
FABLE: A Language for Enforcing User-defined Security Policies

Nikhil Swamy Brian J. Corcoran Michael Hicks
University of Maryland, College Park

{nswamy, bjc, mwh}@cs.umd.edu

Abstract

This paper presents FABLE, a core formalism for a pro-
gramming language in which programmers may specify se-
curity policies and reason that these policies are properly
enforced. In FABLE, security policies can be expressed by
associating security labels with the data or actions they pro-
tect. Programmers define the semantics of labels in a sepa-
rate part of the program called the enforcement policy. FA-
BLE prevents a policy from being circumvented by allowing
labeled terms to be manipulated only within the enforce-
ment policy; application code must treat labeled values
abstractly. Together, these features facilitate straightfor-
ward proofs that programs implementing a particular pol-
icy achieve their high-level security goals. FABLE is flexible
enough to implement a wide variety of security policies, in-
cluding access control, information flow, provenance, and
security automata. We have implemented FABLE as part of
the LINKS web programming language; we call the result-
ing language SELINKS. We report on our experience us-
ing SELINKS to build two substantial applications, a wiki
and an on-line store, equipped with a combination of ac-
cess control and provenance policies. To our knowledge, no
existing framework enables the enforcement of such a wide
variety of security policies with an equally high level of as-
surance.

1 Introduction

For 35 years or more, computer security researchers have
explored techniques for ensuring that a software system cor-
rectly enforces its security policy, and that, as a result, the
software exhibits a desirable security property [22]. A no-
table success toward this goal has been work on defining

Prepared through collaborative participation in the Communications and Networks
Consortium sponsored by the U. S. Army Research Laboratory under the Collabo-
rative Technology Alliance Program, Cooperative Agreement DAAD19-01-2-0011.
The U. S. Government is authorized to reproduce and distribute reprints for Govern-
ment purposes notwithstanding any copyright notation thereon. This work was also
supported in part by NSF grant CCF-0524036.

programming language-based techniques for enforcing in-
formation flow security policies [32]. A common form of
information flow policy defines a set of security levels that
can be ordered as a lattice, where sensitive data within a
program is assigned a label derived from this lattice.Correct
enforcement of this policy implies that a program exhibits
some flavor of noninterference, which states that no infor-
mation visible at level h can be leaked onto a channel visible
to level l < h. By including the notion of a security label in
a programming language’s types, one can show that a cor-
rectly typed program is certain to enforce its security pol-
icy [41]. This approach has been implemented successfully
in the Jif [10] and FlowCaml [30] languages.

While information flow policies are useful and impor-
tant, there are many other styles of policy that are in com-
mon use, including access control, type enforcement [4]
(as in SELinux [26]), tainting [35, 37] (e.g., via Perl’s
taint mode [29]), provenance tracking [7], stack inspec-
tion [17, 14], and forms of security automata [17, 42]. One
approach to verifying the correct enforcement of these poli-
cies is to encode them as information flow policies for pro-
grams written in Jif of FlowCaml. While this will work
in some cases (e.g., access control, type enforcement, and
tainting could be encoded in conjunction with Jif’s declas-
sification operators [33]) it is not likely to scale. For exam-
ple, Jif’s use of noninterference as a baseline property and
its attendant restrictions on implicit flows via the program’s
control flow, can be cumbersome to work with. Moreover,
Jif and FlowCaml fix the format of security labels, which
complicates the means to interface with external infrastruc-
ture, such as policy management systems, databases, etc.

What we want is a programming language that can en-
force a wide range of policies—including, but not limited
to, information flow—while providing the same assurance
as Jif or FlowCaml that programs enforce their policies cor-
rectly. As a step toward this goal, this paper presents FA-
BLE, a core language for writing programs that enforce a va-
riety of security policies. A key observation is that many se-
curity policies work by associating labels with data, where
the label expresses the security policy for that data. What
varies among policies is the specification and interpretation

1

of labels, in terms of the actions that are permitted or de-
nied.

This observation is embodied in FABLE in two respects.
First, programmers can define custom security labels and
associate them with the data they protect using dependent
types. For example, a programmer could define a label
LOW, and an integer value protected by this label would
have type int{LOW}. As another example, the programmer
could define a label ACL(Alice, Bob) where an integer with
type int{ACL(Alice, Bob)} is meant to be accessed by only
Alice or Bob. Second, programmers define the interpreta-
tion of labels in special enforcement policy functions sepa-
rated from the rest of the program. For example, the seman-
tics of our access control label could be implemented by the
following enforcement policy function:

policy access simple (acl:lab, x:int{acl}) =
if (member user acl) then {◦}x else −1

This function takes a label like ACL(Alice, Bob) as its first
argument, and an integer protected by that ACL as its sec-
ond argument. If the current user (represented by variable
user) is a member of x’s ACL (according to some function
member, not shown), then x is returned with its label re-
moved, expressed by the syntax {◦}x, so that it can be ac-
cessed by the main program. If the membership test fails, it
returns −1 and x’s value is not released.

FABLE does not, in and of itself, guarantee that a security
policy is correctly implemented, but FABLE’s design greatly
simplifies proof of this fact. In particular, FABLE’s type sys-
tem ensures that labeled data (that is, data with a type t{l})
is treated abstractly by the main program, since terms with a
labeled type can only be constructed, examined, or changed
within enforcement policy code. Moreover, FABLE’s type
system ensures that the main program cannot sever or forge
the association between a label and the data it protects. In
effect, FABLE ensures complete mediation of the user’s la-
bel policy in that no data can be accessed without consulting
the correct security policy.

To demonstrate FABLE’s flexibility we have used it to en-
code a range of policies, including access control, static [32]
and dynamic information flow [46] with forms of declas-
sification [20], provenance tracking [7] and policies based
on security automata [42]. In our experience, the sound-
ness of FABLE makes proofs of security properties no
more difficult—and arguably simpler—than proofs of sim-
ilar properties in specialized languages [30, 40, 41]. To
demonstrate this fact we present proofs of correctness for
our access control, provenance, and static information flow
policies. FABLE opens the possibility of partially automat-
ing such proofs, along the lines of user-defined type sys-
tems [8], though we leave exploration of this issue to future
work. To our knowledge, no existing framework enables the
enforcement of such a wide variety of security policies with
an equally high level of assurance.

To evaluate FABLE’s practicality we have implemented
FABLE as an extension to the LINKS web programming
language [12]. We call the resulting language SELINKS
(for Security-Enhanced LINKS). We have built two sub-
stantial applications using SELINKS: SEWIKI, a 3500-line
secure blog/wiki inspired by Intellipedia [31] that imple-
ments a combined access control and provenance policy,
and SEWINESTORE, a 1000-line e-commerce application
distributed with LINKS extended with an access control pol-
icy. In general, we have found that FABLE’s label-based
security policies are neither lacking nor burdensome, and
the modular separation of the enforcement policy permitted
some reuse of policy code between the two applications.

In the remainder of the paper we present FABLE, our core
language for defining and enforcing custom, label-based se-
curity policies (Section 2). We show how FABLE can be
used to define a range of security policies and that FABLE’s
design simplifies proofs that these policies are implemented
correctly (Section 3). In Section 4 we discuss our SELINKS
implementation of FABLE for building web applications
and our experience building SEWIKI and SEWINESTORE.
Section 5 discusses related work, and Section 6 sketches fu-
ture work and concludes.

2 FABLE: System F with Labels

This section presents the syntax, static semantics, and
operational semantics of FABLE. The next section illus-
trates FABLE’s flexibility by presenting example policies
along with proofs of their attendant security properties.

2.1. Syntax

Figure 1 defines FABLE’s syntax. Throughout, we use
the notation ~a to stand for a list of elements of the form
a1, . . . ,an; where the context is clear, we will also treat ~a as
the set of elements {a1, . . . ,an}.

Expressions e extend a standard polymorphic λ -
calculus, System F [16]. Standard forms include integer
values n, variables x, abstractions λx:t.e, term application
e1 e2, the fixpoint combinator fix x:t.v, type abstraction Λα.e
and type application e [t]. We exclude mutable references
from the language to simplify the presentation. Our tech-
nical report [38] extends the language with references and
considers their effect on various policies, e.g., information
flows through side effects.

The syntactic constructs specific to FABLE are distin-
guished in Figure 1. The expression C(~e) is a label, where
C represents an arbitrary constructor and each ei ∈~e must
itself be a label; e.g., in ACL(Alice, Bob), ACL is 2-ary label
constructor and Alice and Bob are 0-ary label constructors.
Labels can be examined by pattern matching. For example,

2

Expressions e ::= n | x | λ x:t.e | e1 e2 | fix x:t.v |Λα.e | e [t]
(Fable-specific) | C(~e) |match e with pi ⇒ ei | ([e]) | {◦}e | {e′}e

Types t ::= int | α | ∀α.t2 | (x:t1)→ t2
(Fable-specific) | lab | lab∼e | t{e}

Patterns p ::= x |C(~p)
Pre-values u ::= n |C(~u) | λ x:t.e |Λα.e

App. values vapp ::= u | ([{e}vpol])
Policy values vpol ::= u | {e}vpol

Figure 1. Syntax of FABLE

the expression match z with ACL(x,y) ⇒x would evaluate to
Alice if z’s run-time value were ACL(Alice, Bob).

As explained earlier, FABLE introduces the notion of an
enforcement policy that is a separate part of the program
authorized to manipulate the labels on a type. Following
Grossman et al. [18] we use bracketed expressions ([e]) to
delimit policy code e from the main program. In practice,
one could use code signing as in Java [17] to ensure that
untrusted policy code cannot be injected into a program.As
illustrated earlier, the expression {◦}e removes a label from
e’s type, while {e′}e adds one. Labeling and unlabeling
operations may only occur within policy code; we discuss
these operations in detail below.

Standard types t include int, type variables α, and univer-
sally quantified types ∀α.t. Functions have dependent type
(x:t1)→ t2 where x names the argument and may be bound
in t2. We illustrate the usage of these types shortly. Labels
can be given either type lab or the singleton type lab∼e,
which describes label expressions equivalent to e. For ex-
ample, the label constructor High can be given the type lab
and the type lab∼High. Singleton types are useful for con-
straining the form of label arguments to enforcement policy
functions. For example, we could write a specialized form
of our previous access simple function:

policy access pub (acl:lab∼ACL(World), x:int{acl}) = {◦}x

The FABLE type checker ensures this function is called only
with expressions that evaluate to the label ACL(World)—
i.e., the call access pub(ACL(Alice,Bob),e) will be rejected.
In effect, the type checker is performing access control at
compile time according to the constraint embodied in the
type. We will show in Section 3.3 that these constraints are
powerful enough to encode an information flow policy that
can be checked entirely at compile time.

The dependent type t{e} describes a term of type t
that is associated with a label e. Such an association is
made using the syntax {e}e′. For example, {High}1 is
an expression of type int{High}. Conversely, this asso-
ciation can be broken using the syntax {◦}e. For ex-
ample, {◦}({High}1) has type int. Now we can illus-
trate how dependent function types (x:t1) → t2 can be
used. The function access simple can be given the type
(acl:lab) → (x:int{acl}) → int which indicates that the first
argument acl serves as the label for the second argument
x. Instead of writing (x:t1)→ t2 when x does not appear in
t2, we simply omit it. Thus access simple’s type could be

written (acl:lab) → int{acl} → int.
The operational semantics of Section 2.3 must distin-

guish between application and policy values in order to en-
sure that policy code does not inadvertently grant undue
privilege to application functions. Application values vapp

consist of either “pre-values” u—integers n, labels contain-
ing values, type and term abstractions—or labeled policy
values wrapped with ([·]) brackets. Values within policy code
are pre-values preceded by zero or more relabeling opera-
tions.

Encodings. To make our examples more readable, we use
the syntactic shorthands shown in Figure 2. The first three
shorthands are mostly standard. We use the policy keyword
to designate policy code instead of using brackets ([·]). A
dependent pair (e,e′) of type x:t × t ′ allows x, the name
for the first element, to be bound in t ′, the type of the sec-
ond element. For example, the first two arguments to the
access pub function above could be packaged into a depen-
dent pair of type (acl:lab∼ACL(World) × int{acl}) which is
inhabited by terms such as (ACL(World),{ACL(World)}1).
Dependent pairs can be encoded using dependently typed
functions. We extend the shorthand for function applica-
tion, policy function definitions, type abbreviations, and tu-
ples to multiple type and term arguments in the obvious
way. We also write as a wildcard (“don’t care”) pattern
variable.

Phantom label variables. We extend the notation for poly-
morphic functions in a way that permits quantification over
the expressions that appear in a type. Consider the example
below:

policy add〈l〉(x:int{l}, y:int{l}) = {l}({◦}x + {◦}y)

This policy function takes two like-labeled integers x and
y as arguments, unlabels them and adds them together, and
finally relabels the result, having type int{l}. This function
is unusual because the label l is not a normal term argument,
but is being quantified—any label l would do.

The reason this makes sense is that in FABLE,
(un)labeling operations are merely hints to the type checker
to (dis)associate a label term and a type. These operations,
along with all types, can be erased at runtime without af-
fecting the result of a computation. After erasing types, our
example would become policy add (x, y) = x + y, which is
clearly only a function of x and y, with no mention of l. For
this reason, we can treat add as polymorphic in the labels of

3

type abbreviation typename N α = t in e2 ≡ (N t ′ 7→ ((α 7→ t ′)t))e2
let binding let x = e1 in e2 ≡ (λx:t.e2) e1 for some t
polymorphic function def. let f〈α〉(x:t) = e1 in e2 ≡ let f = fix f:t ′.Λα.λx:t.e1 in e2 for some t ′

policy function def policy f〈α〉(x:t) = e1 in e2 ≡ let f = fix f:t ′.Λα.λx:t.([e1]) in e2 f or some t ′

dependent tuple type x:t× t ′ ≡ ∀α.((x:t)→ t ′ → α)→ α

dependent tuple introduction (e,e′) ≡ Λα.λ f:((x:t)→ t ′ → α). f e e′ for some t, t ′

dependent tuple projection let x,y = f in e ≡ f [te](λx:t.λy:t ′.e) for some t, t ′, and te

Figure 2. Syntactic shorthands

x and y—it can be called with any pair of integers that have
the same label, irrespective of what label that might be. We
express this kind of polymorphism by writing the phantom
label variable l, together with any other normal type vari-
ables like α,β , . . ., in a list that follows the function name.
In the example above, the phantom variable of add are listed
as 〈l〉. Of course, not all label arguments are phantom. For
instance, in the access simple function of Section 1, the acl
is a label argument that is passed at runtime. For simplic-
ity, we do not formalize phantom variable polymorphism.
Our technical report [38] does model phantom variables and
contains the associated proof of soundness.

Example: Access control policy. Figure 3 illustrates a sim-
ple, but complete, enforcement policy for access control.
Protected data is given a label listing those users authorized
to access the data. In particular, such data has type t{acl}
where acl encodes the ACL as a label.

The policy’s login function calls an external function
checkpw to authenticate a user by checking a password. If
authentication succeeds (the first pattern), checkpw returns a
label USER(k) where k is some unique identifier for the user.
The login function returns a pair consisting of this label and
a integer labeled with it; this pair serves as our runtime rep-
resentation of a principal. The access function takes the two
elements of this pair as its first two arguments. Since FABLE
enforces that only policies can produce labeled values, we
are assured that the term with type int{USER(k)} can only
have been produced by login. The access function’s last
two arguments consist of the protected data’s label, acl, and
the data itself, data. The access function calls the member
function to see whether the user token u is present in the
ACL. If successful, the label TRUE is returned, in which
case access returns the data with its acl label removed.

2.2. Typing

Figure 4 defines the typing rules for FABLE. The main
judgment Γ c̀ e : t types expressions. The index c indicates
whether e is part of the policy or the application. Only
policy terms are permitted to use the unlabeling and rela-
beling operators. Γ records three kinds of information; x:t
maps variables to types, α records a bound type variable,

and e � p records the assumption that e matches pattern p,
used when checking the branches of a pattern match.

The rules (T-INT), (T-VAR), (T-FIX), (T-TAB) and (T-
TAP) are standard for polymorphic lambda calculi. (T-
ABS) and (T-APP) are standard for a dependently typed
language. (T-ABS) introduces a dependent function type
of the form (x:t1) → t2. (T-APP) types an application
of a (dependently typed) function. As usual, we require
the type t1 of the argument to match the type of the for-
mal parameter to the function. However, since x may oc-
cur in the return type t2, the type of the application must
substitute the actual argument e2 for x in t2. As an ex-
ample, consider an application of the access simple func-
tion, having type (acl:lab) → int{acl} → int, to the term
ACL(Alice,Bob). According to (T-APP) the resulting ex-
pression is a function with type int{ACL(Alice,Bob)} → int,
which indicates that the function can be applied only to an
integer labeled with precisely ACL(Alice,Bob). This is the
key feature of dependent typing—the type system ensures
that associations between labels and the terms they protect
cannot be forged or broken.

Rule (T-LAB) gives a label term C(~e) a singleton la-
bel type lab∼C(~e) as long as each component ei ∈ ~e
has type lab. According to this rule ACL(Alice,Bob) can
be given the type lab∼ACL(Alice,Bob). For that mat-
ter, the expression ((λx:lab.x) High) can be given the type
lab∼ ((λx:lab.x) High); there is no requirement that e be a
value. The rule (T-HIDE) allows a singleton label type like
this one to be subsumed to the type of all labels, lab. Rule
(T-SHOW) does the converse, allowing the type of a label
to be made more precise.

Rule (T-MATCH) checks pattern matching. The first
premise confirms that expression e being matched is a la-
bel. The second line of premises describes how to check
each branch of the match. Our patterns differ from pat-
terns in, say, ML in two respects. First, the second premise
on the second line requires Γ,~xi : lab c̀ pi : lab, indicat-
ing that patterns in FABLE are allowed to contain variables
that are defined in the context Γ. Second, pattern vari-
ables may occur more than once in a pattern. Both of
these features make it convenient to use pattern matching
to check for term equality. For example, in the expres-
sion let y = Alice in match x with ACL(y,y) ⇒e, the branch

4

policy login(user:string, pw:string) =
let token = match checkpw user pw with

USER(k) ⇒USER(k)
⇒FAILED in

(token, {token}0)

let member(u:lab, a:lab) =
match a with

ACL(u, i) ⇒TRUE
ACL(j, tl) ⇒member u tl
⇒FALSE

policy access〈k,α〉(u:lab∼USER(k),
cap:int{u}, acl:lab, data:α{acl}) =

match member u acl with
TRUE ⇒{◦}data
⇒halt#access denied

Figure 3. Enforcing a simple access control policy

e is evaluated only if the runtime value for the label variable
x is ACL(Alice, Alice).

A key feature of (T-MATCH) is the final premise on the
second line, which states that the body of each branch ex-
pression ei should be checked in a context including the
assumption e � pi, which states that e matches pattern pi.
This assumption can be used to refine type information dur-
ing checking (similar to typecase [19]) using the rule (T-
CONV), which we illustrate shortly. (T-MATCH) also re-
quires that variables bound by patterns do not escape their
scope by appearing in the final type of the match; this is
ensured by the second premise, Γ ` t, which confirms t is
well formed in the top-level environment (i.e., one not in-
cluding pattern-bound variables). For simplicity we require
a default case in pattern-matching expressions: the third
premise requires the last pattern to be a single variable x
that does not occur in Γ.

Rule (T-UNLAB) types an unlabeling operation. Given
an expression e with type t{e′}, the unlabeling of e strips off
the label on the type to produce an expression with type t.
Conversely, (T-RELAB) adds a label e′ to the type of e. The
pol-index on these rules indicates that both operations are
only admissible in policy terms. This index is introduced by
(T-POL) when checking the body of a bracketed term ([e]).
For example, given expression e ≡ λx:int{Public}.([{◦}x]),
we have · àpp e : int{Public} → int since {◦}x will be typed
with index pol by (T-POL).

Rule (T-CONV) allows e to be given type t ′ assuming it
can given type t where t and t ′ are convertible, written Γ `
t ∼= t ′. Rules (TE-ID) and (TE-SYM) define convertibility
to be reflexive and symmetric. Rule (TE-CTX) structurally
extends convertibility using type contexts T . The syntax
T · t denotes the application of context T to a type t which
defines the type that results from replacing the occurrence
of the hole • in T with t. For example, if T is the context
•{C}, then T · int is the type int{C}. (Of course, rule (TE-
CTX) can be applied several times to relate larger types.)

The most interesting rules are (TE-REFINE) and (TE-
REDUCE), which consider types that contain labels (con-
structed by applying context L to an expression e). Rule
(TE-REFINE) allows two structurally similar types to be
considered equal if their embedded expressions e and p
have been equated by pattern matching, recorded as the con-
straint e � p by (T-MATCH). To see how this would be
used, consider the following example:

let tok,cap = login "Joe" "xyz" in
match tok with USER(k) ⇒access tok cap

⇒halt

We give the login function the type string →string →
(l:lab × int{l}). The type of access (defined in Figure 3) is
(u:lab∼USER(k)) → int{u} → t. We type check access tok
using rule (T-APP), which requires that the function’s pa-
rameter and its formal argument have the same type t.
However, here tok has type lab while access expects type
lab∼USER(k). Since the call to access occurs in the
first branch of the match, the context includes the refine-
ment tok � USER(k) due to (T-MATCH). From (T-SHOW)
we can give tok type lab∼ tok, and by applying (TE-
REFINE) we have lab∼ tok ∼= lab∼USER(k) and so tok
can be given type lab∼USER(k) as required. Similarly, for
access tok cap, we can check that the type int{tok} of cap is
convertible with int{USER(k)} in the presence of the same
assumption.

Rule (TE-REDUCE) allows FABLE types to be consid-
ered convertible if the expression component of one is re-
ducible to the expression component of the other [2]; re-
duction e c

 e′ is defined shortly in Figure 4. For ex-
ample, we have · ` int{(λx:lab.x) Low} ∼= int{Low} since
(λx:lab.x) Low c

 Low. One complication is that type-level
expressions may contain free variables. For example, sup-
pose we wanted to show y : lab` int{(λx:lab.x) y}∼= int{y}.
It seems intuitive that these types should be considered con-
vertible, but we do not have that (λx:lab.x) y c

 y because
y is not a value. To handle this case, the rule permits two
types to be convertible if, for every well-typed substitution
σ of the free variables of e1, σ(e1)

c
 σ(e2). This captures

the idea that the precise value of y is immaterial—all reduc-
tions on well-typed substitutions of y would reduce to the
value that was substituted for y.

Satisfying this obligation by exhaustively considering all
possible substitutions is obviously intractable. Additionally,
we have no guarantee that an expression appearing in a type
will converge to a value. Thus, type checking in FABLE,
as presented here, is undecidable. This is not uncommon in
a dependent type system; e.g., type checking in Cayenne is
undecidable [3]. However, other dependently typed systems
impose restrictions on the usage of recursion in type-level
expressions to ensure that type-level terms always termi-
nate [5]. Additionally, there are several possible decision

5

Γ c̀ e : t Expression e has type t in environment Γ under color c

Environments Γ ::= · | x:t | α | e � p | Γ1,Γ2
Substitutions σ ::= · | (x 7→ e) | (α 7→ t) | σ1,σ2

Colors c ::= pol | app
Γ c̀ n : int (T-INT)

x:t ∈ Γ

Γ c̀ x : t
(T-VAR)

Γ ` t Γ, f :t c̀ v : t
Γ c̀ fix f :t.v : t

(T-FIX)
Γ,α c̀ e : t

Γ c̀ Λα.e : ∀α.t
(T-TAB)

Γ ` t Γ c̀ e : ∀α.t ′

Γ c̀ e [t] : (α 7→ t)t ′
(T-TAP)

Γ ` t Γ,x:t c̀ e : t ′

Γ c̀ λ x:t.e : (x:t)→ t ′
(T-ABS)

Γ c̀ e1 : (x:t1)→ t2 Γ c̀ e2 : t1
Γ c̀ e1 e2 : (x 7→ e2)t2

(T-APP)

Γ c̀ ei : lab
Γ c̀ C(~e) : lab∼C(~e)

(T-LAB)
Γ c̀ e : lab∼e′

Γ c̀ e : lab
(T-HIDE)

Γ c̀ e : lab
Γ c̀ e : lab∼e

(T-SHOW)

Γ c̀ e : lab Γ ` t pn = x where x 6∈ dom(Γ)
~xi = FV (pi)\dom(Γ) Γ,~xi:lab c̀ pi : lab Γ,~xi:lab,e � pi c̀ ei : t

Γ c̀ match e with p1 ⇒ e1 . . . pn ⇒ en : t
(T-MATCH)

Γ p̀ol e : t{e′}
Γ p̀ol {◦}e : t

(T-UNLAB)

Γ p̀ol e : t Γ p̀ol e′ : lab
Γ p̀ol {e′}e : t{e′}

(T-RELAB)
Γ p̀ol e : t
Γ c̀ ([e]) : t

(T-POL)
Γ c̀ e : t Γ ` t ∼= t ′

Γ c̀ e : t ′
(T-CONV)

Γ ` t ∼= t ′ Types t and t ′ are convertible

Type contexts T ::= • | •{e} | x:• → t | x:t →• | ∀α.•
Term label contexts L ::= lab∼• | t{•}

Γ ` t ∼= t (TE-ID)
Γ ` t ∼= t ′

Γ ` t ′ ∼= t
(TE-SYM)

Γ ` t ∼= t ′

Γ ` T · t ∼= T · t ′
(TE-CTX)

e � p ∈ Γ

Γ ` L · e ∼= L · p
(TE-REFINE)

∀σ .(dom(σ) = FV (e1) ∧ Γ ` σ(e1) : lab) ⇒ σ(e1)
c
 σ(e2)

Γ ` L · e1 ∼= L · e2
(TE-REDUCE)

Γ ` t Type t is well-formed in environment Γ

Γ ` int (K-INT)
α ∈ Γ

Γ ` α
(K-TVAR) Γ ` lab (K-LAB)

Γ p̀ol e : lab
Γ ` lab∼e

(K-SLAB)

Γ ` t Γ p̀ol e : lab
Γ ` t{e}

(K-LABT)
Γ ` t1 Γ,x:t1 ` t2

Γ ` (x:t1)→ t2
(K-FUN)

Γ,α ` t
Γ ` ∀α.t

(K-ALL)

Figure 4. Static semantics of FABLE

procedures that can be used to partially decide type con-
vertibility. One simplification would be to attempt to show
convertibility for closed types only—i.e. no free variables.
In our implementation of FABLE, SELINKS, we use a com-
bination of three techniques. First, we use type information.
If l is free in a type, and the declared type of l is lab∼e,
then we can use this information to substitute e for l. Simi-
larly, if the type context includes an assumption of the form
l � e (when checking the branch of a pattern), we can sub-
stitute l with e. Finally, since type-level expressions typi-
cally manipulate labels by pattern matching, we use a sim-
ple heuristic to determine which branch to take when pat-

tern matching expressions with free variables. These tech-
niques suffice for all the examples in this paper and both our
SEWIKI and SEWINESTORE applications. Our technical
report [38] discusses these decision procedures in greater
detail and proves them sound.

Finally, the judgment Γ ` t states that t is well-formed in
Γ. Rules (K-INT), (K-TVAR), and (K-LAB) are standard,
(K-FUN) defines the standard scoping rules for names in
dependent function types, and (K-ALL) defines the stan-
dard scoping rule for universally quantified type variables.
(K-SLAB) and (K-LABT) ensure that all expressions e that
appear in types can be given lab-type. Notice that type-

6

level expressions are typed in pol-context. Because FABLE
enjoys a type-erasure property any (un)labeling operations
appearing in types pose no security risk. We use this feature
to good effect in Section 3.2 to protect sensitive information
that may appear in labels.

2.3. Operational Semantics

Figure 5 defines FABLE’s operational semantics. We
define a pair of small-step reduction relations e app

 e′ and
e pol
 e′ for application and policy expressions, respectively.

Rules of the form e c
 e′ are polychromatic—they apply

both to policy and application expressions. Since the values
for each kind of expression are different, we also parameter-
ize the evaluation contexts Ec by the color of the expression;
i.e., the context, either app or pol, in which the expression is
to be reduced. Rule (E-CTX) uses these evaluation contexts
Ec , similar to the type contexts used above, to enforce a
left-to-right evaluation order for a call-by-value semantics.
Policy expression reduction e pol

 e′ takes place within brack-
ets according to (E-POL). The rules (E-APP), (E-TAP), and
(E-FIX) define function application, type application, and
fixed-point expansion, respectively, in terms of substitu-
tions; these are all standard. Rule (E-MATCH) relies on a
standard pattern-matching judgment v � p : σ , also defined
in Figure 5, which is true when the label value matches the
pattern such that v = σ(p). (E-MATCH) determines the
first pattern p j that matches the expression v and reduces
the match expression to the matched branch’s body after
applying the substitution. The (U-CON) rule in the pattern-
matching judgment v� p : σ is the only non-trivial rule. As
explained in Section 2.2, since pattern variables may occur
more than once in a pattern, (U-CON) must propagate the
result of matching earlier sub-expressions when matching
subsequent sub-expressions. For example, pattern match-
ing should fail when attempting to match ACL(Alice,Bob)
with ACL(x,x). This is achieved in (U-CON) because, after
matching (Alice � x : x 7→ Alice) using (U-VAR), we must
try to match Bob with (x 7→ Alice)x, which is impossible.

An applied policy function will eventually reduce to a
bracketed policy value vpol. When vpol has the form ([u]), the
brackets may be removed so that the value u can be used
by application code. (E-BLAB) and (E-BINT) handle label
expressions ([C(~u)]) and integers n, respectively. To main-
tain the invariant that (un)labeling operators only appear in
policy code, rules (E-BABS) and (E-TABS) extrude only
the λ and Λ binders, respectively, from bracketed abstrac-
tions, allowing them to be reduced according to (E-APP) or
(E-TAP). Brackets cannot be removed from labeled values
([{e}u]) by application code, to preserve the labeling invari-
ant. On the other hand, brackets can be removed from any
expression by policy code, according to (E-NEST). This
is useful when reducing expressions such as ([λx:t.x])([v]),

which produces ([([v])]) after two steps; (E-NEST) (in com-
bination with (E-POL)) can then remove the inner brackets.
Finally, (E-UNLAB) allows an unlabeling operation to an-
nihilate the top-most relabeling operation. Notice that the
expressions within a relabeling operation are never evalu-
ated at runtime—relabelings only affect the types and are
purely compile time entities. The types that appear else-
where, such as (E-TAP), are also erasable, as is usual for
System F.

2.4. Soundness

We state the standard type soundness theorems for FA-
BLE here. In addition to ensuring that well-typed programs
never go wrong or get stuck, we have put this soundness
result to good use in proving that security policies encoded
in FABLE satisfy desirable security properties. We discuss
this further in the next section. Our technical report [38]
contains proofs of the following theorems for an extension
of FABLE that includes references and substructural types.

Theorem 1 (Type soundness). If · c̀ e : t; then either
∃e′.e c

 e′ or ∃vc.e = vc. Furthermore, if e c
 e′; then,

· c̀ e′ : t.

3 Example Policies in FABLE

This section uses FABLE to encode several security poli-
cies. We prove that any well-typed program using one of
these policies enjoys relevant security properties—i.e., the
program is sure to enforce the policy correctly. Space con-
straints preclude presentation of all of the encodings we
have explored, so we focus on three kinds of policies: ac-
cess control, provenance, and static information flow. We
conclude by discussing how FABLE’s design eases the con-
struction of proofs of policy correctness.

3.1. Access Control Policies

Access control policies govern how programs release in-
formation but, once the information is released, do not con-
trol how it is used. To prove that an access control pol-
icy is implemented correctly, we must show that programs
not authorized to access some information cannot learn the
information in any way, e.g., by bypassing a policy check
(something not uncommon in production systems [34]) or
by exploiting leaks due to control-flow or timing channels.
We call this security condition non-observability.

Intuitively, we can state non-observability as follows. If
some program P is not allowed to access a resource v1 hav-
ing a label l, then a program P′ that is identical to P ex-
cept that v1 has been replaced with some other resource v2

7

e c
 e′ Small-step chromatic reduction rules

Evaluation contexts Ec ::= •e | vc• | • [t] |C(~vc,• ,~e)
| match• with pi ⇒ ei | {e}• | {◦}•

e c
 e′

Ec · e
c
 Ec · e′

(E-CTX)
e

pol
 e′

([e]) app
 ([e′])

(E-POL)

(λ x:t.e) vc
c
 (x 7→ vc)e (E-APP) (Λα.e) [t] c

 (α 7→ t)e (E-TAP) fix f :t.v c
 (f 7→ fix f :t.v)v (E-FIX)

∀i < j. vc 6� pi : σi vc � p j : σ j

match vc with p1 ⇒ e1 . . . pn ⇒ en
c
 σ j(e j)

(E-MATCH) ([C(~u)]) app
 C(~u) (E-BLAB) ([n]) app

 n (E-BINT)

([λ x:t.e]) app
 λ x:t.([e]) (E-BABS) ([Λα.e]) app

 Λα.([e]) (E-BTAB) ([e]) pol
 e (E-NEST) {◦}{e}vpol

pol
 vpol (E-UNLAB)

e � p : σ Expression e matches pattern p under substitution σ

p � p : · (U-PATID) v � x : x 7→ v (U-VAR)
∀i.σ∗

i = (σ0, . . . ,σi−1) ei � σ∗
i pi : σi

C(~e)�C(~p) : ~σ
(U-CON)

Figure 5. Dynamic semantics of FABLE

(having the same type and label as v1) should evaluate in
the same way as P—it should produce the same result and
take the same steps along the way toward producing that
result. If this were not true then, assuming P’s reduction
is deterministic, P must be inferring information about the
protected resource.

To make this intuition formal, we will show that the eval-
uations of programs P and P′ are bisimilar, where the only
difference between them is the value of the protected re-
source. To express this, first we define an equivalence re-
lation called similarity up to l (analogous to definitions of
low equivalence [32, 7]) which holds for two terms e and e′

if they only differ in sub-terms that are labeled with l, with
the intention that l is the label of restricted resources.

Definition 2 (Similarity up to l). Expressions e and e′, iden-
tified up to α-renaming, are similar up to label l according
to the following relation:

e ∼l e {l}e ∼l {l}e′
e ∼l e′ l′ 6= l
{l′}e ∼l {l′}e′

e ∼l e′

λx:t.e ∼l λx:t.e′
e1 ∼l e′1 e2 ∼l e′2

e1 e2 ∼l e′1 e′2
. . .

The second rule is the most important. It states that ar-
bitrary expressions e and e′ are considered similar at label
l when both are labeled with l. Other parts of the program
must be structurally identical, as stated by the remaining
congruence rules (not all are shown; the full relation can be
found in our technical report [38]). We extend similarity to
a bisimulation as follows: two similar terms are bisimilar
if they always reduce to similar subterms, and do so indef-
initely or until no further reduction is possible. This notion
of bisimulation is the basis of our access control security
theorem; it is both timing and termination sensitive.

Definition 3 (Bisimulation). Expressions e1 and e2 are
bisimilar at label l, written e1 ≈l e2, if and only if e1 ∼l e2
and there exists e′1,e

′
2 such that e1

c
 e′1 ⇔ e2

c
 e′2 and

e′1 ≈l e′2.

Theorem 1 (Non-observability). Given a ([·])-free expres-
sion e such that (a:ta,m:tm,cap:int{user},x:t{acl} àpp e : te)
where acl and user are label constants, and given a substi-
tution σ = (a 7→ access,m 7→ member,cap 7→ ([{user}0])).
Then, for type-respecting substitutions σi = σ ,x 7→ vi where
· àpp vi : t{acl} for i=1,2, we have (member user acl c∗
False)⇒ σ1(e)≈acl σ2(e).

This theorem is concerned with a program e that contains
no policy-bracketed terms (it is just application code) but,
via the substitution σ , may refer to our access control func-
tions access and member through the free variables a and m.
Additionally, the program is granted a single user capabil-
ity ([{user}0]) through the free variable cap which gives the
program the authority of user user. The program may also
refer to some protected resource x whose label is acl, but the
authority of user is insufficient to access x according to the
access control policy because (member user acl c∗ False).
Under these conditions, we can show that for any two (well-
typed) vi we substitute for x according to substitution σi,
the resulting programs are bisimilar—their reduction is in-
dependent of the choice of vi.

Notice that this theorem is indifferent to the actual imple-
mentation of the acl label and the member function. Thus,
while our example policy is fairly simplistic, a far more so-
phisticated model could be used. For instance, we could
have chosen labels to stand for RBAC- or RT-style roles [23]
and member could invoke a decision procedure for deter-
mining role membership. Likewise, the theorem is not con-

8

cerned with the origin of the user capability—a function
more sophisticated than login (e.g., that relied on cryptog-
raphy) could have been used. The important point is that
FABLE ensures the second component of the user creden-
tial (l:lab∼USER(k) × int{l}) is unforgeable by application
code. Finally, it would be straightforward to extend our the-
orem to speak to policies that provide access to more than
one resource with a single membership test, as in the fol-
lowing code

policy access cap〈k〉(u:lab∼USER(k), cred:int{u}, acl:lab) =
match member u acl with True ⇒Λα .λx:α{acl}.{◦}x

⇒#fail

Here the caller presents a user credential and an access
control label acl (but no resource labeled with that label).
If the membership check succeeds, a function with type
∀α.α{acl} →α is returned. This function can be used to
immediately unlabel any resource with the authorized la-
bel. This is useful when policy queries are expensive. It is
also useful for encoding a form of delegation; rather than
releasing his user credential, a user could release a function
that uses that credential to a limited effect. Of course, this
may be undesirable if the policy is known to change fre-
quently, but even this could be accommodated. Variations
that combine static and dynamic checks are also possible.

3.2. Dynamic Provenance Tracking

Provenance is “information recording the source, deriva-
tion, or history of some information” [7]. Provenance is rel-
evant to computer security for at least two reasons. First,
provenance is useful for auditing, e.g., to discover whether
some data was inappropriately released or modified. Sec-
ond, provenance can be used to establish data integrity, e.g.,
by carefully accounting for a document’s sources. This sec-
tion describes a label-based provenance tracking policy we
constructed in FABLE. To prove that this policy is imple-
mented correctly we show that all programs that use it will
accurately capture the dependences (in the sense of infor-
mation flow) on a value produced by a computation.

Figure 6 presents the provenance policy. We define the
type Prov α to describe a pair in which the first component
is a label l that records the provenance of the second compo-
nent. The policy is agnostic to the actual form of l. Prove-
nance labels could represent things like authorship, owner-
ship, the channel on which information was received, etc.
An interesting aspect of Prov α is that the provenance label
is itself labeled with the 0-ary label constant Auditors. This
represents the fact that provenance information is subject
to security concerns like confidentiality and integrity. Intu-
itively, one can think of data labeled with the Auditors label
as only accessible to members of a group called Auditors (of
course, a more complex policy could be used). Finally, note

that because the provenance label l is itself labeled (having
type lab{Auditors}) it would be incorrect to write α{l} as
the second component of the type since this requires that l
have type lab. Therefore we unlabel l when it appears in the
type of the second component. As explained in Section 2.2,
unlabeling operations in types pose no security risk since
the types are erased at runtime.

The policy function apply is a wrapper for tracking de-
pendences through function applications. In an idealized
language like FABLE it is sufficient to limit our attention to
function application, but a policy for a full language would
define wrappers for other constructs as well. The first ar-
gument of apply is a provenance-labeled function lf to be
called on the second argument mx. The body of apply first
decomposes the pair lf into its label l and the function f itself
and does likewise for the argument mx. Then it applies the
function, stripping the label from both it and its argument
first. The provenance of the result is a combination of the
provenance of the function and its argument. We write this
as the label pair Union(l,m) which is then associated with
the final result. Notice that we strip the Auditors labels from
l and m before combining them, and then add the label to
the label of the final result.

The policy also defines a function flatten to convert a
value of type Prov (Prov α) to one of type Prov α by ex-
tracting the nested labels (the first two lines) and then col-
lapsing them into a Union (third line) that is associated with
the inner pair’s labeled component (fourth line).

An example client program that uses this provenance
policy is the following:

let client〈α ,β ,γ〉 (f : Prov(α →β→γ), x : Prov α , y : Prov β) =
apply [β][γ] (apply [α][β →γ] f x) y

This function takes a labeled two-argument function f as its
argument and the two arguments x and y. It calls apply twice
to get a result of type Prov γ. This will be a tuple in which
the first component is a labeled provenance label of the form
Union(Union(lf,lx), ly) and the second component is a value
labeled with that provenance label. In the label, we will
have that lf is the provenance label of the function argument
f and lx and ly are the provenance of the arguments x and y,
respectively. Note that a caller of client can instantiate the
type variable γ to be a type like Prov int. In this case, the
type of the returned value will be Prov (Prov int), which can
be flattened if necessary.

We can prove that provenance information is tracked cor-
rectly following Cheney et al. [7]. The intention is that if a
value x of type Prov α influences the computation of some
other value y, then y must have type Prov β (for some β)
and its provenance label must mention the provenance label
of x. If provenance is tracked correctly, a change to x will
only affect values like y; other values in the program will be
unchanged. We can express this using a similarity relation
v1 ∼l v2 like the one defined in Section 3.1 which relates

9

typename Prov α= (l:lab{Auditors} ×α{{◦}l})
policy flatten〈α〉 (x:Prov (Prov α)) =

let l,inner = x in
let m,a = inner in
let lm = Union({◦}l, {◦}m) in

({Auditors}lm, {lm}a)

policy apply〈α ,β 〉 (lf:Prov (α →β), mx:Prov α) =
let l,f = lf in
let m,x = mx in
let y = ({◦}f) ({◦}x) in
let lm = Union({◦}l, {◦}m) in

({Auditors}lm, {lm}y)

Figure 6. Enforcing a dynamic provenance-tracking policy

two values if they differ only on sub-terms of type Prov α

whose provenance label mentions l. Thus, an application
program e that is compiled with the policy of Figure 6 and
is executed in contexts that differ only in the choice of a
tracked value of label l will compute results that differ only
in sub-terms that are also colored using l.

Theorem 2 (Dependency correctness). Given a ([·])-free ex-
pression e such that a : ta, f : t f ,x : Prov t àpp e : t ′, and
given a substitution σ = (a 7→ apply, f 7→ flatten). Then,
for type-respecting substitutions σi = σ ,x 7→ vi where àpp

vi : Prov t for i=1,2 it is the case that v1 ∼l v2 implies
(σ1(e)

app∗ v′1 ∧ σ2(e)
app∗ v′2)⇒ v′1 ∼l v′2

3.3. Static Information Flow

Both policies discussed so far rely on runtime checks.
This section illustrates how FABLE can be used to encode
static lattice-based information flow policies that require no
runtime checks. In a static information flow type system
(as found in FlowCaml [32]) labels l have no run-time wit-
ness; they only appear in types t{l}. Labels are ordered
by a relation v that typically forms a lattice. This ordering
is lifted to a subtyping relation on labeled types such that
l1 v l2 ⇒ t{l1} <: t{l2}. Assuming the lattice ordering is
fixed during execution, well-typed programs can be proven
to adhere to the policy defined by the initial label assign-
ment appearing in the types.

Figure 7 illustrates the policy functions, along with a
small sample program. In our encoding we define a two-
point security lattice with atomic labels HIGH and LOW and
protected expressions will have labeled types like t{HIGH}.
The ordering LOW < HIGH is exemplified by the lub (least
upper bound) operation for the lattice. The join function
(similar to the flatten function from Figure 6) combines
multiple labels on a type into a single label. The interest-
ing thing here is the label attached to x is a label expres-
sion lub l m, rather than an label value like HIGH. The type
rule (T-CONV) presented in Figure 4 can be used to show
that a term with type int{lub HIGH LOW} can be given type
int{HIGH} (since lub HIGH LOW c

 HIGH). This is criti-
cal to being able to type programs that use this policy.

The policy includes a subsumption function sub, which
takes as arguments a term x with type α{l} and a label

policy lub(x:lab, y:lab) = match x,y with
, HIGH | HIGH, ⇒HIGH | , ⇒LOW

policy join〈α ,l,m〉 (x:α{l}{m}) = ({lub l m}{◦}{◦}x)
policy sub〈α ,l〉 (x:α{l}, m:lab) = ({lub l m}{◦}x)
policy apply〈α ,β ,l,m〉 (f:(α →β){l}, x:α) = {l}(({◦}f) x)

Figure 7. Enforcing an information flow policy

m and allows x to be used at the type α{lub l m}. This
is a restatement of the subsumption rule above, as l v m
implies l tm = m. (Once types are erased, join and sub
are both essentially the identity function and could be opti-
mized away.) Finally, the policy function apply unlabels the
function f in order to call it, and then adds f ’s label on the
computed result.

Consider the following client program as an example us-
age of the static information flow policy.

let client (f:(int{HIGH}→ int{HIGH}){LOW}, x:int{LOW}) =
let x = (sub [int] x HIGH) in

join [int] (apply [int{HIGH}][int{HIGH}] f x)

The function client here calls function f with x, where
f expects a parameter of type int{HIGH} while x has type
int{LOW}. For the call to type check, the program uses sub
to coerce x’s type to int{lub LOW HIGH} which is convert-
ible to int{HIGH}. The call to apply returns a value of type
int{HIGH}{LOW}. The call to join collapses the pair of
labels so that client’s return type is int{lub HIGH LOW},
which converts to int{HIGH}.

We have proved that FABLE programs using this policy
enjoy the standard noninterference property. We have also
shown that a FABLE static information flow policy is at least
as permissive as the information flow policy implemented
by the functional subset of Core-ML, the formal language of
FlowCaml [30]. Finally, we show how the dynamic prove-
nance tracking and static information flow policies can be
combined to enforce dynamic information flow. All the
aforementioned proofs may be found in our technical re-
port [38].

10

3.4. Proofs of Security Properties in FABLE

As mentioned in the introduction, FABLE does not, in
and of itself, guarantee that well-typed programs implement
a particular security policy’s semantics correctly. That said,
FABLE has been designed to facilitate proof of such theo-
rems. To illustrate how, we chose to use three very differ-
ent techniques for each of the correctness results reported
here. We conclude from our experience that the metatheory
of FABLE provides a useful repository of lemmas that can
naturally be applied in showing the correctness of various
policy encodings. As such, we believe the task of construct-
ing a correctness proof for a FABLE policy to be no more
onerous, and possibly considerably simpler, than the corre-
sponding task for a special-purpose calculus that “bakes in”
the enforcement of a single security policy. In the remain-
der of this section, we report on our experience with each of
the three proofs and discuss preliminary progress towards
reasoning about proofs involving multiple policies.

In all our proofs, two key features of FABLE play a cen-
tral role. First, dependent typing in FABLE allows a pol-
icy analyst to assume that all policy checks are performed
correctly. For instance, when calling the access function
to access a value v of type t{acl}, the label expressing v’s
security policy must be acl, and no other. The type sys-
tem ensures that the application program cannot construct a
label, say ACL(Public), and trick the policy into believing
that this label, and not acl, protects v; i.e., dependent typing
rules out confused deputies [6]. Second, the restriction that
application code cannot directly inspect labeled resources
ensures that a policy function must mediate every access of
a protected resource. Assuring complete mediation is not
unique to FABLE— Zhang et al. [45] used CQual to check
that SELinux operations on sensitive objects are always pre-
ceded by policy checks and Fraser [15] did the same for
Minix. However, the analysis in both these instances only
ensures that some policy check has taken place, not neces-
sarily the correct one. As such, these other techniques are
vulnerable to flaws due to confused deputies.

When combined with these two insights, our proof of
non-observability for the access control policy (in our tech-
nical report [38]) is particularly simple. In essence, the FA-
BLE system ensures that a value with labeled type must be
treated abstractly by the application program. With this ob-
servation, the proof proceeds in a manner very similar to a
proof of value abstraction [18]. This is a general semantic
property for languages like FABLE that support parametric
polymorphism or abstract types. Indeed, the policy as pre-
sented in Figure 3 could have been implemented in a lan-
guage like ML, which also has these features. For instance,
an integer labeled with an access control list could be rep-
resented in ML as a pair consisting of an access control list
and an integer with type (string list × int). A policy module

could export this pair as an abstract type, preventing ap-
plication code from ever inspecting the value directly, and
provide a function to expose the concrete type only after
a successful policy check. While such an encoding would
suffice for the simple policy of Figure 3, it would not work
for other idioms like the function access cap of Section 3.1,
which reveals some of the structure of a label to avoid the
need for additional checks. Abstract types on their own are
also insufficient to support static checking of policies, as in
the case of information flow.

To show dependency correctness (in our technical re-
port [38]) we followed a proof technique used by Tse and
Zdancewic [40]. This technique involves defining a logical
relation [28] that relates terms whose set of provenance la-
bels include the same label l. Recall that our goal in this
theorem is to show that given x:Prov t c̀ e : t that σ1(e) is
related to σ2(e), where σi substitutes a provenance labeled
value vi for x in e. The crux of this proof involves showing
that the logical relation is preserved under substitution—
i.e., a form of substitution lemma for the logical relation.
While constructing the infrastructure to define the logical
relation requires some work, strategic applications of stan-
dard substitution lemma for FABLE can be used to discharge
the proof without much difficulty.

While it would be possible to reuse our infrastructure
for the dependency correctness proof to show the nonin-
terference result for the static information flow policy (as
in Tse and Zdancewic), we choose instead to use another
technique, due to Pottier and Simonet [30] (in our technical
report [38]). This technique involves representing a pair of
executions of a FABLE program within the syntax of a sin-
gle program and showing a subject reduction property holds
true. As with the logical relations proof, once we had con-
structed the infrastructure to use this technique, the proof
was an easy consequence of FABLE’s preservation theorem.

All our correctness theorems impose the condition that
an application program be “([])-free”. That is, these theo-
rems apply only to situations where a single policy is in ef-
fect within a program. However, in practice, multiple poli-
cies may be used in conjunction and we would like to reason
that interactions between the policies do not result in viola-
tions of the intended security properties. To characterize
the conditions under which a policy can definitely be com-
posed with another, we defined a simple type-based crite-
rion, which when satisfied by two (or more) policies πP and
πQ, implies that neither policy will interfere with the func-
tioning of the other policy when applied in tandem to the
same program.

Intuitively, a policy can be made composable by enclos-
ing all its labels within a unique top-level label constructor
that can be treated as a namespace. A policy that only ma-
nipulates labels and labeled terms that belong to its own
namespace can be safely composed with another policy.

11

The main benefit of compositionality is modularity; when
multiple composable policies are applied to a program, one
can reason about the security of the entire system by con-
sidering each policy in isolation. Policy designers that are
able to encapsulate their policies within a namespace can
package their policies as libraries to be reused along with
other policy libraries.

Our notion of composition is a noninterference-like
property—a policy is deemed composable if it can be shown
not to depend on, or influence the functioning of another
policy. As with noninterference properties in other contexts,
this condition is often too restrictive for many realistic ex-
amples in which policies, by design, must interact with each
other. We find that policies that do not compose according
to this definition perform a kind of declassification (or en-
dorsement) by allowing labeled terms to exit (or unlabeled
terms to enter) the policy’s namespace. We conjecture that
the vast body of research into declassification [33] can be
brought to bear here in order to recover a degree of modu-
larity for interacting policies. Our technical report [38] con-
tains the formal statement and proof of the policy noninter-
ference theorem and further discussion of the applicability
of this condition.

Finally, although we have focused on bisimulation prop-
erties in this paper, we believe that our approach is also
likely to be useful in proving other kinds of security prop-
erties. For instance, we have recently begun investigating
the enforcement of information release protocols by adding
affine types to FABLE [39]. We formulate these protocols in
terms of security automata used as a kind of typestate [36].
We have been able to prove that type-correct programs pro-
duce execution traces that contain event sequences in com-
pliance with specific information release protocols. We
have also found other forms of substructural types to be
useful. Our technical report [38] sketches the use of rele-
vant types to track side-effects in programs that manipulate
references to mutable state.

4 SELINKS: FABLE for Web Programming

We have implemented FABLE as an extension to the
LINKS functional web-programming language [12]; we
call our extension Security-Enhanced LINKS, or SELINKS.
This section briefly describes our SELINKS implementation
and presents our experience using it to build two applica-
tions, a wiki SEWIKI and an on-line store SEWINESTORE.

4.1. SELINKS

LINKS is a new programming language with which a
programmer can write an entire multi-tier web application
as a single program. The compiler splits that program into

components to run on the client (as JavaScript), server (as a
local fragment of LINKS code), and database (as SQL). By
extending LINKS with FABLE’s label-based security poli-
cies, we can build applications that police data within and
across tiers, up to the level of trust we have in those tiers. In
our test applications we assume the server and database are
trusted but the client is not.

LINKS is a functional programming language equipped
with standard features such as recursive variant types, pat-
tern matching, parametric polymorphism, and higher-order
functions. As such, the FABLE policies we have presented
so far transliterate naturally into SELINKS. One difference
is that rather than define a special type lab as in FABLE, in
SELINKS we allow arbitrary expressions to be treated as
labels. The examples in this paper can be represented in
SELINKS using expressions with a variant type as a label.
Our applications make use of variants, strings, integers, lists
and records to more easily construct and inspect labels.

SELINKS also provides native support for the syntac-
tic shorthands shown in Figure 2. Type abbreviations in
LINKS have been extended in SELINKS to support abbrevi-
ations of dependent types. Policy functions are designated
by the qualifier policy, as in the examples of this paper. We
also provide native support for dependent tuples in terms
of existential packages rather than requiring the program-
mer to encode them with higher-order functions. While this
makes dependent tuples easier to use, existential packages
in SELINKS must still be carefully manipulated using ex-
plicit pack and unpack operations.

Finally, although LINKS makes heavy use of type infer-
ence, in SELINKS we rely on annotations to check code that
manipulates security labels and labeled types. However, we
provide limited but convenient forms of inference to sim-
plify programming and cut down on annotations. For in-
stance, instantiations of phantom label variables are always
inferred and, in many common cases, pack and unpack op-
erations can also be inferred. Additionally, code that does
not use our type extensions can still benefit from standard
LINKS type inference.

4.2. SEWIKI and SEWINESTORE

SEWIKI is an on-line document management system in-
spired by Intellipedia, a set of web applications designed to
promote information sharing throughout the United States
intelligence community [31]. SEWIKI consists of approx-
imately 3500 lines of SELINKS code. It enforces a fine-
grained combination of a group-based access control pol-
icy and a provenance policy on documents. A document is
represented as a n-ary tree according to the following type
definition:

typename Doc = Node of [Doc] | Leaf of String
| Labeled of (l:DocLabel ×Doc{l})

12

Here, [t] is SELINKS notation for a list of t-typed values.
The Labeled constructor allows nodes to have a security la-
bel according to the dependent pair (l:DocLabel× Doc{l}).
The type DocLabel is the type of security labels for docu-
ments.

typename Group = Authors | Auditors | Administrators
typename Acl = (read:[Group], write:[Group])
typename DocLabel = (acl: Acl, prov: Prov)

DocLabel is a record with the fields acl and prov for storing
access control and provenance labels respectively. The type
Acl is itself a record containing two fields, read and write,
that maintain the list of groups authorized to read and mod-
ify a document node, respectively. At the moment, we have
three groups: Authors, in which all document authors are
members; Auditors, the group of users that are trusted to au-
dit a document; and Administrators, which include only the
system administrators. We implement authentication cre-
dentials as terms of the type Cred (not shown). This type is
similar to the type of credentials produced by login in the
FABLE access control policy (Figure 3) except that Cred in-
cludes additional useful information such as the user’s name
and unique identifier.

Possible document modifications are mediated by the
write access policy function, which has the following type:

write access:∀ α ,β . Cred → (f:α →β) → (l:Acl) →α{l}→β{l}

This function allows a caller to pass in a user’s credential
and a function f that is intended to modify a resource α

labeled with an access control label l. If write access de-
termines that the user is in the writer’s group of the Acl l,
the function f is applied and the policy relabels the modified
resource with the (access control) label of the original.

SEWIKI also includes a revision history tracking pol-
icy, similar in spirit to the provenance tracking policy of
Section 3.2. We track provenance through all operations
that alter a document while still enforcing the access con-
trol policy. We represent provenance information using the
Prov type shown below and store this information in the
prov field of a DocLabel.

typename Op = Create | Edit | Delete | Restore | Copy | Relabel
typename Prov = [(oper:Op, user:User)]

The provenance label of a document node consists of a list
of operations performed on that node together with the iden-
tity of the user that authorized that operation. Tracked oper-
ations are of type Op and include document creation, modi-
fication, deletion and restoration (documents are never com-
pletely deleted in SEWIKI), copy-pasting from other doc-
uments, and document relabeling. For the last, authorized
users are presented with an interface to alter the access con-
trol labels that protect a document.

Policy functions that enforce this composite policy are
fairly modular. For instance, a policy function that medi-
ates modification of a document first projects out the acl

component of the label and calls write access to ensure that
the modification is authorized. It then records the Edit op-
eration in the prov field of the edited document’s label.

In addition to building SEWIKI, we extended the “wine
store” e-commerce application that comes with LINKS by
creating labels to represent users and associating such la-
bels with orders in a shopping cart and order history. This
helps ensure that an order is only accessed by the customer
who created it. As in the SEWIKI, the user’s credential is
represented using Cred; order information is defined below.
The policy functions to view and add items to an order are
implemented as simple wrappers around the same read and
write access policies used in the SEWIKI.

typename Order = (l:Acl ×List(CartItem){l})

Our experience using SELINKS to write these applica-
tions has been quite positive. The access control policies
were easy to define and to use, with policy code consisting
of roughly 200 lines of code total (including helper func-
tions). The access control and login policy code was mod-
ular enough to be shared in its entirety by the two applica-
tions. The provenance policy consists of about 100 lines of
code, and was also straightforward to use. Unlike the prove-
nance policy from Section 3.2, SEWIKI provenance labels
essentially track only direct data flows to and from other
documents. This makes them much easier to program with
since far fewer program operations need to be mediated by
the policy. To support richer policies while easing the pro-
gramming burden we are investigating an approach related
to weaving in aspect-oriented programming [21] that, given
a policy specification, automatically transforms a program
to insert the appropriate label manipulations. We also plan
to include limited support for type inference to better inte-
grate the use of FABLE-style dependent types with standard
LINKS types in SELINKS.

5 Related Work

Dependently-typed languages have found use in a wide
variety of applications [44, 43, 3, 5]. In the context of secu-
rity, Zheng and Myers [46] formalize support for dynamic
security labels that can be associated with data to express
information flow policies. The technical machinery for as-
sociating labels to terms in their system is similar to ours.
There are two main differences. First, the security policy—
an information flow policy with a particular label model—
is expressed directly in the type system whereas in FABLE
both the security policy and the label model are customiz-
able. As discussed in Section 3.3, dynamic labels for infor-
mation flow policies can be encoded in FABLE as a com-
bination of our dynamic provenance and static information
flow policies. Second, FABLE allows non-values to appear
in types, e.g., lub l m in Figure 7. This permits a combina-

13

tion of static and dynamic policy checking, but at the cost
of potentially undecidable type checking. Our SELINKS
implementation uses heuristics to ensure that type-checking
never diverges.

Walker’s “type system for expressive security poli-
cies” [42] is also dependently typed. Labels in Walker’s lan-
guage are uninterpreted predicates rather than arbitrary ex-
pressions. Walker’s system can enforce policies expressed
as security automata, which can capture any safety property.
This kind of policy is also enforceable in FABLE when ex-
tended with substructural types. However, in Walker’s sys-
tem, the policy is always enforced by means of a runtime
check. In order to recover some amount of static checking,
Walker suggests that a user might add additional rules to the
type system, though he is not specific about how this would
be done. These additional rules would have to be proved
correct with respect to a desired security property.

It has been observed that dependent types can be used
to express a kind of customized type system [43], and FA-
BLE’s policy functions fit this description. For example,
the sub function in the policy of Figure 7 effectively intro-
duces a subsumption rule into the type system. Researchers
have explored how user-defined type systems can be sup-
ported directly via customizable type qualifiers. Shankar et
al. [35] have used lattice-based type qualifiers in CQual [13]
to track dataflow properties like taintedness [35], and Zhang
et al. [45] and Fraser et al. [15] have used qualifiers to check
complete mediation in access control systems. Millstein et
al [8, 1] have developed an approach in which programmers
can indicate data invariants that custom type qualifiers are
intended to signify. In some cases, they are able to auto-
matically verify that these invariants are correctly enforced
by the custom type rules. While their invariants are rela-
tively simple, we ultimately would like to develop a frame-
work in a similar vein, in which correctness properties for
FABLE’s enforcement policies can be at least partially au-
tomated. Marino et al. [27] have proposed using proof as-
sistants for this purpose, and we plan to explore this idea in
the context of FABLE policies.

Li and Zdancewic show how to encode information flow
policies in Haskell [25]. They define a meta-language that
makes the control-flow structure of a program available for
inspection within the program itself. Their enforcement
mechanism relies on the lazy evaluation strategy of Haskell
that allows the control flow graph to be inspected for in-
formation leaks prior to evaluation. While their encoding
permits the use of custom label models, they only show an
encoding of an information flow policy. It is not clear their
system could be used to encode the range of policies dis-
cussed here.

In other work, Li and Zdancewic [24] have proposed la-
beling types with functions that describe conditions under
which a type is allowed to be relabeled. Their goal is to con-

trol what information is declassified by a program, whereas
we aim to enforce a variety of policies.

Our technique of separating the enforcement policy from
the rest of the program is based on Grossman et al’s col-
ored brackets [18]. They use these brackets to model type
abstraction, whereas we use them to ensure that the priv-
ilege of unlabeling and relabeling terms is not mistakenly
granted to application code. As a result, we do not need to
specially designate application code that may arise within
policy terms, keeping things a bit simpler. We plan to in-
vestigate the use of different colored brackets to distinguish
different enforcement policies, following Grossman et al.’s
support for multiple agents.

Finally, inasmuch as we have targeted the LINKS web-
programming language [12] as the platform on which to
build FABLE, our work is related to Swift [9] and SIF [11],
two Jif-based projects that aim to secure web applications.
The former is a technique that permits a web application to
be split according to a policy into JavaScript code that runs
on the client and Java code on the server, while the latter
is a framework in which to build secure servlets. As dis-
cussed in Section 4, LINKS provides similar functionality,
except it additionally integrates database access code into
the framework. With our new security checking features in
SELINKS, as in Swift, practical, verified, end-to-end secu-
rity for multi-tiered applications is within reach.

6 Conclusions

This paper has presented FABLE, a core formalism for a
programming language in which programmers may specify
security policies and reason that these policies are properly
enforced. We have shown that FABLE is flexible enough
to implement a wide variety of security policies, includ-
ing access control, provenance, and static information flow,
among other policies. We have also argued that FABLE’s
design simplifies proofs that programs using these policies
do so correctly. We have implemented FABLE as part of
the LINKS web programming language, and we have used
the resulting language, which we call SELINKS, to build
two substantial applications, a secure wiki and a secure on-
line store. While more work remains to make SELINKS a
fully satisfactory platform, to our knowledge, no existing
framework enables the enforcement of such a wide variety
of security policies with an equally high level of assurance.

Acknowledgements: We thank Jeff Foster, Boniface
Hicks, Polyvios Pratikakis, Peter Sewell and the anonymous
reviewers for helpful comments on a draft of this paper. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as represent-
ing the official policies, either expressed or implied, of the
Army Research Laboratory or the U. S. Government.

14

References

[1] C. Andreae, J. Noble, S. Markstrum, and T. Millstein. A
framework for implementing pluggable type systems. In
OOPSLA ’06. ACM Press, 2006.

[2] D. Aspinall and M. Hoffmann. Advanced Topics in Types and
Programming Languages, chapter Dependent Types. MIT
Press, 2004.

[3] L. Augustsson. Cayenne–a language with dependent types.
In ICFP ’98, New York, NY, USA, 1998. ACM Press.

[4] L. Badger, D. F. Sterne, D. L. Sherman, and K. M. Walker. A
domain and type enforcement UNIX prototype. Computing
Systems, 9(1):47–83, 1996.

[5] Y. Bertot and P. Castéran. Interactive Theorem Proving and
Program Development. Coq’Art: The Calculus of Inductive
Constructions. Springer Verlag, 2004.

[6] M. Bishop. Computer Security: Art and Science. Addison
Wesley, 2003.

[7] J. Cheney, A. Ahmed, and U. Acar. Provenance as depen-
dency analysis. Database Programming Languages, 2007.

[8] B. Chin, S. Markstrum, and T. Millstein. Semantic type qual-
ifiers. In PLDI ’05. ACM Press, 2005.

[9] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng,
and X. Zheng. Secure web application via automatic parti-
tioning. In SOSP ’07. ACM Press, 2007.

[10] S. Chong, A. C. Myers, N. Nystrom, L. Zheng, and
S. Zdancewic. Jif: Java + information flow. Software release.
Located at http://www.cs.cornell.edu/jif, July 2006.

[11] S. Chong, K. Vikram, and A. C. Myers. Sif: Enforcing con-
fidentiality and integrity in web applications. In USENIX
Security ’07, 2007.

[12] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: Web
programming without tiers. In FMCO ’06, 2006.

[13] J. S. Foster, T. Terauchi, and A. Aiken. Flow sensitive type
qualifiers. In PLDI ’02. ACM Press, 2002.

[14] C. Fournet and A. D. Gordon. Stack inspection: theory and
variants. In POPL ’02. ACM Press, 2002.

[15] T. Fraser, J. Nick L. Petroni, and W. A. Arbaugh. Applying
flow-sensitive CQUAL to verify MINIX authorization check
placement. In PLAS. ACM Press, 2006.

[16] J.-Y. Girard. Interprétation fonctionelle et élimination des
coupures de l’arithmétique d’ordre supérieur. PhD thesis,
Université Paris VI I, 1972.

[17] L. Gong. Inside Java 2 platform security architecture, API
design, and implementation. Addison-Wesley, 1999.

[18] D. Grossman, G. Morrisett, and S. Zdancewic. Syntactic type
abstraction. ACM TOPLAS, 22(6):1037–1080, 2000.

[19] R. Harper and G. Morrisett. Compiling polymorphism using
intensional type analysis. In POPL ’95. ACM Press, 1995.

[20] B. Hicks, D. King, P. McDaniel, and M. Hicks. Trusted
declassification: high-level policy for a security-typed lan-
guage. In PLAS ’06. ACM Press, 2006.

[21] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented pro-
gramming. In ECOOP ’07. Springer-Verlag, 1997.

[22] C. E. Landwehr. The best available technologies for com-
puter security. IEEE Computer, 16(7):89–100, July 1983.

[23] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of

a Role-Based Trust-Management Framework. In S&P ’02.
IEEE Computer Society Press, 2002.

[24] P. Li and S. Zdancewic. Downgrading policies and relaxed
noninterference. In POPL ’05. ACM Press, 2005.

[25] P. Li and S. Zdancewic. Encoding information flow in
Haskell. In CSFW ’06. IEEE Computer Society Press, 2006.

[26] P. Loscocco and S. Smalley. Integrating flexible support
for security policies into the Linux operating system. In
FREENIX 2001. USENIX Association, 2001.

[27] D. Marino, B. Chin, T. Millstein, G. Tan, R. J. Simmons,
and D. Walker. Mechanized metatheory for user-defined type
extensions. In WMM ’06, 2006.

[28] J. C. Mitchell. Foundations of Programming Languages.
MIT Press, 1996.

[29] Perl 5.8.8 documentation - perlsec. http://perldoc.

perl.org/perlsec.html.
[30] F. Pottier and V. Simonet. Information flow inference for

ML. ACM TOPLAS, 25(1), Jan. 2003.
[31] Reuters, October 2006. U.S. Intelligence Unveils Spy Ver-

sion of Wikipedia.
[32] A. Sabelfeld and A. C. Myers. Language-based information-

flow security. JSAC, 21(1):5–19, Jan. 2003.
[33] A. Sabelfeld and D. Sands. Dimensions and principles of de-

classification. In CSFW ’05. IEEE Computer Society, 2005.
[34] SecurityFocus: Access control bypass vulnerabilities.

http://search.securityfocus.com/swsearch?

metaname=alldoc&query=access+control+bypass.
[35] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Detect-

ing Format String Vulnerabilities with Type Qualifiers. In
USENIX Security ’01. USENIX Association, 2001.

[36] R. E. Strom and S. Yemini. Typestate: A programming
language concept for enhancing software reliability. IEEE
Trans. Softw. Eng., 12(1):157–171, 1986.

[37] Z. Su and G. Wassermann. The essence of command injec-
tion attacks in web applications. In POPL ’06. ACM Press.

[38] N. Swamy, B. J. Corcoran, and M. Hicks. Fable: A language
for enforcing user-defined security policies. Technical Re-
port CS-TR-4895, Depart. Comp. Sci., U. Maryland, 2007.

[39] N. Swamy and M. Hicks. Verified enforcement of
automaton-based information release policies. Technical Re-
port CS-TR-4906, Dept. Comp. Sci., U. Maryland, 2008.

[40] S. Tse and S. Zdancewic. Run-time Principals in
Information-flow Type Systems. In S&P ’04. IEEE Com-
puter Society Press, 2004.

[41] D. Volpano, G. Smith, and C. Irvine. A sound type sys-
tem for secure flow analysis. Journal of Computer Security,
4(3):167–187, 1996.

[42] D. Walker. A type system for expressive security policies. In
POPL ’00. ACM Press, 2000.

[43] H. Xi. Applied Type System (extended abstract). In TYPES
2003. Springer-Verlag LNCS 3085, 2004.

[44] H. Xi and F. Pfenning. Dependent types in practical pro-
gramming. In POPL ’99. ACM Press, 1999.

[45] X. Zhang, A. Edwards, and T. Jaeger. Using CQUAL for
static analysis of authorization hook placement. In USENIX
Security, 2002.

[46] L. Zheng and A. C. Myers. Dynamic security labels and
noninterference. In FAST ’04. Springer, 2004.

15

