling, and we wanted to
allow those to be updated during an active session.
OpenSSH provides two distinct command loops to
handle different ssh protocol versions, while vsftpd
uses only one; so vsftpd contained a total of two
calls to DSU update(), while OpenSSH had three.
For ngIRCd there is only one event processing
loop, so we placed a single point at its beginning.
Following this pattern was quite straightforward: the
only work involved was identifying the main loops.

As mentioned in Section II-B we must manu-
ally extract each connection/command loop and its
cleanup code into separate functions so that each
connection loop iteration executes the most recent
code and cleans up the server state appropriately
when it exits. This task is required for all three
timing mechanisms, since in Ginseng (and indeed in
nearly all other DSU systems) updates take effect at
function calls. (UpStare would not require this effort
at the outset, but as discussed in Section II-D, the
programmer would have to do something similar
when writing her dynamic patch so as to properly
map between versions’ execution contexts.)

AS required some additional manual effort. In
particular, after some preliminary testing, we dis-
covered a significant problem with the AS check.
Recall that AS forbids updates to functions that are
on the stack. It turns out that this restriction for-
bids all updates from being applied to OpenSSH,
vsftpd, and ngIRCd, because each update included
changes to main, which is always on the stack. Even
excluding main, we found that AS very often forbids

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

updates within the command loop. Schematically,
the command loop is reached through a chain of
function calls, starting from main, that look like the
following:

void f () {
... // startup code
g (); // call next function , ultimately reaching

// the function containing the main loop
}

In many cases updates change the “startup” code
in the functions in this chain (i.e., the code before
the call to g() in the schematic), and thus AS would
prevent those updates from being applied during the
command loop. However, patches can be written to
contain state transformation code to execute relevant
changes to the startup code that would have been
executed if the program were started from scratch.
Therefore, we can (and did) reasonably relax the AS
check by also extracting the startup code, so that it
is no longer on the stack when the loop executes.4

CFS required additional effort as well, but of a
different sort. To implement CFS, Ginseng uses a
static analysis. Unfortunately, this analysis is con-
servative, and so it can overestimate the definitions
that can be accessed concretely following an update
point, spuriously preventing updates that are actu-
ally safe to allow. This problem can be overcome
with some refactoring. For our experiments, the
analysis over-approximated the set of possible calls
through a table of function pointers, and as such
spuriously forbids updates within the OpenSSH
command loops. Therefore we performed some ad-
ditional code extractions so that updates within the
command loop would pass the CFS check.

Examining these costs in terms of code changed
and programmer effort, the manual approach comes
out on top. In particular, while the programmer
must identify manual update points, these exactly
coincide with the positions at which loops must be
extracted, a task required by all three approaches.
As such, the additional work required by AS and
CFS makes those approaches a bit more expensive,
especially since they require some amount of testing
or interaction with the tool to figure out why certain
updates are not being permitted.

4In actual fact, we opted to leave the code as-is and simulate the
extraction: When we post-process the All Pts data set to determine
which updates would be allowed by AS, we permit updates within
the command loop even if they modify startup code in the functions
leading up to the loop.

B. Update Safety

Figure 4 summarizes the number of update points
allowed under each timing restriction for each patch
to OpenSSH, vsftpd, and ngIRCd, and how many
of those points resulted in a failing test.

The All Pts column of Figure 4 lists over 1.4M
failing update points out of 8M total (17.8%) for
OpenSSH, over 128K failing runs out of 3.9M total
(3.2%) for vsftpd, and over 308K failing runs out of
nearly 2.2M total (13.9%) for ngIRCd. This is clear
evidence that applying updates indiscriminately is
extremely risky, and thus timing restrictions are
necessary.

The CFS, AS, and Manual columns of Figure 4
illustrate that all three timing restrictions disallow
the vast majority of failing updates; however both
automatic safety checks permit some unsafe up-
dates. For all three programs, CFS allows the most
failures, but manages to reduce the total number
of failures from 1.4M to 46.8K (96.7% reduction)
for OpenSSH, 128K to 2.2K (98.3% reduction)
for vsftpd, and 308K to 98 (over 99.9% reduction)
for ngIRCd. AS performed even better, allowing
only 495 failures (well over 99.9% reduction) for
OpenSSH and no failures for vsftpdand ngIRCd.
Significantly, only Manual identification of update
points exhibited no test failures.

Looking at the data we can make several high-
level observations about the relationship between
the patches and their failures. Comparing pro-
gram versions, we see that updates containing few
changes typically induce few failures. One particu-
larly striking observation is that patches containing
no type or function signature changes (OpenSSH
patches 1→2 and 3→4, vsftpd patches 0→1, 2→3,
and 3→4, and ngIRCd patches 0→1 and 5→6)
exhibited almost no failures (ngIRCdpatch 5→6
exhibited 3 failures). Since both AS and CFS ensure
updates are type-safe, it seems likely that a large
portion of the failures are due to type errors. We
manually examined several of the failures reported
in All Pts and found type safety violations to be
the most common cause. We also note that patches
containing relatively few overall changes had fewer
failures, while the largest updates, such as Open-
SSH patches 2→3, 4→5, and 9→10, generally re-
sulted in more failures. There are notable exceptions
to this general trend, such as vsftpd patch 4→5,
which contained few changes but resulted in the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

Update All Pts CFS AS Manual
Total Failed Total Failed Total Failed Total Failed

O
pe

nS
SH

0→1 580,871 19,715 68,044 0 35,314 0 566 0
1→2 705,322 0 705,322 0 587,578 0 630 0
2→3 638,720 306,965 75,307 1,688 20,902 4 568 0
3→4 772,198 0 772,198 0 638,803 0 783 0
4→5 773,086 565,681 110,633 609 21,343 380 782 0
5→6 878,235 10,703 130,000 0 111,950 0 860 0
6→7 879,668 163,333 96,183 44,461 44,278 110 859 0
7→8 918,717 11,380 80,070 1 100,854 1 850 0
8→9 973,364 3 261,885 0 61,724 0 868 0

9→10 933,514 357,919 121,337 24 61,051 0 833 0
Total 8,053,695 1,435,699 2,420,979 46,783 1,683,797 495 7,599 0

vs
ft

pd

0→1 437,910 0 437,910 0 209,441 0 154 0
1→2 439,983 2,993 198,277 726 186,769 0 154 0
2→3 470,494 0 470,494 0 179,726 0 155 0
3→4 507,071 0 507,071 0 91,993 0 157 0
4→5 486,927 119,922 19,297 1,468 6,365 0 155 0
5→6 511,032 893 65,999 0 215,557 0 155 0
6→7 529,845 1,270 29,339 0 27,020 0 155 0
7→8 549,380 3,246 5,010 0 14,880 0 155 0
Total 3,932,642 128,324 1,733,397 2,194 931,751 0 1,240 0

ng
IR

C
d

0→1 291,331 0 291,331 0 152,830 0 372 0
1→2 289,558 0 286,310 0 167,372 0 370 0
2→3 289,650 204 2,007 0 443 0 375 0
3→4 289,900 1,086 2,008 0 444 0 376 0
4→5 281,684 138,105 1,987 95 328 0 260 0
5→6 392,219 3 392,219 3 11,711 0 384 0
6→7 392,309 169,064 860 0 452 0 384 0
Total 2,226,651 308,462 976,722 98 333,580 0 2,521 0

Fig. 4. Points allowed/test failures

most vsftpd failures.
We investigate the causes of the failures that AS

and CFS allow in Section V-D. The relationship
between failures (and successes) allowed by both
checks is tabulated in a technical report [17].

C. Update Availability

The most straightforward way to assess update
availability to is measure which timing restrictions
permit the most update points. Returning to Figure 4
we see that both AS and CFS allow many update
points, though CFS is more permissive than AS.
Both CFS and AS allow several orders of magnitude
more update points than are allowed under Manual
update point identification. When we consider only
the passing update points, as shown in the right
half of Figure ??, the trend continues: In total, CFS
permitted 68% of the passing update points, while
AS permitted 59% of them, a difference of about
2.1M update tests; roughly 55% of passing update
points are allowed by both. The manual approach
admitted the least number of update points: about
17.7K, or 0.14% of the passing update points. Thus,
across these three approaches to timing restriction,

we observe that the lower failure rates of manual
point identification (and to a lesser extent AS) come
at the cost of fewer correct update points allowed.

Generally speaking, while allowing more correct
update points is better than fewer, it also matters
where those update points occur during program
execution. In particular, since the majority of each
server’s execution takes place within one of a few
long-running loops, it is crucial that a safe update
point is reached on almost every iteration of these
loops. Otherwise, we may be unable to update a
program in a timely fashion. Assuming loops com-
plete reasonably quickly, and the time transitioning
between loops is also quick, just updating in loops
may well be sufficient.

To get a more concrete idea how frequently
updates would be permitted using the manual iden-
tification strategy, we timed how long server pro-
cessing took during each iteration of the main loops
for our subject programs (the first version of each)
throughout execution of our test suites. This pro-
vides an indication how long an update might be de-
layed by server processing. For all three programs,
we found that most loop iterations required less than
1ms to complete. For both vsftpd and ngIRCd, the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

longest loop iteration required less than 10ms (for
vsftpd, this was the time required to download a
900kB file locally). The longest overall delays were
OpenSSH tests that performed a sleep operation
for 3 seconds on the server. Overall, we believe
the delays to updating that we observed would be
unlikely to make any difference in server operation.
However, it is not difficult to imagine less trivial
delays, e.g., large downloads by a remote client
could delay an update to vsftpd for much longer.
However, in this example, it is doubtful that updated
functionality would be needed during a download—
and if it is, the developer might choose to add a
manual update point to the download loop. Based
on this investigation, we believe that the delay due
to manual update point identification will usually be
inconsequential. When developers judge the delay
to be significant, we suspect that it can often be
ameliorated by adding manual update points at the
long-running loops that cause the delay.

D. Failure examples
To help understand better where the automated

checks fall short, we investigated several of the
failures that are still allowed by the CFS and AS
checks.

Failures allowed by CFS: The property that
distinguishes CFS is that it will execute code that
is active at the time of update at the old version,
provided this execution will not violate type safety.
However, as we mentioned in Section sec:intro,
type-safe executions may nevertheless fail, and in-
deed we observed cases of this. We have found
that sometimes executing a function (or part of
it) at the old version and then executing a related
function at the new version may induce a failure
when the relationship between these two functions
changes between versions. We generically refer to
these problems as version consistency errors [27],
since they involve executing the old version of some
function and then executing the new version of
another where there is a relationship between the
two.

One example occurred while testing upload op-
erations against the 1→2 patch to vsftpd. Figure 5
shows a simplified version of the relevant code. In
this patch, the code that sends the FTP return code
226 indicating a successful transfer was moved from
do file recv to handle upload common. If an up-
date occurs after entering handle upload common,

void
handle upload common() {

DSU update();
ret = do file recv ();
}
void do file recv() {

... // receive file
if (ret == SUCCESS)

write(226, ”OK.”);
return ret ;
}

void
handle upload common() {

DSU update();
ret = do file recv ();
if (ret == SUCCESS)

write(226, ”OK.”);
}
void do file recv() {

... // receive file
return ret ;
}

(a) Version 1 (b) Version 2
Fig. 5. Skipped return code

void maincont() {
DSU update();
serverloop2();
}
void serverloop2() {

global ptr = init ;
tmp = (∗global ptr). pw;
}

void maincont() {
global ptr = init ;
DSU update();
serverloop2();
}
void serverloop2() {

tmp = (∗global ptr). pw;
}

(a) Version 4 (b) Version 5

void maincont() {
extracted ();
DSU update();
serverloop2();
}
void extracted() {
}
void serverloop2() {

global ptr = init ;
tmp = (∗global ptr). pw;
}

void maincont() {
extracted ();
DSU update();
serverloop2();
}
void extracted() {

global ptr = init ;
}
void serverloop2() {

tmp = (∗global ptr). pw;
}

(c) Ver. 4, after extraction (d) Ver. 5, after extraction
Fig. 6. Skipped initialization error

but before calling do file recv, then the new version
of do file recv executes and then returns to the old
version of handle upload common—and thus the
server will never write the return code. Eventu-
ally this causes the transfer to time out and fail.
Though the code executed following the update in
handle upload common is changed by the update,
the execution is allowed by CFS as the function
signatures have not changed. On the other hand, AS
precludes the update (and thus, its failure) because
handle upload common is active.

Failures allowed by CFS and AS: While AS
prevents the version-consistency failure we just saw,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

it does not prevent such problems entirely. A par-
ticularly interesting example occurs in the

4→5 patch of OpenSSH. This example involves
a problem that was not present in the original code,
but was introduced via a code extraction step that is
needed to permit many other, safe updates to occur.

Figures 6(a) and (b) show a highly simplified
version of the relevant code for both versions. In
version 4, a global pointer is initialized in the
serverloop2 function, prior to entry into the com-
mand loop.

Version 5 moves this initialization earlier into
maincont (a function we added during code ex-
traction), prior to calling serverloop2. (In the actual
code, the call to serverloop2 is further down the call
chain.)

CFS will always allow this update to be ap-
plied, because it involves no type changes, and
hence is type-safe. However, if the update indicated
in Figure 6(a) is taken, then global ptr will be
uninitialized when dereferenced, leading to a crash.
On the other hand, AS should prevent this update,
because maincont is changed by the update and is
active at the update point.

However, recall from Section IV that we ex-
tracted the “startup” code in all functions leading
up to the command loops in our subject programs.
Consider Figures 6(c) and (d), which show the
two versions of the program after code extraction.
Notice that the initialization of global ptr is moved
from serverloop2 to extracted. Thus, the update no
longer changes maincont, and when the indicated
update point is triggered in our experiments, AS
actually allows the update. This example illustrates
the tension between update availability and safety
when applying AS, and cases like these show the
fragility of automatic update safety checks.

In general, AS is also unable to prevent any
version consistency problems where the old version
of code involved is executed to completion and so
is no longer on the stack. We observed a set of
failures where this occurs in OpenSSH patch 2→3.
This patch included a change to the format of a
packet sent from the server to the client and then
later sent back to the server. Version 2 included only
a sequence number in the packet, while version 3
adds a count of blocks and packets. This change is
manifested through a modification to two functions:
mm send keystate and mm get keystate.

If an update occurs after a call to mm send keystate

but before a call to mm get keystate, then the new
version of mm get keystate is invoked and is unable
to parse a packet generated by the old code version,
causing a test failure.

These update points are allowed by CFS, which
determines that the update cannot violate type
safety. AS will also allow these failures as this
version consistency error can occur at points when
neither changed function is on the call stack. Typi-
cally, state transformation can be used to ensure that
program state is updated to work with new code, but
in this case the state of the packet is stored on the
client, where it cannot easily be changed when the
server is updated.

It is unlikely that an automatic check could ef-
fectively avoid failures such as these, since they
are quite specific to the application (and, in the
general case, the problem is undecidable [14]). On
the other hand, the manual effort required to avoid
these errors by placing a few update points in the
program seems quite manageable.

VI. LIMITATIONS

Our study found that manual update point iden-
tification maximizes update safety and requires the
least developer effort while providing sufficient up-
date availability. We now discuss several potential
threats to the validity of the study. First, the test
suites we used for OpenSSH, vsftpd, and ngIRCd
do not exercise all features of the applications, so we
may be undercounting how many patches introduce
failures into the programs. However, we did en-
deavor to choose tests that cover the core features of
each application, and since we are interested in what
the application is doing when it might be updated,
we think these tests are representative. For this rea-
son, we did not test cases where the program goes
wrong independently of DSU (e.g., error-handling
code that only runs prior to shutting the application).
As we discussed in Section , our experiments used
tests that exercise behavior that persists across the
update (although the implementation of that behav-
ior may have changed). This introduces the risk that
tests for added/removed/changed behavior might
have produced different results. However, defining
correct behavior in such cases is not straightforward
whereas correctness for our tests was obvious. A
related point is that update points within ignore
regions are not tested, so failures due to such points

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 18

may be missed. We have checked for this possibility
by minimizing the size and use of these regions
and inspecting their effects. This threat could be
completely mitigated by continuing to prevent up-
dates within ignore regions after the application is
deployed.

Second, our empirical study is limited to three
applications and a hand-picked set of updates to
them, so the results may not generalize to other
applications or updates. This is always a danger with
benchmarks. However, we have striven to consider
a lengthy streak of updates, and have chosen appli-
cations that fit the general mold of single-threaded
and/or multi-process server applications written in
C. Our results do not directly speak to multi-
threaded applications, but for these we note that
the qualitative case to be made for manual update
points is much stronger than for single-threaded
applications, since there are many more application
states the programmer must be concerned with [26].

Third, our results may be specific to Ginseng,
and may not generalize to other updating systems.
We think this threat is unlikely, as argued in Sec-
tion II-D.

Fourth, our evaluation of the relative effort re-
quired to use each safety check is qualitative, rather
than quantitative. This presents the risk that our ef-
fort comparisons may be biased or fail to generalize.
However, it is critical to note that the effort for AS
and CFS was strictly greater than the effort for Man-
ual identification. Specifically, all three approaches
require restructuring the code around the event
loops to work well, but AS and CFS often require
additional restructuring due to over-conservatism. In
addition, AS and CFS require manually reasoning
about the correctness of updating at many more
points than Manual.

Finally, there is some discretion involved in how
a programmer may extract application code, write
transformer functions, etc. It is possible that dif-
ferent reasonable choices would produce different
results. We believe that our manual modifications
to these programs were dictated by the structure of
the program and that other developers would have
chosen the same modifications.

VII. RELATED WORK

While there is much prior work in developing
DSU systems (much of which is cited and/or de-
scribed in Section I and in Section II-D), this paper

represents the first empirical study of the effective-
ness of DSU controls to timing. Most prior work
has focused on evaluating different implementation
mechanisms (e.g., based on compilation or binary
patching), and relatively little focus has been given
to assessing the effectiveness of timing mechanisms,
particularly for ensuring that updates are safe.

Some prior work has considered what it means
for updates to be correct, and proposed timing
restrictions that would ensure correctness. Gupta
et al. [14] originally defined the update validity
problem as showing, for a given program and patch,
that after patching the old version its execution
would eventually reach a state that could have been
reached by executing the new version from scratch.
Gupta et al. showed that this problem is in general
undecidable, and then proposed a way to calculate
a set of functions that must be inactive if the
update were to be valid. However, Gupta’s check
only applies when a patch adds new functionality
and programs do not use complex data types and
pointers. Stoyle et al. [31] proved that CFS, and
a flavor of AS, prevent type incorrect executions,
but did not evaluate whether the allowed executions
may be behaviorally incorrect, as was done in our
study. As described in Section II-D, most practical
DSU implementations use the AS check but do not
evaluate its efficacy, or do so only cursorily. Some
systems, such as DyMOS [22] and POLUS [7],
permit fine-grained timing controls, but no means to
evaluate their proper use is given. Our study is the
first to provide empirical data on the effectiveness
of common timing controls in a practical setting.

Our approach to generating update tests is related
to Chess [25] and MultithreadedTC [29], which test
multi-threaded programs by intelligently enumerat-
ing a program’s potential thread schedules. At a high
level, our technique for test minimization is like
partial order reduction in model checking [2], which
is used to avoid consideration of distinct program
executions that result in the same states. Our mini-
mization algorithm on traces is inspired by Neamtiu
et al.’s observation that an update at two program
points is equivalent if the activity between those two
points is unaffected by the patch [27]. Neamtiu et
al. applied this observation to a static analysis for
implementing update transactions whose execution
is version consistent (i.e., consisting of behavior
entirely attributable to only one version), while we
apply it to test case minimization. Our testing exper-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 19

iments use developer annotations to identify sources
of non-determinism in code and compares program
traces to be sure they match. Many other techniques
have been proposed to provide deterministic replay
including approaches based on libraries [13], [30],
[12] and virtual machines [35], [5], [10].

The failure examples in Section V-D represent the
first careful analysis of failures allowed by common
DSU systems. The notion of version consistency
was identified previously [27], but the relative fre-
quency of version consistency errors was never
studied empirically. Indeed, many DSU systems
make an implicit assumption that version consis-
tency errors are not a problem [21], [4], [1], [6].

VIII. CONCLUSIONS

We have presented an empirical evaluation of
means to control the timing of a dynamic update.
Such means restrict the application of an update to
select program points. We evaluated the effective-
ness of three ways in which these points are selected
in typical DSU systems: (a) manually, according
to a simple design pattern, (b) automatically, such
that points do not occur in functions an update
changes (referred to as activeness safety), or (c)
automatically, such that execution in active code
following the update will not access definitions
whose type signature has changed (referred to as
con-freeness safety). Our evaluation is based on
systematically testing long streaks of updates to
OpenSSH, vsftpd, and ngIRCd, three substantial,
open source server applications. The systematic
testing framework we developed is noteworthy in
that it evaluates the effect of an update applied at
essentially any point during a program’s execution
despite actually testing only a small fraction of such
update points. We tabulated which update points are
permitted by which mechanism, and whether tests
of updates at these points succeeded or failed. We
also assessed the programmer effort involved to use
these mechanisms.

We found that all three timing mechanisms elim-
inated a substantial number of failures, but only
the manual approach eliminated all failures. Also,
while the automatic approaches allowed many more
update points than the manual approach, updates
should still happen often enough even in that case.
Finally, we found that the programmer effort was
highest for the automatic approaches, because pro-

grams needed to be refactored slightly to be com-
patible with them. The manual approach required
programmers to identify update points, but this
task was relatively easy, compared to the needed
refactoring.

Our study suggests several lines of future work.
Our study of the failures allowed by the automatic
checks could provide a basis for devising a better
automated approach. While such an approach
is unlikely to be perfect in general, it may be
possible for it to be perfect in limited cases, such
as for small code changes for the purposes of
security fixes [4], [1]. It might also be interesting to
consider automating the placement of update points
according to the manual pattern we followed; an
analysis could be used to assess whether such
update points can be reached frequently enough,
e.g., applying techniques similar to those used to
prove termination via reachability [8].

Acknowledgments This research was supported by
the partnership between UMIACS and the Labora-
tory for Telecommunications Sciences. We would
also like to thank Iulian Neamtiu for supporting our
use of the Ginseng DSU system.

REFERENCES

[1] G. Altekar, I. Bagrak, P. Burstein, and A. Schultz. Opus: online
patches and updates for security. In USENIX Security, 2005.

[2] R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer, and
S. K. Rajamani. Partial-order reduction in symbolic state space
exploration. In CAV, 1997.

[3] J. Armstrong. Programming Erlang: Software for a Concurrent
World. The Pragmatic Programmers, LLC, 2007.

[4] J. Arnold and F. Kaashoek. Ksplice: Automatic rebootless
kernel updates. In Eurosys, 2009.

[5] S. Bhansali, W.-K. Chen, S. de Jong, A. Edwards, R. Murray,
M. Drinić, D. Mihočka, and J. Chau. Framework for instruction-
level tracing and analysis of program executions. In VEE, 2006.

[6] G. Bracha. Objects as software services. http://bracha.org/
objectsAsSoftwareServices.pdf, Aug. 2006.

[7] H. Chen, J. Yu, R. Chen, B. Zang, and P.-C. Yew. Polus: A
powerful live updating system. In ICSE, pages 271–281, 2007.

[8] B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs
for systems code. In PLDI, 2006.

[9] M. Dmitriev. Towards flexible and safe technology for runtime
evolution of java language applications. In Workshop on
Engineering Complex OO Systems for Evolution, 2001.

[10] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M.
Chen. Revirt: Enabling intrusion analysis through virtual-
machine logging and replay. In OSDI, 2002.

[11] Edit and continue. http://msdn2.microsoft.com/en-us/library/
bcew296c.aspx.

[12] D. Geels, G. Altekar, S. Shenker, and I. Stoica. Replay
debugging for distributed applications. In USENIX, 2006.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 20

[13] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu, M. Frans,
and K. Z. Zhang. R2: An application-level kernel for record
and replay. In OSDI, 2008.

[14] D. Gupta, P. Jalote, and G. Barua. A formal framework for
on-line software version change. IEEE TSE, 22(2), 1996.

[15] C. M. Hayden, E. A. Hardisty, M. Hicks, and J. S. Foster. Effi-
cient Systematic Testing for Dynamically Updatable Software.
In HOTSWUP, 2009.

[16] C. M. Hayden, E. A. Hardisty, M. Hicks, and J. S. Foster.
A testing-based empirical study of dynamic software update
safety restrictions. Technical Report CS-TR-4949, Department
of Computer Science, the University of Maryland, College Park,
2010.

[17] C. M. Hayden, E. A. Hardisty, M. Hicks, and J. S. Foster.
Evaluating dynamic software update safety using systematic
testing. Technical Report CS-TR-4993, Department of Com-
puter Science, the University of Maryland, College Park, 2011.

[18] C. M. Hayden, E. K. Smith, M. Hicks, and J. S. Foster.
State Transfer for Clear and Efficient Runtime Updates. In
HOTSWUP, 2011.

[19] M. Hicks and S. Nettles. Dynamic software updating. ACM
Trans. Program. Lang. Syst., 27(6):1049–1096, 2005.

[20] Java platform debugger architecture. http://java.sun.com/j2se/1.
4.2/docs/guide/jpda/.

[21] The K42 Project. http://www.research.ibm.com/K42/.
[22] I. Lee. DYMOS: A Dynamic Modification System. PhD thesis,

Dept. of Computer Science, U. Wisconsin, Madison, 1983.
[23] K. Makris. Upstare manual.

http://files.mkgnu.net/files/upstare/UPSTARE RELEASE 0-
12-8/manual/html-single/manual.html.

[24] K. Makris and R. Bazzi. Immediate multi-threaded dynamic
software updates using stack reconstruction. In USENIX ATC,
2009.

[25] M. Musuvathi, S. Qadeer, and T. Ball. Chess: A systematic
testing tool for concurrent software. Technical Report MSR-
TR-2007-149, Microsoft Research, 2007.

[26] I. Neamtiu and M. Hicks. Safe and timely dynamic updates for
multi-threaded programs. In PLDI, June 2009.

[27] I. Neamtiu, M. Hicks, J. S. Foster, and P. Pratikakis. Contextual
effects for version-consistent dynamic software updating and
safe concurrent programming. In POPL, 2008.

[28] I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol. Practical
dynamic software updating for C. In PLDI, 2006.

[29] W. Pugh and N. Ayewah. Unit testing concurrent software. In
ASE, 2007.

[30] Y. Saito. Jockey: A user-space library for record-replay debug-
ging. In AADEBUG, 2005.

[31] G. Stoyle, M. Hicks, G. Bierman, P. Sewell, and I. Neamtiu.
Mutatis Mutandis: Safe and flexible dynamic software updating.
ACM Trans. Program. Lang. Syst., 29(4), 2007.

[32] S. Subramanian, M. Hicks, and K. S. McKinley. Dynamic
software updates for Java: A VM-centric approach. In PLDI,
2009.

[33] C. Walton. Abstract Machines for Dynamic Computation. PhD
thesis, University of Edinburgh, 2001. ECS-LFCS-01-425.

[34] D. A. Wheeler. Sloccount. http://www.dwheeler.com/
sloccount/.

[35] M. Xu, V. Malyugin, J. Sheldon, G. Venkitachalam, B. Weiss-
man, and V. Inc. Retrace: Collecting execution trace with virtual
machine deterministic replay. In MoBS, 2007.

PLACE
PHOTO
HERE

Christopher M. Hayden is a doctoral student
in the Department of Computer Science at
the University of Maryland, College Park. His
research interests are in tools and techniques
to help developers safely apply dynamic soft-
ware updating. In particular, his research aims
to provide an improved understanding of the
challenges posed by run-time updates, such as
ensuring update correctness, and to reduce the

developer effort required to address those challenges.

PLACE
PHOTO
HERE

Eric A. Hardisty is a doctoral student in
the Department of Computer Science at the
University of Maryland, College Park. His re-
search interests are Natural Language Process-
ing and Programming Languages. His current
research focuses on sentiment analysis and the
detection of persuasion.

PLACE
PHOTO
HERE

Edward K. Smith is an undergraduate in
the Department of Computer Science at the
University of Maryland, College Park.

PLACE
PHOTO
HERE

Michael Hicks is an Associate Professor in
the Department of Computer Science and the
University of Maryland Institute for Advanced
Computer Studies (UMIACS) at the Univer-
sity of Maryland, College Park. His research
focuses on developing systems that are reli-
able, available, and secure. His solutions often
involve tools and techniques—such as new
programming languages, compilers, run-time

systems, and static analyses—that aim to make programmers more
effective.

PLACE
PHOTO
HERE

Jeffrey S. Foster is an Associate Professor
in the Department of Computer Science and
the University of Maryland Institute for Ad-
vanced Computer Studies (UMIACS) at the
University of Maryland, College Park. His
research aims to give programmers practical
new tools to help improve the quality and
security of their programs. His research inter-
ests include programming languages, program

analysis, constraint-based analysis, and type systems.

