
Formalizing Dynamic Software Updating

Gavin Bierman† Michael Hicks‡ Peter Sewell† Gareth Stoyle†

†University of Cambridge ‡University of Maryland, College Park
{First.Last}@cl.cam.ac.uk mwh@cs.umd.edu

February 7, 2003

Abstract

Dynamic software updating (DSU) enables running programs to be
updated with new code and data without interrupting their execution. A
number of DSU systems have been designed, but there is still little rig-
orous understanding of how to use DSU technology so that updates are
safe. As a first step in this direction, we introduce a small update calculus
with a precise mathematical semantics. The calculus is formulated as an
extension of a typed lambda calculus, and supports updating technology
similar to that of the programming language Erlang [2]. Our goal is to
provide a simple yet expressive foundation for reasoning about dynam-
ically updateable software. In this paper, we present the details of the
calculus, give some examples of its expressive power, and discuss how it
might be used or extended to guarantee safety properties.

1 Introduction

Dynamic software updating (DSU) is a process by which a running program can
be updated with new code and data without interrupting its execution. DSU
is critical for systems such as air-traffic control systems, financial transaction
processors, and networks, which must provide continuous service but nonetheless
be updated to fix bugs and add new features.

While DSU is widely used in practice, and a number of language-based ap-
proaches have been implemented, there is at present little general understanding
of how DSU is best provided and used. There are many open questions: How
to know when it is safe to perform an update, so that the system smoothly
transitions from its old version to the new one? Or conversely, how can we
build programs that are update-safe by construction? How should updating
itself be implemented? What language features complicate or simplify updat-
ing? To what extent can one use common mechanisms for updating in different
languages, whether functional, object-oriented, or imperative?

There are quite a number of DSU implementations (e.g. [2, 13, 16, 9, 19, 15, 6,
14] among others), and many informal or incomplete ideas as to when a dynamic
update should be considered safe [12, 3, 4, 16, 13]. However, we believe a formal,
mathematical approach, with clear operational semantics, should be developed
to set a firm foundation for both users and implementors of DSU technology.
Unfortunately, little semantic work has been carried out to date. The most

1

substantial work is by Gupta [11, 12], who showed that we cannot prove, for an
arbitrary program and an arbitrary update to it, that the update is valid in a
particular sense – i.e. that it will eventually result in a reachable program state
of the new code (we discuss validity and other desirable correctness properties
of updates in Section 4).

Any analysis must therefore consider only particular programs or program
structures, suggesting that a language-based formalism is needed. However,
there are few formalized programming languages for modeling DSU or its as-
pects [20, 7], and these lack both simplicity and generality. Therefore, we believe
that a simple formal system should be established with the goal of understand-
ing the underlying foundations of update, for the purpose of understanding how
to best build reliable updateable programs.

In this paper, we present a starting point for such a formal system with
our update calculus. This is a model programming language with the following
characteristics:

1. Simplicity. It straightforwardly extends the first-order simply-typed lambda-
calculus with mutually-recursive modules and a primitive for updating
them.

2. Flexibility. We allow any module in the system to be updated, including
changes to the types of its definitions, as long as the resulting program
is type-correct. Furthermore, the timing of an update can be controlled
by the programmer, based on the insertion of an update primitive. Fi-
nally, the effects of an update can be controlled by using appropriate
variable syntax. In combination, these features allow us to model a range
of systems, from those that allow updating at any time in arbitrary (but
type-correct) ways, to those that have timing and/or update-content re-
strictions (e.g. [10]).

3. Practicality. Our calculus is informed by our own implementation expe-
rience [13], and that of other DSU implementations, notably the one in
Erlang [2]. We show how our calculus can be used to model a number of
realistic situations and updating strategies.

In the next section we present the calculus. In the remainder of the paper,
we show how it can be used to express various styles of update to a a server
application (§3), discuss how it can be extended to prove safety properties of
interest (§4), relate to prior work (§5), and conclude.

2 The update calculus

In this section we introduce the update calculus as a simple formal model of
dynamic update. We describe the syntax and semantics of the language, focusing
on the key mechanisms that enable DSU. We defer presentation of detailed
examples to the next section.

2.1 Syntax

Figure 1 shows the syntax of the language, which is basically a first-order,
simply-typed, call-by-value lambda calculus with two extensions: (1) a simple

2

Natural numbers n
Identifiers x , y
Module names M
Module component
identifiers z , f
Versioned module names Mn

Simple types S ::= int | unit | S ∗ S
Function types F ::= S → S
All types T ::= S | F
Module interfaces σ ::= {z1:Tn, ..., zn:Tn}

Expressions e ::= n | () | (e, e ′) | πre (r = 1, 2) | λx :S .e | e e
| let x :T = e in e ′ | x | M .z | Mn.z | update

Values v ::= n | () | (v , v ′) | λx :S .e

Module bodies m ::= {z1:T1 = v1 ... zn:Tn = vn}
Module sets ms ::= {module Mn1

1 = m1, .., module Mnk
k = mk}

Programs P ::= modules ms in e

Atomic expr. contexts A1 ::= (, e) | (v ,) | πr | e | (λx :S .e)
| let x :T = in e

Expression contexts E1 ::= | A1 · E1

Module contexts E2 ::= modules ms in

We work up to alpha-conversion of expressions throughout, with x binding in e
in an expression λx :S .e and y binding in e ′ in an expression let y:T = e in e ′.
The Mn

k of a module set and the zi of a module body do not bind, and so are
not subject to alpha-conversion.

Figure 1: Update calculus syntax

module system with novel variable lookup rules, and (2) an update primitive
that allows loading a new version of a module during program execution. We
restrict the language to first-order functions only as updating higher-order func-
tions (in particular closures) introduces many complexities.

A program P consists of a mutually-recursive set ms of module declara-
tions and an expression e to evaluate. Module declarations are of the form
module Mn = m, where M is a module name, n is a version number, and m
is a module body. (Note that the version superscript n is part of the abstract
syntax of programs, while a subscript k on a module name—or a variable or
expression for that matter—as in Mnk

k , is used only to notate enumerations.)
Many different versions of the same module can coexist in a program, but each
pair of a module name and a version number is unique. In turn, a module body
m is a collection of bindings of values for module component identifiers, written
z :T = v .

Expressions e are mostly standard, including pairs and pair projection πr,
function abstractions and applications, and let binders. To update a module
with a new version, or insert a new module, we provide a primitive update,
which will allow a module to be loaded into the program during execution. To
allow staged transitions from old to new code, we allow flexible access to module

3

P
Mn=m−−−−−→ P ′ (applying a module update to a program)

(update)

∅ � modules (ms ∪ {module Mn = m}) in E1 · () : S
n > maxversion(M , ms)

modules ms in E1 · update Mn=m−−−−−→
modules (ms ∪ {module Mn = m}) in E1 · ()

P −→ P ′ (internal computation step of a program)

(ver) modules ms in E1 · (Mn.z) −→ modules ms in E1 · v
where ms = {.., module Mn = {.. z :T = v ..}, ..}

(unver) modules ms in E1 · (M .z) −→ modules ms in E1 · v
where ms = {.., module Mn = {.. z :T = v ..}, ..}
and n = maxversion(M ,ms)

(let) E2 · E1 · let x :T = v in e −→ E2 · E1 · {v/x}e

(proj) E2 · E1 · πr(v1, v2) −→ E2 · E1 · vr

(app) E2 · E1 · (λx :S .e)v −→ E2 · E1 · {v/x}e

where

mods({module Mn1
1 = m1, .., module Mnk

k = mk}) = {Mn1
1 , .., Mnk

k }
maxversion(M , ms) = max {n | Mn ∈ mods(ms)}

Figure 2: Update calculus reduction rules

components: to access the z component of a module named M , one can write
either M .z , which will use the newest version of the module M , or Mn.z (for
some n), which will uses version n of the code. This semantics is analogous to
the prefixing semantics of Erlang, but is slightly more general. In particular,
Erlang requires all references to an external module to invoke the newest version
of the code; control is only afforded when referencing bindings within the same
module.

2.2 Semantics

Figure 2 presents the dynamics of the calculus. We define a small-step reduction
relation P −→ P ′, using evaluation contexts E1 for expressions and E2 for
programs. Context composition is denoted by ·, as in E2 · E1 · e. The rules for
(let), (app) and (proj) are standard, while the remaining three rules describe
accessing module bindings and updating module definitions.

So that module updates work as we would expect, module component iden-
tifiers are not resolved by substitution, as is the case with local bindings (c.f.
the (let) and (app) rules), but instead by ‘lookup’. In particular, the (ver) rule
will resolve the component identifier z from version n of module M when the
expression Mn.z appears in redex position. Similarly, the (unver) rule handles

4

Here Γ ranges over partial functions from identifiers x to types T , and Σ ranges
over partial functions from module names M and versioned module names Mn

to module types σ. Define

modsig({z1:T1 = v1 ... zn:Tn = vn}) = {z1:T1, .., zn:Tn}
modctx0({module Mn1

1 = m1, .., module M
nk
k = mk}) =

{Mn1
1 :modsig(m1), .., M

nk
k :modsig(mk)}

modctx(ms) =
modctx0(ms) ∪ {M :σ | ∃n.Mn:σ ∈ modctx0(ms) ∧ n = maxversion(M ,ms)}

∅ � P :S (type checking a program)

Σ = modctx({module Mn1
1 = m1, .., module M

nk
k = mk})

Σ � mi:modsig(mi) (i = 1..k)
Σ; ∅ � e:S

∅ � modules {module Mn1
1 = m1, .., module M

nk
k = mk} in e:

S

Σ � m:σ (type checking a module body)

Σ; ∅ � vi:Ti (i = 1..n)

Σ � {z1:T1 = v1 ... zn:Tn = vn}:{z1:T1, ..., zn:Tn}

Σ; Γ � e:T (type checking an expression)

Σ; Γ � n:int Σ; Γ � ():unit

Σ; Γ � e:S Σ; Γ � e ′:S ′

Σ, Γ � (e, e ′):S ∗ S ′

Σ; Γ � e:S1 ∗ S2

Σ; Γ � πre:Sr

Σ; Γ � e:S → S ′ Σ;Γ � e:S

Σ;Γ � ee ′:S ′

Σ; Γ, x :S � e:S ′

Σ;Γ � λx :S .e:S → S ′

Σ; Γ, x :T � e ′:T ′

Σ; Γ � e:T

Σ;Γ � let x :T = e in e ′:T ′

Σ;Γ, x :T � x :T Σ, Mn:{..., z :T , ...}; Γ � Mn.z :T

Σ,M :{..., z :T , ...}; Γ � M .z :T Σ; Γ � update:unit

Figure 3: Update calculus typing rules

5

the M .z case, with the difference being that the most recent version of module
M is used. This semantics is crucial for properly implementing updating.

The (update) rule defines the semantics of the update primitive, with la-

belled transitions P Mn=m−−−−−→ P ′. The idea is that when this primitive is eval-
uated, the system will apply any waiting update to the running system. We
express this idea by having the rule accept a module name M , a version number
n, and a module body m. If the new module does not invalidate the type safety
of the program, and if n is greater than any existing version of M , the new
module is added (if type safety would be compromised, the update cannot take
effect – see §4 for further discussion). Any unversioned existing references to M
in the code will now refer to the newly loaded module.

We can now look at an example update. In the following take

ms ≡ {module M0 = {
f = λx :unit.let y:unit = update in M .z
z = 3}}

to be the initial set of modules, an initial expression M .f (), and m ≡ {z =
(5, 5)} be a module body to be loaded. We have:

modules ms in M .f ()
−→ modules ms in (λx :unit.let y:unit = update in M .z) ()
−→ modules ms in let y:unit = update in M .z
M1=m−−−−→ modules ms′ in let y:unit = () in M .z
−→ modules ms′ in M .z
−→ modules ms′ in (5, 5)

where ms′ = ms ∪ {module M1 = {z = (5, 5)}}.
At the point where the M .f is resolved, in the first reduction step, the

greatest extant version of M is M0 – so M .f is replaced by its M0.f definition.
When the M .z is resolved in the last reduction step, however, the greatest
version of M is the M1 supplied by the update – and so M .z resolves to (5, 5)
instead of 3.

The type system provides the necessary checks to ensure that loading a
module does not result in a program that will reduce to a stuck state (one in
which the expression is not a value and yet no reduction rule applies). Figure
3 shows the type system for our calculus. The rules for the judgment Σ; Γ �
e:T are the standard ones for the simply typed lambda calculus, extended in
the obvious way to deal with the typing of module components. The update
command is statically uninteresting and types as unit, as this is the type of
the () value it becomes after (update). The other two judgments are more
interesting. Σ � P :S types whole programs and handles most of the complexity
in typing modules. We use two auxiliary functions modsig and modctx: modsig
determines the interface of a module given its body, and, given a set of modules,
modctx determines the partial function that maps versioned module names Mn

to their signatures and also maps the unversioned module names M to the
signature of the highest versioned module with the same name. modctx can
thus be used to determine the module context in which the program (including
the module bodies themselves) should be typed. The single rule defining the
judgement ensures that the expression and every module body can be typed in

6

this context; this means that the modules are allowed to be mutually recursive,
as every module name is available in the typing of each module.

Typing of module bodies is expressed by the judgment Σ � m:σ, i.e. that
module body m has interface σ in the context of module declarations Σ; it
simply requires that each component of the module has the appropriate type.

2.3 Discussion

Many design decisions reflect our aim to keep the update calculus simple, but
nonetheless practical and able to express different updating strategies for pro-
grams. We further consider some of those design decisions here.

The calculus addresses the run-time mechanisms involved in implementing
updating (that is, loading new modules and allowing existing code or parts
thereof to refer to them), but does not cover all the important software de-
velopment issues of managing updateable code. In practice, we would expect
compiler support for aiding the development process [13]. For example, user
programs could refer to the ‘current’ and ‘previous’ versions of a module, and
the compiler would fill in the absolute version number.

As many past researchers have observed, the timing of an update is critical
to assuring its validity [11, 16, 9, 13]. We chose to support synchronous updates
by using the update primitive to dictate when an update can occur. This makes
it easier to understand the state(s) of the program which an update is applied
to than the alternative asynchronous approach, and so makes it easier to write
correct updates.

Of equal importance is the need to control an update’s effect. Which mod-
ules will ‘notice’ the new version? Can an old version and a new version coexist?
Different systems answer these questions differently. Many systems allow mul-
tiple versions to coexist [2, 9, 13, 7, 1, 18], while others prefer one version at
a time [10, 11]. Our use of module versions allows multiple generations of a
module to exist simultaneously, and provides explicit control over which version
of a module we are referring to, allowing us to delimit the effect of an update.
As such, we can model a variety of updating situations.

Finally, we assert that updateable programs must be reliable: if the program
crashes frequently, it is probably not ‘mission-critical’, and thus it has little need
to be updated dynamically! For this reason, we imposed a static (link-time) type
system to ensure that if an update is accepted by the system, then the resulting
program will be type-correct. In addition to improved reliability, we also believe
that type-correct programs are easier to reason about.

3 Example: Updating a Server Application

To illustrate the expressive power of our calculus, we present some fairly realistic
examples of updating a long-lived server application. There are many real-
world examples of this class of system that employ or could benefit from DSU;
e.g. financial transaction processors, web and database servers, network routers,
intrusion detection sensors, and more. Because our calculus lacks concurrency (a
non-trivial extension), we focus on a single-threaded, event-based architecture,
which is not uncommon in server applications [17, 5, 21].

7

modules {
module Handlers1 = {
handleGet = λ(q,e). ...
handlePost = λ(q,e). ...
handleUpdate = λ(q,e). update ; q
...
}

module Server1 = {
getevent = λq. ...
handle = λq.
let (q,e) = Queue.dequeue q in
...demultiplex ...
... Handlers1.handleGet (q,e) ...
... Handlers1.handlePost (q,e) ...
... Handlers1.handleUpdate (q,e) ...

loop = λq.
let q = Server.getevent q in
let q = Server.handle q in
Server.loop q

}
} in

Server.loop Queue.empty

Figure 4: An updateable (web) server

To make the code examples easier to read, we have taken some liberties
with our syntax. In particular, we allow tuples rather than pairs, with pattern-
matching; we have elided all typing annotations; we suppose the existence of
booleans and conditionals; we suppose the existence of a type of queues, which
could be implemented using lists; and we allow simultaneous updates of multiple
modules. All these should be clear in context, and would be routine to add to
the calculus definition.

3.1 Initial System

The initial program for our updateable server is shown in Figure 4. The Server
module implements the basic event loop. The loop function has a queue of
events, e.g. HTTP requests from clients or responses sent by handlers. New
events are created by getevent, which queues any new events (such as client
requests) and returns, or blocks if both the queue is empty and no new events
have occurred. Once an event is extracted it is demultiplexed by the handle
function, which calls the handlers implemented in the Handlers module. One
possible event is a request to update the server. This is processed by the Han-
dlers.handleUpdate function, which invokes update. Notice that because of
the placement of the update primitive, updates will always occur just before the
recursive call to loop, meaning that no computations will be incomplete when
the update is accepted. This intuitively allows us to believe that an update will
not result in an inconsistent state; we consider this point further in Section 4.1.

8

Also notice that calls to Handlers functions use an explicit version; the reason
for this will be evident shortly. We assume that the program is using a module
Queue to implement its event queue, which is not shown. The programs starts
with a call to loop with an empty queue as its argument.

3.2 First Update: Adding a Log

As a first example update, say we want to log all of the HTTP events that
we process, so we want to add logging to the server. To do this, we need to
change the loop and handle functions of Server to additionally take a log
object as an argument. Upon handling each event, a record will be added to
the log. To realize this change on-line, we note that the existing Server.loop
function does not expect this extra parameter, and therefore we must introduce
a ‘transitional’ function loop at the old type (that is, expecting only a queue
as its argument), which then calls the new version of loop’ at the new type
(that is, expecting both the queue and log as arguments). This is shown in
Figure 5. Transitional functions have been proposed in existing systems under
various names and guises [13, 16, 9].

module Log1 = {
emptyLog = ...
logevent = λ(l,e). ...
}

module Server2 = {
getevent = λq. ...
handle = λ(l,q).
let (q,e) = Queue.dequeue q in
let l = Log.logevent (l,e) in
...
Handlers1.handleGet (q,e)
...

loop = λq.
Server2.loop’ (Log1.emptyLog, q)

loop’ = λ(l,q).
let q = Server.getevent q in
let (l,q) = Server.handle (l,q) in
Server.loop’ (l,q)

}

Figure 5: Adding a log to the server

When the original Server1.loop function handles the update event, its re-
cursive call to Server.loop will dispatch to the new Server2.loop function
by the (unver) reduction rule. This function creates an empty log and calls
Server2.loop’, which continues processing events. This function will call the
new handle function, which expects the log as an argument, and will log the
appropriate events.

It would seem unfortunate from a software engineering point of view that
the name of the loop function changes to loop’ in the new version. However,

9

this issue can be resolved with compiler/tool support, as we have motivated and
implemented in other work [13]. Our goal is to focus on the run-time issues,
since doing so keeps things simpler and will not impede our formal reasoning
ability.

module Server3 = {
getevent = λq. ...an event of the new type ...
handle = λ(l,q).
let (q,e) = Queue.dequeue q in
let l = Log.logevent (l,e) in
...
Handlers2.handleGet (q,e)
...

loop’ = λ(l,q).
if (Queue.isempty q) then
Server3.loop’’ (l, Queue.empty)

else
let q = Server2.getevent () in
let q = Server2.handle (l,q) in
Server3.loop’ (l,q)

loop’’ = λ(l,q).
let q = Server.getevent q in
let (l,q) = Server.handle (l,q) in
Server.loop’’ (l,q)

}

Figure 6: Complete existing events first

3.3 Second Update: Enriching Events

The first update added to the server’s functionality; we might also wish to enrich
or change existing functionality. For instance, we could extend the definition
of events to include additional information, perhaps to refine existing event
descriptions or to add new ones. Such a change will impact all of the code that
manipulates events, including our event queue and handler functions.

Because we are making the change without shutting down the system, we
have to consider the existing unprocessed events before switching to the new
format. In particular, the server’s existing event queue could be non-empty.
Here are two possible choices: (1) convert all of the events in the existing queue
to have the format expected by the new code, or (2) process the old events using
the old code and then switch to using new code for the new events. The former
strategy, which we shall dub convert, is taken by most proposed DSU systems
(e.g. [7, 13, 10, 9, 16, 19]), while the latter, which we dub complete, is taken by
fewer (e.g. [1, 18]). Each approach has advantages and disadvantages; a main
goal for our calculus is to be able to express a range of design decisions, so as
to evaluate these tradeoffs.

In both cases, we will need to create new versions of the Handlers and Log

10

module Server3 = {
convertevent = λe. ...convert event e

convert = λ(q,q’).
if (Queue.isempty q) then q’
else
let (q,e) = Queue.dequeue q in
let e’ = Server3.convertevent e in
let q’ = Queue.enqueue q’ e’ in
Server3.convert (q,q’) in

getevent = λq. ...an event of the new type

handle = λ(l,q).
let (q,e) = Queue.dequeue q
let l = Log.logevent (l,e)
...
Handlers2.handleGet (q,e)
...

loop’ = λ(l,q).
let q’ = Server.convert (q,Queue.empty) in
Server3.loop’’ (l,q’)

loop’’ = λ(l,q).
let q = Server.getevent q in
let (l,q) = Server.handle (l,q);
Server.loop’’ (l,q)

}

Figure 7: Convert existing events to new format

modules that use the new form of events:

module Handlers2 = ...handles new event type

module Log2 = ...handles new event type

(we omit the details of these two).
The new Server module for the complete strategy is illustrated in Figure 6.

Here, if the existing queue is nonempty the new loop’ processes the old events
by explicitly referring to Server2.getevent and Server2.handle functions,
which call the handlers from the Handlers1 module. Once the queue is empty,
loop’ calls the new Server3.loop’’ function with an empty queue (to hold
the new events).

Note that the complete strategy would not have worked if we had not explic-
itly included the version number when calling Handlers1 handling functions in
Server2.handlers. If instead we had used the unversioned syntax (e.g. Han-
dlers.handleGet), the new versions of the handlers would have been called
following the update, and this would have been flagged as a type error. On
the other hand, had we used the unversioned syntax, we could have supplied
an intermediate update that inserted the versioned variable syntax, and then
proceeded with our original update!

The new module required for the convert strategy are shown in Figure 7.
Here we have defined two new functions convertevent and convert; the former

11

converts an event from the old to the new format, and the latter recursively
creates a new queue containing the converted events of the old one. At the time
of the update, the loop’ function will call convert to create a new queue, and
then call Server3.loop’’ to proceed with processing the converted (and new)
events with the new code.

4 Ongoing Work

The calculus we have presented is a first step towards a formal system for rea-
soning about Dynamic Software Updating. In this section, we briefly sketch
how we envision using the calculus: to discuss properties of updates, and as a
foundation for realistic updatable programming languages.

4.1 Ensuring Correctness Properties of Updates

As argued above, updatable programs must be reliable, yet updating itself intro-
duces further complexity. To prevent total confusion, techniques are required for
ensuring that updates are in some sense safe. Broadly, there are two classes of
safety properties: simple type-safety properties and richer semantic correctness
results.

Type Safety In the absence of any updates, the type system of our calculus
prevents all runtime errors statically, e.g. applications of pairs to arguments.
For updates, there are two main options. We have chosen to allow updates to
change types arbitrarily – the signatures of different versions of a module need
not be related – but to maintain type safety we perform a typecheck of the whole
running program at update time. The obvious alternative would be to require
new versions to be related by a subtype order to previous versions. This would
rule out the example updates of §3, but would require only a subtype check
for the new module at update-time, instead of a whole-program typecheck. For
the first option, it would be interesting to identify sufficient conditions for the
whole-program typecheck that could be performed off-line.

Our calculus does not specify what happens if an update-time check fails.
We envisage tool support to return information to the updater, and that the
system continues to execute.

Semantic Correctness If one had precise specifications of a system before
and after a proposed update, then in principle one could prove the updated
system will meet the latter specification. In practice, though, creating such
specifications is extremely challenging, as is large-scale program proof.

On the other hand, when designing an update we do engage in delicate
informal reasoning. For example, recall that in our updateable server of Figure 4,
we placed the update primitive so that updates would always occur just before
the recursive call to the event loop. This means that no computations would be
incomplete when an update is accepted – in contrast to the alternative placing
of update at the beginning of the event loop function.

Pragmatically, we envision formalizing this intuition by extending the cal-
culus with logical assertions, using a Hoare-like logic. The idea is that a long-
running loop, such as the one used in the server application from §3, expects

12

that the system state will respect some invariant. For example, our server loop
assumes that upon entry to the loop, no events are being processed midstream;
that is, all events not in the queue have been completely processed. In a more so-
phisticated server, this might imply that global data structures, like caches and
maps, respect their own invariants. In turn, the new version of the server loop
would assert a slightly different invariant, based on its new functionality. We
could then use the logic to prove that given the update and the assertion in the
old loop, after the computations performed in the transition function, the new
loop will begin processing with its invariant held. Partial automation of such
formal reasoning is becoming feasible, as work on Extended Static Checking [8]
demonstrates.

Other Properties Gupta et al. investigated another property in [11, 12],
which we detail in §5. There, an update is valid if (loosely) the resulting state
eventually becomes a state that is reachable from the initial state of the new
program text. One can envisage many reasonable updates that do not have
this property, however – for example an update to our logging server that adds
timestamps to log entries, recorded in a field of option type, with a convert
function that attaches a None to old entries. Such old entries will persist, but
the new program text would never generate them.

4.2 Language Design for Updatability

To extend our calculus of §2 to a full programming language, one must consider
how standard constructs behave in the presence of update, e.g. higher-order
functions, abstract types, concurrency, mutable state, and objects. Here we
make some preliminary observations.

It is clear that the structure of a program plays an important rôle in deter-
mining the updatability of the resulting program. Sometimes structuring mech-
anisms that simplify normal programming actually obfuscate data that may be
needed at an update point. A good example of this is higher-order functions,
which at run-time lead to complex intermediate data structures being wrapped
up in closures that are tied to the control flow. Further, it is unlikely that one
would want to update (say) all partial applications of a function f uniformly, as
they would be constructed in different environments.

Abstract data types, on the other hand, can make it easier to design updates,
as the code that can access values of those types is collected together.

Another problematic area is that of introducing concurrent execution in the
form of threads. Threads introduce non-determinism, which makes understand-
ing the state of the program at update time harder. If one thread performs an
update how should the other threads behave with respect to updated code and
data? Determining when to do an update in complex situations such as this
is hard, and we think that formal models will be invaluable in devising correct
update strategies.

Of course, one need not be constrained to existing languages. It would be
interesting to consider new structuring mechanisms that ease the writing of
updatable code, and in fact this may be necessary – update primitives are not
orthogonal to the ambient language. We should also consider the granularity of
the update. In this paper we have explored a coarse-grained update mechanism,
where the unit of update is a whole module. One can imagine using a more fine-

13

grained definition of update, although this raises practical problems in compiling
and replacing only parts of modules, and eliminates the immediate use of many
common compiler optimisations.

5 Related Work

While there have been a variety of implementations of DSU (e.g. [2, 13, 16, 9,
19, 15, 6, 14] among others), comparatively little work has been done in the two
areas we are interested in here: analyses as to how to update programs safely;
and formal, language-based models of DSU. Here we briefly overview past work
in these areas.

5.1 Updating Programs Safely

An important question for any dynamic update is whether that update is valid.
Intuitively, we are interested in the question of whether a change to a system’s
code, realized dynamically, will properly transform the system to reflect the new
code base. Gupta et al. developed a formal framework in which they proved
that the problem of update validity is, in general, undecidable. [11, 12]. In their
model, a running program P is a pair (Π, s), where Π is the program code and s
is the program state, encapsulating the notions of the stack, heap, and machine
registers. An update to P is a pair (Π′, S), where Π′ is the new program code,
and S is a state transformer function that maps the old state to a new state.
Applying the update yields a new program (Π′, s′) where s′ = S(s). An update
is valid if and only if the new program’s state s′ eventually becomes reachable.
Reachability is defined as follows. A state s, relative to code Π, is reachable if
and only if a program (Π, sΠ0), where sΠ0 is a legal initial state, can evaluate
to (Π, s) at some time for some inputs. Gupta et al. show that, in general,
determining that a change is valid is undecidable by a reduction to the halting
problem.

This means that any analysis proving validity must be conservative. Gupta et
al. developed an analysis that compares the old and new versions of C code (but
not including functions, stack allocation, or heap allocation) and identifies, based
on a syntactic analysis, program points that would preserve update validity.
This analysis is quite conservative, and can only handle restructurings of the
same algorithm, not changes to program functionality.

Lee [16] describes a way to decompose a valid update into a set of smaller
valid updates. A directed graph is constructed such that each node in the graph
represents a function to be replaced, and an edge from f to g implies that g
should be updated before or with f . The strongly connected components of the
graph then represent functions that must be updated together. Lee does not
formalize why one procedure should be updated before another; in some cases
this is easy to determine (e.g. if the types of functions change), but in others
it is not straightforward. Furthermore, a valid update must be known before it
can be deconstructed, but no guidance is provided in finding such an update.
Bloom et al develop a similar, but more complicated, model for Argus [3, 4].

A number of researchers have observed that dynamic updates can become
invalid if they are applied at an inopportune time. Assuming that an update can
become available at any time, rather than perform the update at that moment,

14

the update can be delayed until certain conditions are satisfied. For example,
in Lee’s DYMOS [16], the programmer specifies when-conditions along with the
patches to update as in

update P, Q when P, M, S idle

This specifies that procedures P and Q should be updated only when procedures
P, M, and S do not have activations in any thread stack. As a degenerate version
of this idea, many systems simply impose the restriction that updates may only
occur to inactive code (e.g. [10]). However, in none of these systems is there any
well developed evidence as to what conditions are needed to guarantee validity.
This has led us to focus on a model of synchronous updates, as mentioned in
§2.3, in which the program designates its own update points.

5.2 Language-based Formal Systems

As far as we know, only two past efforts have formalized languages with DSU
in mind. Dynamic ML [10] is a proposed implementation of ML with a for-
malized abstract machine [20] that enables replacement of modules at runtime;
changes can include the alteration of abstract types, and the addition (and pos-
sibly deletion) of module definitions. The authors define an abstract machine
that implements replacement via garbage collection, in which old instances of a
changed type are converted at update-time. They show that evaluation in the
context of replacement preserves type-safety. Duggan [7] defines a formal lan-
guage in which module types may be converted lazily during program execution,
rather than at once during garbage collection. As a result, different versions of
a type/module may coexist during program execution, and must be convertible
from the old to new version and vice versa. A novel type-system is presented
and type soundness is proved.

While these formalizations are instructive, both calculi focus only on the
problem of converting instances of changed types following an update, adopting
particular language mechanisms to do so. We believe the wider questions of how
and when to ensure safe updates require attention; a prime goal of the update
calculus has been to use the simplest mechanisms possible in order to highlight
commonality among various DSU systems.

6 Conclusions

In this paper, we make two contributions:

• We have motivated the need for a simple, yet flexible and practical formal
framework for understanding effects of dynamic software updating.

• We have defined the update calculus (§2) as a first step towards such a
framework. The calculus is expressive enough to model real-world exam-
ples, as presented in §3, and model design decisions present in existing
DSU systems. At the same time, it is simple enough to admit formal rea-
soning, and extension to include other language features, as presented in
§4.

15

In ongoing work, we plan to use the update calculus to expand our understanding
of how to implement languages with updating capabilities, and how to use those
features to effectively build reliable, updateable software.

Acknowledgments We acknowledge support from a Royal Society University
Research Fellowship (Sewell), a Marconi EPSRC CASE Studentship (Stoyle),
AFRL-IFGA IAI grant AFOSR F49620-01-1-0312 (Hicks, while at Cornell Uni-
versity) and EC grant PEPITO.

References

[1] A. Appel. Hot-Sliding in ML, December 1994. Unpublished manuscript.

[2] J. L. Armstrong and R. Virding. Erlang — An Experimental Telephony
Switching Language. In XIII International Switching Symposium, Stock-
holm, Sweden, May 27 – June 1, 1991.

[3] T. Bloom. Dynamic Module Replacement in a Distributed Programming
System. PhD thesis, Laboratory for Computer Science, The Massachussets
Institute of Technology, March 1983.

[4] T. Bloom and M. Day. Reconfiguration and module replacement in Argus:
theory and practice. Software Engineering Journal, 8(2):102–108, March
1993.

[5] Boa Webserver. http://www.boa.org.

[6] M. Dmitriev. Towards flexible and safe technology for runtime evolution of
java language applications. In Workshop on Engineering Complex Object-
Oriented Systems for Evolution, October 2001.

[7] D. Duggan. Type-based hot swapping of running modules. In International
Conference on Functional Programming, pages 62–73, 2001.

[8] C. Flanagan, K. Leino, M. Lillibridge, C. Nelson, J. Saxe, and R. Stata.
Extended static checking for java. In Proc. PLDI, 2002., 2002.

[9] O. Frieder and M. E. Segal. On dynamically updating a computer program:
From concept to prototype. Journal of Systems and Software, 14(2):111–
128, September 1991.

[10] S. Gilmore, D. Kirli, and C. Walton. Dynamic ML without dynamic types.
Technical Report ECS-LFCS-97-378, Laboratory for the Foundations of
Computer Science, The University of Edinburgh, December 1997.

[11] D. Gupta. On-line Software Version Change. PhD thesis, Department of
Computer Science and Engineering, Indian Institute of Technology, Kan-
pur, November 1994.

[12] D. Gupta, P. Jalote, and G. Barua. A formal framework for on-line software
version change. Transactions on Software Engineering, 22(2):120–131, Feb.
1996.

16

[13] M. W. Hicks. Dynamic Software Updating. PhD thesis, Department of
Computer and Information Science, The University of Pennsylvania, Au-
gust 2001.

[14] JDRUMS, Java distributed run-time updating management system. http:
//www.ida.liu.se/~jengu/jdrums/.

[15] G. Kniesel. Type-safe delegation for run-time component adaptation. Lec-
ture Notes in Computer Science, 1628:351–366, 1999.

[16] I. Lee. DYMOS: A Dynamic Modification System. PhD thesis, Department
of Computer Science, University of Wisconsin, Madison, April 1983.

[17] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An efficient and portable
webserver. In Proceedings of the USENIX Annual Technical Conference,
pages 106–119, Monterey, June 1999.

[18] J. Peterson, P. Hudak, and G. S. Ling. Principled dynamic code improve-
ment. Technical Report YALEU/DCS/RR-1135, Department of Computer
Science, Yale University, July 1997.

[19] Squeak Smalltalk-80 programming system. http://www.squeak.org.

[20] C. Walton, D. Kirli, and S. Gilmore. An abstract machine for module re-
placement. Technical report, Laboratory for the Foundations of Computer
Science, The University of Edinburgh, June 1998.

[21] M. Welsh, D. Culler, and E. Brewer. SEDA: An architecture for well-
conditioned, scalable internet services. In Proceedings of the Eighteenth
Symposium on Operating Systems Principles (SOSP-18), October 2001.

17

