
1

EXPOSITOR: Scriptable Time-Travel Debugging
with First-Class Traces

Khoo Yit Phang, Jeffrey S. Foster, and Michael Hicks

Computer Science Department, University of Maryland, College Park, MD 20742, USA

{khooyp,jfoster,mwh}@cs.umd.edu

Abstract—We present EXPOSITOR, a new debugging environment that combines scripting and time-travel debugging to allow

programmers to automate complex debugging tasks. The fundamental abstraction provided by EXPOSITOR is the execution trace, which

is a time-indexed sequence of program state snapshots or projections thereof. Programmers can manipulate traces as if they were

simple lists with operations such as map and filter. Under the hood, EXPOSITOR efficiently implements traces as lazy, sparse interval

trees whose contents are materialized on demand. EXPOSITOR also provides a novel data structure, the edit hash array mapped trie,

which is a lazy implementation of sets, maps, multisets, and multimaps that enables programmers to maximize the efficiency of their

debugging scripts. In our micro-benchmarks, EXPOSITOR scripts are faster than the equivalent non-lazy scripts for common debugging

scenarios. We have also used EXPOSITOR to debug a stack overflow, and to unravel a subtle data race in Firefox. We believe that

EXPOSITOR represents an important step forward in improving the technology for diagnosing complex, hard-to-understand bugs.

Index Terms—debugging, time-travel, scripting, lazy data structures, EditHAMT

✦

1 INTRODUCTION

“...we talk a lot about finding bugs, but really, [Firefox’s]
bottleneck is not finding bugs but fixing [them]...”

—Robert O’Callahan [1]

“[In debugging,] understanding how the failure came
to be...requires by far the most time and other resources”

—Andreas Zeller [2]

Debugging program failures is an inescapable task for
software programmers. Understanding a failure involves
repeated application of the scientific method: the pro-
grammer makes some observations; proposes a hypoth-
esis as to the cause of the failure; uses this hypothesis
to make predictions about the program’s behavior; tests
those predictions using experiments; and finally either
declares victory or repeats the process with a new or
refined hypothesis.

There are certain kinds of bugs that can truly test the
mettle of programmers. Large software systems often
have complex, subtle, hard-to-understand mandelbugs1

whose untangling can require hours or even days of
tedious, hard-to-reuse, seemingly sisyphean effort. De-
bugging mandelbugs often requires testing many hy-
potheses, with lots of backtracking and retrials when
those hypotheses fail. Standard debuggers make it hard
to efficiently reuse the manual effort that goes into
hypothesis testing, in particular, it can be hard to juggle
the breakpoints, single stepping, and state inspection
available in standard debuggers to find the point at
which the fault actually happened.

1. “Mandelbug (from the Mandelbrot set): A bug whose underlying
causes are so complex and obscure as to make its behavior appear
chaotic or even nondeterministic.” From the New Hacker’s Dictionary
(3d ed.), Raymond E.S., editor, 1996.

Scriptable debugging is a powerful technique for hy-
pothesis testing in which programmers write scripts to
perform complex debugging tasks. For example, sup-
pose we observe a bug involving a cleverly implemented
set data structure. We can try to debug the problem by
writing a script that maintains a shadow data structure that
implements the set more simply (e.g., as a list). We run
the buggy program, and the script tracks the program’s
calls to insert and remove, stopping execution when the
contents of the shadow data structure fail to match those
of the buggy one, helping pinpoint the underlying fault.

While we could have employed the same debugging
strategy by altering the program itself (e.g., by inserting
print statements and assertions), doing so would require
recompilation—and that can take considerable time for
large programs (e.g., Firefox), thus greatly slowing the
rate of hypothesis testing. Modifying a program can
also change its behavior—we have all experienced the
frustration of inserting a debugging print statement only
to make the problem disappear! Scripts also have the
benefit that they can invoke libraries not used by the
program itself. And, general-purpose scripts may be
reused.

1.1 Background: Prior Scriptable Debuggers

There has been considerable prior work on scriptable
debugging. GDB’s Python interface makes GDB’s inter-
active commands—stepping, setting breakpoints, etc.—
available in a general-purpose programming language.
However, this interface employs a callback-oriented pro-
gramming style which, as pointed out by Marceau et
al. [3], reduces composability and reusability as well as
complicates checking temporal properties. Marceau et al.

2

propose treating the program as an event generator—
each function call, memory reference, etc. can be thought
of as an event—and scripts are written in the style of
functional reactive programming (FRP) [4]. While FRP-style
debugging solves the problems of callback-based pro-
gramming, it has a key limitation: time always marches
forward, so we cannot ask questions about prior states.
For example, if while debugging a program we find a
doubly freed address, we cannot jump backward in time
to find the corresponding malloc. Instead we would need
to rerun the program from scratch to find that call, which
may be problematic if there is any nondeterminism, e.g.,
if the addresses returned by malloc differ from run to
run. Alternatively, we could prospectively gather the
addresses returned by malloc as the program runs, but
then we would need to record all such calls up to the
erroneous free.

Time-travel debuggers, like UndoDB [5], and systems
for capturing entire program executions, like Amber [6],
allow a single nondeterministic execution to be exam-
ined at multiple points in time. Unfortunately, scriptable
time-travel debuggers typically use callback-style pro-
gramming, with all its problems. (Sec. 7 discusses prior
work in detail.)

1.2 EXPOSITOR: Scriptable, Time-Travel Debugging

In this paper, we present EXPOSITOR, a new script-
able debugging system inspired by FRP-style scripting
but with the advantages of time-travel debugging. EX-
POSITOR scripts treat a program’s execution trace as a
(potentially infinite) immutable list of time-annotated
program state snapshots or projections thereof. Scripts
can create or combine traces using common list oper-
ations: traces can be filtered, mapped, sliced, folded,
and merged to create lightweight projections of the
entire program execution. As such, EXPOSITOR is par-
ticularly well suited for checking temporal properties of
an execution, and for writing new scripts that analyze
traces computed by prior scripts. Furthermore, since
EXPOSITOR extends GDB’s Python environment and uses
the UndoDB [5] time-travel backend for GDB, users can
seamlessly switch between running scripts and interact-
ing directly with an execution via GDB. (Sec. 2 overviews
EXPOSITOR’s scripting interface.)

The key idea for making EXPOSITOR efficient is to em-
ploy laziness in its implementation of traces—invoking
the time-travel debugger is expensive, and laziness helps
minimize the number of calls to it. EXPOSITOR represents
traces as sparse, time-indexed interval trees and fills in
their contents on demand. For example, suppose we use
EXPOSITOR’s breakpoints combinator to create a trace tr

containing just the program execution’s malloc calls. If
we ask for the first element of tr before time 42 (perhaps
because there is a suspicious program output then),
EXPOSITOR will direct the time-travel debugger to time
42 and run it backward until hitting the call, capturing the
resulting state in the trace data structure. The remainder

of the trace, after time 42 and before the malloc call, is
not computed. (Sec. 3 discusses the implementation of
traces.)

In addition to traces, EXPOSITOR scripts typically em-
ploy various internal data structures to record informa-
tion, e.g., the set s of arguments to malloc calls. These data
structures must also be lazy so as not to compromise
trace laziness—if we eagerly computed the set s just
mentioned to answer a membership query at time t, we
would have to run the time-travel debugger from the
start up until t, considering all malloc calls, even if only
the most recent call is sufficient to satisfy the query. Thus,
EXPOSITOR provides script writers with a novel data
structure: the edit hash array mapped trie (EditHAMT),
which provides lazy construction and queries for sets,
maps, multisets, and multimaps. As far as we are aware,
the EditHAMT is the first data structure to provide these
capabilities. (Sec. 4 describes the EditHAMT.)

We have used EXPOSITOR to write a number of sim-
ple scripts, as well as to debug two more significant
problems. Sec. 2 describes how we used EXPOSITOR to
find an exploitable buffer overflow. Sec. 6 explains how
we used EXPOSITOR to track down a deep, subtle bug
in Firefox that was never directly fixed, though it was
papered over with a subsequent bug fix (the fix resolved
the symptom, but did not remove the underlying fault).
In the process, we developed several reusable analyses,
including a simple race detector.

In summary, we believe that EXPOSITOR represents an
important step forward in improving the technology for
diagnosing complex, hard-to-understand bugs.

2 THE DESIGN OF EXPOSITOR

We designed EXPOSITOR to provide programmers with
a high-level, declarative API to write analyses over the
program execution, as opposed to the low-level, im-
perative, callback-based API commonly found in other
scriptable debuggers.

In particular, the design of EXPOSITOR is based on
two key principles. First, the EXPOSITOR API is purely
functional—all objects are immutable, and methods ma-
nipulate objects by returning new objects. The purely
functional API facilitates composition, by reducing the
risk of scripts interfering with each other via shared
mutable object, as well as reuse, since immutable objects
can easily be memoized or cached upon construction. It
also enables EXPOSITOR to employ lazy programming
techniques to improve efficiency.

Second, the trace abstraction provided by EXPOSITOR

is based around familiar list-processing APIs found in
many languages, such as the built-in list-manipulating
functions in Python, the Array methods in JavaScript,
the List module in Ocaml, and the Data.List module in
Haskell. These APIs are also declarative—programmers
manipulate lists using combinators such as filter, map,
and merge that operate over entire lists, instead of manip-
ulating individual list elements. These list combinators

3

1 class execution:
2 # get snapshots
3 get at(t): snapshot at time t
4

5 # derive traces
6 breakpoints(fn): snapshot trace of breakpoints at func fn
7 syscalls(fn): snapshot trace of breakpoints at syscall fn
8 watchpoints(x, rw):
9 snapshot trace of read/write watchpoints at var x

10 all calls(): snapshot trace of all function entries
11 all returns(): snapshot trace of all function exits
12

13 # interactive control
14 cont(): manually continue the execution
15 get time(): latest time of the execution
16

17 class trace:
18 # count/get items
19 len (): called by “ len(trace)”
20 iter (): called by “ for item in trace”
21 get at(t): item at exactly time t
22 get after(t): next item after time t
23 get before(t): previous item before time t
24

25 # create a new trace by filtering/mapping a trace
26 filter(p): subtrace of items for which p returns true
27 map(f): new trace with f applied to all items
28 slice(t0, t1): subtrace from time t0 to time t1
29

30 # create a new trace by merging two traces
31 merge(f, tr): see Fig. 2a
32 trailing merge(f, tr): see Fig. 2b
33 rev trailing merge(f, tr): see Fig. 2c
34

35 # create a new trace by computing over prefixes/suffixes
36 scan(f, acc): see Fig. 2d
37 rev scan(f, acc): see Fig. 2e
38 tscan(f, acc): see Fig. 3a
39 rev tscan(f, acc): see Fig. 3b
40

41 class item:
42 time: item’s execution time
43 value: item’s contents
44

45 class snapshot:
46 read var(x):
47 gdb value of variable x in current stack frame
48 read retaddrs():
49 gdb values of return addresses on the stack
50 backtrace(): print the stack backtrace
51 . . . and other methods to access program state . . .
52

53 class gdb value:
54 getitem (x):
55 called by “ gdb value[x]” to access field/index x
56 deref(): dereference gdb value (if it is a pointer)
57 addrof(): address of gdb value (if it is an l-value)
58 . . . and other methods to query properties of gdb value . . .

Fig. 1. EXPOSITOR’s Python-based scripting API. The

get X and len methods of execution and trace are

eager, and the remaining methods of those classes return

lazy values. Lazy values include trace, snapshot, and

gdb value objects whose contents are computed only on

demand and cached.

allow EXPOSITOR to compute individual list elements
on-demand in any order, minimizing the number of calls
to the time-travel debugger. Furthermore, they shield
programmers from the low-level details of controlling
the program execution and handling callbacks.

2.1 API Overview

Fig. 1 lists the key classes and methods of EXPOSITOR’s
scripting interface, which is provided as a library inside
UndoDB/GDB’s Python environment.

2.1.0.1 The execution class and the the execution

object: The entire execution of the program being de-
bugged is represented by the execution class, of which
there is a singleton instance named the execution. This
class provides several methods for querying the exe-
cution. The get at(t)2 method returns a snapshot object
representing the program state at time t in the execution
(we will describe snapshots in more detail later). Several
methods create immutable, sparse projections of the exe-
cution, or traces, consisting of program state snapshots at
points of interest: the breakpoints(fn) and syscalls(fn) meth-
ods return traces of snapshots at functions and system
calls named fn, respectively; the watchpoints(x, rw) method
returns a trace of snapshot when the memory location x is
read or written; and the all calls and all returns methods
return traces of snapshots at all function entries and exits,
respectively.

For debugging interactive programs, the execution class
provides two useful methods: cont resumes the execution
of the program from when it was last stopped (e.g.,
immediately after EXPOSITOR is started, or when the
program is interrupted by pressing ˆC), and get time gets
the latest time of the execution. If a program requires
user input to trigger a bug, we often find it helpful
to first interrupt the program and call get time to get a
reference time, before resuming the execution using cont

and providing the input trigger.
2.1.0.2 The trace class and the item class: As men-

tioned above, the trace class represents sparse projections
of the execution at points of interest. These traces contain
snapshots or other values, indexed by the relevant time
in the execution. Initially, traces are created using the
execution methods described above, and traces may be
further derived from other traces.

The first five trace methods query items in traces.
The tr. len () method is called by the Python built-in
function len(tr), and returns the total number of items
in the tr. The tr. iter () method is called by Python’s
for x in tr loop, and returns a sequential Python iterator

over all items in tr. The get at(t) method returns the item
at time t in the trace, or None if there is no item at that
time. Since traces are often very sparse, it can be difficult
to find items using get at, so the trace class also provides
two methods, get before(t) and get after(t), that return the
first item found before or after time t, respectively, or

2. We use the convention of naming time variables as t, and trace
variables as tr.

4

None if no item can be found. The get at, get before, and
get after methods return values that are wrapped in the
item class, which associates values with a particular point
in the execution.

The remaining methods create new traces from ex-
isting traces. The tr.filter(p) method creates a new trace
consisting only of items from tr that match predicate
p. The tr.map(f) method creates a new trace of items
computed by calling function f on each item from tr, and
is useful for extracting particular values of interest from
snapshots. The tr.slice(t0, t1) method creates a new trace
that includes only items from tr between times t0 and t1.

The trace class also provides several more complex
methods to derive new traces. Three methods create new
traces by merging traces. First, tr0.merge(f, tr1) creates
a new trace containing the items from both tr0 and
tr1, calling function f to combine any items from tr0

and tr1 that occur at the same time (Fig. 2a). None

can be passed for f if tr0 and tr1 contain items that
can never coincide, e.g., if tr0 contains calls to foo and
tr1 contains calls to bar, since f will never be called
in this case. Next, tr0.trailing merge(f, tr1) creates a new
trace by calling f to merge each item from tr0 with the
immediately preceding item from tr1, or None if there is
no preceding item (Fig. 2b). Lastly, rev trailing merge is
similar to trailing merge except that it merges with future
items rather than past items (Fig. 2c).

The remaining four methods create new traces by
computing over prefixes or suffixes of an input trace. The
scan method performs a fold- or reduce-like operation for
every prefix of an input trace (Fig. 2d). It is called as tr

.scan(f, acc), where f is a binary function that takes an
accumulator and an item as arguments, and acc is the
initial accumulator. It returns a new trace containing the
same number of items at the same times as in the input
trace tr, where the nth output item outn is recursively
computed as:

outn =







inn
f outn−1 if n > 0

inn
f acc if n = 0

where f is written infix as f . The rev scan method is
similar, but deriving a trace based on future items rather
than past items (Fig. 2e). rev scan computes the output
item outn as follows:

outn =







inn
f outn+1 if 0 ≤ n < length − 1

inn
f acc if n = length − 1

Lastly, tscan and rev tscan are variants of scan and
rev scan, respectively, that take an associative binary
function but no accumulator, and can sometimes be more
efficient. These two methods are described in Sec. 3.2.

2.1.0.3 The snapshot class and the gdb value class:
The snapshot class represents a program state at a par-
ticular point in time and provides methods for accessing
that state, e.g., read var(x) returns the value of a variable
named x in the current stack frame, read retaddrs returns

the list of return addresses on the stack, backtrace prints
the stack backtrace, and so on.

The gdb value class represents values in the program
being debugged at a particular point in time, and pro-
vides methods for querying those values. For example,
v. getitem (x) is called by the Python indexing oper-
ator v[x] to access struct fields or array elements, deref

dereferences pointer values, addrof returns the address
of an l-value, and so forth. These gdb value objects are
automatically coerced to the appropriate Python types
when they are compared against built-in Python values
such as ints, for example; it is also sometimes useful
to manually coerce gdb value objects to specific Python
types, e.g., to treat a pointer value as a Python int.

Both the snapshot and gdb value classes are thin wrap-
pers around GDB’s Python API and UndoDB. When a
method of a snapshot or gdb value object is called, it
first directs UndoDB to jump to the point in time in
the program execution that is associated with the object.
Then, it calls the corresponding GDB API, wrapping the
return value in snapshot and gdb value as necessary. In
general, the semantics of snapshot and gdb value follows
GDB, e.g., the EXPOSITOR’s notion of stack frames is
based on GDB’s notion of stack frames. We also provide
several methods, such as read retaddrs, that return the
result of several GDB API calls in a more convenient
form. Additionally, all of GDB’s Python API is available
and may be used from within EXPOSITOR.

Given a debugging hypothesis, we use the EXPOSITOR

interface to apply the following recipe. First, we call
methods on the execution to derive one or more traces
that contain events relevant to the hypothesis; such
events could be function calls, breakpoints, system calls,
etc. Next, we combine these traces as appropriate, apply-
ing trace methods such as filter, map, merge, and scan to
derive traces of properties predicted by our hypothesis.
Finally, we query the traces using methods such as
get before and get after to find evidence of properties that
would confirm or refute our hypothesis.

2.2 Warm-up Example: Examining foo Calls in EX-

POSITOR

To begin with a simple example, let us consider the task
of counting the number of calls to a function foo, to
test a hypothesis that an algorithm is running for an
incorrect number of iterations, for example. Counting foo

calls takes just two lines of code in EXPOSITOR. We first
use the breakpoints method of the execution to create the
foo trace:

59 foo = the execution.breakpoints(”foo”)

This gives us a trace containing all calls to foo. We can
then count the calls to foo using the Python len function,
and print it:

60 print len(foo)

5

tr0

tr1

tr0.merge(f, tr1)

f

(a)

None

tr0

tr1

tr0.trailing_merge(f, tr1)

f f ff

(b)

None

tr0

tr1

tr0.rev_trailing_merge(f, tr1)

ffff

(c)

tr

tr.scan(f, acc)

acc f f f

(d)

tr

tr.rev_scan(f, acc)

accfff

(e)

Fig. 2. Illustration of complex trace operations.

Later, we may want to count only calls to foo(x) where
x == 0, perhaps because we suspect that only these calls
are buggy. We can achieve this using the filter method on
the foo trace created above:

61 foo 0 = foo.filter(lambda snap: snap.read var(”x”) == 0)

Here, we call filter with a predicate function that takes
a snapshot object (at calls to foo), reads the variable
named x, and returns whether x == 0. The resulting trace
contains only calls to foo(0), which we assign to foo 0.
We can then count foo 0 as before:

62 print len(foo 0}

After more investigation, we may decide to examine
calls to both foo(0) and foo(1), e.g., to understand the
interaction between them. We can create a new trace of
foo(1) calls, and merge it with foo(0):

63 foo 1 = foo.filter(lambda snap: snap.read var(”x”) == 1)
64 foo 01 = foo 0.merge(None, foo 1)

We define foo 1 just like foo 0 but with a different
predicate. Then, we use the merge method to merge
foo 0 and foo 1 into a single trace foo 01 containing calls
to both foo(0) and foo(1), passing None for the merging
function as foo(0) and foo(1) can never coincide. Note
that we are able to reuse the foo and foo 0 traces in
a straightforward manner; under the hood, EXPOSITOR

will also have cached the computation of foo and foo 0

from the earlier and reuse them here.
Finally, we may want to take a closer look at the very

first call to either foo(0) or foo(1), which we can do using
the get after method:

65 first foo 01 = foo 01.get after(0)

We call get after on foo 01 to find the first item after time
0, i.e., the beginning of the execution, that contains the
snapshot of a foo(0) or foo(1) call.

In this example, observe how we began with a simple
debugging task that counts all calls to foo in a trace to
answer our initial hypothesis, then gradually create more
traces or combined existing ones and queried them as
our hypothesis evolves. EXPOSITOR is particularly suited
for such incremental, interactive style of debugging.

2.2.1 Comparison to GDB’s Python API

In contrast to EXPOSITOR, it takes 16 lines of code to
count foo calls using GDB’s standard Python API, as
shown below:

66 count = 0; more = True
67 foo = gdb.Breakpoint(”foo”)
68 def stop handler(evt):
69 if isinstance(evt, gdb.BreakpointEvent) \
70 and foo in evt.breakpoints:
71 global count; count += 1
72 def exit handler(evt):
73 global more; more = False
74 gdb.events.stop.connect(stop handler)
75 gdb.events.exited.connect(exit handler)
76 gdb.execute(”start”)
77 while more:
78 gdb.execute(”continue”)
79 gdb.events.exited.disconnect(exit handler)
80 gdb.events.stop.disconnect(stop handler)
81 foo.delete()

On line 66, we first initialize two variables, count

and more, that will be used to track of the number
of calls to foo and to track if the execution has ended
respectively. Then, on line 67, we create a breakpoint at
the call to foo. Next, we create a callback function named
stop handler on lines 68–71 to handle breakpoint events.
In this function, we first check on lines 69–70 to see if
the breakpoint triggered is the one that we have set, and
if so, we increment count on line 71. We also create a
callback function named exit handler on lines 72–73 to
handle stop events which are fired when the program
execution ends. This function simply resets the more flag
when called.

After that, we register stop handler and exit handler

with GDB on lines 74–75, and start the program exe-
cution on line 76. GDB will run the program until it
hits a breakpoint or the end of the execution is reached,
calling stop handler in the former case, or exit handler in
the latter case. Then, we enter a loop on lines 77–78 that
causes GDB to continue running the program until more

is False, i.e., the program has exited. Once that happens,
we deregister the event handlers from GDB and delete
the breakpoint on lines 79–81, cleaning up after ourselves
to ensure that the callbacks and breakpoint will not be
unintentionally triggered by other scripts.

It also takes more work to refine this GDB script to an-
swer other questions about foo, compared to EXPOSITOR

traces. For example, to count calls to foo(0), we would
have to modify the GDB script to add the x == 0 predicate
and rerun it, instead of simply calling filter on the foo

trace. As another example, if we were given two different
scripts, one that counts foo(0) and another that counts
foo(1), if would be difficult to combine those scripts as
they each contain their own driver loops and shared

6

variables; it would be easier to just modify one of those
script than to attempt to reuse both. In contrast, it took
us one line to use the merge method to combine the foo 0

and foo 1 traces. Finally, note that EXPOSITOR caches
and reuses trace computation automatically, whereas we
would need some foresight to add caching to the GDB
script in a way that can be reused by other scripts.

2.3 Example: Reverse Engineering a Stack-

Smashing Attack

We now illustrate the use of EXPOSITOR with a more
sophisticated example: reverse engineering a stack-
smashing attack, in which malware overflows a stack
buffer in the target program to overwrite a return ad-
dress on the stack, thereby gaining control of the pro-
gram counter [7].

We develop a reusable script that can detect when the
stack has been smashed in any program, which will help
pinpoint the attack vector. Our script maintains a shadow
stack of return addresses and uses it to check that only
the top of the stack is modified between function calls
or returns; any violation of this property indicates the
stack has been smashed.

We begin by using the all calls and all returns methods
on the execution to create traces of just the snapshots at
function calls and returns, respectively:

82 calls = the execution.all calls()
83 rets = the execution.all returns()

Next, we use merge to combine these into a single trace,
passing None for the merging function as function calls
and returns can never coincide. We will use this new
trace to compare consecutive calls or returns:

84 calls rets = calls.merge(None, rets)

Now, we map over call returns to apply the read retaddrs

method, returning the list of return addresses on the call
stack. This creates a trace of shadow stacks at every call
and return:

85 shadow stacks = calls rets.map(
86 lambda s: map(int, s.read retaddrs()))

We also use map to coerce the return addresses to Python
ints.

Then we need to check that, between function calls
and returns, the actual call stack matches the shadow
stack except for the topmost frame (one return address
may be added or removed). We use the following func-
tion:

87 def find corrupted(ss, opt shadow):
88 if opt shadow.force() is not None:
89 for x, y in zip(ss.read retaddrs(), opt shadow.force()):
90 if int(x) != y:
91 return x # l-value of return address on stack
92 return None

Here, find corrupted takes as arguments a snapshot ss

and its immediately preceding shadow stack opt shadow;
the opt prefix indicates that there may not be a prior

shadow stack (if ss is at the first function call), and we
need to call the force method on opt shadow to retrieve
its value (we will explain the significance of this in
Sec. 3). If there is a prior shadow stack, we compare
every return address in ss against the shadow stack and
return the first location that differs, or None if there are
no corrupted addresses. (The zip function creates a list
of pairs of the respective elements of the two input lists,
up to the length of the shorter list.)

Finally, we generate a trace of corrupted mem-
ory locations using the trailing merge method, calling
find corrupted to merge each function call and return from
call rets with the immediately preceding shadow stack in
shadow stacks. We filter None out of the result:

93 corrupted addrs = calls rets \
94 .trailing merge(find corrupted, shadow stacks) \
95 .filter(lambda x: x is not None)

The resulting trace contains exactly the locations of
corrupted return addresses at the point they are first
evident in the trace.

2.4 Mini Case Study: Running EXPOSITOR on tinyhttpd

We used the script just developed on a version of tiny-

httpd [8] that we had previously modified to include a
buffer overflow bug. We created this version of tinyhttpd

as an exercise for a security class in which students
develop exploits of the vulnerability.

As malware, we deployed an exploit that uses a
return-to-libc attack [9] against tinyhttpd. The attack
causes tinyhttpd to print “Now I pwn your computer” to the
terminal and then resume normal operation. Finding
buffer overflows using standard techniques can be chal-
lenging, since there can be a delay from the exploit over-
flowing the buffer to the payload taking effect, during
which the exploited call stack may be erased by normal
program execution. The payload may also erase evidence
of itself from the stack before producing a symptom.

To use EXPOSITOR, we call the expositor launcher with
tinyhttpd as its argument, which will start a GDB session
with EXPOSITOR’s library loaded, and then enter the
Python interactive prompt from GDB:3

96 % expositor tinyhttpd
97 (expositor) python-interactive

Then, we start running tinyhttpd:

98 ≫ the execution.cont() # start running
99 httpd running on port 47055

When tinyhttpd launches, it prints out the port number
on which it accepts client connections. On a different
terminal, we run the exploit with this port number:

100 % ./exploit.py 47055
101 Trying port 47055
102 pwning...

3. GDB contains an existing python command that is not interactive;
python-interactive is a new command that we have submitted to GDB,
and is available as of GDB 7.6.

7

At this point, tinyhttpd prints the exploit message, so
we interrupt the debugger and use EXPOSITOR to find
the stack corruption, starting from the time when we
interrupted it:

103 Now I pwn your computer
104 ˆC
105 Program received signal SIGINT, Interrupt
106 ≫ corrupted addrs = stack corruption()
107 # function containing Sec. 2.3 code
108 ≫ time = the execution.get time()
109 ≫ last corrupt = corrupted addrs.get before(time)

Items in a trace are indexed by time, so the get before

method call above tells EXPOSITOR to start computing
corrupted addrs from the interrupted time backward and
find the first function call or return when the stack
corruption is detected. We can print the results:

110 ≫ print time
111 56686.8
112 ≫ print last corrupt
113 Item(56449.2, address)

This shows that the interrupt occurred at time 56686.8,
and the corrupted stack was first detected at a function
call or return at time 56449.2. We can then find and print
the snapshot that corrupted the return address with:

114 ≫ bad writes = the execution \
115 .watchpoints(last corrupt.value, rw=WRITE)
116 ≫ last bad write = bad writes.get before(last corrupt.time)
117 ≫ print last bad write
118 Item(56436.0, snapshot)

We find that the first write that corrupted the return
address occurred at time 56436.0. We can then inspect
the snapshot via last bad write.value. In this case, the
backtrace of the very first snapshot identifies the exact
line of code in tinyhttpd that causes the stack corruption—
a socket recv with an out-of-bounds pointer. Notice that
to find the bug, EXPOSITOR only inspected from time
56686.8 to time 56436.0. Moreover, had last corrupt not
explained the bug, we would then call corrupted addrs

.get before(last corrupt.time) to find the prior corruption
event, inspecting only as much of the execution as
needed to track down the bug.

This mini case study also demonstrates that, for some
debugging tasks, it can be much faster to search back-
ward in time. It takes only 1 second for corrupted addrs

.get before(time) to return; whereas if we had instead
searched forward from the beginning (e.g., simulating
a debugger without time-travel):

119 first corrupted = corrupted addrs.get after(0)

it takes 4 seconds for the answer to be computed. Using
EXPOSITOR, users can write scripts that search forward
or backward in time, as optimal for the task.

3 LAZY TRACES IN EXPOSITOR

As just discussed, EXPOSITOR allows users to treat traces
as if they were lists of snapshots. However, for many
applications it would be impractical to eagerly record

and analyze full program snapshots at every program
point. Instead, EXPOSITOR uses the underlying time-
travel debugger, UndoDB, to construct snapshots on
demand and to discard them when they are no longer
used (since it is expensive to keep too many snapshots
in memory at once). Thus the major challenge is to
minimize the demand for snapshots, which EXPOSITOR

accomplishes by constructing and manipulating traces
lazily.

More precisely, all of the trace generators and combi-
nators, including execution.all calls, trace.map, trace.merge,
etc., return immediately without invoking UndoDB. It
is only when final values are demanded, with execution

.get at, trace.get at, trace.get after, or trace.get before, that
EXPOSITOR queries the actual program execution, and
it does so only as much as is needed to acquire the
result. For example, the construction of corrupted addrs

in Sec. 2.4, line 106 induces no time travel on the under-
lying program—it is not until the call to corrupted addrs

.get before(time) in Sec. 2.4, line 109 that EXPOSITOR uses
the debugger to acquire the final result.

To achieve this design, EXPOSITOR uses a lazy,
interval-tree-like data structure to implement traces.
More precisely, a trace is a binary tree whose nodes
are annotated with the (closed) lower-bound and (open)
upper-bound of the time intervals they span, and leaf
nodes either contain a value or are empty. The initial
tree for a trace contains no elements (only its definition),
and EXPOSITOR materializes tree nodes as needed.

As a concrete example, the following trace constructs
the tree shown on the right, with a single lazy root node
spanning the interval [0,∞), which we draw as a dotted
box and arrow.

120 foo = the execution.breakpoints(”foo”)
0 ∞

Now suppose we call foo.get before(100). EXPOSITOR

sees that the query is looking for the last call to foo

before time 100, so it will ask UndoDB to jump to time
100 and then run backward until hitting such a call.
Let us suppose the call is at time 50, and the next
instruction after that call is at time 50.1. Then EXPOSITOR

will expand the root node shown above to the following
tree:

0 ∞

0 ∞

50.1 ∞

100 ∞50.1 100

0 50.1

foo 50.1500 50

Here the trace has been subdivided into four intervals:
The intervals [0, 50) and [100,∞) are lazy nodes with no
further information, as EXPOSITOR did not look at those
portions of the execution. The interval [50, 50.1) contains
the discovered call, and the interval [50.1, 100) is fully
resolved and contains no calls to foo. Notice that if we
ask the same query again, EXPOSITOR can traverse the

8

interval tree above to respond without needing to query
UndoDB.

Likewise, calling get at(t) or get after(t) either returns
immediately (if the result has already been computed) or
causes UndoDB to jump to time t (and, for get after(t), to
then execute forward). These methods may return None,
e.g., if a call to foo did not occur before/after/at time t.

As our micro-benchmarks in Sec. 5 will show, if we
request about 10–40% of the items in a trace, computing
traces lazily takes less time than computing eagerly,
depending on the query pattern as well as the kind
of computations done. This makes lazy traces ideal for
debugging tasks where we expect programmers to begin
with some clues about the location of the bug. For
example, we start looking for stack corruption from the
end of the execution in Sec. 2.4, line 109, because stack
corruptions typically occur near the end of the execution.

3.1 Lazy Trace Operations

We implement filter and map lazily on top of the interval
tree data structure. For a call tr1 = tr0.map(f), we initially
construct an empty interval tree, and when values are
demanded in tr1 (by get X calls), EXPOSITOR conceptu-
ally calls tr0.get X, applies f to the result, and caches
the result for future use. Calls to tr0.filter(p) are handled
similarly, constructing a lazy tree that, when demanded,
repeatedly gets values from tr0 until p is satisfied. Note
that for efficiency, EXPOSITOR’s does not actually call
get X on the root node of tr0; instead, it directly traverses
the subtree of tr0 corresponding to the uninitialized
subtree of the derived trace.

The implementation of tr0.merge(f, tr1) also calls get X

on tr1 as required. For a call tr.slice(t0, t1) EXPOSITOR

creates an interval tree that delegates get X calls to tr,
asking for items from time t0 to time t1, and returns None

for items that fall outside that interval.
For the last four operations, [rev]trailing merge and

[rev]scan, EXPOSITOR employs additional laziness in the
helper function argument f. To illustrate, consider a call
to tr.scan(f, acc). Here, EXPOSITOR passes the accumulator
to f wrapped in an instance of class lazy, defined as
follows:

121 class lazy:
122 force(): return the actual value
123 is forced(): return whether force has been called

The force method, when first called, will compute the
actual value and cache it; the cached value is returned
in subsequent calls. Thus, f can force the accumulator as
needed, and if it is not forced, it will not be computed.

To see the benefit, consider the following example,
which uses scan to derive a new trace in which each
item is a count of the number of consecutive calls to foo

with nonzero arguments, resetting the count when foo is
called with zero:

124 foo = execution.breakpoints(”foo”) # void foo(int x)
125 def count nonzero foo(lazy acc, snapshot):
126 if snapshot.read var(”x”) != 0:

127 return lazy acc.force() + 1
128 else:
129 return 0
130 nonzero foo = foo.scan(count nonzero foo, 0)

Notice that if lazy acc were not lazy, EXPOSITOR

would have to compute its value before calling
count nonzero foo. By the definition of scan (Fig. 2d), this
means that it must recursively call count nonzero foo to
compute all prior output items before computing the
current item, even if it is unnecessary to do so, e.g., if we
had called nonzero foo.get before(t), and the call to foo just
before time t had argument x=0. Thus, a lazy accumulator
avoids this unnecessary work. EXPOSITOR uses a lazy
accumulator in rev scan for the same reason.

Likewise, observe that in tr0.trailing merge(f, tr1), for
a particular item in tr0 the function f may not need
to look in tr1 to determine its result; thus, EXPOSITOR

wraps the tr1 argument to f in an instance of class lazy.
The implementation of rev trailing merge similarly passes
lazy items from tr1 to f. Note that there is no such
laziness in the regular merge operation. The reason is
that in tr0.merge(f, tr1), the items from tr0 and tr1 that are
combined with f occur at the same time. Thus, making
f’s arguments lazy would not reduce demands on the
underlying time-travel debugger.

3.2 Tree Scan

Finally, EXPOSITOR provides another list combinator,
tree-scan, which is a lazier variant of scan that is some-
times more efficient. The tscan method computes an
output for every prefix of an input trace by applying
an associative binary function in a tree-like fashion
(Fig. 3a). It is invoked with tr.tscan(f), where f must be
an associative function that is lazy and optional in its
left argument and lazy in its right argument. The tscan

method generates an output trace of the same length as
the input trace, where the nth output outn is defined as:

outn = in0 f in1 f · · · f inn

where f is written infix as f . Notice that there is
no accumulator, and EXPOSITOR can apply f in any
order, since it is associative. When a value at time t

is demanded from the output trace, EXPOSITOR first
demands the item inn at that time in the input trace
(if no such item exists, then there is no item at that time
in the output trace). Then EXPOSITOR walks down the
interval tree structure of the input trace, calling f (only
if demanded) on each internal tree node’s children to
compute outn. Since the interval tree for the input trace
is computed lazily, f may sometimes be called with None

as a left argument, for the case when f forces an interval
that turns out to contain no values; thus for correctness,
we also require that f treats None as a left identity. (The
right argument corresponds to inn and so will never be
None.)

Because both arguments of f are lazy, EXPOSITOR

avoids computing either argument unnecessarily. The

9

tr

tr.tscan(f)

ff

f f

(a)

tr.rev_tscan(f)

tr

f

f f

f

(b)

Fig. 3. Illustration of tree-scan operations.

is forced method of the lazy class is particularly useful
for tscan, as it allows us to determine if either argument
has been forced, and if so, evaluate the forced argument
first. For example, we can check if a trace contains a true
value as follows:

131 def has true(lazyleft, lazyright):
132 return lazyleft.is forced() and lazyleft.force() \
133 or lazyright.is forced() and lazyright.force() \
134 or lazyleft.force() or lazyright.force()
135 has true trace = some trace.tscan(has true)
136 last has true = has true trace.get before(”inf”)

The best case for this example occurs if either lazyleft

or lazyright have been forced by a prior query, in which
case either the first clause (line 132) or second clause
(line 133) will be true and the unforced argument need
not be computed due to short-circuiting.

EXPOSITOR’s rev tscan derives a new trace based on
future items instead of past items (Fig. 3b), computing
output item outn as:

outn = inn
f inn+1 f · · · f in length−1

Here, the right argument to f is optional, rather than the
left.

4 THE EDIT HASH ARRAY MAPPED TRIE

Many of the EXPOSITOR scripts we have written use
sets or maps to record information about the program
execution. For example, in Sec. 1, we suggested the
use of a shadow set to debug the implementation of a
custom set data structure. Unfortunately, a typical eager
implementation of sets or maps could demand all items
in the traces, defeating the intention of EXPOSITOR’s lazy
trace data structure. To demonstrate this issue, consider
the following code, which uses Python’s standard (non-
lazy) set class to collect all arguments in calls to a
function foo:

137 foos = the execution.breakpoints(”foo”) # void foo(int arg)
138 def collect foo args(lazy acc, snap):
139 return lazy acc.force().union(\
140 set([int(snap.read var(”arg”))]))
141 foo args = foos.scan(collect foo args, set())

Notice that we must force lazy acc to call the union

method which will create a deep copy of the updated
set (lines 139–140). Unfortunately, forcing lazy acc causes

142 class edithamt:
143 # lookup methods
144 contains(k):
145 Return if key k exists
146 find(k):
147 Return the latest value for k or None if not found
148 find multi(k):
149 Return an iterator of all values bound to k
150

151 # static factory methods to create new EditHAMTs
152 empty():
153 Create an empty EditHAMT
154 add(lazy eh, k):
155 Add binding of k to itself to lazy eh
156 addkeyvalue(lazy eh, k, v):
157 Add binding of k to v to lazy eh
158 remove(lazy eh, k):
159 Remove all bindings of k from lazy eh
160 removeone(lazy eh, k):
161 Remove the latest binding of k to any value from lazy eh
162 removekeyvalue(lazy eh, k, v):
163 Remove the latest binding of k to v from lazy eh
164 concat(lazy eh1, lazy eh2):
165 Concatenate lazy eh2 edit history to lazy eh1

Fig. 4. The EditHAMT API.

the immediately preceding set to be computed by recur-
sively calling collect foo args. As a result, we must com-
pute all preceding sets in the trace even if a particular
query could be answered without doing so.

To address these problems, we developed the edit hash
array mapped trie (EditHAMT), a new set, map, multiset,
and multimap data structure that supports lazy con-
struction and queries. The EditHAMT complements the
trace data structure; as we will explain, and our micro-
benchmark in Sec. 5.4 will show, the EditHAMT can
be used in traces without compromising trace laziness,
unlike eager sets or maps.

4.1 EditHAMT API

From the user’s perspective, the EditHAMT is an im-
mutable data structure that maintains the entire history
of edit operations for each EditHAMT. Fig. 4 shows the
EditHAMT API. The edithamt class includes contains(k) to
determine if key k exists, and find(k) to look up the latest
value mapped to key k. It also includes the find multi(k)

method to look up all values mapped to key k, returned
as a Python iterator that incrementally looks up each
mapped value. EditHAMT operations are implemented
as static factory methods that create new EditHAMTs.
Calling edithamt.empty() creates a new, empty EditHAMT.
Calling edithamt.add(lazy eh, k) creates a new EditHAMT
by adding to lazy eh, the prior EditHAMT, a bind-
ing from key k to itself (treating the EditHAMT as a
set or multiset). Similarly, edithamt.addkeyvalue(lazy eh, k,

v) creates a new EditHAMT by adding to lazy eh a
binding from key k value v (treating the EditHAMT
as a map or multimap). Conversely, calling edithamt

.remove(lazy eh, k) creates a new EditHAMT by removing

10

all bindings of key k from lazy eh. Lastly, calling edithamt

.removeone(lazy eh, k) or edithamt.removekeyvalue(lazy eh,

k, v) creates new EditHAMTs by removing from lazy eh

the most recent binding of key k to any value or to a
specific value v. The lazy eh argument to these static
factory methods is lazy so that we need not force it
until a call to contains, find or find multi demands a result.
For convenience, the lazy eh argument can also be None,
which is treated as an empty EditHAMT.

The last static factory method, edithamt.concat(lazy eh1,

lazy eh2), concatenates the edit histories of its argu-
ments. For example:

166 eh rem = edithamt.remove(None, ”x”)
167 eh add = edithamt.addkeyvalue(None, ”x”, 42)
168 eh = edithamt.concat(eh add, eh rem)

Here eh is the empty EditHAMT, since it contains the
additions in eh add followed by the removals in eh rem.
A common EXPOSITOR script pattern is to map a trace to
a sequence of EditHAMT additions and removals, and
then use edithamt.concat with scan or tscan to concatenate
those edits.

4.2 Example: EditHAMT to Track Reads and Writes
to a Variable

As an example of using the EditHAMT, we present one
piece of the race detector used in our Firefox case study
(Sec. 6). The detector compares each memory access
against prior accesses to the same location from any
thread. Since UndoDB serializes thread schedules, each
read need only be compared against the immediately
preceding write, and each write against the immediately
preceding write as well as reads between the two writes.

We use the EditHAMT as a multimap in the following
function to track the access history of a given variable v:

169 def access events(v):
170 reads = the execution.watchpoints(v, rw=READ) \
171 .map(lambda s: edithamt.addkeyvalue(\
172 None, v, (”read”, s.get thread id())))
173 writes = the execution.watchpoints(v, rw=WRITE) \
174 .map(lambda s: edithamt.addkeyvalue(\
175 edithamt.remove(None, v), \
176 v, (”write”, s.get thread id())
177 return reads.merge(None, writes)

In access events, we create the trace reads by finding
all reads to v using the watchpoints method (line 170), and
then mapping each snapshot to a singleton EditHAMT
that binds v to a tuple of ”read” and the running thread
ID (lines 171–172). Similarly, we create the trace writes

for writes to v (line 173), but instead map each write
snapshot to an EditHAMT that first removes all prior
bindings for v (line 175), then binds v to a tuple of ”write”

and the thread ID (lines 174–176). Finally, we merge reads

and writes, and return the result (line 177).
We are not done yet, since the EditHAMTs in the trace

returned by access events contain only edit operations
corresponding to individual accesses to v. We can get an
EditHAMT trace that records all accesses to v from the

Read

var1

t
0

thread 1

Read

var2

t
1

thread 2

Write

var1

Add

var1
read,1

access_events("var1").merge(access_events("var2"))

Remove

var1

Add

var1
write,1

Write

var2

Read

var1

Add

var2
read,2

Remove

var2

Add

var2
write,1

Add

var1
read,2

t
2

t
3

t
4

Fig. 5. Example execution with two threads accessing

var1 (gray) and var2, and the corresponding EditHAMT

operations returned by access events.

beginning of the execution by using scan with edithamt

.concat to concatenate the individual EditHAMTs. For
example, we can record the access history of var1 as
follows:

178 var1 history = access events(”var1”).scan(edithamt.concat)

We can also track multiple variables by calling
access events on each variable, merging the traces, then
concatenating the merged trace, e.g., to track var1 and
var2:

179 access history = \
180 access events(”var1”).merge(access events(”var2”)) \
181 .scan(edithamt.concat)

Since trace methods are lazy, this code completes imme-
diately; the EditHAMT operations will only be applied,
and the underlying traces forced, when we request a
particular access, e.g., at the end of the execution (time
”inf”):

182 last = access history.get before(”inf”)

To see laziness in action, consider applying the above
analysis to an execution depicted in Fig. 5, which shows
two threads at the top and the corresponding EditHAMT
operations at the bottom. Suppose we print the latest
access to var1 at time t4 using the find method:

183 ≫ print last.find(”var1”)
184 (”read”, 2)

Because ”var1” was just added at time t4, answering this
query will only force the EditHAMT and query the time-
travel debugger at time t4, and not before.

As another example, suppose we want to find all
accesses to var1 from the last access backward using
find multi:

185 ≫ for mem access in last.find multi(”var1”):
186 print mem access
187 (”read”, 2)
188 (”write”, 1)

Here since all ”var1” bindings added prior to time t2 were
removed at time t2, the results are computed without
forcing any EditHAMTs or querying the debugger before
time t2.

11

4.3 Implementation

The EditHAMT is inspired by the hash array mapped trie
(HAMT) [10]. Like the HAMT, the EditHAMT is a hybrid
data structure combining the fast lookup of a hash table
and the memory efficiency of a trie. The HAMT is a hash-
based data structure built in a manner analogous to a
hash table. Whereas a hash table uses a bucket array to
map keys to values, the HAMT uses an array mapped
trie (AMT)—a trie that maps fixed-width integer keys
to values—for the same purpose. When a hash collision
occurs, the HAMT resolves the collision by replacing
the colliding entry with a nested HAMT, rehashing the
colliding keys, and inserting those keys in the nested
HAMT using the new hash values.

We developed the EditHAMT by making two changes
to the traditional HAMT. First, we replaced the AMT
with the LazyAMT, which supports lazy, rather than
eager, updates. Second, we resolve hash collisions, as
well as support remove and multiset/multimap opera-
tions, using EditLists, which are lazy linked-lists of nodes
tallying edit operations on the EditHAMT; the tails are
lazily retrieved from the prior EditHAMT.

4.3.1 LazyAMT: Lazy Array Mapped Tries

The first piece of the EditHAMT is the LazyAMT, which
is a lazy, immutable variant of the AMT that maps fixed-
width integer keys of size k bits to values. We implement
the LazyAMT using lazy sparse arrays of size 2w as
internal nodes, where w is the bit-width of the array
index such that w < k, and store key-value bindings
as leaf nodes. We will divide the key into w-bit words,
where each w-bit word is used to index an internal node
during a lookup; the key can be padded as necessary if
k is not a multiple of w.

Lazy sparse arrays combine the properties of lazy
values and sparse arrays: each element of a lazy sparse
array is computed and cached when first indexed, akin
to forcing a lazy value, and null elements are stored
compactly, like sparse arrays. We implement lazy sparse
arrays using two bitmaps to track which elements are
initialized and non-null,4 respectively, and an array to
store initialized, non-null elements.

To build the EditHAMT, we need to support two
operations on the LazyAMT: adding a key-value binding
to a LazyAMT, and merging two LazyAMTs into a single
LazyAMT. We will explain how the LazyAMT works by
example, using an internal node index bit-width of w = 2
bits and a key size of k = 6 bits.

4.3.1.1 Adding a key-value binding: When we add
a binding such as 14 : b to a LazyAMT, we first create a
new lazy sparse array representing the root node:

4. It is more efficient to track non-null elements as many modern
processors provide a POPCNT instruction, which counts the number of
1 bits in a word, that can be used to compute the index of a non-null
element in the storage array.

14:b

prior
LazyAMT

Initially, all elements of the root node are uninitialized,
which we depict as four narrow dotted boxes; we will
use the convention of numbering the boxes from left
to right, i.e., in binary, the leftmost box is element 00,
and the rightmost box is element 11. In addition, we
also maintain a lazy reference to the prior LazyAMT;
we do not yet need to know what the prior LazyAMT
contains, which we indicate with a dotted arrow. In
fact, the lazy reference allows us to further defer the
construction of (the root node of) the prior LazyAMT,
i.e., the prior LazyAMT may not exist yet when we
add the binding 14 : b; we indicate this with a dotted
trapezoid. For example, in EXPOSITOR, we may query
UndoDB to determine what binding should be added
only when the lazy reference to the prior LazyAMT is
first forced. We also need to store the binding 14 : b, to
be added when the LazyAMT is sufficiently initialized.

The actual construction of the LazyAMT occurs only
when we look up a binding. The lookup is a standard
trie lookup, however, since internal nodes are lazy sparse
arrays, the elements of those arrays will be initialized
as necessary when we access those elements during the
lookup. We initialize an element in one of three ways,
depending on whether that element is along the lookup
path of the binding we previously set aside to be added,
and whether we have reached the end of the lookup
path. If the element is along the lookup path the binding
and we have not reached the end of the lookup path, we
create the next internal node and initialize the element
to that node. If the element is along the lookup path of
the binding and we have reached the end of the lookup
path, we initialize the element to a leaf node containing
that binding. Otherwise, if the element is not along the
lookup path of the binding, we initialize it to point to
the same subtrie as the corresponding element (at the
same partial lookup path) in the prior LazyAMT, or to
be null if the corresponding element does not exist. Note
that in the last case, prior LazyAMTs will be recursively
initialized as necessary.

For example, suppose that we look up the binding for
key 14. First, we split up the key into w-bit words, here,
00 11 10 in binary; this is the lookup path for key 14.
Then, we use the first word, 00, to index the root node.
We need to initialize the element at 00 as this is the first
time we accessed it. Since this particular LazyAMT was
created by adding 14 : b and the 00 element of the root
node is along the lookup path for key 14, we initialize
that element to a new uninitialized internal node below
the root node:

14:b

prior
LazyAMT

12

Here, we depict the initialized element of the root node
as a square unbroken box, and a non-lazy reference to
the just created internal node as an unbroken arrow.

We continue the lookup by using the next word, 11,
to index the just created internal node. Since 11 is again
along the lookup path, we initialize the corresponding
element to another internal node. We repeat the process
again with the last word, 10, but now that we have
exhausted all bits in the lookup key, we initialize the
element for 10 to point to a leaf node containing the
binding 14 : b that we previously set aside. This results
in a partially initialized LazyAMT:

prior
LazyAMT

14:b

We finish the lookup for key 14 and return b.

The example so far illustrates how the lookup pro-
cess drives the initialization process in an interleaved
manner. Also, since we are looking up a key that was
just inserted into the LazyAMT, we did not need to
refer to the prior LazyAMT at all. These properties allow
LazyAMTs to be constructed lazily, by initializing only
as much as necessary to answer lookup queries.

We continue the example by considering the case of
looking up a key that was not added by the most
recent LazyAMT. Suppose that the immediately prior
LazyAMT, when computed, will add binding 5 : a:

prior
LazyAMT

14:b

add 5 : a

If we then look up key 5, or 00 01 01 in binary, from
the rightmost LazyAMT, we would first index 00 of
the root node. We have already initialized this element
from looking up key 14 before, so we simply walk to
the next internal node and index 01. The element at
01 is uninitialized, but it is not along the lookup path
of key 14, the key added to the rightmost LazyAMT.
To continue the lookup of key 5, we retrieve the prior
LazyAMT by forcing our lazy reference to it, causing it
to be partially constructed:

5:a

prior
LazyAMT

14:b

Then, we initialize the element at 01 to point to the
subtrie under the element at the partial key 00 01 in the
prior LazyAMT, initializing the middle LazyAMT a bit
more along the way:

5:a

prior
LazyAMT

14:b

We finish the lookup for key 5 as before, initializing the
LazyAMTs a bit more:

14:b5:a

prior
LazyAMT

Note that we have simultaneously initialized parts of the
rightmost LazyAMT and the middle LazyAMT because
they share a common subtrie; subsequent lookups of key
5 on either LazyAMT will become faster as a result.

4.3.1.2 Merging two LazyAMTs: The merge
operation takes two LazyAMTs as input, which
we call left and right , as well as a function,
mergefn(lazy-opt-leftval , rightval), that is called to
merge values for the same key in both LazyAMTs. As
the name of the arguments suggests, mergefn is called
in an unusual, asymmetric manner in that it is called
for all keys in the right LazyAMT, but not necessarily
for all keys in the left LazyAMT. For each key in the
right LazyAMT, mergefn is called with a lazy, optional
value, representing the value for that key in the left

LazyAMT, as the lazy-opt-leftval argument, and the
value for the same key in the right LazyAMT as the
rightval argument. This approach maximizes laziness
in that we can compute a lazy value as soon as we
determine a key exists in the one LazyAMT without
immediately looking up the value for the same key in
the other LazyAMT. For example, mergefn can be used
to create a lazy linked-list by returning lazy-opt-leftval
and rightval in a tuple.

When we merge two LazyAMTs, we first create a new

13

root node of a new LazyAMT with two lazy references
to the input LazyAMTs:

right
LazyAMT

left
LazyAMT

As before, the actual construction of the merged
LazyAMT occurs when elements of internal nodes are
initialized during lookups. We initialize an element in
one of three ways, depending on whether the corre-
sponding element (at the same partial lookup path) in
the right LazyAMT points to an internal node, points
to a leaf node, or is null. If the corresponding element
points to an internal node, we create the next internal
node and initialize the element to that node. If the
corresponding element points to a leaf node, then we
call mergefn , giving as lazy-opt-leftval a new lazy value
that, when forced, looks up the same key in the left

LazyAMT (returning null if the key does not exist), and
as rightval the value at the leaf node. Otherwise, if the
corresponding element is null, we initialize the element
to point to the same subtrie as the corresponding element
in the left LazyAMT, or to be null if the corresponding
element does not exist. Note that both the left and right

LazyAMTs will be recursively initialized as necessary.
For example, suppose the right LazyAMT contains a

single binding 14 : b:

left
LazyAMT

14:b

If we look up key 14, or 00 11 10 in binary, we would first
index element 00 of the root node. Since this is the first
time we accessed this element, we initialize it by looking
at the corresponding element in the right LazyAMT. The
corresponding element points to an internal node, so we
initialize the element to a new internal node:

left
LazyAMT

14:b

We repeat this process until we exhaust all bits in
the lookup key and reach the corresponding leaf node.
Because a binding exists for key 14 in the right LazyAMT,
we initialize a new leaf node that binds key 14 to a
merged value by first creating a new lazy value that

looks up the key 14 from the left LazyAMT, and calling
mergefn on that lazy value as well as the value b from
the right LazyAMT:

left
LazyAMT

14:b 14:mergefn(, b)

Note that we do not have to force the left LazyAMT to
be computed immediately; the decision to force the left

LazyAMT is deferred to mergefn . We finish the lookup
by returning the newly merged value.

As another example, suppose the left LazyAMT con-
tains a single binding 5 : a:

14:b5:a 14:mergefn(, b)

If we look up key 5, or 00 01 01 in binary, we would
first index element 00 of the root note that is already
initialized above. However, when we index element
01 of the next internal node, we would find that the
corresponding element in the right LazyAMT is null. In
this case, we look up the subtrie under the corresponding
element in the left LazyAMT, and initialize element 01
to it:

14:b5:a 14:mergefn(, b)

Note that we do not call mergefn in this case. We finish
the lookup by walking into left LazyAMT to the leaf
node for key 5, and returning a.

Finally, we represent the empty LazyAMT as a special
instance that simply returns null for all key and partial
key lookups, allowing us to avoid building a trie struc-
ture with no bindings.

LazyAMT lookups are amortized O(1) time; the
LazyAMT has a fixed depth of k/w, so each lookup

14

takes constant time to traverse the internal nodes to a
leaf node. Similarly, adding a binding to a LazyAMT
or merging two LazyAMTs take only amortized O(1)
time and memory to create k/w internal nodes of size
2w each. The amortization of lookups, adding bindings,
and merging LazyAMTs is due to laziness—most of the
cost of adding a binding or merging two LazyAMTs
is deferred to subsequent lookups. Adding the same
key repeatedly would take an additional amortized O(1)
memory each time (i.e., prior bindings are never re-
moved, only shadowed). However, this is actually an
advantage in EXPOSITOR as we are usually interested in
how bindings to the same key change over time.

4.3.2 EditList: Lazy Linked-List of Edit Operations

The second piece of the EditHAMT is the EditList,
which is a lazy immutable set/map/multiset/multimap
implemented as a lazy linked-list of edit operations.

When an operation such as add or remove is applied
to an EditList, we simply append a new node to the
EditList, labeling it with the given operation and argu-
ments. For example, if we add a binding k0 : a to an
EditList (treating the EditList as a map or multimap),
we create a new EditList node labeled addkeyvalue(k0, a)
with a lazy reference to the head of the prior EditList
(i.e., the prior node):

prior EditList addkeyvalue(k0, a)

We depict the EditList node as a box pointing to the
left. Since all operations, including removals, are imple-
mented by appending nodes, we do not need to know
what the prior EditList contains, which we depict as a
dotted arrow. And, as with the LazyAMT, we keep a
lazy reference to the prior EditList which allows us to
further delay any computation necessary to determine
its contents, i.e., the prior EditList may not exist yet
when we perform an addition or removal operation on
it, which we depict as a dotted rounded box. Only when
we first force the lazy reference to the prior EditList will
we need to determine what kind of edit operation the
prior EditList contains or if it is null, e.g., by making
queries to UndoDB in EXPOSITOR.

We support several different kinds of edit operations
on EditLists, with the corresponding node labels:

• add(k): add element k, treating the EditList as a set
or multiset;

• addkeyvalue(k, v): add a binding from key k to value
v, treating the EditList as a map or multimap;

• remove(k): remove all elements/bindings for key k;
• removeone(k): remove the latest element/binding

for key k, treating the EditList as a multiset or
multimap;

• removekeyvalue(k, v): remove the latest binding from
key k to value v, treating the EditList as a multimap;

• concat(lazy el): concatenate the EditList lazy el as a
lazy reference at this point.

These are the building blocks for the corresponding
EditHAMT operations listed in Fig. 4.

We implement EditList lookup in two different ways:
one for set membership queries and map lookups, and
another for multiset and multimap lookups.

4.3.2.1 Set Membership Queries and Map Lookups:
We implement set membership queries and map lookups
by traversing the EditList from head to tail (right to left),
looking for the first node that contains an edit operation
for the given key. For example, if we look up the value
for key k0 in the above EditList, we would start by
looking at the head node. Since the head node adds a
binding from key k0, we can finish the lookup and return
value a without having to look at the prior EditList.
As another example, suppose that the immediately prior
node, when we force it to be computed, e.g., by making
calls to UndoDB in EXPOSITOR, removes key k1:

remove k1prior EditList addkeyvalue(k0, a)

If we look up the value for key k1, we would first look
at the head node and skip it because it does not involve
key k1. Then, we would force the lazy reference to the
prior node, causing it to be initialized if necessary, and
look at it:

prior EditList addkeyvalue(k0, a)remove(k1)

Here, we indicate that the tail has been forced with
an unbroken arrow, and that the prior node has been
initialized by replacing the dotted rounded box with
pointed box. Since the prior node removes key k1, we
know that bindings no longer exist for key k1, so we
can finish the lookup and return null. This example
shows that, once we have found a node that involves the
lookup key, we no longer need to traverse the rest of the
EditList. Also, because the reference to the prior EditList
is lazy, the lookup process drives the construction of
prior EditLists in an interleaved manner, just as in the
LazyAMT.

If we find a concat node during traversal, we handle
that node by recursively looking up the concatenated
EditList for the given key. If we do not find any rele-
vant nodes in the concatenated EditList, we would then
resume the lookup in the original EditList.

4.3.2.2 Multiset and Multimap Lookups: We im-
plement multiset and multimap lookups lazily by return-
ing a Python iterator that allows all values for a given key
to be incrementally retrieved, typically via a for x in values

loop. To illustrate how we implement multimap lookups,
suppose we have the following EditList:

remove one k0

add k0 : badd k0 : cNone

addkeyvalue(k0, a)

Reading backward from the tail, this EditList binds key
k0 to value c, binds value b and removes it, then binds

15

value a; i.e., it represents a map that contains bindings
from k0 to values a and c but not b. A multimap lookup
on this EditList for key k0 will return an iterator of all
values bound to that key:

k0

remove one k0

add k0 : badd k0 : cNone

addkeyvalue(k0, a)

The iterator is associated with the key k0 and initially
points to the beginning of the input EditList, which we
depict as a large down-arrow labeled k0.

The actual lookup does not begin until we retrieve a
value from the iterator, which initiates a traversal of the
input EditList to find a binding for key k0:

k0

remove one k0
addkeyvalue(k0, a)

add k0 : badd k0 : cNone

In this case, the head of the input EditList itself contains
a binding to value a, so we return the value a and update
the iterator to point to the tail of the input EditList (the
head of the prior EditList), which we depict by moving
the k0 down-arrow.

If we retrieve a value from the iterator again, the lookup
continues from the head of the prior EditList:

k0

None

addkeyvalue(k0, a)removeone(k0)

addkeyvalue(k0, b)addkeyvalue(k0, c)

The prior node removes the next binding for key k0; we
temporarily note this as a pending removal. The node
after that adds a binding for key k0, but since we have
a pending removal, we skip over that node. Next, we
reach a node that binds key k0 to value c, so we return
c and update the iterator as before.

If we retrieve a value from the iterator once more, the
lookup will reach the end of the input EditList, which we
depict as None, so we terminate the iterator. At this point,
all nodes in the input EditList will have been initialized:

None

addkeyvalue(k0, a)removeone(k0)

addkeyvalue(k0, b)addkeyvalue(k0, c)

We implement multiset lookups identically by treating
add(k) as if key k were bound to itself. Note in particular
that, whereas a standard multiset lookup gives us the
total number of values for a given key, a lazy multiset

lookup allows us to ask if there are at least n values for
a given key. As we illustrated above, both multiset and
multimap lookups are lazy in that the returned iterator

will only initializes as many nodes of the input EditList
as retrieved.

EditList set membership and map/multiset/multimap
lookups are not particularly fast, since they take O(n),
where n is the number of edit operations in the EditList
(i.e., the length of the EditList), to traverse the EditList
to find a relevant binding. However, applying an edit
operation takes only O(1) time and O(1) memory to
create and append a single EditList node. Adding an
element or binding to the same key repeatedly takes an
additional O(1) memory each time, but as we explained
for the LazyAMT, this is actually an advantage for
EXPOSITOR as we are usually interested in how bindings
change over time.

4.3.3 EditList + Hash + LazyAMT = EditHAMT

As we described above, the LazyAMT provides fast
amortized O(1) set/map lookups, but supports only
fixed-width integer keys as well as addition and merg-
ing operations; it does not support removal operations
or multiset/multimap lookups. Conversely, the EditList
supports arbitrary keys, removal operations as well as
multiset/multimap lookups, but lookups are a slow
O(n) where n is the number of edit operations in the
EditList. Both the LazyAMT and the EditList support
lazy construction, i.e., we can perform operations such
as addition or removal without knowing what the prior
LazyAMT or EditList contains. Finally, each LazyAMT
operation takes only an additional amortized O(1) time
and memory over the prior LazyAMT, and likewise O(1)
time and memory for the EditList.

We combine these two data structures to create the
EditHAMT, a lazy data structure that is more capable
than the LazyAMT and faster than the EditList. The key
idea is build multiple EditLists, each containing only
edits for keys with the same hash h, which we denote
as editlist(h), and use the LazyAMT to map hash h
to editlist(h). We can then look up a key k using the
following steps:

1) compute the hash h of key k;
2) look up editlist(h) from the LazyAMT of the

EditHAMT;
3) look up key k from editlist(h);

The lookup process will cause the underlying LazyAMT
or editlist(h) to be initialized as necessary.

We construct EditHAMTs in one of two ways: we use
the LazyAMT addition operation to perform addition or
removal operations on an EditHAMT, and the LazyAMT
merge operation to concatenate two EditHAMTs.

4.3.3.1 Performing Addition or Removal Opera-
tions on an EditHAMT: We take the following steps to
perform an addition or removal operation for a given
key k on an EditHAMT:

16

1) compute the hash h of key k;
2) lazily look up the LazyAMT of the prior

EditHAMT as lazyamt ′;
3) lazily look up editlist ′(h) from lazyamt ′, and ap-

pend the given operation to it to create editlist(h);
4) add a new binding to lazyamt ′ from hash h to

editlist(h) to create the updated EditHAMT;

where by lazily looking up we mean to create a
lazy reference that, when forced, looks up lazyamt ′ or
editlist ′(h), which allows the construction of the prior
EditHAMT to also be lazy. Because both the LazyAMT
and the EditList are lazy, the EditHAMT will be mostly
uninitialized at first; (parts of) it will be initialized as
necessary during lookup.

For example, suppose we add a binding from key k0
to value b to an EditHAMT, and key k0 has hash 14.
We would create a new LazyAMT that maps hash 14 to
a new editlist(14) that appends addkeyvalue(k0, b) to the
prior EditHAMT:

prior
EditHAMT

editlist(14)

addkeyvalue(k0, b)

At first, most of the EditHAMT—the LazyAMT as well
as the tail of the editlist(14)—is uninitialized; we indi-
cate the uninitialized editlist(14) tail as a dotted arrow
pointing to the prior EditHAMT. When we look up key
k0, we would look up hash 14 from the LazyAMT to
find editlist(14) that we just added, then look up key k0
from editlist(14). The head of editlist(14) adds key k0, so
we can return value b without looking at the tail. At the
end of the lookup, the EditHAMT will be initialized as
follows:

prior
EditHAMT

editlist(14)

addkeyvalue(k0, b)

This example shows that we can apply an edit operation
without knowledge of the prior EditHAMT, and since
the key k0 was just added, we can look up key k0 without
having to consult the prior EditHAMT. Both of these
properties are inherited from the underlying LazyAMT
and EditList.

We continue the example by considering the case of
looking up a different key that was involved in an
earlier edit operation. Suppose that the immediately
prior EditHAMT removes key k1, and key k1 has hash
5. When we look up key k1, the EditHAMT will be
initialized as follows:

prior
EditHAMT

editlist(14)

editlist(5)

addkeyvalue(k0, b)

remove(k1)

Looking up the editlist(5) from the rightmost LazyAMT
causes parts of the middle LazyAMT to be initialized
and shared with the rightmost LazyAMT, and since the
head of editlist(5) removes key k1, we can return null
without looking at its tail.

The two examples so far do not require traversing the
tail of editlist(h). We would need to do so if there was a
hash collision or if we perform a multiset or multimap
lookup. For example, suppose that an earlier EditHAMT
added a binding from key k0 with hash 14 to value a,
and we perform a multimap lookup of key k0 to find the
second value. We have to initialize the tail of editlist(14)
by looking up editlist ′(14) from the prior EditHAMT.
The immediately prior EditHAMT did not involve key
k0 or hash 14; instead, we will partially initialize the
earlier EditHAMT containing editlist ′(14) and share it.
Then, we retrieve editlist ′(14) and initialize it as the tail
of editlist(14). At the end of the lookup, the EditHAMT
will be initialized as depicted below:

prior
EditHAMT

editlist(14)editlist'(14)

editlist(5)

addkeyvalue(k0, b)

remove(k1)

addkeyvalue(k0, a)

4.3.3.2 Concatenating two EditHAMTs: To con-
catenate two EditHAMTs, we call the LazyAMT merge
operation with:

• the older EditHAMT as the left LazyAMT;
• the newer EditHAMT as the right LazyAMT;
• a mergefn function that creates a new editlist(h)

by appending an EditList concat node containing
editlist ′(h) from the right EditHAMT to the lazy,
optional value containing editlist ′′(h) from the left

EditHAMT;

where the older and newer EditHAMTs are lazy eh1 and
lazy eh2, respectively, in Fig. 4.

For example, suppose we concatenate two
EditHAMTs, where the right EditHAMT contains a
single binding k0 : b and key k0 has hash 14. We would
create a new EditHAMT using the LazyAMT merge
operation as described above:

17

left
EditHAMT

editlist'(14)

addkeyvalue(k0, b)None

If we perform a map lookup on the concatenated
EditHAMT to find the value for key k0, we would look
up the concatenated EditHAMT for hash 14 to retrieve
editlist(14) and perform a map lookup on it. This will
cause the concatenated EditHAMT to be initialized as
follows:

left
EditHAMT

editlist'(14)

addkeyvalue(k0, b)None

concat()

editlist(14)

The head of editlist(14) is a concat node created by the
mergefn described above. When we look up key k0 from
editlist(14), we would recursively look up editlist ′(14)
from the right EditHAMT for the same key. Since the
head of editlist ′(14) adds key k0, we finish the lookup
by returning the mapped value b. We do not have to
look at the tail of editlist(14) and can avoid forcing the
left EditHAMT for now, which is a property inherited
from the LazyAMT merge operation.

To consider an example that requires us to force the
left EditHAMT, suppose that the left EditHAMT contains
a single binding k1 : a where key k1 also has hash 14. If
we look up key k1 from the concatenated EditHAMT, it
will be initialized in the following manner:

editlist'(14)

addkeyvalue(k0, b)None

concat()

editlist(14)

addkeyvalue(k1, a)None

editlist''(14)

We would look up key k1 from editlist(14), and recur-
sively look up editlist ′(14) for the same key. Because
editlist ′(14) does not contain key k1, we would then re-
sume the lookup in editlist(14), forcing its tail to retrieve
editlist ′′(14) from the left EditHAMT, and finally return

the mapped value a.

The combination of the LazyAMT and the EditList
enables the EditHAMT to support all operations that
the EditList supports, reduces the EditList lookup cost
to amortized O(1) if we assume no hash collisions,
and takes only an additional amortized O(1) time and
memory for each edit operation. However, multiset and
multimap lookups take amortized O(n) time where n is
the number of removeone and removekeyvalue operations.

4.4 Comparison with Other Data Structures

Compared to Python sets, which are implemented as
hash tables, it is more memory efficient to make an
updated copy of the EditHAMT, since only a constant
number of nodes in the underlying LazyAMT are cre-
ated, than it is to make a copy of the bucket array
in the hash table underlying Python sets, which can
be much larger. This makes it viable to store every
intermediate EditHAMT as it is created in a trace, as
each EditHAMT only requires an additional amortized
O(1) memory over the prior EditHAMT. In our current
implementation, a trace of EditHAMTs is cheaper than
a trace of Python sets (which requires deep copying) if,
on average, each EditHAMT or set in the trace has more
than eight elements.

It is also common to implement sets or maps using
self-balancing trees such as red-black trees or AVL trees.
However, we observe that it is not possible to make
these tree data structures as lazy as the EditHAMT. In
these data structures, a rebalancing operation is usually
performed during or after every addition or removal
operation to ensure that every path in the tree does not
exceed a certain bound. In particular, the root node may
be swapped with another node in the process of rebal-
ancing (in fact, every node may potentially be swapped
due to rebalancing). This means that the root node of
self-balancing trees is determined by the entire history
of addition and removal operations. Thus, we would
be forced to compute the entire history of addition and
removal operations when we traverse the root node to
look up a key, defeating laziness.

We also observe a similar issue arising with hash ta-
bles. Hash tables are based on a bucket array that is used
to map hash values to keys. Typically, the bucket array is
dynamically resized to accommodate the number of keys
in the hash table and to reduce hash collisions. However,
the number of keys in the hash table is determined by
the entire history of addition and removal operations.
As a result, we would be forced to compute the entire
history of addition and removal operations before we
can use the bucket array to map a hash value to a key,
defeating laziness.

Furthermore, the EditHAMT suffers much less from
hash collisions than hash tables. The LazyAMT in the
EditHAMT is a sparse integer map, unlike the bucket
array in hash tables, and thus can be made much larger

18

189 #define LOOP I 16
190 #define LOOP J 16
191 #define LOOP K 16
192 #define LOOP L 8
193 void foo(int x, int y) {}
194 void bar(int z) {}
195 int main(void) {
196 int i, j, k, l;
197 for (i = 0; i < LOOP I; i++) {
198 for (j = 0; j < LOOP J; j++) {
199 for (k = 0; k < LOOP K; k++) {
200 bar(i * LOOP K + k);
201 }
202 foo(i, i * LOOP J + j);
203 for (l = 0; l < LOOP L; l++) {
204 bar(i * LOOP L + l);
205 }
206 }
207 }
208 return 0;
209 }

Fig. 6. Micro-benchmark test program.

while using little memory, which reduces the likelihood
of hash collisions.

5 MICRO-BENCHMARKS

We ran two micro-benchmarks to evaluate the efficiency
of EXPOSITOR. In the first micro-benchmark, we eval-
uated the advantage of laziness by comparing a script
written in EXPOSITOR against several other equivalent
scripts written using non-lazy methods. In the sec-
ond micro-benchmark, we compared the performance
of scripts using the EditHAMT against other equivalent
scripts that use non-lazy data structures.

5.1 Test Program

For both micro-benchmarks, we use the test program
in Fig. 6 as the subject of our EXPOSITOR scripts. This
program consists of two do-nothing functions, foo on
line 193 and bar on line 194, and the main function on
lines 195–209 that calls foo and bar in several nested
loops.

5.2 Experimental Setup

We run both micro-benchmarks on a 32-bit Ubuntu
Linux 11.04 virtual machine (since UndoDB runs only
on Linux), set up with 8 cores and 8 GB of RAM in
VMware Fusion 4.1.4 on Mac OS X 10.6.8 running on
a Mac Pro with two 2.26 GHz quad-core Intel Xeon
processors and 16 GB of RAM. We use UndoDB version
3.5.1234, a developmental version of GDB (CVS revision
as of October 4, 2012), and Python version 2.7.5.

5.3 Evaluating the Advantage of Trace Laziness

In our first micro-benchmark, we evaluate the advantage
of trace laziness using the following procedure. We first
start EXPOSITOR on the test program in Fig. 6, and run
the following script:

210 foo trace = the execution.breakpoints(”foo”)
211 trace1 = foo trace.filter(
212 lambda snap: int(snap.read arg(”x”)) % 2 == 0)

This script creates a trace named foo trace of calls to foo,
and a trace named trace1 that keeps only calls to foo

where the argument x is even. We then measure the time
it takes to call get after to find the first item in trace1 after
time 0. We repeat this measurement to find the second
item, the third item, and so forth, until there are no more
items left in trace1. Next, we create another trace named
trace2:

213 trace2 = foo trace.filter(
214 lambda snap: int(snap.read arg(”x”)) % 2 == 1)

This trace is similar to trace1, but keeps only calls to
foo where x is odd. We then measure again the time it
takes to call get after to find each item in trace2. Finally,
we restart EXPOSITOR and repeat the entire procedure,
but use get before to find all items in trace1 and trace2

starting from the end of the execution, instead of using
get after.

We compare the above script against several other
equivalent scripts that are not lazy, written either in a
variant of EXPOSITOR with trace laziness disabled, or
using the standard GDB Python API with or without
UndoDB. We disable trace laziness in EXPOSITOR by
immediately performing the equivalent of get after(t) on
lazy nodes as they are created, where t is the beginning
of the time interval on those nodes, and replacing the
lazy nodes by the computed contents.

The results are shown in Fig. 7a for the procedure
using get after, and Fig. 7b for the procedure using
get before. The x-axes are labeled “action #”, and indicate
particular actions that are taken during the benchmark-
ing procedure:

• action 0 corresponds to creating trace1;
• actions 1–128 correspond to calling get after or

get before repeatedly to get all items in trace1;
• action 129 (the vertical gray line) corresponds to

creating trace2;
• actions 130–257 correspond to calling get after or

get before repeatedly to get all items in trace2.

For scripts using the standard GDB Python API, action
0 and action 129 correspond instead to creating the
equivalent of trace1 or trace2, i.e., creating a standard
Python list containing the times, rather than snapshots,
of the relevant calls to foo. The y-axes indicate cumulative
time in seconds, i.e., the total time it takes to perform all
actions up to a particular action, and is mean-averaged
over 31 runs.

The startup plot simply marks the time it takes for
EXPOSITOR to call the GDB start command to start the
execution, as well as to run any EXPOSITOR-specific
startup initialization, before running any scripts. The
lazy trace plot corresponds to the script written in EX-
POSITOR above. The strict trace plot corresponds to the
same script, but uses a variant of EXPOSITOR with trace
laziness disabled. The gdb python plot corresponds to

19

0 50 100 150 200 250

action #

0

5

10

15

20

cu
m

u
la

ti
v
e
 t

im
e
 (

se
co

n
d
s)

startup

lazy_trace

strict_trace

gdb_python

undodb_python

(a) get after

0 50 100 150 200 250

action #

0

5

10

15

20

cu
m

u
la

ti
v
e
 t

im
e
 (

se
co

n
d
s)

startup

lazy_trace

strict_trace

gdb_python

undodb_python

(b) get before

Fig. 7. The time it takes to get all items in two traces using lazy or non-lazy scripts.

a script written using the standard GDB Python API
without the time-travel features of UndoDB, restarting
the execution at action 129 (when the equivalent of trace2

is created), and without caching intermediate computa-
tion. Note that because gdb python does not use time
travel, the gdb python scripts in Fig. 7a and Fig. 7b
are the same, i.e., they both run the execution forward
only, and gdb python records times instead of snapshots;
plotting gdb python in Fig. 7b allows us to compare
forward execution against backward execution. Lastly,
the undodb python plot uses a nearly identical script as
gdb python, but uses UndoDB to rewind the execution at
action 129 instead of restarting the execution, and runs
the execution backward in Fig. 7b.

From Fig. 7a, we can see that lazy trace takes zero
time to perform action 0, whereas all the other imple-
mentations take some non-zero amount of time. This
is due to laziness—lazy trace defers the startup cost
until the first get after call is made in action 1. We
also note that strict trace is slower than all other imple-
mentations, which suggests that the trace data structure
has high overhead when laziness is disabled, and that
undodb python is slightly faster than gdb python at action
129, since it is faster to rewind an execution than to
restart it.

As we expect from laziness, each call to get after

in lazy trace takes a small additional amount of time,
whereas the other non-lazy implementations do not take
any additional time (since all relevant calls to foo have
already been found at action 0). When we have found
about 40% items from trace1, the cumulative time of
lazy trace reaches that of gdb python. This tells us that,
as long as we do not make queries to more than 40%
of an execution, it takes us less time to construct and
query a lazy trace, compared to other non-lazy imple-

mentations. This is actually the common scenario in
debugging, where we expect programmers to begin with
some clues about when the bug occurs. For example,
a stack corruption typically occurs near the end of the
execution, so we would likely only have to examine the
last few function calls in the execution.

Furthermore, we observe that the slope of lazy trace

is shallower at actions 130–257. This is because trace2

reuses foo trace which was fully computed and cached
during actions 1–128. Thus, EXPOSITOR does not have to
perform as much work to compute trace2. strict trace also
benefits from caching since it uses a (non-lazy) variant of
the trace data structure. In contrast, both gdb python and
undodb python do not reuse any computation, so action
129 takes the same amount of time as action 0.

Fig. 7b shows the results of the benchmark procedure
using get before. We can see that it is much slower to use
get before that get after—all scripts but gdb python take
longer than in Fig. 7a (gdb python actually runs forward
as we noted above). This is because these scripts has to
run the execution in two passes: first to get to the end
of the execution, then to execute the get before calls back
to the beginning of the execution. Unlike other scripts,
the gdb python script only has to run forward once and
not backward, and so is much faster. Still, lazy trace can
be faster than gdb python, if queries are made to fewer
than about 10% of an execution.

We note that the results of this micro-benchmark
actually suggest a lower bound to the advantage of
trace laziness. This micro-benchmark is based on a very
simple EXPOSITOR script that filters calls to foo using a
simple predicate. Therefore, the time used for each script
is dominated by the time it takes to set a breakpoint at foo

and to run the execution, forward or backward, until the
breakpoint. To a lesser extent, the trace data structure in

20

lazy trace adds overhead to the time used in comparison
to gdb python. The filter predicate in lazy trace and the
equivalent predicate in gdb python takes very little time
in contrast. We expect more complex EXPOSITOR scripts
to spend more time in programmer-provided helper
functions such as the filter predicate or the scan operator,
which will mask the overhead of the trace data structure.

5.4 Evaluating the Advantage of the EditHAMT

In our second micro-benchmark, we evaluate the advan-
tages of the EditHAMT data structure using the follow-
ing procedure. We first create a trace of EditHAMTs:

215 bar maps = the execution.breakpoints(”bar”) \
216 .map(lambda snap: edithamt.addkeyvalue(
217 None, int(snap.read arg(”z”)), snap)) \
218 .scan(edithamt.concat)

For each call to bar(z), we create a new EditHAMT that
adds a binding from the argument z to the snapshot
of that call. In other words, an EditHAMT in bar maps

at time t contains bindings from arguments z to the
corresponding bar(z) calls preceding and including the
bar(z) call at time t.

We then create another trace that looks up values from
bar maps:

219 bar of foos = the execution.breakpoints(”foo”)
220 .trailing merge(
221 lambda snap, bar map:
222 bar map.force().find(int(snap.read arg(”y”))),
223 bar maps)

For each call to foo(x, y), we use the trailing merge method
to look up the immediately prior EditHAMT in bar maps,
and then look up that EditHAMT for the most recent
bar(z) call where y = z.

Next, we measure the time it takes to call get after to
look up the first item from bar of foos, which includes
the time it takes to compute the EditHAMTs in bar maps

as necessary, as well as to compute parts of the bar maps

and bar of foos traces. We also measure the additional
memory used after the call to get after by Python,5 which
includes the memory required to cache the intermediate
computation of the EditHAMTs in bar maps as well as
that of the bar of foos and bar maps traces, but does
not include the memory usage of other parts of GDB
as well as UndoDB. We repeat these measurements
to find the second item, the third item, and so forth,
until there are no more items in bar of foos. Finally, we
restart EXPOSITOR and repeat the entire procedure using
get before to find all items in bar of foos starting from the
end of the execution, instead of using get after.

For this micro-benchmark, we set the key size of the
EditHAMT to k = 35 bits and its internal node index bit-
width to w = 5 bits, which gives it a maximum depth of
7. These parameters are suitable for 32-bit hash values
that are padded to 35 bits. We compare the above script

5. We use Python’s sys.getsizeof and gc.get objects functions to mea-
sure Python’s memory usage.

against several other equivalent scripts using other data
structures, as well as a script that uses the EditHAMT in
a variant of EXPOSITOR with trace laziness disabled as
described in Sec. 5.3, and a script that uses the standard
GDB Python API without the time-travel features of
UndoDB and a list of Python dicts (hash table) as the
equivalent of bar maps.

The results are shown in Fig. 8: Fig. 8a and
Fig. 8b show the time measurements using get after

and get before, respectively, while Fig. 8c and Fig. 8d
show the memory measurements using get after and
get before, respectively. The x-axes are labeled “action #”,
and indicate particular actions that are taken during the
benchmarking procedure:

• action 0 correspond to creating bar maps and
bar of foos;

• actions 1–256 corresponds to calling get after or
get before repeatedly to get all items in bar of foos.

For the script using the standard GDB Python API,
action 0 correspond instead to creating a list of Python
dicts mapping the arguments z of bar to times, rather than
snapshots, of calls to bar. The y-axes indicate cumulative
time in seconds or cumulative memory usage in bytes,
i.e., the total time or memory it takes to perform all
actions up to a particular action, and is mean-averaged
over 31 runs.

The startup plot simply marks the time or memory it
takes for EXPOSITOR to call the GDB start command to
start the execution, as well as to run any EXPOSITOR-
specific startup initialization, before running any scripts.
The lazy trace edithamt plot corresponds to the EXPOSI-
TOR script above that creates EditHAMTs, which are lazy,
in bar maps. The lazy trace rbtree plot corresponds to a
similar script, but creates maps based on immutable red-
black trees, which are not lazy, instead of EditHAMTs in
bar maps. Likewise, the lazy trace python dict plot creates
Python dicts, which are also not lazy, in bar maps. The
strict trace edithamt plot corresponds to a script that uses
the EditHAMT in a variant of EXPOSITOR with trace
laziness disabled as described in Sec. 5.3. Lastly, the
gdb python script corresponds to a script written using
only the standard GDB Python API without the time-
travel features of UndoDB. Note that because gdb python

does not use time travel, the gdb python scripts in
Figs. 8a–8d are all the same, i.e., they all run the
execution forward only, and gdb python records times
instead of snapshots; plotting gdb python in Fig. 8b and
Fig. 8d allows us to compare forward execution against
backward execution.

From Fig. 8a, we can see that the scripts that use EX-
POSITOR, lazy trace X, take zero time to perform action
0, whereas strict trace edithamt and gdb python, which are
not lazy, take some amount of time to do so, the former
more than the latter. This is the result we expect based
on the results in Sec. 5.3. Also, for lazy trace X, each
get after calls takes a small additional amount of time.
In particular, lazy trace edithamt takes less additional
time than lazy trace rbtree and lazy trace python dict. This

21

0 50 100 150 200 250

action #

0

100

200

300

400

500

600

700

cu
m

u
la

ti
v
e
 t

im
e
 (

se
co

n
d
s)

startup

lazy_trace_edithamt

lazy_trace_rbtree

lazy_trace_python_dict

strict_trace_edithamt

gdb_python

(a) get after (time)

0 50 100 150 200 250

action #

0

100

200

300

400

500

600

700

cu
m

u
la

ti
v
e
 t

im
e
 (

se
co

n
d
s)

startup

lazy_trace_edithamt

lazy_trace_rbtree

lazy_trace_python_dict

strict_trace_edithamt

gdb_python

(b) get before (time)

0 50 100 150 200 250

action #

0

5e+6

10e+6

15e+6

20e+6

25e+6

30e+6

35e+6

cu
m

u
la

ti
v
e
 g

c_
g
c_

si
ze

 (
b
y
te

s) startup

lazy_trace_edithamt

lazy_trace_rbtree

lazy_trace_python_dict

strict_trace_edithamt

gdb_python

(c) get after (memory)

0 50 100 150 200 250

action #

0

5e+6

10e+6

15e+6

20e+6

25e+6

30e+6

35e+6
cu

m
u
la

ti
v
e
 g

c_
g
c_

si
ze

 (
b
y
te

s) startup

lazy_trace_edithamt

lazy_trace_rbtree

lazy_trace_python_dict

strict_trace_edithamt

gdb_python

(d) get before (memory)

Fig. 8. The time and memory it takes to get all items in a trace computed by looking up items from an EditHAMT or

other data structures.

is due to EditHAMT laziness: lazy trace edithamt only
has to compute as many (parts) of the EditHAMTs in
bar maps as needed to answer the look up in bar of foos.
In contrast, red-black trees and Python dicts are not
lazy, so lazy trace rbtree and lazy trace python dict have
to compute all prior red-black trees or Python dicts,
respectively, in bar maps, even before answering the
lookup in bar of foos. Also, since there are many more
calls to bar than to foo in the test program (Sec. 5.1),
and the bar call that matches a foo call occurs within a
few calls to bar, lazy trace edithamt has to examine fewer
bar calls than lazy trace rbtree or lazy trace python dict.
Furthermore, as long as we make fewer queries than
about 30% of the items in bar of foos, it is faster to

use lazy trace edithamt than it is to use gdb python. We
also note that it is far easier to compose or reuse
lazy trace edithamt than gdb python. For example, if we
later decide to compare the argument x of foo to the
matching bar call, we can easily create a new trace
that maps foo calls to their x argument and merge it
with bar of foos in lazy trace edithamt, while we would
need to modify and rerun gdb python to collect the x

arguments.

The results are quite different for lazy trace rbtree and
lazy trace python dict in Fig. 8b—action 0 still takes zero
time, but action 1, the very first call to get before, is
very slow, contributing most of the cumulative time
by the end of the micro-benchmark. This is because

22

that very first call to get before retrieves the very last
item in bar of foos near the end of the execution, which
looks up one of the last red-black tree or Python dict in
bar maps to find the matching bar call. As we explained
above, since red-black trees and Python dicts are not
lazy, lazy trace rbtree and lazy trace python dict has to
compute all prior red-black trees or Python dicts, respec-
tively, and examine almost all bar calls when performing
action 1. These cases highlight the importance of us-
ing lazy data structures in EXPOSITOR scripts—non-lazy
data structures can completely defeat the advantage of
trace laziness. Interestingly, lazy trace edithamt performs
similarly whether we use get before or get after; this
is because the computation of each item of bar of foos

matches a foo call to a prior bar call by running the execu-
tion backwards, regardless of whether we use get before

or get after to look up bar of foos. Note that we can easily
change the computation of bar of foos to match a future
bar call by using rev scan/rev trailing merge instead of
scan/trailing merge in lazy trace edithamt, whereas mak-
ing the same change in gdb python would be significantly
complicated by the lack of time-travel features.

Looking at memory usage, Fig. 8c shows that each
get after call in lazy trace edithamt and lazy trace rbtree

takes a small additional amount of memory. EditHAMTs
use slightly more memory than red-black trees, despite
fewer (parts of) EditHAMTs being computed due to
laziness. However, we note that the memory cost of
EditHAMTs is exaggerated in our Python-based im-
plementation, since it makes extensive use of closures
which are rather costly memory-wise in Python.6 We
believe that an implementation of EditHAMTs in more
efficient languages such as C or OCaml would use
much less memory. In contrast, lazy trace python set is
quite expensive, using an increasing amount of memory
after each get after call. This is because Python dicts are
implemented using hash tables, and since each dict in
bar maps has to be distinct, we have to make a deep
copy of the dicts. This eventually takes O(n2) memory
where n is the number of bar calls in the execution,
which is confirmed by Fig. 8c. The gdb python script
uses almost as much memory as lazy trace python dict by
the end of the micro-benchmark, since they both create
many Python dicts, except that gdb python stores them
in a Python list which has lower overhead than a trace.
The strict trace edithamt script also uses a lot memory,
more than lazy trace edithamt by the end of the micro-
benchmark, since strict trace edithamt has to create ev-
ery EditHAMT in bar maps (the EditHAMTs themselves
are lazy), unlike lazy trace edithamt which only creates
EditHAMTs in bar maps when they are looked up.

We see a similar pattern in Fig. 8d for memory usage
as in Fig. 8b for time usage: action 1 of lazy trace rbtree

and lazy trace python dict contributes almost all of the
cumulative memory usage by the end of the execution.

6. In 32-bit Python 2.7.1, a closure over a single variable takes
108 bytes, and each additional variable takes 28 bytes.

As we explained above for Fig. 8b, this is due to having
to compute almost all red-black trees or Python dicts in
bar maps.

6 FIREFOX CASE STUDY: DELAYED DEALLO-
CATION BUG

To put EXPOSITOR to the test, we used it to track down
a subtle bug in Firefox that caused it to use more
memory than expected [11]. The bug report contains a
test page that, when scrolled, creates a large number of
temporary JavaScript objects that should be immediately
garbage collected. However, in a version of Firefox that
exhibits the bug (revision c5e3c81d35ba), the memory
usage increases by 70MB (as reported by top), and only
decreases 20 seconds after a second scroll. As it turns
out, this bug has never been directly fixed—the actual
cause is a data race, but the official fix instead papers
over the problem by adding another GC trigger.

Our initial hypothesis for this bug is that there is a
problem in the JavaScript garbage collector (GC). To test
this hypothesis, we first run Firefox under EXPOSITOR,
load the test page, and scroll it twice, temporarily in-
terrupting the execution to call the execution.get time()

just before each scroll, time tscroll1 and time tscroll2 , and
after the memory usage decreases, tend . Then, we create
several traces to help us understand the GC and track
down the bug, as summarized in Fig. 9.

We observe the GC behavior using a trace of the calls
to (gc call) and returns from (gc return) function js GC

(Fig. 9a).7 Also, we find out when memory is allocated
or released to the operating system using mmap2 and
munmap traces of the same-named system calls (Fig. 9b).
Printing these traces reveals some oddly inconsistent
behavior: the GC is called only once after tscroll1 , but
five times after tscroll2 ; and memory is allocated after
tscroll1 and deallocated just before tend . To make sense
of these inconsistencies, we inspect the call stack of each
snapshot in gc call and discover that the first js GC call
immediately after a scroll is triggered by a scroll event,
but subsequent calls are triggered by a timer.

We now suspect that the first scroll somehow failed to
trigger the creation of subsequent GC timers. To under-
stand how these timers are created, we write a function
called set tracing that creates a trace for analyzing set-
like behavior, using EditHAMTs to track when values
are inserted or removed, and apply set tracing to create
timer trace by treating timer creation as set insertion,
and timer triggering as set removal (Fig. 9c). This trace
reveals that each js GC call creates a GC timer (between
gc call and gc return snapshots), except the js GC call
after the first scroll (and the last js GC call because GC
is complete).

To find out why the first js GC call does not create
a GC timer, we inspect call stacks again and learn
that a GC timer is only created when the variable

7. The index=-1 optional argument to execution.breakpoints indicates
that the breakpoint should be set at the end of the function.

23

(a) R: gc_return = the_execution.breakpoints("js_GC", index=-1)

(b) U: munmap = the_execution.syscalls("munmap")

C R

70⨉M M

C R C R C R C R

70⨉U U

C R

timer_trace = set_tracing(A=timer-create, R=timer-fire)

A R A R A R A R

chunkswaiting_trace = the_execution.watchpoints(gcChunksWaitingToExpire-variable).map(read-gcChunksWaitingToExpire)

70⨉1 70 71⨉0 70

chunkswaiting_hb = one_lock(R=gcChunksWaitingToExpire-read, W=gcChunksWaitingToExpire-write, locks, unlocks)

R W

C: gc_call = the_execution.breakpoints("js_GC")

M: mmap2 = the_execution.syscalls("mmap2")

(c)

(d)

(e)

tscroll1 tscroll2 tend

Fig. 9. Timeline of items in traces used to debug Firefox.

gcChunksWaitingToExpire is nonzero, and yet it is zero
when the first js GC returns (at the first gc return snap-
shot). Following this clue, we create a watchpoint trace
on gcChunksWaitingToExpire and discover that it remained
zero through the first js GC call and becomes nonzero
only after the first js GC returns. It stayed nonzero
through the second scroll and second js GC call, causing
the first GC timer to be created after that (Fig. 9d).

We posit that, for the GC to behave correctly,
gcChunksWaitingToExpire should become nonzero at some
point during the first js GC call. Inspecting call stacks
again, we find that gcChunksWaitingToExpire is changed
in a separate helper thread, and that, while the GC
owns a mutex lock, it is not used consistently around
gcChunksWaitingToExpire. This leads us to suspect that
there is a data race. Thus, we develop a simple race
detection script, one lock, that works by comparing each
access to a chosen variable against prior accesses from
different threads (Sec. 4.1 explains how we track prior
accesses), and checking if a particular lock was acquired
or released prior to those accesses. For each pair of
accesses, if at least one access is a write, and the lock
was not held in one or both accesses, then there is
a race, which we indicate as an item containing the
snapshot of the prior access. We apply this race detector
to gcChunksWaitingToExpire and confirm our suspicion
that, after tscroll1 , there is a write that races with a prior
read during the first js GC call when the timer should
have been created (Fig. 9e).

To give a sense of EXPOSITOR’s performance, it takes
2m6s to run the test page to tscroll2 while printing the
gc call trace, with 383MB maximum resident memory
(including GDB, since EXPOSITOR extends GDB’s Python
environment). The equivalent task in GDB/UndoDB
without EXPOSITOR takes 2m19s and uses 351MB of
memory (some difference is inevitable as the test requires
user input, and Firefox has many sources of nondeter-
minism). As another data point, finding the race after
tscroll1 takes 37s and another 5.4MB of memory.

The two analyses we developed, set tracing and
one lock, take only 10 and 40 lines of code to implement,
respectively, and both can be reused in other debugging
contexts.

7 RELATED WORK

EXPOSITOR provides scripting for time-travel debuggers,
with the central idea that a target program’s execution
can be manipulated (i.e., queried and computed over) as
a first-class object. Prior work on time-travel debugging
has largely provided low-level access to the underly-
ing execution without consideration for scripting. Of
the prior work on scriptable debugging, EXPOSITOR is
most similar to work that views the program as an
event generator—with events seeded from function calls,
memory reads/writes, etc.—and debugging scripts as
database-style queries over event streams or as dataflow-
oriented stream transformers. None of this scripting
work includes the notion of time travel.

7.1 Time-Travel Debuggers

Broadly speaking, there are two classes of time-travel
debuggers. Omniscient debuggers work by logging the
state of the program being debugged after every in-
struction, and then reconstructing the state from the log
on demand. Some examples of omniscient debuggers
include ODB [12], Amber (also known as Chronicle) [6],
Tralfamadore [13], and TOD [14]. In contrast, replay
debuggers work by logging the results of system calls the
program makes (as well as other sources of nondeter-
minism) and making intermediate checkpoints, so that
the debugger can reconstruct a requested program state
by starting at a checkpoint and replaying the program
with the logged system calls. Several recent debuggers
of this style include URDB [15] and UndoDB [5] (which
we used in our prototype) for user-level programs,
and TTVM [16] and VMware ReTrace [17] for entire
virtual machines. EXPOSITOR could target either style
of debugger in principle, but replay debugging scales
much better (e.g., about 1.7× recording overhead for
UndoDB vs. 300× for Amber). Engblom [18] provides
a more comprehensive survey on time-travel debugging
techniques and implementations.

The above work focuses on implementing time travel
efficiently; most systems provide very simple APIs for
accessing the underlying execution, and do not consider
how time travel might best be exploited by debugging
scripts.

24

Similarly, GDB’s Python environment simply allows
a Python program to execute GDB (and UndoDB) com-
mands in a callback-oriented, imperative style. This is
quite tedious, e.g., just counting the number of calls to
a particular function takes 16 lines of code (Sec. 2.2.1),
and cannot be composed with other scripts (e.g., to refine
the count to calls that satisfy predicate p). EXPOSITOR’s
notion of traces is simpler and more composable: func-
tion call counting can be done in one or two lines by
computing the length of a breakpoint trace; to refine the
count, we simply filter the trace with p before counting
(Sec. 2.2).

Tralfamadore [19] considers generalizing standard de-
bugging commands to entire executions, but does not
provide a way to customize these commands with
scripts.

Whyline is a kind of omniscient debugger with which
users can ask “why did” and “why didn’t” questions about
the control- and data-flow in the execution, e.g., “why
did this Button’s visible = true” or “why didn’t Window
appear” [20]. Whyline records execution events (adding
1.7× to 8.5× overhead), and when debugging begins, it
uses program slicing [21] to generate questions and the
corresponding answers (imposing up to a 20× further
slowdown). Whyline is good at what it does, but its lack
of scriptability limits its reach; it is hard to see how we
might have used it to debug the Firefox memory leak,
for example. In concept, Whyline can be implemented on
top of EXPOSITOR, but limitations of GDB and UndoDB
(in particular, the high cost of software watchpoints, and
the inability to track data-flow through registers) makes
it prohibitively expensive to track fine-grained data-flow
in an execution. We plan to overcome this limitation in
future work, e.g., using EDDI [22] to implement fast
software watchpoints.

7.2 High-Level (Non-callback Oriented) Debugging

Scripts

EXPOSITOR’s design was inspired by MzTake [3], a
Scheme-based, interactive, scriptable debugger for Java
based on functional reactive programming [4]. In MzTake,
the program being debugged is treated as a source of
event streams consisting of events such as function calls or
value changes. Event streams can be manipulated with
combinators that filter, map, fold, or merge events to
derive new event streams. As such, an event stream in
MzTake is like a trace in EXPOSITOR. Computations in
MzTake are implicitly over the most recent value of a
stream and are evaluated eagerly as the target program
runs. To illustrate, consider our example of maintaining
a shadow stack from Sec. 2.3. In MzTake, when the
target program calls a function, a new snapshot event
s becomes available on the calls stream. The calls rets

stream’s most recent event is the most recent of calls and
rets, so MzTake updates it to s. Since shadow stacks is
derived from calls rets, MzTake updates its most recent
event by executing map(int, s.read retaddrs())).

This eager updating of event streams, as the program
executes, can be less efficient than using EXPOSITOR.
In particular, EXPOSITOR evaluates traces lazily so that
computation can be narrowed to a few slices of time. In
Sec. 2.3, we find the latest smashed stack address without
having to maintain the shadow stack for the entire pro-
gram execution, as would be required for MzTake. Also,
EXPOSITOR traces are time indexed, but MzTake event
streams are not: there is no analogue to tr.get at(i) or tr

.slice(t0, t1) in MzTake. We find time indexing to be very
useful for interactivity: we can run scripts to identify an
interesting moment in the execution, then explore the
execution before and after that time. Similarly, we can
learn something useful from the end of the execution
(e.g., the address of a memory address that is double-
freed), and then use it in a script on an earlier part of the
execution (e.g., looking for where that address was first
freed). MzTake requires a rerun of the program, which
can be a problem if nondeterminism affects the relevant
computation.

Dalek [23] and Event Based Behavioral Abstraction
(EBBA) [24] bear some resemblance to MzTake and suffer
the same drawbacks, but are much lower-level, e.g.,
the programmer is responsible for manually managing
the firing and suppression of events. Coca [25] is a
Prolog-based query language that allows users to write
predicates over program states; program execution is
driven by Prolog backtracking, e.g., to find the next state
to match the predicate. Coca provides a retrace primitive
that restarts the entire execution to match against new
predicates. This is not true time travel but re-execution,
and thus suffers the same problems as MzTake.

PTQL [26], PQL [27], and UFO [28] are declarative
languages for querying program executions, as a de-
bugging aid. Queries are implemented by instrumenting
the program to gather the relevant data. In principle,
these languages are subsumed by EXPOSITOR, as it is
straightforward to compile queries to traces. Running
queries in EXPOSITOR would allow programmers to
combine results from multiple queries, execute queries
lazily, and avoid having to recompile (and potentially
perturb the execution of) the program for each query. On
the other hand, it remains to be seen whether EXPOSITOR

traces would be as efficient as using instrumentation.

8 CONCLUSION

We have introduced EXPOSITOR, a novel scriptable, time-
travel debugging system. EXPOSITOR allows program-
mers to project a program execution onto immutable
traces, which support a range of powerful combinators
including map, filter, merge, and scan. The trace abstrac-
tion gives programmers a global view of the program,
and is easy to compose and reuse, providing a con-
venient way to correlate and understand events across
the execution timeline. For efficiency, EXPOSITOR traces
are implemented using a lazy, interval-tree-like data
structure. EXPOSITOR materializes the tree nodes on de-
mand, ultimately calling UndoDB to retrieve appropriate

25

snapshots of the program execution. EXPOSITOR also
includes the EditHAMT, which lets script writers create
lazy sets, maps, multisets, and multimaps that integrate
with traces without compromising their laziness. We ran
two micro-benchmarks that show that EXPOSITOR scripts
using lazy traces can be faster than the equivalent non-
lazy scripts in common debugging scenarios, and that
the EditHAMT is crucial to ensure that trace laziness is
not compromised. We used EXPOSITOR to find a buffer
overflow in a small program, and to diagnose a very
complex, subtle bug in Firefox. We believe that EX-
POSITOR holds promise for helping programmers better
understand complex bugs in large software systems.

ACKNOWLEDGMENTS

This research was supported by in part by National Sci-
ence Foundation grants CCF-0910530 and CCF-0915978.
We also thank Vic Zandy and Robert O’Callahan for
helpful comments and inspiration to pursue this work,
and Greg Law for providing prompt support and bug
fixes for UndoDB.

REFERENCES

[1] R. O’Callahan. (2010) LFX2010: a browser developer’s wish
list. Mozilla. At 27:15. [Online]. Available: http://vimeo.com/
groups/lfx/videos/12471856#t=27m15s

[2] A. Zeller, Why Programs Fail: A Guide to Systematic Debugging. San
Francisco, CA, USA: Morgan Kaufmann Publishers, 2006.

[3] G. Marceau, G. H. Cooper, J. P. Spiro, S. Krishnamurthi, and S. P.
Reiss, “The design and implementation of a dataflow language
for scriptable debugging,” Automated Software Engineering, vol. 14,
no. 1, pp. 59–86, Mar. 2007. doi:10.1007/s10515-006-0003-z

[4] C. Elliott and P. Hudak, “Functional reactive animation,” in
Proceedings of the Second ACM SIGPLAN International Conference
on Functional Programming, ser. ICFP ’97. New York, NY, USA:
ACM, 1997, pp. 263–273. doi:10.1145/258948.258973

[5] Undo Software. What is UndoDB? Undo Soft-
ware. [Online]. Available: http://undo-software.com/product/
undodb-overview (accessed June 2013)

[6] R. O’Callahan, “Efficient collection and storage of indexed
program traces,” 2006. [Online]. Available: http://www.
ocallahan.org/Amber.pdf (accessed June 2013)

[7] A. One, “Smashing the stack for fun and profit,” Phrack magazine,
vol. 7, no. 49, p. 365, 1996. [Online]. Available: http://www.
phrack.org/issues.html?issue=49&id=14#article (accessed June
2013)

[8] J. D. Blackstone. Tiny HTTPd. [Online]. Available: http://
tinyhttpd.sourceforge.net (accessed June 2013)

[9] S. Designer, “‘return-to-libc’ attack,” Bugtraq, Aug. 1997. [Online].
Available: http://seclists.org/bugtraq/1997/Aug/63 (accessed
June 2013)

[10] P. Bagwell, “Ideal hash trees,” École Polytechnique Fédérale de
Lausanne, Lausanne, Switzerland, Tech. Rep., 2001. [Online].
Available: http://infoscience.epfl.ch/record/64398

[11] A. Zakai. (2011, May) Bug 654028 - 70mb of collectible
garbage not cleaned up. Bugzilla@Mozilla. [Online]. Available:
https://bugzilla.mozilla.org/show bug.cgi?id=654028 (accessed
June 2013)

[12] B. Lewis, “Debugging backwards in time,” in Proceedings of
the Fifth International Workshop on Automated Debugging, ser.
AADEBUG ’03, 2003. [Online]. Available: http://arXiv.org/abs/
cs/0310016

[13] G. Lefebvre, B. Cully, C. Head, M. Spear, N. Hutchinson,
M. Feeley, and A. Warfield, “Execution mining,” in Proceedings
of the 8th ACM SIGPLAN/SIGOPS Conference on Virtual Execution
Environments, ser. VEE ’12. New York, NY, USA: ACM, 2012,
pp. 145–158. doi:10.1145/2151024.2151044

[14] G. Pothier, E. Tanter, and J. Piquer, “Scalable omniscient
debugging,” in Proceedings of the 22nd Annual ACM SIGPLAN
Conference on Object-oriented Programming Systems and Applications,
ser. OOPSLA ’07. New York, NY, USA: ACM, 2007, pp. 535–552.
doi:10.1145/1297027.1297067

[15] A.-M. Visan, K. Arya, G. Cooperman, and T. Denniston, “URDB: a
universal reversible debugger based on decomposing debugging
histories,” in Proceedings of the 6th Workshop on Programming
Languages and Operating Systems, ser. PLOS ’11. New York, NY,
USA: ACM, 2011, pp. 8:1–8:5. doi:10.1145/2039239.2039251

[16] S. T. King, G. W. Dunlap, and P. M. Chen, “Debugging operating
systems with time-traveling virtual machines,” in Proceedings of
the Annual Conference on USENIX Annual Technical Conference,
ser. ATC ’05. Berkeley, CA, USA: USENIX Association, 2005,
pp. 1–1. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1247360.1247361

[17] M. Xu, V. Malyugin, J. Sheldon, G. Venkitachalam, and
B. Weissman, “ReTrace: collecting execution trace with virtual
machine deterministic replay,” in Proceedings of the Third Annual
Workshop on Modeling, Benchmarking and Simulation, ser. MoBS
’07, 2007. [Online]. Available: http://www-mount.ece.umn.edu/
∼jjyi/MoBS/2007/program/01C-Xu.pdf

[18] J. Engblom, “A review of reverse debugging,” in System, Software,
SoC and Silicon Debug Conference, ser. S4D ’12. Piscataway,
NJ, USA: IEEE, 2012, pp. 1–6. [Online]. Available: http:
//ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6338149

[19] C. C. D. Head, G. Lefebvre, M. Spear, N. Taylor,
and A. Warfield, “Debugging through time with the
Tralfamadore debugger,” in Runtime Environments, Systems,
Layering and Virtualized Environments, ser. RESoLVE ’12, 2012.
[Online]. Available: http://www.dcs.gla.ac.uk/conferences/
resolve12/papers/session4 paper1.pdf

[20] A. J. Ko and B. A. Myers, “Debugging reinvented: asking
and answering why and why not questions about program
behavior,” in Proceedings of the 30th International Conference on
Software Engineering, ser. ICSE ’08. New York, NY, USA: ACM,
2008, pp. 301–310. doi:10.1145/1368088.1368130

[21] B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen, “A brief survey
of program slicing,” ACM SIGSOFT Software Engineering Notes,
vol. 30, no. 2, pp. 1–36, Mar. 2005. doi:10.1145/1050849.1050865

[22] Q. Zhao, R. Rabbah, S. Amarasinghe, L. Rudolph, and
W.-F. Wong, “How to do a million watchpoints: efficient
debugging using dynamic instrumentation,” in Proceedings of
the Joint European Conferences on Theory and Practice of Software
17th International Conference on Compiler Construction, ser. CC
’08/ETAPS’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp.
147–162. doi:10.1007/978-3-540-78791-4 10

[23] R. A. Olsson, R. H. Crawford, and W. W. Ho, “A
dataflow approach to event-based debugging,” Software: Practice
and Experience, vol. 21, no. 2, pp. 209–229, Feb. 1991.
doi:10.1002/spe.4380210207

[24] P. Bates, “Debugging heterogeneous distributed systems using
event-based models of behavior,” in Proceedings of the 1988
ACM SIGPLAN and SIGOPS Workshop on Parallel and Distributed
Debugging, ser. PADD ’88. New York, NY, USA: ACM, 1988, pp.
11–22. doi:10.1145/68210.69217

[25] M. Ducassé, “Coca: an automated debugger for C,” in Proceedings
of the 21st International Conference on Software Engineering, ser.
ICSE ’99. New York, NY, USA: ACM, 1999, pp. 504–513.
doi:10.1145/302405.302682

[26] S. F. Goldsmith, R. O’Callahan, and A. Aiken, “Relational queries
over program traces,” in Proceedings of the 20th Annual ACM
SIGPLAN Conference on Object-oriented Programming, Systems,
Languages, and Applications, ser. OOPSLA ’05. New York, NY,
USA: ACM, 2005, pp. 385–402. doi:10.1145/1094811.1094841

[27] M. Martin, B. Livshits, and M. S. Lam, “Finding application
errors and security flaws using PQL: a program query language,”
in Proceedings of the 20th Annual ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications,
ser. OOPSLA ’05. New York, NY, USA: ACM, 2005, pp. 365–383.
doi:10.1145/1094811.1094840

[28] M. Auguston, C. Jeffery, and S. Underwood, “A framework
for automatic debugging,” in Proceedings of the 17th IEEE
International Conference on Automated Software Engineering, ser.
ASE ’02. Washington, DC, USA: IEEE Computer Society, 2002,
pp. 217–222. doi:10.1109/ASE.2002.1115015

http://vimeo.com/groups/lfx/videos/12471856#t=27m15s
http://vimeo.com/groups/lfx/videos/12471856#t=27m15s
http://dx.doi.org/10.1007/s10515-006-0003-z
http://dx.doi.org/10.1145/258948.258973
http://undo-software.com/product/undodb-overview
http://undo-software.com/product/undodb-overview
http://www.ocallahan.org/Amber.pdf
http://www.ocallahan.org/Amber.pdf
http://www.phrack.org/issues.html?issue=49&id=14#article
http://www.phrack.org/issues.html?issue=49&id=14#article
http://tinyhttpd.sourceforge.net
http://tinyhttpd.sourceforge.net
http://seclists.org/bugtraq/1997/Aug/63
http://infoscience.epfl.ch/record/64398
https://bugzilla.mozilla.org/show_bug.cgi?id=654028
http://arXiv.org/abs/cs/0310016
http://arXiv.org/abs/cs/0310016
http://dx.doi.org/10.1145/2151024.2151044
http://dx.doi.org/10.1145/1297027.1297067
http://dx.doi.org/10.1145/2039239.2039251
http://dl.acm.org/citation.cfm?id=1247360.1247361
http://dl.acm.org/citation.cfm?id=1247360.1247361
http://www-mount.ece.umn.edu/~jjyi/MoBS/2007/program/01C-Xu.pdf
http://www-mount.ece.umn.edu/~jjyi/MoBS/2007/program/01C-Xu.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6338149
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6338149
http://www.dcs.gla.ac.uk/conferences/resolve12/papers/session4_paper1.pdf
http://www.dcs.gla.ac.uk/conferences/resolve12/papers/session4_paper1.pdf
http://dx.doi.org/10.1145/1368088.1368130
http://dx.doi.org/10.1145/1050849.1050865
http://dx.doi.org/10.1007/978-3-540-78791-4_10
http://dx.doi.org/10.1002/spe.4380210207
http://dx.doi.org/10.1145/68210.69217
http://dx.doi.org/10.1145/302405.302682
http://dx.doi.org/10.1145/1094811.1094841
http://dx.doi.org/10.1145/1094811.1094840
http://dx.doi.org/10.1109/ASE.2002.1115015

	Introduction
	Background: Prior Scriptable Debuggers
	Expositor: Scriptable, Time-Travel Debugging

	The Design of Expositor
	API Overview
	Warm-up Example: Examining foo Calls in Expositor
	Comparison to GDB's Python API

	Example: Reverse Engineering a Stack-Smashing Attack
	Mini Case Study: Running Expositor on [0.5]tinyhttpd

	Lazy Traces in Expositor
	Lazy Trace Operations
	Tree Scan

	The Edit Hash Array Mapped Trie
	EditHAMT API
	Example: EditHAMT to Track Reads and Writes to a Variable
	Implementation
	LazyAMT: Lazy Array Mapped Tries
	EditList: Lazy Linked-List of Edit Operations
	EditList + Hash + LazyAMT = EditHAMT

	Comparison with Other Data Structures

	Micro-benchmarks
	Test Program
	Experimental Setup
	Evaluating the Advantage of Trace Laziness
	Evaluating the Advantage of the EditHAMT

	Firefox Case Study: Delayed Deallocation Bug
	Related Work
	Time-Travel Debuggers
	High-Level (Non-callback Oriented) Debugging Scripts

	Conclusion
	References

